1
|
Rivas-Garcia L, Quintana-Navarro GM, Alcala-Díaz JF, Torres-Peña JD, Arenas-de Larriva AP, Rangel-Zuñiga OA, López-Moreno A, Malagon MM, Katsiki N, Perez-Martinez P, Lopez-Miranda J, Delgado-Lista J. Association between Diet Quality and Risk of Type 2 Diabetes Mellitus in Patients with Coronary Heart Disease: Findings from the CORDIOPREV Study. Nutrients 2024; 16:1249. [PMID: 38674939 PMCID: PMC11053861 DOI: 10.3390/nu16081249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The incidence of type 2 diabetes mellitus (T2DM) is growing in Western countries. Nutritional interventions that promote high-quality dietary patterns could help reverse this trend. We aimed to evaluate whether changes in Nutrient-Rich Food Index 9.3 (NRF9.3) were related to the risk of developing T2DM in patients with coronary heart disease (CHD). The study was carried out in the context of two healthy dietary interventions (a Mediterranean and a low-fat diet). For this purpose, we evaluated all the patients in the CORDIOPREV study without T2DM at baseline. Data were obtained during the first 5 years of dietary intervention. The score was calculated using the Food Frequency Questionnaires at baseline and after 1 year of intervention. After 5 years of follow-up, 106 patients developed T2DM (incident-T2DM), while 316 subjects did not (non-T2DM). Total NRF9.3 score and changes during the first year of intervention were compared between incident-T2DM and non-T2DM. Incident-T2DM showed less improvement in NRF9.3 than non-T2DM (p = 0.010). In the multi-adjusted Cox proportional hazard study, patients with greater improvement in NRF9.3 had over 50% less risk of developing T2DM compared with the lowest tertile (HR 2.10, 95%, CI = 1.12-3.56). In conclusion, improved diet quality in terms of nutrient density after the dietary intervention was associated with a lower risk of T2DM in patients with CHD.
Collapse
Affiliation(s)
- Lorenzo Rivas-Garcia
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Gracia M. Quintana-Navarro
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Juan F. Alcala-Díaz
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medical and Surgical Sciences, University of Córdoba, 14004 Córdoba, Spain
| | - Jose D. Torres-Peña
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medical and Surgical Sciences, University of Córdoba, 14004 Córdoba, Spain
| | - Antonio P. Arenas-de Larriva
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medical and Surgical Sciences, University of Córdoba, 14004 Córdoba, Spain
| | - Oriol Alberto Rangel-Zuñiga
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alejandro López-Moreno
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria M. Malagon
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medical and Surgical Sciences, University of Córdoba, 14004 Córdoba, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medical and Surgical Sciences, University of Córdoba, 14004 Córdoba, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medical and Surgical Sciences, University of Córdoba, 14004 Córdoba, Spain
| |
Collapse
|
2
|
Yoo HS, Moss KO, Cockrum MA, Woo W, Napoli JL. Energy status regulates levels of the RAR/RXR ligand 9-cis-retinoic acid in mammalian tissues: Glucose reduces its synthesis in β-cells. J Biol Chem 2023; 299:105255. [PMID: 37714463 PMCID: PMC10582780 DOI: 10.1016/j.jbc.2023.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023] Open
Abstract
9-cis-retinoic acid (9cRA) binds retinoic acid receptors (RAR) and retinoid X receptors (RXR) with nanomolar affinities, in contrast to all-trans-retinoic acid (atRA), which binds only RAR with nanomolar affinities. RXR heterodimerize with type II nuclear receptors, including RAR, to regulate a vast gene array. Despite much effort, 9cRA has not been identified as an endogenous retinoid, other than in pancreas. By revising tissue analysis methods, 9cRA quantification by liquid chromatography-tandem mass spectrometry becomes possible in all mouse tissues analyzed. 9cRA occurs in concentrations similar to or greater than atRA. Fasting increases 9cRA in white and brown adipose, brain and pancreas, while increasing atRA in white adipose, liver and pancreas. 9cRA supports FoxO1 actions in pancreas β-cells and counteracts glucose actions that lead to glucotoxicity; in part by inducing Atg7 mRNA, which encodes the key enzyme essential for autophagy. Glucose suppresses 9cRA biosynthesis in the β-cell lines 832/13 and MIN6. Glucose reduces 9cRA biosynthesis in 832/13 cells by inhibiting Rdh5 transcription, unconnected to insulin, through cAMP and Akt, and inhibiting FoxO1. Through adapting tissue specifically to fasting, 9cRA would act independent of atRA. Widespread occurrence of 9cRA in vivo, and its self-sufficient adaptation to energy status, provides new perspectives into regulation of energy balance, attenuation of insulin and glucose actions, regulation of type II nuclear receptors, and retinoid biology.
Collapse
Affiliation(s)
- Hong Sik Yoo
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA
| | - Kristin Obrochta Moss
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA
| | - Michael A Cockrum
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA
| | - Wonsik Woo
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA
| | - Joseph L Napoli
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA.
| |
Collapse
|
3
|
Zhang W, Peng Q, Zhang X, Guo J, Tong H, Li S. Vitamin A Promotes the Repair of Mice Skeletal Muscle Injury through RARα. Nutrients 2023; 15:3674. [PMID: 37686706 PMCID: PMC10490340 DOI: 10.3390/nu15173674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Vitamin A (VitA) is an important fat-soluble vitamin which plays an important role in cell growth and individual development. However, the effect of VitA on the repair process of muscle injury and its molecular mechanism are still unclear. In this study, VitA and RA were first added to the culture medium of differentiated cells. We then detected cell differentiation marker proteins and myotube fusion. Moreover, the effects of VitA on RARα expression and nuclear translocation were further examined. The results showed that VitA significantly promoted the differentiation of C2C12, and the expression of RARα was significantly increased. Furthermore, VitA was injected into skeletal muscle injury in mice. HE staining and Western Blot results showed that VitA could significantly accelerate the repair of skeletal muscle injury and VitA increase the expression of RARα in mice. This study provides a theoretical basis for elucidating the regulation mechanism of VitA-mediated muscle development and the development of therapeutic drugs for muscle diseases in animals.
Collapse
Affiliation(s)
- Wenjia Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (Q.P.); (X.Z.); (J.G.); (H.T.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Qingyun Peng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (Q.P.); (X.Z.); (J.G.); (H.T.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyu Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (Q.P.); (X.Z.); (J.G.); (H.T.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxu Guo
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (Q.P.); (X.Z.); (J.G.); (H.T.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Huili Tong
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (Q.P.); (X.Z.); (J.G.); (H.T.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Li
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (Q.P.); (X.Z.); (J.G.); (H.T.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Brown G. Deregulation of All- Trans Retinoic Acid Signaling and Development in Cancer. Int J Mol Sci 2023; 24:12089. [PMID: 37569466 PMCID: PMC10419198 DOI: 10.3390/ijms241512089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer stem cells are the root cause of cancer, which, in essence, is a developmental disorder. All-trans retinoic acid (ATRA) signaling via ligand-activation of the retinoic acid receptors (RARs) plays a crucial role in tissue patterning and development during mammalian embryogenesis. In adults, active RARγ maintains the pool of hematopoietic stem cells, whereas active RARα drives myeloid cell differentiation. Various findings have revealed that ATRA signaling is deregulated in many cancers. The enzymes for ATRA synthesis are downregulated in colorectal, gastric, lung, and oropharyngeal cancers. ATRA levels within breast, ovarian, pancreatic, prostate, and renal cancer cells were lower than within their normal counterpart cells. The importance is that 0.24 nM ATRA activates RARγ (for stem cell stemness), whereas 100 times more is required to activate RARα (for differentiation). Moreover, RARγ is an oncogene regarding overexpression within colorectal, cholangiocarcinoma, hepatocellular, ovarian, pancreatic, and renal cancer cells. The microRNA (miR) 30a-5p downregulates expression of RARγ, and miR-30a/miR-30a-5p is a tumor suppressor for breast, colorectal, gastric, hepatocellular, lung, oropharyngeal, ovarian, pancreatic, prostate, and renal cancer. These complementary findings support the view that perturbations to ATRA signaling play a role in driving the abnormal behavior of cancer stem cells. Targeting ATRA synthesis and RARγ has provided promising approaches to eliminating cancer stem cells because such agents have been shown to drive cell death.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
5
|
Brown G. Retinoic acid receptor regulation of decision-making for cell differentiation. Front Cell Dev Biol 2023; 11:1182204. [PMID: 37082619 PMCID: PMC10110968 DOI: 10.3389/fcell.2023.1182204] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
All-trans retinoic acid (ATRA) activation of retinoic acid receptors (RARs) is crucial to an organism's proper development as established by findings for mouse foetuses from dams fed a vitamin A-deficient diet. ATRA influences decision-making by embryonic stem (ES) cells for differentiation including lineage fate. From studies of knockout mice, RARα and RARγ regulate haematopoiesis whereby active RARα modulates the frequency of decision-making for myeloid differentiation, but is not essential for myelopoiesis, and active RARγ supports stem cell self-renewal and maintenance. From studies of zebrafish embryo development, active RARγ plays a negative role in stem cell decision-making for differentiation whereby, in the absence of exogenous ATRA, selective agonism of RARγ disrupted stem cell decision-making for differentiation patterning for development. From transactivation studies, 0.24 nM ATRA transactivated RARγ and 19.3 nM (80-fold more) was needed to transactivate RARα. Therefore, the dose of ATRA that cells are exposed to in vivo, from gradients created by cells that synthesize and metabolize, is important to RARγ versus RARα and RARγ activation and balancing of the involvements in modulating stem cell maintenance versus decision-making for differentiation. RARγ activation favours stemness whereas concomitant or temporal activation of RARγ and RARα favours differentiation. Crosstalk with signalling events that are provoked by membrane receptors is also important.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Jeon C, Jun H, Kim S, Song N, Yang M, Lim C, Lee D. Clot-Targeted Antithrombotic Liposomal Nanomedicine Containing High Content of H 2O 2-Activatable Hybrid Prodrugs. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8999-9009. [PMID: 36749947 DOI: 10.1021/acsami.2c20750] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liposomes have been extensively explored as drug carriers, but their clinical translation has been hampered by their low drug-loading content and premature leakage of drug payloads. It was reasoned that vesicle-forming prodrugs could be incorporated into the lipid bilayer at a high molar fraction and therefore serve as a therapeutic agent as well as a structural component in liposomal nanomedicine. Boronated retinoic acid (BORA) was developed as a prodrug, which can self-assemble with common lipids to form liposomes at a high molar fraction (40%) and release all-trans retinoic acid (atRA) and hydroxybenzyl alcohol (HBA) simultaneously, in response to hydrogen peroxide (H2O2). Here, we report fucoidan-coated BORA-incorporated liposomes (f-BORALP) as clot-targeted antithrombotic liposomal nanomedicine with H2O2-triggered multiple therapeutic actions. In the mouse model of carotid arterial thrombosis, f-BORALP preferentially accumulated in the injured blood vessel and significantly suppressed thrombus formation, demonstrating their potential as targeted antithrombotic nanomedicine. This study also provides valuable insight into the development of vesicle-forming and self-immolative prodrugs to exploit the benefits of liposomal drug delivery.
Collapse
Affiliation(s)
- Chanhee Jeon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Hayoung Jun
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Sooyeon Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Nanhee Song
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Manseok Yang
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Changjin Lim
- Department of Pharmacy, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| |
Collapse
|
7
|
Elango J, Zamora-Ledezma C, Negrete-Bolagay D, Aza PND, Gómez-López VM, López-González I, Belén Hernández A, De Val JEMS, Wu W. Retinol-Loaded Poly(vinyl alcohol)-Based Hydrogels as Suitable Biomaterials with Antimicrobial Properties for the Proliferation of Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms232415623. [PMID: 36555266 PMCID: PMC9779207 DOI: 10.3390/ijms232415623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Polyvinyl alcohol (PVA) hydrogels are well-known biomimetic 3D systems for mammalian cell cultures to mimic native tissues. Recently, several biomolecules were intended for use in PVA hydrogels to improve their biological properties. However, retinol, an important biomolecule, has not been combined with a PVA hydrogel for culturing bone marrow mesenchymal stem (BMMS) cells. Thus, for the first time, the effect of retinol on the physicochemical, antimicrobial, and cell proliferative properties of a PVA hydrogel was investigated. The ability of protein (3.15 nm) and mineral adsorption (4.8 mg/mL) of a PVA hydrogel was improved by 0.5 wt.% retinol. The antimicrobial effect of hydrogel was more significant in S. aureus (39.3 mm) than in E. coli (14.6 mm), and the effect was improved by increasing the retinol concentration. The BMMS cell proliferation was more upregulated in retinol-loaded PVA hydrogel than in the control at 7 days. We demonstrate that the respective in vitro degradation rate of retinol-loaded PVA hydrogels (RPH) (75-78% degradation) may promote both antibacterial and cellular proliferation. Interestingly, the incorporation of retinol did not affect the cell-loading capacity of PVA hydrogel. Accordingly, the fabricated PVA retinol hydrogel proved its compatibility in a stem cell culture and could be a potential biomaterial for tissue regeneration.
Collapse
Affiliation(s)
- Jeevithan Elango
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Correspondence: or (J.E.); (C.Z.-L.)
| | - Camilo Zamora-Ledezma
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
- Correspondence: or (J.E.); (C.Z.-L.)
| | - Daniela Negrete-Bolagay
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Piedad N. De Aza
- Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Vicente M. Gómez-López
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Ivan López-González
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Ana Belén Hernández
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - José Eduardo Maté Sánchez De Val
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
8
|
Luo W, Xu Y, Liu R, Liao Y, Wang S, Zhang H, Li X, Wang H. Retinoic acid and RARγ maintain satellite cell quiescence through regulation of translation initiation. Cell Death Dis 2022; 13:838. [PMID: 36175396 PMCID: PMC9522790 DOI: 10.1038/s41419-022-05284-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 01/23/2023]
Abstract
In adult skeletal muscle, satellite cells are in a quiescent state, which is essential for the future activation of muscle homeostasis and regeneration. Multiple studies have investigated satellite cell proliferation and differentiation, but the molecular mechanisms that safeguard the quiescence of satellite cells remain largely unknown. In this study, we purposely activated dormant satellite cells by using various stimuli and captured the in vivo-preserved features from quiescence to activation transitions. We found that retinoic acid signaling was required for quiescence maintenance. Mechanistically, retinoic acid receptor gamma (RARγ) binds to and stimulates genes responsible for Akt dephosphorylation and subsequently inhibits overall protein translation initiation in satellite cells. Furthermore, the alleviation of retinoic acid signaling released the satellite cells from quiescence, but this restraint was lost in aged cells. Retinoic acid also preserves the quiescent state during satellite cell isolation, overcoming the cellular stress caused by the isolation process. We conclude that active retinoic acid signaling contributes to the maintenance of the quiescent state of satellite cells through regulation of the protein translation initiation process.
Collapse
Affiliation(s)
- Wenzhe Luo
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China ,grid.440622.60000 0000 9482 4676College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yueyuan Xu
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruige Liu
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yinlong Liao
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sheng Wang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haoyuan Zhang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinyun Li
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Heng Wang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China ,grid.440622.60000 0000 9482 4676College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
9
|
Behl T, Kaur D, Sehgal A, Singla RK, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau S. Therapeutic insights elaborating the potential of retinoids in Alzheimer’s disease. Front Pharmacol 2022; 13:976799. [PMID: 36091826 PMCID: PMC9453874 DOI: 10.3389/fphar.2022.976799] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is perceived with various pathophysiological characteristics such oxidative stress, senile plaques, neuroinflammation, altered neurotransmission immunological changes, neurodegenerative pathways, and age-linked alterations. A great deal of studies even now are carried out for comprehensive understanding of pathological processes of AD, though many agents are in clinical trials for the treatment of AD. Retinoids and retinoic acid receptors (RARs) are pertinent to such attributes of the disease. Retinoids support the proper functioning of the immunological pathways, and are very potent immunomodulators. The nervous system relies heavily on retinoic acid signaling. The disruption of retinoid signaling relates to several pathogenic mechanisms in the normal brain. Retinoids play critical functions in the neuronal organization, differentiation, and axonal growth in the normal functioning of the brain. Disturbed retinoic acid signaling causes inflammatory responses, mitochondrial impairment, oxidative stress, and neurodegeneration, leading to Alzheimer’s disease (AD) progression. Retinoids interfere with the production and release of neuroinflammatory chemokines and cytokines which are located to be activated in the pathogenesis of AD. Also, stimulating nuclear retinoid receptors reduces amyloid aggregation, lowers neurodegeneration, and thus restricts Alzheimer’s disease progression in preclinical studies. We outlined the physiology of retinoids in this review, focusing on their possible neuroprotective actions, which will aid in elucidating the critical function of such receptors in AD pathogenesis.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- *Correspondence: Tapan Behl, ; Simona Bungau,
| | - Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rajeev K. Singla
- Institutes for Sytems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
- *Correspondence: Tapan Behl, ; Simona Bungau,
| |
Collapse
|
10
|
Ye P, Chi X, Yan X, Wu F, Liang Z, Yang WH. Alanine–Glyoxylate Aminotransferase Sustains Cancer Stemness Properties through the Upregulation of SOX2 and OCT4 in Hepatocellular Carcinoma Cells. Biomolecules 2022; 12:biom12050668. [PMID: 35625596 PMCID: PMC9138635 DOI: 10.3390/biom12050668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Liver cancer stem cells (LCSCs) are a small subset of oncogenic cells with a self-renewal ability and drug resistance, and they promote the recurrence and metastasis of hepatocellular carcinoma (HCC). However, the mechanisms regulating LCSCs have not been fully explored. By enriching LCSCs from spheroid cultures and performing transcriptomic analysis, we determined that alanine–glyoxylate aminotransferase (AGXT), which participates in the metabolism of serine and glycine, was significantly upregulated in spheroid cultures, and its function in LCSCs remains unknown. Through the exogenous overexpression or short hairpin RNA knockdown of AGXT in HCC cells, we observed that changes in the AGXT level did not affect the spheroid ability and population of LCSCs. The knockdown of AGXT in LCSCs reduced the number of spheroids and the population of LCSCs; this implies that AGXT is required for the maintenance of cancer stemness rather than as a driver of LCSCs. Mechanistically, AGXT may sustain the self-renewal potential of LCSCs by upregulating the expression of SRY-box transcription factor 2 (SOX2) and octamer-binding transcription factor 4 (OCT4), two well-known master regulators of cancer stemness. Taken together, our study demonstrates the role of AGXT in supporting LCSCs; thus, AGXT merits further exploration.
Collapse
Affiliation(s)
- Peng Ye
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (X.Y.); (Z.L.)
| | - Xiaoxia Chi
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (X.Y.); (Z.L.)
| | - Xiuwen Yan
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (X.Y.); (Z.L.)
| | - Fangqin Wu
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 910095, China;
| | - Zhigang Liang
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (X.Y.); (Z.L.)
| | - Wen-Hao Yang
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (X.Y.); (Z.L.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Zegeye B, Olorunsaiye CZ, Ahinkorah BO, Ameyaw EK, Seidu AA, Budu E, Yaya S. Trends in inequality in the coverage of vitamin A supplementation among children 6-59 months of age over two decades in Ethiopia: Evidence from demographic and health surveys. SAGE Open Med 2022; 10:20503121221094688. [PMID: 35558192 PMCID: PMC9087221 DOI: 10.1177/20503121221094688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives There is a dearth of evidence on inequalities in vitamin A supplementation in Ethiopia. The goal of this study was to assess the magnitude and overtime changes of inequalities in vitamin A supplementation among children aged 6-59 months in Ethiopia. Methods We extracted data from four waves of the Ethiopia Demographic and Health Surveys (2000, 2005, 2011, and 2016). The analysis was carried out using the 2019 updated World Health Organization's Health Equity Assessment Toolkit software that facilitates the use of stored data from World Health Organization's Health Equity Monitor Database. We conducted analysis of inequality in vitamin A supplementation by five equity stratifiers: household economic status, educational status, place of residence, child's sex, and subnational region. Four summary measures-population attributable fraction, ratio, difference, and population attributable risk-were assessed. We computed 95% uncertainty intervals for each point estimate to ascertain statistical significance of the observed vitamin A supplementation inequalities and overtime disparities. Results The findings suggest marked absolute and relative pro-rich (population attributable fraction = 29.51, 95% uncertainty interval; 25.49-33.53, population attributable risk = 13.18, 95% uncertainty intervals; 11.38-14.98) and pro-urban (difference = 16.55, 95% uncertainty intervals; 11.23-21.87, population attributable fraction = 32.95, 95% uncertainty intervals; 32.12-33.78) inequalities. In addition, we found education-related (population attributable risk = 18.95, 95% uncertainty intervals; 18.22-19.67, ratio = 1.54, 95% uncertainty intervals; 1.37-1.71), and subnational regional (difference = 38.56, 95% uncertainty intervals; 29.57-47.54, ratio = 2.10, 95% uncertainty intervals; 1.66-2.54) inequalities that favored children from educated subgroups and those living in some regions such as Tigray. However, no sex-based inequalities were observed. While constant pattern was observed in subnational regional disparities, mixed but increasing patterns of socioeconomic and urban-rural inequalities were observed in the most recent surveys (2011-2016). Conclusion In this study, we found extensive socioeconomic and geographic-based disparities that favored children from advantaged subgroups such as those whose mothers were educated, lived in the richest/richer households, resided in urban areas, and from regions like Tigray. Government policies and programs should prioritize underprivileged subpopulations and empower women as a means to increase national coverage and achieve universal accessibility of vitamin A supplementation.
Collapse
Affiliation(s)
- Betregiorgis Zegeye
- HaSET Maternal and Child Health
Research Program, Shewarobit Field Office, Shewarobit, Ethiopia
| | | | - Bright Opoku Ahinkorah
- School of Public Health, Faculty of
Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Edward Kwabena Ameyaw
- School of Public Health, Faculty of
Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Abdul-Aziz Seidu
- Department of Population and Health,
University of Cape Coast, Cape Coast, Ghana
| | - Eugene Budu
- Department of Population and Health,
University of Cape Coast, Cape Coast, Ghana
| | - Sanni Yaya
- Faculty of Medicine, University of
Parakou, Parakou, Benin
| |
Collapse
|
12
|
Sun C, Zhu T, Zhu Y, Li B, Zhang J, Liu Y, Juan C, Yang S, Zhao Z, Wan R, Lin S, Yin B. Hepatotoxic mechanism of diclofenac sodium on broiler chicken revealed by iTRAQ-based proteomics analysis. J Vet Sci 2022; 23:e56. [PMID: 35698810 PMCID: PMC9346521 DOI: 10.4142/jvs.22018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/12/2022] [Accepted: 04/05/2022] [Indexed: 11/20/2022] Open
Abstract
Background At the therapeutic doses, diclofenac sodium (DFS) has few toxic side effects on mammals. On the other hand, DFS exhibits potent toxicity against birds and the mechanisms remain ambiguous. Objectives This paper was designed to probe the toxicity of DFS exposure on the hepatic proteome of broiler chickens. Methods Twenty 30-day-old broiler chickens were randomized evenly into two groups (n = 10). DFS was administered orally at 10 mg/kg body weight in group A, while the chickens in group B were perfused with saline as a control. Histopathological observations, serum biochemical examinations, and quantitative real-time polymerase chain reaction were performed to assess the liver injury induced by DFS. Proteomics analysis of the liver samples was conducted using isobaric tags for relative and absolute quantification (iTRAQ) technology. Results Ultimately, 201 differentially expressed proteins (DEPs) were obtained, of which 47 were up regulated, and 154 were down regulated. The Gene Ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway analysis were conducted to screen target DEPs associated with DFS hepatotoxicity. The regulatory relationships between DEPs and signaling pathways were embodied via a protein-protein interaction network. The results showed that the DEPs enriched in multiple pathways, which might be related to the hepatotoxicity of DFS, were “protein processing in endoplasmic reticulum,” “retinol metabolism,” and “glycine, serine, and threonine metabolism.” Conclusions The hepatotoxicity of DFS on broiler chickens might be achieved by inducing the apoptosis of hepatocytes and affecting the metabolism of retinol and purine. The present study could provide molecular insights into the hepatotoxicity of DFS on broiler chickens.
Collapse
Affiliation(s)
- Chuanxi Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Tianyi Zhu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Yuwei Zhu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Bing Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Jiaming Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Yixin Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Changning Juan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Shifa Yang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, China
| | - Zengcheng Zhao
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, China
| | - Renzhong Wan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Shuqian Lin
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, China
| | - Bin Yin
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, China
| |
Collapse
|
13
|
Takahashi H, Nakashima T, Masuda T, Namba M, Sakamoto S, Yamaguchi K, Horimasu Y, Miyamoto S, Iwamoto H, Fujitaka K, Hamada H, Hattori N. Antifibrotic effect of lung-resident progenitor cells with high aldehyde dehydrogenase activity. Stem Cell Res Ther 2021; 12:471. [PMID: 34425896 PMCID: PMC8381511 DOI: 10.1186/s13287-021-02549-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/08/2021] [Indexed: 01/05/2023] Open
Abstract
Background Aldehyde dehydrogenase (ALDH) is highly expressed in stem/progenitor cells in various tissues, and cell populations with high ALDH activity (ALDHbr) are associated with tissue repair. However, little is known about lung-resident ALDHbr. This study was performed to clarify the characteristics of lung-resident ALDHbr cells and to evaluate their possible use as a tool for cell therapy using a mouse model of bleomycin-induced pulmonary fibrosis. Methods The characteristics of lung-resident/nonhematopoietic (CD45−) ALDHbr cells were assessed in control C57BL/6 mice. The kinetics and the potential usage of CD45−/ALDHbr for cell therapy were investigated in bleomycin-induced pulmonary fibrosis. Localization of transferred CD45−/ALDHbr cells was determined using mCherry-expressing mice as donors. The effects of aging on ALDH expression were also assessed using aged mice. Results Lung CD45−/ALDHbr showed higher proliferative and colony-forming potential than cell populations with low ALDH activity. The CD45−/ALDHbr cell population, and especially its CD45−/ALDHbr/PDGFRα+ subpopulation, was significantly reduced in the lung during bleomycin-induced pulmonary fibrosis. Furthermore, mRNA expression of ALDH isoforms was significantly reduced in the fibrotic lung. When transferred in vivo into bleomycin-pretreated mice, CD45−/ALDHbr cells reached the site of injury, ameliorated pulmonary fibrosis, recovered the reduced expression of ALDH mRNA, and prolonged survival, which was associated with the upregulation of the retinol-metabolizing pathway and the suppression of profibrotic cytokines. The reduction in CD45−/ALDHbr/PDGFRα+ population was more remarkable in aged mice than in young mice. Conclusions Our results strongly suggest that the lung expression of ALDH and lung-resident CD45−/ALDHbr cells are involved in pulmonary fibrosis. The current study signified the possibility that CD45−/ALDHbr cells could find application as novel and useful cell therapy tools in pulmonary fibrosis treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02549-6.
Collapse
Affiliation(s)
- Hiroshi Takahashi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masashi Namba
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
14
|
García-Padilla C, Lozano-Velasco E, López-Sánchez C, Garcia-Martínez V, Aranega A, Franco D. Non-Coding RNAs in Retinoic Acid as Differentiation and Disease Drivers. Noncoding RNA 2021; 7:ncrna7010013. [PMID: 33671241 PMCID: PMC8005990 DOI: 10.3390/ncrna7010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
All-trans retinoic acid (RA) is the most active metabolite of vitamin A. Several studies have described a pivotal role for RA signalling in different biological processes such as cell growth and differentiation, embryonic development and organogenesis. Since RA signalling is highly dose-dependent, a fine-tuning regulatory mechanism is required. Thus, RA signalling deregulation has a major impact, both in development and disease, related in many cases to oncogenic processes. In this review, we focus on the impact of ncRNA post-transcriptional regulatory mechanisms, especially those of microRNAs and lncRNAs, in RA signalling pathways during differentiation and disease.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Fundación Medina, 18016 Granada, Spain
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio Garcia-Martínez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Fundación Medina, 18016 Granada, Spain
- Correspondence:
| |
Collapse
|
15
|
Hossain M, Hasan A, Khan Shawan MA, Banik S, Jahan I. Current Therapeutic Strategies of Xeroderma Pigmentosum. Indian J Dermatol 2021; 66:660-667. [PMID: 35283513 PMCID: PMC8906321 DOI: 10.4103/ijd.ijd_329_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Xeroderma pigmentosum (XP) is an autosomal recessive genetic disease caused by a defect in the DNA repair system, exhibiting skin cancer on sun exposure. As it is an incurable disease, therapeutic strategies of this disease are critical. This review article takes an attempt to explore the current therapeutic advancements in XP. Different approaches including sun avoidance; surgical removal of cancerous lesions; laser and photodynamic therapy; use of retinoid, 5-fluorouracil, imiquimod, photolyase, and antioxidant; interferon therapy and gene therapy are chosen by doctors and patients to lessen the adverse effects of this disease. Among these options, sun avoidance, use of 5-fluorouracil and imiquimod, and interferon therapy are effective. However, some approaches including laser and photodynamic therapy, and the use of retinoids are effective against skin cancer having severe side effects. Furthermore, surgical removal of cancerous lesions and use of antioxidants are considered to be effective against this disease; however, efficacies of these are not experimentally determined. In addition, some approaches including oral vismodegib, immunotherapy, nicotinamide, acetohexamide, glimepiride-restricted diet are found to be effective to minimize the complications secondary to defects in the nucleotide excision repair (NER) system and also enhance the NER, which are under experimental level yet. Besides these, gene therapy, including the introduction of missing genes and genome edition, may be a promising approach to combat this disease, which is also not well established now. In the near future, these approaches may be effective tools to manage XP.
Collapse
|
16
|
Cao D, Meng Y, Li S, Xin J, Ben S, Cheng Y, Wang M, Hua L, Cheng G. Association study between genetic variants in retinol metabolism pathway genes and prostate cancer risk. Cancer Med 2020; 9:9462-9470. [PMID: 33068330 PMCID: PMC7774741 DOI: 10.1002/cam4.3538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 08/30/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Evidence suggests that serum retinol level is associated with prostate cancer risk, but the association between genetic variants in the retinol metabolism pathway genes and prostate cancer risk remains unclarified. Methods Single‐nucleotide polymorphisms (SNPs) in 31 genes in the retinol metabolism pathway were genotyped to evaluate the association with prostate cancer risk in 4,662 cases and 3,114 controls from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. The gene expression analysis was evaluated using data from the Gene Expression Omnibus (GEO) datasets and the Cancer Genome Atlas (TCGA) database. Data from the Genotype‐Tissue Expression (GTEx) project dataset were utilized to perform the expression quantitative trait loci (eQTL) analysis. Results Two SNPs were significantly associated with prostate cancer risk [rs1330286 in ALDH1A1: odds ratio (OR) = 0.88, 95% confidence interval (CI) = 0.83‐0.94, p = 2.45 × 10−4; rs4646653 in ALDH1A3: OR = 1.17, 95% CI =1.07‐1.27, p = 4.33 × 10−4]. Moreover, the mRNA level of ALDH1A3 was significantly higher in prostate cancer tissues than in normal tissues in both TCGA datasets and GEO datasets (p = 1.63 × 10−12 and p = 4.33 × 10−2, respectively). rs1330286 was an eQTL of ALDH1A1 (P = 2.90 × 10−3). Conclusion Our findings highlight that genetic variants in retinol metabolism pathway genes are associated with prostate cancer risk.
Collapse
Affiliation(s)
- Dongliang Cao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yixuan Meng
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Junyi Xin
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Shuai Ben
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yifei Cheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Meilin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Lixin Hua
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Gong Cheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
17
|
Godoy-Parejo C, Deng C, Zhang Y, Liu W, Chen G. Roles of vitamins in stem cells. Cell Mol Life Sci 2020; 77:1771-1791. [PMID: 31676963 PMCID: PMC11104807 DOI: 10.1007/s00018-019-03352-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Stem cells can differentiate to diverse cell types in our body, and they hold great promises in both basic research and clinical therapies. For specific stem cell types, distinctive nutritional and signaling components are required to maintain the proliferation capacity and differentiation potential in cell culture. Various vitamins play essential roles in stem cell culture to modulate cell survival, proliferation and differentiation. Besides their common nutritional functions, specific vitamins are recently shown to modulate signal transduction and epigenetics. In this article, we will first review classical vitamin functions in both somatic and stem cell cultures. We will then focus on how stem cells could be modulated by vitamins beyond their nutritional roles. We believe that a better understanding of vitamin functions will significantly benefit stem cell research, and help realize their potentials in regenerative medicine.
Collapse
Affiliation(s)
- Carlos Godoy-Parejo
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
18
|
Beydoun MA, Chen X, Jha K, Beydoun HA, Zonderman AB, Canas JA. Carotenoids, vitamin A, and their association with the metabolic syndrome: a systematic review and meta-analysis. Nutr Rev 2020; 77:32-45. [PMID: 30202882 DOI: 10.1093/nutrit/nuy044] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Context Modifiable factors that reduce the burden of the metabolic syndrome (MetS), particularly plant-derived biomarkers, have been a recent focus of rising interest. Objective This systematic review and meta-analysis, which follows PRISMA guidelines, evaluates evidence from a period of 20 years that links vitamin A and carotenoids with the occurrence of MetS and following the PRISMA guidelines. Data Sources PubMed and Cochrane databases (January 1997 through March 2017) were systematically assessed for studies, including case-control, cross-sectional, and cohort studies, that evaluated the associations of MetS with carotenoids and retinyl esters and retinol (vitamin A). Data Extraction Key measures of associations were harmonized into odds ratios (ORs) and 95% confidence intervals (95%CI) of MetS per 1 standard deviation (SD) of exposure using forest plots and random effects models that pooled data points from 11 cross-sectional studies. Begg's funnel and harvest plots were constructed. Results An inverse association between total carotenoids and MetS was found [ORpooled, 0.66; 95%CI, 0.56-0.78; 1 SD ∼ 0.82 µmol/L; n = 5 studies]. This association was the strongest for β-carotene, followed by α-carotene and β-crypotoxanthin. No association was detected between retinol and MetS (ORpooled, 1.00; 95%CI, 0.88-1.13; 1 SD ∼ 2.14 µmol/L; n = 6 studies). Publication bias was absent, and harvest plots indicated consistency upon replication for β-carotene and total carotenoid exposures. Conclusions This review and meta-analysis suggests that, unlike retinol, total and individual carotenoids were inversely related to MetS.
Collapse
Affiliation(s)
- May A Beydoun
- National Institute on Aging, National Institutes of Health, Intramural Research Program, Baltimore, Maryland, USA
| | - Xiaoli Chen
- Massachusetts Department of Public Health, Boston, Massachusetts, USA
| | - Kanishk Jha
- Nemours Children's Clinic, Jacksonville, Florida, USA
| | - Hind A Beydoun
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Alan B Zonderman
- National Institute on Aging, National Institutes of Health, Intramural Research Program, Baltimore, Maryland, USA
| | - Jose A Canas
- Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| |
Collapse
|
19
|
Keshmiri Neghab H, Goliaei B, Saboury AA, Esmaeeli Djavid G, Pornour M, Hong J, Grusch M. Modulation of cardiac optogenetics by vitamin A. Biofactors 2019; 45:983-990. [PMID: 31509323 DOI: 10.1002/biof.1564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/16/2019] [Indexed: 01/03/2023]
Abstract
Cardiac optogenetics is an emergent research area and refers to the delivery of light-activated proteins to excitable heart tissue and the subsequent use of light for controlling the electrical function with high spatial and temporal resolution. Channelrhodopsin-2 (ChR2) is a light-sensitive ion channel with the chromophore, all trans retinal, derived from vitamin A (all-trans-retinol; retinol). In this study, we explored whether exogenous vitamin A can be a limiting factor in the light responsiveness of cardiomyocytes-expressing ChR2. We showed that in cardiomyocytes virally transduced with ChR2 (H134R)-enhanced yellow fluorescent protein, vitamin A supplements lower than 10 μM significantly increased ChR2 expression. Adding 1 μM vitamin A changed light-induced transmembrane potential difference significantly, whereas 5 μM dramatically induced membrane depolarization and triggered intracellular calcium elevation. We concluded that vitamin A supplementation can modulate the efficiency of ChR2 and provide a complementary strategy for improving the performance of optogenetic tools.
Collapse
Affiliation(s)
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali A Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Gholamreza Esmaeeli Djavid
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Majid Pornour
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifeng, China
| | - Michael Grusch
- Department of Medicine I, Comprehensive Cancer Center Vienna, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Das BC, Dasgupta S, Ray SK. Potential therapeutic roles of retinoids for prevention of neuroinflammation and neurodegeneration in Alzheimer's disease. Neural Regen Res 2019; 14:1880-1892. [PMID: 31290437 PMCID: PMC6676868 DOI: 10.4103/1673-5374.259604] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/20/2019] [Indexed: 01/03/2023] Open
Abstract
All retinoids, which can be natural and synthetic, are chemically related to vitamin A. Both natural and synthetic retinoids use specific nuclear receptors such as retinoic acid receptors and retinoid X receptors to activate specific signaling pathways in the cells. Retinoic acid signaling is extremely important in the central nervous system. Impairment of retinoic acid signaling pathways causes severe pathological processes in the central nervous system, especially in the adult brain. Retinoids have major roles in neural patterning, differentiation, axon outgrowth in normal development, and function of the brain. Impaired retinoic acid signaling results in neuroinflammation, oxidative stress, mitochondrial malfunction, and neurodegeneration leading to progressive Alzheimer's disease, which is pathologically characterized by extra-neuronal accumulation of amyloid plaques (aggregated amyloid-beta) and intra-neurofibrillary tangles (hyperphosphorylated tau protein) in the temporal lobe of the brain. Alzheimer's disease is the most common cause of dementia and loss of memory in old adults. Inactive cholinergic neurotransmission is responsible for cognitive deficits in Alzheimer's disease patients. Deficiency or deprivation of retinoic acid in mice is associated with loss of spatial learning and memory. Retinoids inhibit expression of chemokines and neuroinflammatory cytokines in microglia and astrocytes, which are activated in Alzheimer's disease. Stimulation of retinoic acid receptors and retinoid X receptors slows down accumulation of amyloids, reduces neurodegeneration, and thereby prevents pathogenesis of Alzheimer's disease in mice. In this review, we described chemistry and biochemistry of some natural and synthetic retinoids and potentials of retinoids for prevention of neuroinflammation and neurodegeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Bhaskar C. Das
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Somsankar Dasgupta
- Department of Neuroscience and Regenerative Medicine, Institute of Molecular Medicine and Genetics, Augusta University, Augusta, GA, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
21
|
Kahremany S, Sander CL, Tochtrop GP, Kubas A, Palczewski K. Z-isomerization of retinoids through combination of monochromatic photoisomerization and metal catalysis. Org Biomol Chem 2019; 17:8125-8139. [PMID: 31455964 DOI: 10.1039/c9ob01645g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Catalytic Z-isomerization of retinoids to their thermodynamically less stable Z-isomer remains a challenge. In this report, we present a photochemical approach for the catalytic Z-isomerization of retinoids using monochromatic wavelength UV irradiation treatment. We have developed a straightforward approach for the synthesis of Z-retinoids in high yield, overcoming common obstacles normally associated with their synthesis. Calculations based on density functional theory (DFT) have allowed us to correlate the experimentally observed Z-isomer distribution of retinoids with the energies of chemically important intermediates, which include ground- and excited-state potential energy surfaces. We also demonstrate the application of the current method by synthesizing gram-scale quantities of 9-cis-retinyl acetate 9Z-a. Operational simplicity and gram-scale ability make this chemistry a very practical solution to the problem of Z-isomer retinoid synthesis.
Collapse
Affiliation(s)
- Shirin Kahremany
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, California 92697, USA.
| | - Christopher Lane Sander
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, California 92697, USA. and Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, California 92697, USA.
| |
Collapse
|
22
|
Parrotta EI, Scalise S, Taverna D, De Angelis MT, Sarro G, Gaspari M, Santamaria G, Cuda G. Comprehensive proteogenomic analysis of human embryonic and induced pluripotent stem cells. J Cell Mol Med 2019; 23:5440-5453. [PMID: 31237115 PMCID: PMC6653499 DOI: 10.1111/jcmm.14426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 05/11/2019] [Indexed: 12/18/2022] Open
Abstract
Although the concepts of somatic cell reprogramming and human‐induced pluripotent stem cells (hiPSCs) generation have undergone several analyses to validate the usefulness of these cells in research and clinic, it remains still controversial whether the hiPSCs are equivalent to human embryonic stem cells (hESCs), pointing to the need of further characterization for a more comprehensive understanding of pluripotency. Most of the experimental evidence comes from the transcriptome analysis, while a little is available on protein data, and even less is known about the post‐translational modifications. Here, we report a combined strategy of mass spectrometry and gene expression profiling for proteogenomic analysis of reprogrammed and embryonic stem cells. The data obtained through this integrated, multi‐“omics” approach indicate that a small, but still significant, number of distinct pathways is enriched in reprogrammed versus embryonic stem cells, supporting the view that pluripotency is an extremely complex, multifaceted phenomenon, with peculiarities that are characteristic of each cell type.
Collapse
Affiliation(s)
- Elvira Immacolata Parrotta
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Stefania Scalise
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Domenico Taverna
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Maria Teresa De Angelis
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Gianmarco Sarro
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Marco Gaspari
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Gianluca Santamaria
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Giovanni Cuda
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
23
|
Dolgova EV, Petrova DD, Proskurina AS, Ritter GS, Kisaretova PE, Potter EA, Efremov YR, Bayborodin SI, Karamysheva TV, Romanenko MV, Netesov SV, Taranov OS, Ostanin AA, Chernykh ER, Bogachev SS. Identification of the xenograft and its ascendant sphere-forming cell line as belonging to EBV-induced lymphoma, and characterization of the status of sphere-forming cells. Cancer Cell Int 2019; 19:120. [PMID: 31080361 PMCID: PMC6503443 DOI: 10.1186/s12935-019-0842-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We have characterized the human cell line arised from the Epstein-Barr virus (EBV) positive multiple myeloma aspirate subjected to the long-term cultivation. This cell line has acquired the ability to form free-floating spheres and to produce a xenograft upon transplantation into NOD/SCID mice. METHODS Cells from both in vitro culture and developed xenografts were investigated with a number of analytical approaches, including pathomorphological analysis, FISH analysis, and analysis of the surface antigens and of the VDJ locus rearrangement. RESULTS The obtained results, as well as the confirmed presence of EBV, testify that both biological systems are derived from B-cells, which, in turn, is a progeny of the EBV-transformed B-cellular clone that supplanted the primordial multiple myeloma cells. Next we assessed whether cells that (i) were constantly present in vitro in the investigated cell line, (ii) were among the sphere-forming cells, and (iii) were capable of internalizing a fluorescent TAMRA-labeled DNA probe (TAMRA+ cells) belonged to one of the three types of undifferentiated bone marrow cells of a multiple myeloma patient: CD34+ hematopoietic stem cells, CD90+ mesenchymal stem cells, and clonotypic multiple myeloma cell. CONCLUSION TAMRA+ cells were shown to constitute the fourth independent subpopulation of undifferentiated bone marrow cells of the multiple myeloma patient. We have demonstrated the formation of ectopic contacts between TAMRA+ cells and cells of other types in culture, in particular with CD90+ mesenchymal stem cells, followed by the transfer of some TAMRA+ cell material into the contacted cell.
Collapse
Affiliation(s)
- Evgeniya V. Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk, 630090 Russia
| | | | - Anastasia S. Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk, 630090 Russia
| | - Genrikh S. Ritter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Polina E. Kisaretova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Ekaterina A. Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk, 630090 Russia
| | - Yaroslav R. Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Sergey I. Bayborodin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk, 630090 Russia
| | - Tatiana V. Karamysheva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk, 630090 Russia
| | | | | | - Oleg S. Taranov
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk, Russia
| | | | - Elena R. Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Sergey S. Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk, 630090 Russia
| |
Collapse
|
24
|
Fawzy El-Sayed KM, Hein D, Dörfer CE. Retinol/inflammation affect stemness and differentiation potential of gingival stem/progenitor cells via Wnt/β-catenin. J Periodontal Res 2019; 54:413-423. [PMID: 30830694 DOI: 10.1111/jre.12643] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/14/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Inflammatory cytokines impact the course of periodontal disease, repair, and regeneration. Vitamin A and its metabolites are inflammation-modulatory biomolecules, affecting cellular pluripotency. The aim of this study was to investigate the effect of retinol and periodontal inflammatory cytokines (IL-1β/TNF-α/IFN-γ) on pluripotency and proliferative properties of gingival mesenchymal stem/progenitor cells (G-MSCs), for the first time. MATERIAL AND METHODS Human G-MSCs (n = 5) were STRO-1 immuno-magnetically sorted, characterized and expanded in basic medium (control group), in basic medium with IL-1β (1 ng/mL), TNF-α (10 ng/mL), and IFN-γ (100 ng/mL) (inflammatory group), in basic medium with retinol (20 μmol/L) (retinol group) and with retinol added to the inflammatory group (inflammatory/retinol group). β-catenin levels at 1 hour, cellular proliferation over 14 days, and colony-forming units (CFUs) at 14 days were investigated. Pluripotency gene expressions were examined at 1, 3, and 5 days via reverse transcription-polymerase chain reaction (RT-PCR). Multilineage differentiation potential was evaluated, following 5 days priming, using qualitative and quantitative histochemistry and RT-PCR. RESULTS G-MSCs were CD14- , CD34- , CD45- , CD73+ , CD90+ , CD105+ , and showed mesenchymal stem/progenitor cells' hallmarks, CFUs, and multilineage differentiation potential. Intracellular β-catenin significantly declined in the stimulated groups (P < 0.001, Friedman test). Cellular proliferation at 72 hours was most prominent in the control and inflammatory group [Median cell numbers (Q25/Q75); 6806 (4983/7312) and 5414 (4457/7230), respectively], followed by an upsurge in the retinol group. At 14 days, the retinol group exhibited the highest CFUs [Median CFUs (Q25/Q75); 35 (20/58), P = 0.043, Wilcoxon signed-rank]. Nanog was most expressed in the inflammatory and retinol group [Median gene expression/PGK1 (Q25/Q75); 0.0006 (0.0002/0.0014) and 0.0005 (0.0003/0.0008)]. Inflammation significantly upregulated Sox2 expression [0.0002 (0.0008/0.0005)], while its expression was diminished in the retinol and inflammatory/retinol group (P < 0.001, Friedman test). Inflammatory/retinol group exhibited the highest multilineage differentiation potential. CONCLUSION Controlled short-term inflammatory/retinol stimuli activate the Wnt/β-catenin pathway, affecting G-MSCs' pluripotency, proliferation, and differentiation. The present findings provide further insights into the inflammatory-regenerative interactions and their modulation potential for G-MSCs-mediated periodontal repair/regeneration.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt.,Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts-University, Kiel, Germany
| | - Daniela Hein
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts-University, Kiel, Germany
| | - Christof E Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts-University, Kiel, Germany
| |
Collapse
|
25
|
ADAM10 in Alzheimer's disease: Pharmacological modulation by natural compounds and its role as a peripheral marker. Biomed Pharmacother 2019; 113:108661. [PMID: 30836275 DOI: 10.1016/j.biopha.2019.108661] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) represents a global burden in the economics of healthcare systems. Amyloid-β (Aβ) peptides are formed by amyloid-β precursor protein (AβPP) cleavage, which can be processed by two pathways. The cleavage by the α-secretase A Disintegrin And Metalloprotease 10 (ADAM10) releases the soluble portion (sAβPPα) and prevents senile plaques. This pathway remains largely unknown and ignored, mainly regarding pharmacological approaches that may act via different signaling cascades and thus stimulate non-amyloidogenic cleavage through ADAM10. This review emphasizes the effects of natural compounds on ADAM10 modulation, which eventuates in a neuroprotective mechanism. Moreover, ADAM10 as an AD biomarker is revised. New treatments and preventive interventions targeting ADAM10 regulation for AD are necessary, considering the wide variety of ADAM10 substrates.
Collapse
|
26
|
Russell RP, Fu Y, Liu Y, Maye P. Inverse agonism of retinoic acid receptors directs epiblast cells into the paraxial mesoderm lineage. Stem Cell Res 2018; 30:85-95. [PMID: 29807258 PMCID: PMC6083448 DOI: 10.1016/j.scr.2018.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023] Open
Abstract
We have investigated the differentiation of paraxial mesoderm from mouse embryonic stem cells utilizing a Tbx6-EYFP/Brachyury (T)-Cherry dual reporter system. Differentiation from the mouse ESC state directly into mesoderm via Wnt pathway activation was low, but augmented by treatment with AGN193109, a pan-retinoic acid receptor inverse agonist. After five days of differentiation, T+ cells increased from 12.2% to 18.8%, Tbx6+ cells increased from 5.8% to 12.7%, and T+/Tbx6+ cells increased from 2.4% to 14.1%. The synergism of AGN193109 with Wnt3a/CHIR99021 was further substantiated by the increased expression of paraxial mesoderm gene markers Tbx6, Msgn1, Meox1, and Hoxb1. Separate to inverse agonist treatment, when mouse ESCs were indirectly differentiated into mesoderm via a transient epiblast step the efficiency of paraxial mesoderm formation markedly increased. Tbx6+ cells represented 65-75% of the total cell population after just 3 days of differentiation and the expression of paraxial mesoderm marker genes Tbx6 and Msgn increased over 100-fold and 300-fold, respectively. Further evaluation of AGN193109 treatment on the indirect differentiation protocol suggested that RARs have two distinct roles. First, AGN193109 treatment at the epiblast step and mesoderm step promoted paraxial mesoderm formation over other mesoderm and endoderm lineage types. Second, continued treatment during mesoderm formation revealed its ability to repress the maturation of presomitic mesoderm into somitic paraxial mesoderm. Thus, the continuous treatment of AGN193109 during epiblast and mesoderm differentiation steps yielded a culture where ~90% of the cells were Tbx6+. The surprisingly early effect of inverse agonist treatment at the epiblast step of differentiation led us to further examine the effect of AGN193109 treatment during an extended epiblast differentiation protocol. Interestingly, while inverse agonist treatment had no impact on the conversion of ESCs into epiblast cells based on the expression of Rex1, Fgf5, and pluripotency marker genes Oct4, Nanog, and Sox2, after three days of differentiation in the presence of AGN193109 caudal epiblast and early paraxial mesoderm marker genes, T, Cyp26a1, Fgf8, Tbx6 and Msgn were all highly up-regulated. Collectively, our studies reveal an earlier than appreciated role for RARs in epiblast cells and the modulation of their function via inverse agonist treatment can promote their differentiation into the paraxial mesoderm lineage.
Collapse
Affiliation(s)
- Ryan P Russell
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, United States
| | - Yu Fu
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, United States
| | - Yaling Liu
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, United States
| | - Peter Maye
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, United States.
| |
Collapse
|
27
|
Modulation of miRNAs by Vitamin C in Human Bone Marrow Stromal Cells. Nutrients 2018; 10:nu10020186. [PMID: 29419776 PMCID: PMC5852762 DOI: 10.3390/nu10020186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small (18–25 nucleotides), noncoding RNAs that have been identified as potential regulators of bone marrow stromal cell (BMSC) proliferation, differentiation, and musculoskeletal development. Vitamin C is known to play a vital role in such types of biological processes through various different mechanisms by altering mRNA expression. We hypothesized that vitamin C mediates these biological processes partially through miRNA regulation. We performed global miRNA expression analysis on human BMSCs following vitamin C treatment using microarrays containing human precursor and mature miRNA probes. Bioinformatics analyses were performed on differentially expressed miRNAs to identify novel target genes and signaling pathways. Our bioinformatics analysis suggested that the miRNAs may regulate multiple stem cell-specific signaling pathways such as cell adhesion molecules (CAMs), fatty acid biosynthesis and hormone signaling pathways. Furthermore, our analysis predicted novel stem cell proliferation and differentiation gene targets. The findings of the present study demonstrate that vitamin C can have positive effects on BMSCs in part by regulating miRNA expression.
Collapse
|
28
|
Yang Y, Luo J, Yu D, Zhang T, Lin Q, Li Q, Wu X, Su Z, Zhang Q, Xiang Q, Huang Y. Vitamin A Promotes Leydig Cell Differentiation via Alcohol Dehydrogenase 1. Front Endocrinol (Lausanne) 2018; 9:644. [PMID: 30420837 PMCID: PMC6216111 DOI: 10.3389/fendo.2018.00644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/10/2018] [Indexed: 12/02/2022] Open
Abstract
Vitamin A (retinol) is important for multiple functions in mammals. In testis, the role of vitamin A in the regulation of testicular functions is clearly involved in rodents. It is essential for sperm production. Vitamin A deficiency adversely affects testosterone secretion. Adult Leydig cells are responsible for testosterone production in male. The role of vitamin A in regulating the differentiation of Leydig cells is still unknown. In this study, we explored the roles and underlying mechanisms of vitamin A in Leydig cell differentiation. We found that vitamin A could regulate the Leydig cells differentiation. Leydig cell differentiation is adversely affected in mice maintained on a vitamin A-free diet. This effect is mediated by alcohol dehydrogenase 1 (ADH1). ADH1 could increase retinoic acid (RA) synthesis, then RA facilitates Leydig cell differentiation by activating the steroidogenic factor 1 gene (Nr5a1) promoter activity, which consequently promotes Leydig cell specific gene expression, resulting in progenitor Leydig cells differentiation into functional Leydig cells. This is the first study connecting a metabolic enzyme of retinol (ADH1) to the the regulation of Leydig cell differentiation, which will provide experimental evidence for the development of therapeutics to promote Leydig regeneration through the administration of a RA signaling regulator or a vitamin A supplement.
Collapse
Affiliation(s)
- Yan Yang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Jiao Luo
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Dan Yu
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Tiantian Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Qilian Lin
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Quan Li
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Xupeng Wu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Zhijian Su
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Qihao Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Qi Xiang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Yadong Huang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
- Department of Pharmacology, Jinan University, Guangzhou, China
- *Correspondence: Yadong Huang
| |
Collapse
|
29
|
Mangas A, Yajeya J, González N, Ruiz I, Pernìa M, Geffard M, Coveñas R. Gemst: a taylor-made combination that reverts neuroanatomical changes in stroke. Eur J Histochem 2017; 61:2790. [PMID: 28735520 PMCID: PMC5452634 DOI: 10.4081/ejh.2017.2790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 01/25/2023] Open
Abstract
In a single transient middle cerebral artery occlusion model of stroke and using immunohistochemical techniques, the effects of a new therapeutic approach named Gemst (a member of the Poly-L-Lysine innovative therapies) have been studied in the rat brain. The expression of inflammatory (CD45, CD11b), oxidative (NO-tryptophan, NO2-tyrosine) and indoleamine 2, 3-dioxygenase pathway (kynurenic acid, 3-hydroxy anthranilic acid) markers has been evaluated in early and late phases of stroke. For this purpose, we have developed eight highly specific monoclonal antibodies directed against some of these markers. In the early phase (3 and 5 days of the stroke, we observed no effect of Gemst treatment (7.5 mg/day, subcutaneously for 3, 5 days). In the late phase (21 days) of stroke and exclusively in the ipsilateral side of non-treated animals an overexpression of kynurenic acid, 3-hydroxy anthranilic acid, CD45, CD11b, GFAP and ionized calcium-binding adapter molecule 1 (IBA-1) was found. In treated animals, the overexpression of the four former markers was completely abolished whereas the overexpression of the two latter ones was decreased down to normal levels. Gemst reversed the pathological conditions of stroke to normal situations. Gemst exerts a multifunctional action: down-regulates the indoleamine 2, 3-dioxygenase pathway and abolishes brain infiltration, microglial activation and gliosis. Moreover, Gemst has no effect on the expression of doublecortin, a protein involved in neuronal migration. Gemst could be a new drug for the treatment of stroke since it reverses the pathological findings of stroke and normalizes brain tissue conditions following the ischemic insult.
Collapse
|
30
|
Trypanocidal Effect of Isotretinoin through the Inhibition of Polyamine and Amino Acid Transporters in Trypanosoma cruzi. PLoS Negl Trop Dis 2017; 11:e0005472. [PMID: 28306713 PMCID: PMC5371382 DOI: 10.1371/journal.pntd.0005472] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/29/2017] [Accepted: 03/09/2017] [Indexed: 12/04/2022] Open
Abstract
Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transporters from the same protein family (TcAAAP), with calculated IC50 values in the range of 4.6–10.3 μM. It also showed a strong inhibition of trypomastigote burst from infected cells, with calculated IC50 of 130 nM (SI = 920) being significantly less effective on the epimastigote stage (IC50 = 30.6 μM). The effect of isotretinoin on the parasites plasma membrane permeability and on mammalian cell viability was tested, and no change was observed. Autophagosomes and apoptotic bodies were detected as part of the mechanisms of isotretinoin-induced death indicating that the inhibition of transporters by isotretinoin causes nutrient starvation that triggers autophagic and apoptotic processes. In conclusion, isotretinoin is a promising trypanocidal drug since it is a multi-target inhibitor of essential metabolites transporters, in addition to being an FDA-approved drug largely used in humans, which could reduce significantly the requirements for its possible application in the treatment of Chagas disease. Polyamines are polycationic compounds essential for the regulation of cell growth and differentiation. In contrast with other protozoa, Trypanosoma cruzi, the etiological agent of Chagas disease, is auxotrophic for polyamines; therefore the intracellular availability of these molecules depends exclusively on transport processes. It was previously demonstrated that the lack of polyamines in T. cruzi leads to its death, making the polyamine transporter an excellent therapeutic target for Chagas disease. In this work, the polyamine permease TcPAT12 was selected as a target for drug screening using 3000 FDA-approved compounds and computational simulation techniques. Using two combined virtual screening methods, isotretinoin, a well-known and safe drug used for acne treatment, bound to substrate recognition residues of TcPAT12 and was chosen for further in vitro studies. Isotretinoin inhibited not only the polyamine transport but also all tested amino acid transporters from the same protein family as TcPAT12. Interestingly, isotretinoin showed a high trypanocidal effect on trypomastigotes, with an IC50 in the nanomolar range. Autophagy and apoptosis were proposed as mechanisms of parasites death induced by isotretinoin. These results suggest that isotretinoin is a promising trypanocidal drug, being a multi-target inhibitor of essential metabolites transporters.
Collapse
|
31
|
Potter EA, Dolgova EV, Proskurina AS, Efremov YR, Minkevich AM, Rozanov AS, Peltek SE, Nikolin VP, Popova NA, Seledtsov IA, Molodtsov VV, Zavyalov EL, Taranov OS, Baiborodin SI, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Gene expression profiling of tumor-initiating stem cells from mouse Krebs-2 carcinoma using a novel marker of poorly differentiated cells. Oncotarget 2017; 8:9425-9441. [PMID: 28031533 PMCID: PMC5354742 DOI: 10.18632/oncotarget.14116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022] Open
Abstract
Using the ability of poorly differentiated cells to natively internalize fragments of extracellular double-stranded DNA as a marker, we isolated a tumorigenic subpopulation present in Krebs-2 ascites that demonstrated the features of tumor-inducing cancer stem cells. Having combined TAMRA-labeled DNA probe and the power of RNA-seq technology, we identified a set of 168 genes specifically expressed in TAMRA-positive cells (tumor-initiating stem cells), these genes remaining silent in TAMRA-negative cancer cells. TAMRA+ cells displayed gene expression signatures characteristic of both stem cells and cancer cells. The observed expression differences between TAMRA+ and TAMRA- cells were validated by Real Time PCR. The results obtained corroborated the biological data that TAMRA+ murine Krebs-2 tumor cells are tumor-initiating stem cells. The approach developed can be applied to profile any poorly differentiated cell types that are capable of immanent internalization of double-stranded DNA.
Collapse
Affiliation(s)
- Ekaterina A. Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Evgenia V. Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anastasia S. Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yaroslav R. Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexandra M. Minkevich
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Aleksey S. Rozanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergey E. Peltek
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Valeriy P. Nikolin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nelly A. Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | | | - Vladimir V. Molodtsov
- Novosibirsk State University, Novosibirsk 630090, Russia
- Softberry Inc., New York 10549, USA
| | - Evgeniy L Zavyalov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Oleg S. Taranov
- The State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk 630559, Russia
| | - Sergey I. Baiborodin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexander A. Ostanin
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk 630099, Russia
| | - Elena R. Chernykh
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk 630099, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergey S. Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
32
|
Goncalves-Maia M, Magnaldo T. Genetic therapy of Xeroderma Pigmentosum: analysis of strategies and translation. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2017.1256770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Thierry Magnaldo
- Life Sciences, Institute for Research on Cancer and Aging, Nice, France
| |
Collapse
|
33
|
Chakrabarti M, McDonald AJ, Will Reed J, Moss MA, Das BC, Ray SK. Molecular Signaling Mechanisms of Natural and Synthetic Retinoids for Inhibition of Pathogenesis in Alzheimer's Disease. J Alzheimers Dis 2016; 50:335-52. [PMID: 26682679 DOI: 10.3233/jad-150450] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Retinoids, which are vitamin A derivatives, interact through retinoic acid receptors (RARs) and retinoid X receptors (RXRs) and have profound effects on several physiological and pathological processes in the brain. The presence of retinoic acid signaling is extensively detected in the adult central nervous system, including the amygdala, cortex, hypothalamus, hippocampus, and other brain areas. Retinoids are primarily involved in neural patterning, differentiation, and axon outgrowth. Retinoids also play a key role in the preservation of the differentiated state of adult neurons. Impairment in retinoic acid signaling can result in neurodegeneration and progression of Alzheimer's disease (AD). Recent studies demonstrated severe deficiencies in spatial learning and memory in mice during retinoic acid (vitamin A) deprivation indicating its significance in preserving memory function. Defective cholinergic neurotransmission plays an important role in cognitive deficits in AD. All-trans retinoic acid is known to enhance the expression and activity of choline acetyltransferase in neuronal cell lines. Activation of RAR and RXR is also known to impede the pathogenesis of AD in mice by inhibiting accumulation of amyloids. In addition, retinoids have been shown to inhibit the expression of chemokines and pro-inflammatory cytokines in microglia and astrocytes, which are activated in AD. In this review article, we have described the chemistry and molecular signaling mechanisms of natural and synthetic retinoids and current understandings of their therapeutic potentials in prevention of AD pathology.
Collapse
Affiliation(s)
- Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Alexander J McDonald
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - J Will Reed
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Melissa A Moss
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Bhaskar C Das
- Division of Hematology and Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
34
|
Gichuhi S, Macharia E, Kabiru J, Zindamoyen AM, Rono H, Ollando E, Wachira J, Munene R, Onyuma T, Jaoko WG, Sagoo MS, Weiss HA, Burton MJ. Risk factors for ocular surface squamous neoplasia in Kenya: a case-control study. Trop Med Int Health 2016; 21:1522-1530. [PMID: 27714903 PMCID: PMC5574019 DOI: 10.1111/tmi.12792] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To determine modifiable risk factors of ocular surface squamous neoplasia (OSSN) in Kenya using disease-free controls. METHODS Adults with conjunctival lesions were recruited at four eye care centres in Kenya and underwent excision biopsy. An equal number of controls having surgery for conditions not affecting the conjunctiva and unrelated to ultraviolet light were group-matched to cases by age group, sex and eye care centre. Associations of risk factors with OSSN were evaluated using multivariable logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs). Continuous variables were compared using the t-test or the Wilcoxon-Mann-Whitney U-test depending on their distribution. RESULTS A total of 131 cases and 131 controls were recruited. About two-thirds of participants were female, and the mean age of cases and controls was 42.1 years and 43.3 years, respectively. Risk factors for OSSN were HIV infection without antiretroviral therapy (ART) use (OR = 48.42; 95% CI: 7.73-303.31) and with ART use (OR = 19.16; 95% CI: 6.60-55.57), longer duration of exposure to the sun in the main occupation (6.9 h/day vs. 4.6 h/day, OR = 1.24; 95% CI: 1.10-1.40) and a history of allergic conjunctivitis (OR = 74.61; 95% CI: 8.08-688.91). Wearing hats was protective (OR = 0.22; 95% CI: 0.07-0.63). CONCLUSION Measures to prevent and control HIV, reduce sun exposure such as wearing hats and control allergic conjunctivitis are recommended.
Collapse
Affiliation(s)
- Stephen Gichuhi
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London, UK.,Department of Ophthalmology, University of Nairobi, Nairobi, Kenya
| | | | | | | | - Hillary Rono
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London, UK.,Kitale District Hospital, Kitale, Kenya
| | | | | | | | - Timothy Onyuma
- Department of Pathology, MP Shah Hospital, Nairobi, Kenya
| | - Walter G Jaoko
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Mandeep S Sagoo
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK.,St. Bartholomew's Hospital, London, UK
| | - Helen A Weiss
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Matthew J Burton
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London, UK.,Moorfields Eye Hospital, London, UK
| |
Collapse
|
35
|
Zhang Y, Wang Y, Zuo Q, Wang X, Li D, Tang B, Li B. Selection of the Inducer for the Differentiation of Chicken Embryonic Stem Cells into Male Germ Cells In Vitro. PLoS One 2016; 11:e0164664. [PMID: 27741318 PMCID: PMC5065142 DOI: 10.1371/journal.pone.0164664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/28/2016] [Indexed: 01/10/2023] Open
Abstract
Several inducers have been used to differentiate embryonic stem cells (ESCs) into male germ cells but the induction process has been inefficient. To solve the problem of low efficiency of inducer for ESCs differentiation into male germ cells, all-trans retinoic acid (ATRA), Am80(the retinoic acid receptor agonist), and estradiol (E2) was used to induce ESCs to differentiate into male germ cells in vitro. ESCs were cultured in media containing ATRA, Am80, or E2 respectively which can differentiate ESCs into a germ cell lineage. In process of ATRA and Am80 induction Group, germ cell-like cells can be observed in 10 days; but have no in E2 induction Group. The marker genes of germ cell: Dazl, Stra8, C-kit, Cvh, integrinα6, and integrinβ1 all showed a significant up-regulation in the expression level. The ATRA-induction group showed high expression of C-kit and Cvh around 4 days, and integrinα6 and integrinβ1 were activated on day 10, respectively, while the E2-,Am80- induction group showed a high expression of C-kit as early as 4 days immunocytochemistry results shown that, integrinα6 and integrinβ1 could be detected in the ATRA-, Am80-, and E2-induction group, Positive clones in the ATRA group were greater in number than those in the other two groups. we conclued that ATRA, Am80, and E2 can promote the expression of the corresponding genes of germ cells, and had different effect on the differentiation of ESCs into male germ cells. ATRA was the most effective inducer of germ cell differentiation.
Collapse
Affiliation(s)
- Yani Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu province, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu province, China
| | - Yingjie Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu province, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu province, China
| | - Qisheng Zuo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu province, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu province, China
| | - Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu province, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu province, China
| | - Dong Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu province, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu province, China
| | - Beibei Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu province, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu province, China
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu province, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu province, China
| |
Collapse
|
36
|
Matsumoto T, Mochizuki W, Nibe Y, Akiyama S, Matsumoto Y, Nozaki K, Fukuda M, Hayashi A, Mizutani T, Oshima S, Watanabe M, Nakamura T. Retinol Promotes In Vitro Growth of Proximal Colon Organoids through a Retinoic Acid-Independent Mechanism. PLoS One 2016; 11:e0162049. [PMID: 27564706 PMCID: PMC5001647 DOI: 10.1371/journal.pone.0162049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/16/2016] [Indexed: 01/21/2023] Open
Abstract
Retinol (ROL), the alcohol form of vitamin A, is known to control cell fate decision of various types of stem cells in the form of its active metabolite, retinoic acid (RA). However, little is known about whether ROL has regulatory effects on colonic stem cells. We examined in this study the effect of ROL on the growth of murine normal colonic cells cultured as organoids. As genes involved in RA synthesis from ROL were differentially expressed along the length of the colon, we tested the effect of ROL on proximal and distal colon organoids separately. We found that organoid forming efficiency and the expression level of Lgr5, a marker gene for colonic stem cells were significantly enhanced by ROL in the proximal colon organoids, but not in the distal ones. Interestingly, neither retinaldehyde (RAL), an intermediate product of the ROL-RA pathway, nor RA exhibited growth promoting effects on the proximal colon organoids, suggesting that ROL-dependent growth enhancement in organoids involves an RA-independent mechanism. This was confirmed by the observation that an inhibitor for RA-mediated gene transcription did not abrogate the effect of ROL on organoids. This novel role of ROL in stem cell maintenance in the proximal colon provides insights into the mechanism of region-specific regulation for colonic stem cell maintenance.
Collapse
Affiliation(s)
- Taichi Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Wakana Mochizuki
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Yoichi Nibe
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Shintaro Akiyama
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Yuka Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Kengo Nozaki
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Masayoshi Fukuda
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Ayumi Hayashi
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Tomohiro Mizutani
- Department of Advanced Therapeutics for GI Diseases, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Tetsuya Nakamura
- Department of Advanced Therapeutics for GI Diseases, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
- * E-mail:
| |
Collapse
|
37
|
卓 华, 白 利, 刘 丹, 余 树, 李 丹, 刘 茜, 宋 品, 曹 随, 沈 留. [Effects of retinol on expressions of epidermal growth factor, stem cell factor, colony-stimulating factor 1 and leukemia inhibitory factor in human umbilical cord-derived mesenchymal stem cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:221-225. [PMID: 28219867 PMCID: PMC6779656 DOI: 10.3969/j.issn.1673-4254.2017.02.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To investigate effects of retinol on the expressions of epidermal growth factor (EGF), stem cell factor (SCF), colony-stimulating factor 1 (CSF1) and leukemia inhibitory factor (LIF) in cultured human umbilical-derived mesenchymal stem cells (UCMSCs). METHODS Human UCMSCs were isolated from human umbilical cord and identified for immunophenotypes. The cells were then cultured in DMEM/F12 media supplemented with 12% fetal bovine serum (FBS), 12% FBS+1 µmol/L retinol, 15% knockout serum replacement (KSR) and 15% KSR+ 1 µmol/L retinol. The expressions of the cytokines EGF, SCF, CSF1 and LIF in the cells were detected using RT-PCR and ELISA. RESULTS The isolated cells exhibited characteristic immunophenotypes of human UCMSCs and expressed EGF, CSF1 and SCF at both mRNA and protein levels but not LIF protein. Retinol (1 µmol/L) significantly promoted the expressions of SCF and CSF1 at both mRNA and protein levels but did not result in changes of EGF and LIF expressions in human UCMSCs. CONCLUSION Retinol at the concentration of 1 µmol/L can promote expression of SCF and CSF1 in human UCMSCs in vitro.
Collapse
Affiliation(s)
- 华丽 卓
- 四川农业大学动物医学院,四川 成都 611130Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- 雅安市妇幼保健院妇产科,四川 雅安 625000Department of Gynecology and Obstetrics, Ya'an Maternal and Children's Healthcare Hospital, Ya'an 625000, China
| | - 利鹏 白
- 四川农业大学动物医学院,四川 成都 611130Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - 丹 刘
- 四川农业大学动物医学院,四川 成都 611130Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - 树民 余
- 四川农业大学动物医学院,四川 成都 611130Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - 丹婷 李
- 四川农业大学动物医学院,四川 成都 611130Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - 茜 刘
- 雅安市妇幼保健院妇产科,四川 雅安 625000Department of Gynecology and Obstetrics, Ya'an Maternal and Children's Healthcare Hospital, Ya'an 625000, China
| | - 品 宋
- 四川农业大学动物医学院,四川 成都 611130Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - 随忠 曹
- 四川农业大学动物医学院,四川 成都 611130Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - 留红 沈
- 四川农业大学动物医学院,四川 成都 611130Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
38
|
Albahrani AA, Greaves RF. Fat-Soluble Vitamins: Clinical Indications and Current Challenges for Chromatographic Measurement. Clin Biochem Rev 2016; 37:27-47. [PMID: 27057076 PMCID: PMC4810759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fat-soluble vitamins, including vitamins A, D and E, are required for a wide variety of physiological functions. Over the past two decades, deficiencies of these vitamins have been associated with increased risk of cancer, type II diabetes mellitus and a number of immune system disorders. In addition, there is increasing evidence of interactions between these vitamins, especially between vitamins A and D. As a result of this enhanced clinical association with disease, translational clinical research and laboratory requests for vitamin measurements have significantly increased. These laboratory requests include measurement of 25-OHD (vitamin D), retinol (vitamin A) and α-tocopherol (vitamin E); the most accepted blood indicators for the assessment of body fat-soluble vitamin (FSV) status. There are significant obstacles to precise FSV measurement in blood. These obstacles include their physical and chemical properties, incomplete standardisation of measurement and limitations in the techniques that are currently used for quantification. The aim of this review is to briefly outline the metabolism and interactions of FSV as a prelude to identifying the current challenges for the quantification of blood vitamins A, D and E.
Collapse
Affiliation(s)
- Ali A. Albahrani
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- Security Forces Hospital, Dammam, Saudi Arabia
| | - Ronda F. Greaves
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- Murdoch Childrens Research Institute, Victoria, Australia
| |
Collapse
|
39
|
Key TJ, Appleby PN, Travis RC, Albanes D, Alberg AJ, Barricarte A, Black A, Boeing H, Bueno-de-Mesquita HB, Chan JM, Chen C, Cook MB, Donovan JL, Galan P, Gilbert R, Giles GG, Giovannucci E, Goodman GE, Goodman PJ, Gunter MJ, Hamdy FC, Heliövaara M, Helzlsouer KJ, Henderson BE, Hercberg S, Hoffman-Bolton J, Hoover RN, Johansson M, Khaw KT, King IB, Knekt P, Kolonel LN, Le Marchand L, Männistö S, Martin RM, Meyer HE, Mondul AM, Moy KA, Neal DE, Neuhouser ML, Palli D, Platz EA, Pouchieu C, Rissanen H, Schenk JM, Severi G, Stampfer MJ, Tjønneland A, Touvier M, Trichopoulou A, Weinstein SJ, Ziegler RG, Zhou CK, Allen NE. Carotenoids, retinol, tocopherols, and prostate cancer risk: pooled analysis of 15 studies. Am J Clin Nutr 2015; 102:1142-57. [PMID: 26447150 PMCID: PMC4625592 DOI: 10.3945/ajcn.115.114306] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/01/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Individual studies have suggested that circulating carotenoids, retinol, or tocopherols may be associated with prostate cancer risk, but the studies have not been large enough to provide precise estimates of associations, particularly by stage and grade of disease. OBJECTIVE The objective of this study was to conduct a pooled analysis of the associations of the concentrations of 7 carotenoids, retinol, α-tocopherol, and γ-tocopherol with risk of prostate cancer and to describe whether any associations differ by stage or grade of the disease or other factors. DESIGN Principal investigators of prospective studies provided individual participant data for prostate cancer cases and controls. Risk by study-specific fifths of each biomarker was estimated by using multivariable-adjusted conditional logistic regression in matched case-control sets. RESULTS Data were available for up to 11,239 cases (including 1654 advanced stage and 1741 aggressive) and 18,541 controls from 15 studies. Lycopene was not associated with overall risk of prostate cancer, but there was statistically significant heterogeneity by stage of disease, and the OR for aggressive disease for the highest compared with the lowest fifth of lycopene was 0.65 (95% CI: 0.46, 0.91; P-trend = 0.032). No other carotenoid was significantly associated with overall risk of prostate cancer or with risk of advanced-stage or aggressive disease. For retinol, the OR for the highest compared with the lowest fifth was 1.13 (95% CI: 1.04, 1.22; P-trend = 0.015). For α-tocopherol, the OR for the highest compared with the lowest fifth was 0.86 (95% CI: 0.78, 0.94; P-trend < 0.001), with significant heterogeneity by stage of disease; the OR for aggressive prostate cancer was 0.74 (95% CI: 0.59, 0.92; P-trend = 0.001). γ-Tocopherol was not associated with risk. CONCLUSIONS Overall prostate cancer risk was positively associated with retinol and inversely associated with α-tocopherol, and risk of aggressive prostate cancer was inversely associated with lycopene and α-tocopherol. Whether these associations reflect causal relations is unclear.
Collapse
Affiliation(s)
- Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health,
| | - Paul N Appleby
- Cancer Epidemiology Unit, Nuffield Department of Population Health
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, US National Cancer Institute, Bethesda, MD
| | - Anthony J Alberg
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Aurelio Barricarte
- Navarre Public Health Institute, Pamplona, Spain, and Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública), Spain
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, US National Cancer Institute, Bethesda, MD
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - H Bas Bueno-de-Mesquita
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands; Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, Netherlands; School of Public Health, Imperial College, London, United Kingdom
| | - June M Chan
- Departments of Epidemiology & Biostatistics and Urology, University of California, San Francisco, San Francisco, CA
| | - Chu Chen
- Public Health Sciences Division, Program in Epidemiology
| | - Michael B Cook
- Division of Cancer Epidemiology and Genetics, US National Cancer Institute, Bethesda, MD
| | - Jenny L Donovan
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Pilar Galan
- Sorbonne Paris Cité Epidemiology and Biostatistics Research Center, Nutritional Epidemiology Research Team (Nutritional Epidemiology Research Team), Inserm U1153, Inra U1125, Cnam, University Paris 13, University Paris 5, University Paris 7, Bobigny, France
| | - Rebecca Gilbert
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Graham G Giles
- Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
| | - Edward Giovannucci
- Departments of Nutrition and Epidemiology, Harvard School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Gary E Goodman
- Departments of Epidemiology and Environmental Health, University of Washington, Seattle, WA
| | | | - Marc J Gunter
- School of Public Health, Imperial College, London, United Kingdom
| | | | | | | | - Brian E Henderson
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Serge Hercberg
- Sorbonne Paris Cité Epidemiology and Biostatistics Research Center, Nutritional Epidemiology Research Team (Nutritional Epidemiology Research Team), Inserm U1153, Inra U1125, Cnam, University Paris 13, University Paris 5, University Paris 7, Bobigny, France
| | - Judy Hoffman-Bolton
- George W Comstock Center for Public Health Research and Prevention, Hagerstown, MD
| | - Robert N Hoover
- Division of Cancer Epidemiology and Genetics, US National Cancer Institute, Bethesda, MD
| | - Mattias Johansson
- International Agency for Research on Cancer, Lyon, France; Department for Biobank Research, Umeå University, Umeå, Sweden
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care and
| | - Irena B King
- Public Health Sciences Core Laboratories, Department of Internal Medicine, University of New Mexico, Albuquerque, NM
| | - Paul Knekt
- National Institute for Health and Welfare, Helsinki, Finland
| | | | | | - Satu Männistö
- National Institute for Health and Welfare, Helsinki, Finland
| | - Richard M Martin
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom; Medical Research Council/University of Bristol Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom; National Institute for Health Research, Bristol Biomedical Research Unit in Nutrition, Bristol, United Kingdom
| | - Haakon E Meyer
- Department of Community Medicine, Faculty of Medicine, University of Oslo and Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Alison M Mondul
- Division of Cancer Epidemiology and Genetics, US National Cancer Institute, Bethesda, MD
| | - Kristin A Moy
- Division of Cancer Epidemiology and Genetics, US National Cancer Institute, Bethesda, MD
| | - David E Neal
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | | | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy
| | - Elizabeth A Platz
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Camille Pouchieu
- Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
| | - Harri Rissanen
- National Institute for Health and Welfare, Helsinki, Finland
| | - Jeannette M Schenk
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Gianluca Severi
- Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
| | - Meir J Stampfer
- Departments of Nutrition and Epidemiology, Harvard School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Anne Tjønneland
- Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark
| | - Mathilde Touvier
- Sorbonne Paris Cité Epidemiology and Biostatistics Research Center, Nutritional Epidemiology Research Team (Nutritional Epidemiology Research Team), Inserm U1153, Inra U1125, Cnam, University Paris 13, University Paris 5, University Paris 7, Bobigny, France
| | - Antonia Trichopoulou
- Hellenic Health Foundation and Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece and
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, US National Cancer Institute, Bethesda, MD
| | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, US National Cancer Institute, Bethesda, MD
| | - Cindy Ke Zhou
- Division of Cancer Epidemiology and Genetics, US National Cancer Institute, Bethesda, MD
| | - Naomi E Allen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Samarawickrama C, Chew S, Watson S. Retinoic acid and the ocular surface. Surv Ophthalmol 2015; 60:183-95. [DOI: 10.1016/j.survophthal.2014.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/05/2014] [Accepted: 10/07/2014] [Indexed: 02/04/2023]
|
41
|
Müller WEG, Tolba E, Schröder HC, Diehl-Seifert B, Wang X. Retinol encapsulated into amorphous Ca(2+) polyphosphate nanospheres acts synergistically in MC3T3-E1 cells. Eur J Pharm Biopharm 2015; 93:214-23. [PMID: 25900862 DOI: 10.1016/j.ejpb.2015.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/06/2015] [Accepted: 04/10/2015] [Indexed: 11/19/2022]
Abstract
Both the quality and quantity of collagen, the major structural component of the skin, decrease in aging skin. We succeeded to encapsulate retinol into amorphous inorganic polyphosphate (polyP) nanoparticles together with calcium ions ("aCa-polyP-NP"), under formation of amorphous Ca-polyP/retinol nanospheres ("retinol/aCa-polyP-NS"). The globular nanospheres are not cytotoxic, show an almost uniform size of ≈ 45 nm and have a retinol content of around 25%. Both components of those nanospheres, retinol and the aCa-polyP-NP, if administered together, caused a strong increase in proliferation of mouse calvaria MC3T3 cells. The expressions of collagen types I, II and III genes, but not the expression of collagen type V gene, were significantly enhanced if retinol is added together with aCa-polyP-NP. This synergistic effect was especially pronounced for the expression of the collagen type III gene. We propose that the synergistic effect of the retinol/aCa-polyP-NS on cell growth and collagen type III expression is induced via two routes, first through cellular uptake of the 45 nm nanospheres by clathrin-mediated endocytosis and second through extracellular disintegration of the nanospheres resulting in the release of retinol which is then taken up into the cells after binding to the retinal binding protein receptor.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany; Biomaterials Department, Inorganic Chemical Industries Division, National Research Center, Doki, 11884 Cairo, Egypt
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | | | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|