1
|
Khatun MM, Bhuia MS, Chowdhury R, Sheikh S, Ajmee A, Mollah F, Al Hasan MS, Coutinho HDM, Islam MT. Potential utilization of ferulic acid and its derivatives in the management of metabolic diseases and disorders: An insight into mechanisms. Cell Signal 2024; 121:111291. [PMID: 38986730 DOI: 10.1016/j.cellsig.2024.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Metabolic diseases are abnormal conditions that impair the normal metabolic process, which involves converting food into energy at a cellular level, and cause difficulties like obesity and diabetes. The study aimed to investigate how ferulic acid (FA) and its derivatives could prevent different metabolic diseases and disorders and to understand the specific molecular mechanisms responsible for their therapeutic effects. Information regarding FA associations with metabolic diseases and disorders was compiled from different scientific search engines, including Science Direct, Wiley Online, PubMed, Scopus, Web of Science, Springer Link, and Google Scholar. This review revealed that FA exerts protective effects against metabolic diseases such as diabetes, diabetic retinopathy, neuropathy, nephropathy, cardiomyopathy, obesity, and diabetic hypertension, with beneficial effects on pancreatic cancer. Findings also indicated that FA improves insulin secretion by increasing Ca2+ influx through the L-type Ca2+ channel, thus aiding in diabetes management. Furthermore, FA regulates the activity of inflammatory cytokines (TNF-α, IL-18, and IL-1β) and antioxidant enzymes (CAT, SOD, and GSH-Px) and reduces oxidative stress and inflammation, which are common features of metabolic diseases. FA also affects various signaling pathways, including the MAPK/NF-κB pathways, which play an important role in the progression of diabetic neuropathy and other metabolic disorders. Additionally, FA regulates apoptosis markers (Bcl-2, Bax, and caspase-3) and exerts its protective effects on cellular destruction. In conclusion, FA and its derivatives may act as potential medications for the management of metabolic diseases.
Collapse
Affiliation(s)
- Mst Muslima Khatun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Salehin Sheikh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Afiya Ajmee
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Faysal Mollah
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE 63105-000, Brazil.
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh; Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh.
| |
Collapse
|
2
|
Chen C, Gao K, Chen Z, Zhang Q, Ke X, Mao B, Fan Q, Li Y, Chen S. The supplementation of the multi-strain probiotics WHHPRO™ alleviates high-fat diet-induced metabolic symptoms in rats via gut-liver axis. Front Nutr 2024; 10:1324691. [PMID: 38274203 PMCID: PMC10808617 DOI: 10.3389/fnut.2023.1324691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Metabolic syndrome (MS) has emerged as one of the major global health concerns, accompanied by a series of related complications, such as obesity and type-2 diabetes. The gut-liver axis (GLA) is a bidirectional communication between the gut and the liver. The GLA alterations have been revealed to be closely associated with the development of MS. Probiotics within Lactobacillus and Bifidobacterium confer beneficial effects on improving MS symptoms. WHHPRO™ is a mixture of four probiotic strains, with potential MS-improving abilities. This study aimed to investigate the effects of WHHPRO™ on MS symptoms using a high-fat diet (HFD) rat model. Oral administration of WHHPRO™ for 12 weeks improved glucose tolerance, blood lipid, body weight, and liver index in HFD rats. WHHPRO™ shaped the gut microbiome composition by increasing the abundance of Lactobacillus and Akkermansia and normalized the reduced SCFA levels in HFD rats. Besides, WHHPRO™ modulated the fecal bile acids (BAs) profile, with decreased levels of T-b-MCA and 12-KDCA and increased levels of LCA and ILCA. Meanwhile, WHHPRO™ increased total unconjugated BAs in feces and liver and reduced the accumulation of total hepatic BA pool size in HFD rats. Moreover, WHHPRO™ reversed the expression of genes associated with impaired BA metabolism signaling in the ileum and liver. Our findings suggest that WHHPRO™ exerted beneficial effects on improving MS symptoms, involving the modulation of the gut microbiome composition, SCFAs, and the FXR-FGF15 signaling along the GLA. Supplementation of WHHPRO™ may serve as a novel strategy for improving MS symptoms.
Collapse
Affiliation(s)
- Cailing Chen
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Kan Gao
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Zuoguo Chen
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Qiwen Zhang
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Xueqin Ke
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Bingyong Mao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuling Fan
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Yanjun Li
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Su Chen
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| |
Collapse
|
3
|
Wu X, Liang H, Tang Y, Chen D, Yu B, He J, Mao X, Huang Z, Yan H, Wu A, Luo Y, Zheng P, Yu J, Pu J, Luo J. Dietary ferulic acid supplementation improves antioxidant capacity and lipid metabolism in liver of piglets with intrauterine growth retardation. Anim Biotechnol 2023; 34:4900-4909. [PMID: 37149789 DOI: 10.1080/10495398.2023.2206863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Intrauterine growth retardation (IUGR) can result in early liver oxidative damage and abnormal lipid metabolism in neonatal piglets. Ferulic acid (FA), a phenolic compound widely found in plants, has many biological functions, such as anti-inflammation and anti-oxidation. Thus, we explored the effects of dietary FA supplementation on antioxidant capacity and lipid metabolism in newborn piglets with IUGR. In the study, 24 7-day-old piglets were divided into three groups: normal birth weight (NBW), IUGR, and IUGR + FA. The NBW and IUGR groups were fed formula milk as a basal diet, while the IUGR + FA group was fed a basal diet supplemented with 100 mg/kg FA. The trial lasted 21 days. The results showed that IUGR decreased absolute liver weight, increased transaminase activity, reduced antioxidant capacity, and disrupted lipid metabolism in piglets. Dietary FA supplementation enhanced absolute liver weight, reduced serum MDA level and ROS concentrations in serum and liver, markedly increased serum and liver GSH-PX and T-SOD activities, decreased serum HDL-C and LDL-C and liver NEFA, and increased TG content and HL activity in the liver. The mRNA expression related to the Nrf2-Keap1 signaling pathway and lipid metabolism in liver were affected by IUGR. Supplementing FA improved the antioxidant capacity of liver by down-regulating Keap1 and up-regulating the mRNA expression of SOD1 and CAT, and regulated lipid metabolism by increasing the mRNA expression level of Fasn, Pparα, LPL, and CD36. In conclusion, the study suggests that FA supplementation can improve antioxidant capacity and alleviate lipid metabolism disorders in IUGR piglets.
Collapse
Affiliation(s)
- Xiu Wu
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hongmin Liang
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yan Tang
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhiqing Huang
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Aimin Wu
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Junning Pu
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistant Nutrition, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Ahmed MG, Mehmood MH, Mehdi S, Farrukh M. Caryopteris odorata and its metabolite coumarin attenuate characteristic features of cardiometabolic syndrome in high-refined carbohydrate-high fat-cholesterol-loaded feed-fed diet rats. Front Pharmacol 2023; 14:1097407. [PMID: 37033655 PMCID: PMC10076573 DOI: 10.3389/fphar.2023.1097407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/23/2023] [Indexed: 04/11/2023] Open
Abstract
Caryopteris odorata (D. Don) B.L. Robinson (Verbenaceae family) is an aromaric shrub traditionally used to treat diabetes and related pathologies (diabetic foot ulcer), cancer/tumors, wound healing, and inflammation. It is enriched with flavonoids and phenolics like coumarins, quercetin, gallic acid, coumaric acid, stigmasterol, α-tocopherol, and iridoids. C. odorata has been reported as having α-glucosidase, anti-inflammatory, and anti-oxidant properties. Its effectiveness in preventing cardiometabolic syndrome has not yet been assessed. This study aims to investigate the potential efficacy of C. odorata and coumarin for characteristic features of cardiometabolic syndrome (CMS), including obesity, dyslipidemia, hyperglycemia, insulin resistance, and hypertension by using high-refined carbohydrate-high fat-cholesterol (HRCHFC)-loaded feed-fed rats. Chronic administration of C. odorata and coumarin for 6 weeks revealed a marked attenuation in body and organ weights, with a consistent decline in feed intake compared to HRCHFC diet fed rats. The test materials also caused a significant reduction in the blood pressure (systolic, diastolic, and mean) and heart rate of HRCHFC-diet fed rats. Improved glucose tolerance and insulin sensitivity tests were also observed in test material administered rats compare to only HRCHFC-diet fed rats. C. odorata and coumarin-treated animals produced a marked decline in serum FBG, TC, TG, LFTs, and RFTs, while an increase in serum HDL-C levels was noticed. C. odorata and coumarin also significantly modulated inflammatory biomarkers (TNFα, IL-6), adipokines (leptin, adiponectin, and chemerin), and HMG-CoA reductase levels, indicating prominent anti-inflammatory, cholesterol-lowering, and anti-hyperglycemic potential. Administration of C. odorata and coumarin exhibited a marked improvement in oxidative stress markers (CAT, SOD, and MDA). Histopathological analysis of liver, heart, kidney, pancreas, aorta, and fat tissues showed a revival of normal tissue architecture in C. odorata and coumarin-treated rats compared to only HRCHFC-diet fed rats. These results suggest that C. odorata and coumarin possess beneficial effects against the characteristic features of CMS (obesity, insulin resistance, hypertension, and dyslipidemia) in HRCHFC feed-administered rats. These effects were possibly mediated through improved adipokines, glucose tolerance, and insulin sensitivity, the attenuation of HMG-CoA reductase and inflammatory biomarkers, and modulated oxidative stress biomarkers. This study thus demonstrates a rationale for the therapeutic potential of C. odorata and coumarin in CMS.
Collapse
|
5
|
Su YN, Wang MJ, Yang JP, Wu XL, Xia M, Bao MH, Ding YB, Feng Q, Fu LJ. Effects of Yulin Tong Bu formula on modulating gut microbiota and fecal metabolite interactions in mice with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1122709. [PMID: 36814581 PMCID: PMC9939769 DOI: 10.3389/fendo.2023.1122709] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) is a common endocrine disorder characterized by hyperandrogenism, ovarian dysfunction and polycystic ovarian morphology. Gut microbiota dysbiosis and metabolite are associated with PCOS clinical parameters. Yulin Tong Bu formula (YLTB), a traditional Chinese medicine formula, has been recently indicated to be capable of ameliorating polycystic ovary symptoms and correcting abnormal glucose metabolism. However, the therapeutic mechanism of YLTB on PCOS has not been fully elucidated. METHODS A pseudo sterile mouse model was established during this four-day acclimatization phase by giving the animals an antibiotic cocktail to remove the gut microbiota. Here, the therapeutic effects of YLTB on PCOS were investigated using dehydroepiandrosterone plus high-fat diet-induced PCOS mice model. Female prepuberal mice were randomly divided into three groups; namely, the control group, PCOS group and YLTB (38.68 g·kg-1·day-1) group. To test whether this effect is associated with the gut microbiota, we performed 16S rRNA sequencing studies to analyze the fecal microbiota of mice. The relationships among metabolites, gut microbiota, and PCOS phenotypes were further explored by using Spearman correlation analysis. Then, the effect of metabolite ferulic acid was then validated in PCOS mice. RESULTS Our results showed that YLTB treatment ameliorated PCOS features (ovarian dysfunction, delayed glucose clearance, decreased insulin sensitivity, deregulation of glucolipid metabolism and hormones, etc.) and significantly attenuated PCOS gut microbiota dysbiosis. Spearman correlation analysis showed that metabolites such as ferulic acid and folic acid are negatively correlated with PCOS clinical parameters. The effect of ferulic acid was similar to that of YLTB. In addition, the bacterial species such as Bacteroides dorei and Bacteroides fragilis were found to be positively related to PCOS clinical parameters, using the association study analysis. CONCLUSION These results suggest that YLTB treatment systematically regulates the interaction between the gut microbiota and the associated metabolites to ameliorate PCOS, providing a solid theoretical basis for further validation of YLTB effect on human PCOS trials.
Collapse
Affiliation(s)
- Ya-Nan Su
- Department of Herbal Medicine, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, School of traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Mei-Jiao Wang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jun-Pu Yang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xiang-Lu Wu
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Min Xia
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Mei-Hua Bao
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Yu-Bin Ding
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Qian Feng
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- Department of Obstetrics and Gynecology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Li-Juan Fu, ; Qian Feng,
| | - Li-Juan Fu
- Department of Herbal Medicine, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, School of traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
- *Correspondence: Li-Juan Fu, ; Qian Feng,
| |
Collapse
|
6
|
Ye L, Hu P, Feng LP, Huang LL, Wang Y, Yan X, Xiong J, Xia HL. Protective Effects of Ferulic Acid on Metabolic Syndrome: A Comprehensive Review. Molecules 2022; 28:molecules28010281. [PMID: 36615475 PMCID: PMC9821889 DOI: 10.3390/molecules28010281] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex disease in which protein, fat, carbohydrates and other substances are metabolized in a disorderly way. Ferulic acid (FA) is a phenolic acid found in many vegetables, fruits, cereals and Chinese herbs that has a strong effect on ameliorating MetS. However, no review has summarized the mechanisms of FA in treating MetS. This review collected articles related to the effects of FA on ameliorating the common symptoms of MetS, such as diabetes, hyperlipidemia, hypertension and obesity, from different sources involving Web of Science, PubMed and Google Scholar, etc. This review summarizes the potential mechanisms of FA in improving various metabolic disorders according to the collected articles. FA ameliorates diabetes via the inhibition of the expressions of PEPCK, G6Pase and GP, the upregulation of the expressions of GK and GS, and the activation of the PI3K/Akt/GLUT4 signaling pathway. The decrease of blood pressure is related to the endothelial function of the aortas and RAAS. The improvement of the lipid spectrum is mediated via the suppression of the HMG-Co A reductase, by promoting the ACSL1 expression and by the regulation of the factors associated with lipid metabolism. Furthermore, FA inhibits obesity by upregulating the MEK/ERK pathway, the MAPK pathway and the AMPK signaling pathway and by inhibiting SREBP-1 expression. This review can be helpful for the development of FA as an appreciable agent for MetS treatment.
Collapse
Affiliation(s)
- Lei Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Pan Hu
- Chengdu Institute of Chinese Herbal Medicine, Chengdu 610016, China
- Correspondence: (P.H.); (H.-L.X.); Tel.: +86-182-2442-7340 (P.H.); +86-135-6889-9011 (H.-L.X.)
| | - Li-Ping Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li-Lu Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Yan
- Chengdu Institute of Chinese Herbal Medicine, Chengdu 610016, China
| | - Jing Xiong
- Chengdu Institute of Chinese Herbal Medicine, Chengdu 610016, China
| | - Hou-Lin Xia
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (P.H.); (H.-L.X.); Tel.: +86-182-2442-7340 (P.H.); +86-135-6889-9011 (H.-L.X.)
| |
Collapse
|
7
|
Chávez-Gutiérrez E, Martínez-Arellanes M, Murillo-López M, Medina-Guzmán MF, Mobarak-Richaud L, Pelcastre-Guzmán K, Quintana-Romero OJ, Ariza-Castolo A, Ayala-Moreno MDR, Salazar JR, Guerra-Araiza C, Rodríguez-Páez L, Pinto-Almazán R, Loza-Mejía MA. In Combo Studies for the Optimization of 5-Aminoanthranilic Acid Derivatives as Potential Multitarget Drugs for the Management of Metabolic Syndrome. Pharmaceuticals (Basel) 2022; 15:1461. [PMID: 36558912 PMCID: PMC9784827 DOI: 10.3390/ph15121461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Metabolic syndrome is a set of risk factors that consist of abdominal obesity, arterial hypertension, alterations in the lipid profile, and hyperglycemia. The current therapeutic strategy includes polypharmacy, using three or more drugs to control each syndrome component. However, this approach has drawbacks that could lead to therapeutic failure. Multitarget drugs are molecules with the ability to act on different targets simultaneously and are an attractive alternative for treating complex diseases such as metabolic syndrome. Previously, we identified a triamide derivative of 5-aminoanthranilic acid that exhibited hypoglycemic, hypolipemic, and antihypertensive activities simultaneously. In the present study, we report the synthesis and in combo evaluation of new derivatives of anthranilic acid, intending to identify the primary structural factors that improve the activity over metabolic syndrome-related parameters. We found that substitution on position 5, incorporation of 3,4-dimethoxyphenyl substituents, and having a free carboxylic acid group lead to the in vitro inhibition of HMG-CoA reductase, and simultaneously the diminution of the serum levels of glucose, triglycerides, and cholesterol in a diet-induced in vivo model.
Collapse
Affiliation(s)
- Edwin Chávez-Gutiérrez
- Design, Isolation and Synthesis of Bioactive Molecules Research Group, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico
- Doctorado en Ciencias en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Manuel Carpio y Plan de Ayala s/n, Mexico City 11340, Mexico
| | - Matilda Martínez-Arellanes
- Design, Isolation and Synthesis of Bioactive Molecules Research Group, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico
| | - Montserrat Murillo-López
- Design, Isolation and Synthesis of Bioactive Molecules Research Group, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico
| | - María Fernanda Medina-Guzmán
- Design, Isolation and Synthesis of Bioactive Molecules Research Group, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico
| | - Laila Mobarak-Richaud
- Design, Isolation and Synthesis of Bioactive Molecules Research Group, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico
| | - Karen Pelcastre-Guzmán
- Design, Isolation and Synthesis of Bioactive Molecules Research Group, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico
| | - Osvaldo Javier Quintana-Romero
- Department of Chemistry, Center for Research and Advanced Studies, The National Polytechnic Institute (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Armando Ariza-Castolo
- Department of Chemistry, Center for Research and Advanced Studies, The National Polytechnic Institute (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | | | - Juan Rodrigo Salazar
- Design, Isolation and Synthesis of Bioactive Molecules Research Group, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico
| | - Christian Guerra-Araiza
- Medical Research Unit in Pharmacology, Specialities Hospital Bernardo Sepúlveda, National Medical Center XXI Century, Social Security Mexican Institute (IMSS), Av. Cuauhtémoc 330, Mexico City 06720, Mexico
| | - Lorena Rodríguez-Páez
- Biochemistry Department, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Manuel Carpio y Plan de Ayala s/n, Mexico City 11340, Mexico
| | - Rodolfo Pinto-Almazán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City 11340, Mexico
| | - Marco A. Loza-Mejía
- Design, Isolation and Synthesis of Bioactive Molecules Research Group, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico
| |
Collapse
|
8
|
Apaijit K, Pakdeechote P, Maneesai P, Meephat S, Prasatthong P, Bunbupha S. Hesperidin alleviates vascular dysfunction and remodelling in high-fat/high-fructose diet-fed rats by modulating oxidative stress, inflammation, AdipoR1, and eNOS expression. Tissue Cell 2022; 78:101901. [DOI: 10.1016/j.tice.2022.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
|
9
|
Polyphenols in Metabolic Diseases. Molecules 2022; 27:molecules27196280. [PMID: 36234817 PMCID: PMC9570923 DOI: 10.3390/molecules27196280] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 02/01/2023] Open
Abstract
Polyphenols (PPs) are a large group of phytochemicals containing phenolic rings with two or more hydroxyl groups. They possess powerful antioxidant properties, multiple therapeutic effects, and possible health benefits in vivo and in vitro, as well as reported clinical studies. Considering their free-radical scavenging and anti-inflammatory properties, these substances can be used to treat different kinds of conditions associated with metabolic disorders. Many symptoms of metabolic syndrome (MtS), including obesity, dyslipidemia, atherosclerosis, elevated blood sugar, accelerating aging, liver intoxication, hypertension, as well as cancer and neurodegenerative disorders, are substantially relieved by dietary PPs. The present study explores the bioprotective properties and associated underlying mechanisms of PPs. A detailed understanding of these natural compounds will open up new opportunities for producing unique natural PP-rich dietary and medicinal plans, ultimately affirming their health benefits.
Collapse
|
10
|
Flavonoid and Phenolic Acid Profiles of Dehulled and Whole Vigna subterranea (L.) Verdc Seeds Commonly Consumed in South Africa. Molecules 2022; 27:molecules27165265. [PMID: 36014504 PMCID: PMC9415687 DOI: 10.3390/molecules27165265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Bambara groundnut (BGN) is an underexploited crop with a rich nutrient content and is used in traditional medicine, but limited information is available on the quantitative characterization of its flavonoids and phenolic acids. We investigated the phenolic profile of whole seeds and cotyledons of five BGN varieties consumed in South Africa using UPLC-qTOF-MS and GC-MS. Twenty-six phenolic compounds were detected/quantified in whole seeds and twenty-four in cotyledon, with six unidentified compounds. Flavonoids include flavan-3-ol (catechin, catechin hexoside-A, catechin hexoside-B), flavonol (quercetin, quercetin-3-O-glucoside, rutin, myricetin, kaempherol), hydroxybenzoic acid (4-Hydroxybenzoic, 2,6 Dimethoxybenzoic, protocatechuic, vanillic, syringic, syringaldehyde, gallic acids), hydroxycinnamic acid (trans-cinnamic, p-coumaric, caffeic, ferulic acids) and lignan (medioresinol). The predominant flavonoids were catechin/derivatives, with the highest content (78.56 mg/g) found in brown BGN. Trans-cinnamic and ferulic acids were dominant phenolic acid. Cotyledons of brown and brown-eyed BGN (317.71 and 378.59 µg/g) had the highest trans-cinnamic acid content, while red seeds had the highest ferulic acid (314.76 µg/g) content. Colored BGN had a significantly (p < 0.05) higher content of these components. Whole BGN contained significantly (p < 0.05) higher amount of flavonoids and phenolic acids, except for the trans-cinnamic acid. The rich flavonoid and phenolic acid content of BGN seeds highlights the fact that it is a good source of dietary phenolics with potential health-promoting properties.
Collapse
|
11
|
Pumpkin seed proteins (Cucurbita pepo L.) protect against diet-induced metabolic syndrome by improving insulin resistance and markers of oxidative stress and inflammation in rats. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractPumpkin (Cucurbita pepo L.) seeds are enriched in bioactive compounds having functional properties. The aim of this study was to analyze the pumpkin seed proteins (PSP) effects on insulin resistance, oxidative stress damage and inflammation in rats with high fructose-induced metabolic syndrome.Twenty four male Wistar rats, fed isoenergetic diets supplemented with: (1) 20% casein (C); (2) 20% casein and 1 g/kg/day PSP (P); (3) 20% casein and 64% D-fructose (C-HF); (4) 20% casein, 1 g/kg/day PSP and 64% D-fructose (P-HF). After 8 weeks of treatment, fructose supply impaired white adipose tissue (WAT) weight, deteriorated glucose tolerance and tAUC, plasma glucose, insulin, insulinogenic index, HOMA-IR and HOMA-β, antioxidant status, lipid and protein oxidation, plasma TNF-α and IL-6 as compared to control diets. Interestingly, rats assigned to the PSPs diet with or without fructose displayed lower plasma glucose, insulin and fructose, improved tolerance of glucose, tAUC, HOMA-IR and HOMA-β and increased insulinogenic index as compared to C diets. PSPs consumption lowered thiobarbituric acid reactive substances, hydroperoxides and carbonyls in WAT and carbonyls in muscle. Superoxide dismutase and glutathione peroxidase in WAT were significantly diminished in P-HF but increased in P as compared to C-HF and C. Rats fed P-HF diet had low catalase in WAT and high in muscle than those fed C-HF. Moreover, catalase activity increased in muscle but decreased in WAT in P group than in C group. In conclusion, pumpkin seed proteins exhibit favorable effects on metabolic disorders of fructose-induced metabolic syndrome, suggesting a key role in disease therapy.
Collapse
|
12
|
Aouadi K, Hajlaoui H, Arraouadi S, Ghannay S, Snoussi M, Kadri A. Phytochemical Profiling, Antimicrobial and α-Glucosidase Inhibitory Potential of Phenolic-Enriched Extracts of the Aerial Parts from Echium humile Desf.: In Vitro Combined with In Silico Approach. PLANTS (BASEL, SWITZERLAND) 2022; 11:1131. [PMID: 35567133 PMCID: PMC9105953 DOI: 10.3390/plants11091131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
The current study aimed to evaluate the naturally occurring antimicrobial and antidiabetic potential of various Echium humile (E. humile) solvent extracts (hexane, dichloromethane, ethyl acetate, methanol and aqueous). The bioactive compounds were identified using HPLC-MS, revealing the presence of sixteen phytochemical compounds, with the most abundant being p-coumaric acid, followed by 4,5-di-O-caffeoylquinic acid, trans-ferulic acid and acacetin. Furthermore, E. humile extracts showed marked antimicrobial properties against human pathogen strains, with MIC values for the most relevant extracts (methanol and ethyl acetate) ranging from 0.19 to 6.25 mg/mL and 0.39 to 12.50 mg/mL, respectively. Likewise, methanol was found to be bactericidal towards S. aureus, B. cereus and M. luteus, fungicidal against P. catenulatum and F. oxysporum and have a bacteriostatic/fungicidal effect for the other strains. In addition, the E. humile methanolic extract had the greatest α-glucosidase inhibitory effect (IC50 = 0.06 ± 0.29 mg/mL), which is higher than the standard drug, acarbose (IC50 = 0.80 ± 1.81 mg/mL) and the aqueous extract (IC50 = 0.70 ± 0.67 mg/mL). A correlation study between the major phytochemicals and the evaluated activities was investigated. Docking studies evidenced that most of the identified phenolic compounds showed strong interactions into the binding sites of S. aureus tyrosyl-tRNA synthetase and human lysosomal acid-α-glucosidase, confirming their suitable inhibitory effect. In summary, these results may provide rational support to explore the clinical efficacy of E. humile and its secondary metabolites in the treatment of dual diabetes and infections.
Collapse
Affiliation(s)
- Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (K.A.); (S.G.)
- Department of Chemistry, Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| | - Hafedh Hajlaoui
- Research Unit Valorization and Optimization of Resource Exploitation (UR16ES04), Faculty of Science and Technology of Sidi Bouzid, Campus University Agricultural City, University of Kairouan, Sidi Bouzid 9100, Tunisia;
| | - Soumaya Arraouadi
- Regional Center of Agricultural Research (CRRA) Sidi Bouzid, Gafsa Road Km 6, PB 357, Sidi Bouzid 9100, Tunisia;
- Research Laboratory, Valorization of Non-Conventional Waters, University of Carthage, Road Hedi EL Karray, El Menzah IV, PB 10, Ariana 2080, Tunisia
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (K.A.); (S.G.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, Hail University, Ha’il 2440, Saudi Arabia;
- Laboratory of Genetic, Biodiversity and Valorization of Bioressources, Higher Institute of Bio-Technology of Monastir, University of Monastir, Avenue Taher Hadded, B.P. 74, Monastir 5000, Tunisia
| | - Adel Kadri
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
- Faculty of Science and Arts in Baljurashi, Albaha University, Albaha 65527, Saudi Arabia
| |
Collapse
|
13
|
Wongwisitchai S, Kijpatanasilp I, Assatarakul K. Changes in content of bioactive constituents and antioxidant activity of riceberry after food processing and degradation kinetics during storage. J Food Sci 2022; 87:1096-1107. [PMID: 35150138 DOI: 10.1111/1750-3841.16069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/27/2022]
Abstract
The effect of roasting temperature (70, 120, 140°C) and food processing (soaking, steaming, and roasting) on the content of bioactive constituents (total phenolic content, total flavonoid content, total anthocyanin, and γ-oryzanol) and antioxidant activity of processed riceberry were investigated. In addition, the degradation kinetics of bioactive constituents and antioxidant activity during storage were assessed using zero-order and first-order kinetic models. Results showed riceberry roasted at 120°C had the highest total anthocyanin content and antioxidant activity. In addition, riceberry obtained from roasting exhibited the highest bioactive compound and antioxidant activity. Besides, first-order kinetic was confirmed as the best-fitted model to describe degradation of bioactive constituents and antioxidant activity of processed riceberry during storage. This finding suggested that roasting at 120°C was chosen as an optimum condition to maximize the content of bioactive constituents and antioxidant activity and kinetic models provided a better understanding of antioxidant property reduction of processed riceberry during storage. PRACTICAL APPLICATION: Riceberry is an abundant source of bioactive constituents with beneficial health effects leading to a development of functional food product. However, processing may negatively affect biological properties of riceberry and bioactive constituent degradation of processed riceberry during storage has not been previously reported. Therefore, different processes were investigated to determine the effect on bioactive constituents and antioxidant activity of riceberry, and the degradation kinetic model of bioactive constituents during storage was also studied. Optimum processing is appropriate to design riceberry containing high concentration of bioactive constituents and antioxidant activity, which could be considered as a functional diet for health-conscious consumer.
Collapse
Affiliation(s)
- Sirinan Wongwisitchai
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Isaya Kijpatanasilp
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kitipong Assatarakul
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
SULISTYOWATI E, HANDAYANI D, SOEHARTO S, RUDIJANTO A. A high-fat and high-fructose diet lowers the cecal digesta's weight and short-chain fatty acid level of a Sprague-Dawley rat model. Turk J Med Sci 2022; 52:268-275. [PMID: 36161602 PMCID: PMC10734861 DOI: 10.3906/sag-1911-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/22/2022] [Accepted: 02/20/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND This study aimed to analyze the effect of a high-fat and high-fructose diet (HFFD) on the digesta weight and shortchain fatty acid (SCFA) levels of cecal digesta in rats. METHODS This study was an experimental study with a posttest-only control group design with male Sprague-Dawley strain rats as the samples. A total of 36 rats were divided into two groups with normal diet (N) and modified HFFD. The data of energy intake, nutrients and fiber, body weight, Lee index, abdominal circumference, digesta weight, and SCFA levels of cecal digesta were collected. RESULTS The results showed an 11.94% increase in body weights of rats with HFFD. The total energy intake of the HFFD group was significantly higher than that of N (p = 0.000). The fiber intake and cecal digesta weight in group N were higher than that in the HFFD group (p = 0.00 and p = 0.02, respectively). The concentrations of acetate, butyrate, propionate, and total SCFA in the N group were significantly higher than in the HFFD (p = 0.041,,p = 0.004, p = 0.040, p = 0.013, respectively). A significant negative relationship was observed between the abdominal circumference and cecal digesta concentration (p = 0.029; r = -0.529) and between the Lee index and the SCFA concentration of cecal digesta (p = 0.036, r = -0.206).
Collapse
Affiliation(s)
- Etik SULISTYOWATI
- Department of Nutrition, Malang State Health Polytechnic Ministry of Health, Malang
Indonesia
| | - Dian HANDAYANI
- School of Nutrition, Faculty of Medicine, Brawijaya University, Malang,
Indonesia
| | - Setyawati SOEHARTO
- Department of Pharmacology, Faculty of Medicine, Brawijaya University, Malang,
Indonesia
| | - Achmad RUDIJANTO
- Department of Endocrinology, Faculty of Medicine, Brawijaya University, Malang,
Indonesia
| |
Collapse
|
15
|
The Use of Bioactive Compounds in Hyperglycemia- and Amyloid Fibrils-Induced Toxicity in Type 2 Diabetes and Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14020235. [PMID: 35213966 PMCID: PMC8879577 DOI: 10.3390/pharmaceutics14020235] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
It has become increasingly apparent that defective insulin signaling may increase the risk for developing Alzheimer’s disease (AD), influence neurodegeneration through promotion of amyloid formation or by increasing inflammatory responses to intraneuronal β-amyloid. Recent work has demonstrated that hyperglycemia is linked to cognitive decline, with elevated levels of glucose causing oxidative stress in vulnerable tissues such as the brain. The ability of β-amyloid peptide to form β-sheet-rich aggregates and induce apoptosis has made amyloid fibrils a leading target for the development of novel pharmacotherapies used in managing and treatment of neuropathological conditions such as AD-related cognitive decline. Additionally, deposits of β-sheets folded amylin, a glucose homeostasis regulator, are also present in diabetic patients. Thus, therapeutic compounds capable of reducing intracellular protein aggregation in models of neurodegenerative disorders may prove useful in ameliorating type 2 diabetes mellitus symptoms. Furthermore, both diabetes and neurodegenerative conditions, such as AD, are characterized by chronic inflammatory responses accompanied by the presence of dysregulated inflammatory biomarkers. This review presents current evidence describing the role of various small bioactive molecules known to ameliorate amyloidosis and subsequent effects in prevention and development of diabetes and AD. It also highlights the potential efficacy of peptide–drug conjugates capable of targeting intracellular targets.
Collapse
|
16
|
Physiological Effects of Bioactive Compounds Derived from Whole Grains on Cardiovascular and Metabolic Diseases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cardiovascular diseases are a global health burden with an increasing prevalence. In addition, various metabolic diseases, such as obesity, diabetes, and hypertension are associated with a higher risk of cardiovascular diseases. Dietary strategies based on healthy foods have been suggested for the prevention or improvement of cardiovascular and metabolic diseases. Grains are the most widely consumed food worldwide, and the preventive effects of whole grains (e.g., oats, barley, and buckwheat) on metabolic diseases have been reported. The germ and bran of grains are rich in compounds, including phytochemicals, vitamins, minerals, and dietary fiber, and these compounds are effective in preventing and improving cardiovascular and metabolic diseases. Thus, this review describes the characteristics and functions of bioactive ingredients in whole grains, focusing on mechanisms by which polyphenols, antioxidants, and dietary fiber contribute to cardiovascular and metabolic diseases, based on preclinical and clinical studies. There is clear evidence for the broad preventive and therapeutic effects of whole grains, supporting the value of early dietary intervention.
Collapse
|
17
|
Jibril MM, Haji-Hamid A, Abas F, Karrupan J, Mohammed AS, Jaafar AH, Pak Dek MS, Ramli NS. Watermelon (Citrullus lanatus) leaf extract attenuates biochemical and histological parameters in high-fat diet/streptozotocin-induced diabetic rats. J Food Biochem 2022; 46:e14058. [PMID: 34981526 DOI: 10.1111/jfbc.14058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
The present research aimed to investigate the attenuative effects of watermelon (Citrullus lanatus) leaf extract on biochemical and histological parameters in a high-fat diet combined with a low-dose streptozotocin (HFD/STZ)-induced type 2 diabetes mellitus. Forty male Sprague Dawley rats were divided into five groups, including three supplemented groups: 10 mg metformin/kg BW (HFD/STZ +M), 200 mg watermelon leaf extract /kg BW (HFD/STZ + LD), and 400 mg watermelon leaf extract /kg BW (HFD/STZ + HD). The efficacy of the 6-week intervention was evaluated by measuring body weight, fasting blood sugar, serum insulin, lipid profile, superoxide dismutase, catalase, malondialdehyde, and serum liver markers. Kidneys and liver structure were defined by histopathological examination. Results revealed that intervention with watermelon leaf extract attenuated the biochemical parameters and the structural changes in kidneys and liver. In brief, the watermelon leaf extract treatment could effectively decrease complications associated with diabetes better than metformin, and that the treatment with 400 mg/kg BW is the most potent. PRACTICAL APPLICATIONS: This was the first study to investigate the antidiabetic potential of watermelon leaf extract in obese diabetic rats. Data revealed that the watermelon leaf extract significantly attenuated the HFD/STZ-induced diabetes changes, as evidenced by the biochemical and histological data. Hence, watermelon leaf could be an excellent candidate to be developed as a functional food ingredients or nutraceuticals for holistic management of diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Muhammad Mustapha Jibril
- Department of Food Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Department of Biochemistry, Bayero University Kano, Kano, Nigeria
| | - Azizah Haji-Hamid
- Department of Food Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Jeeven Karrupan
- Food Technology Research Center, Malaysia Agricultural Research and Development Institute, MARDI Headquarter, Persiaran MARDI-UPM, Selangor, Malaysia
| | | | - Ahmad Haniff Jaafar
- Department of Food Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Mohd Sabri Pak Dek
- Department of Food Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nurul Shazini Ramli
- Department of Food Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Akamo AJ, Akinloye DI, Ugbaja RN, Adeleye OO, Dosumu OA, Eteng OE, Antiya MC, Amah G, Ajayi OA, Faseun SO. Naringin prevents cyclophosphamide-induced erythrocytotoxicity in rats by abrogating oxidative stress. Toxicol Rep 2021; 8:1803-1813. [PMID: 34760624 PMCID: PMC8567332 DOI: 10.1016/j.toxrep.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/30/2021] [Accepted: 10/24/2021] [Indexed: 01/02/2023] Open
Abstract
Earlier reports have shown that Cyclophosphamide (CYCP), an anti-malignant drug, elicited cytotoxicity; and that naringin has several beneficial potentials against oxidative stress and dyslipidaemias. We investigated the influence of naringin on free radical scavenging, cellular integrity, cellular ATP, antioxidants, oxidative stress, and lipid profiles in the CYCP-induced erythrocytotoxicity rat model. Rats were pretreated orally by gavage for fourteen consecutive days with three doses (50, 100, and 200 mg/kg) naringin before single CYCP (200 mg/kg, i.p.) administration. Afterwards, the rats were sacrificed. Naringin concentrations required for 50 % scavenging hydrogen peroxide and nitric oxide radical were 0.27 mg/mL and 0.28 mg/mL, respectively. Naringin pretreatment significantly (p < 0.05) protected erythrocytes plasma membrane architecture and integrity by abolishing CYCP-induced decrease in the activity of erythrocyte LDH (a marker of ATP). Pretreatment with naringin remarkably (p < 0.05) reversed CYCP-induced decreases in the erythrocytes glutathione levels, activities of glutathione-S-transferase, catalase, glutathione peroxidase, and glutathione reductase; attenuated CYCP-mediated increases in erythrocytes levels of malondialdehyde, nitric oxide, and major lipids (cholesterol, triacylglycerol, phospholipids, and non-esterified fatty acids). Taken together, different acute pretreatment doses of naringin might avert CYCP-mediated erythrocytes dysfunctions via its antioxidant, free-radical scavenging, and anti-dyslipidaemia properties.
Collapse
Key Words
- AP-1, activator protein 1
- ATP, adenosine triphosphate
- Antioxidants
- BHT, butylated hydroxytoluene
- C31H28N2Na4O13S, xylenol tetrasodium
- C5FeN6Na2O, sodium nitroprusside
- CAT, catalase
- CDNB, 1-chloro-2,4-dinitrobenzene
- CYCP, cyclophosphamide
- Cu(NO3)2.3H2O, copper II nitrate
- Cyclophosphamide
- DNA, deoxyribonucleic acid
- DTNB, 5,5ˈ-dithiobis(2-nitrobenzoic acid)
- Erythrocytotoxicity
- FeSO4.7H2O, Iron (II) sulfate heptahydrate
- G6PDH, glucose-6-phosphate dehydrogenase
- GSH, reduced glutathione
- GSPx, glutathione peroxidase
- GSR, glutathione reductase
- GSSG, oxidized glutathione
- GST, glutathione-S-transferase
- H2O2, hydrogen peroxide
- H3PO3, phosphoric acid
- HO•, hydroxyl radical
- HSCs, hepatic stellate cells
- K2HPO4, dipotassium hydrogen phosphate
- KCl, potassium chloride
- LDH, lactate dehydrogenase
- Lipid profile
- MAPKs, mitogen-activated protein kinases
- MDA, malondialdehyde
- MMP, matrix metalloprotease
- NAD+, nicotinamide adenine dinucleotide
- NADH, nicotinamide adenine dinucleotide reduced
- NADPH, nicotinamide adenine dinucleotide phosphate reduced
- NF-κB, nuclear factor kappa B
- NH4OH, ammonium hydroxide
- NO, nitric oxide
- NO2−, nitrite
- NO3−, nitrate
- NOAEL, no-observed-adverse-effect level
- Na2HPO4, disodium hydrogen phosphate
- NaH2PO4, sodium dihydrogen phosphate
- Naringin
- Nrf2, nuclear factor-erythroid factor 2-related factor 2
- O2HbFe2+, oxyhemoglobin
- O2•–, superoxide radical
- OONO−, peroxynitrite radical
- Oxidative stress
- PBS, phosphate-buffered saline
- PUFA, Polyunsaturated fatty acids
- R-Smad, Smad activated receptor
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- TBA, 2-thiobarbituric acid
- TBARS, thiobarbituric acid reactive substances
- TGF-β, transforming growth factor-β
- TLR, toll-like receptor
- TROOH, total hydroperoxide
- VLDL, very low density lipoprotein
- eNOS, endothelial nitric oxide synthase
- i.p., intraperitoneally
- mRNA, messenger ribonucleic acid
- metHb, methemoglobin
- α-SMA, alpha smooth muscle actin
- •NO, nitric oxide radical
Collapse
Affiliation(s)
- Adio J. Akamo
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Dorcas I. Akinloye
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Regina N. Ugbaja
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Oluwagbemiga O. Adeleye
- Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Oluwatosin A. Dosumu
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Ofem E. Eteng
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Moses C. Antiya
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Gogonte Amah
- Department of Biochemistry, Benjamin Carson (SRN) School of Medicine, Babcock University, Ilisan, Ogun State, Nigeria
| | - Oluwafunke A. Ajayi
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Samuel O. Faseun
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| |
Collapse
|
19
|
Park SY, Jung H, Lin Z, Hwang KT, Kwak HK. Black raspberry (Rubus occidentalis) attenuates inflammatory markers and vascular endothelial dysfunction in Wistar rats fed a high-fat diet with fructose solution. J Food Biochem 2021; 45:e13917. [PMID: 34510490 DOI: 10.1111/jfbc.13917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/29/2021] [Accepted: 08/23/2021] [Indexed: 01/17/2023]
Abstract
A continuous high-fat/high-fructose diet induces inflammation and lowers vascular endothelial function in the body. This research examined the effects of black raspberry (BR) powder consumption on the inflammatory response and endothelial dysfunction in rats fed with a high-fat diet and fructose solution. Wistar rats were randomly divided into two groups as control (AIN-93G diet + distilled water) and HFF (high-fat diet + 20% fructose solution) groups, for 16 weeks. At 8 weeks, the HFF was further divided into three subgroups: HFF, HFFBR2.5 (2.5% BR in high-fat diet), and HFFBR5 (5% BR in high-fat diet). The BR-fed groups showed significantly higher high-density lipoprotein-cholesterol and lower triglycerides than the HFF group. Rats supplemented with BR showed decreased mRNA and protein expressions of inflammatory cytokines and adhesion molecules in the liver and aorta tissues. Furthermore, the aortic protein expression of endothelial nitroxide synthase was significantly greater in the HFFBR2.5 and HFFBR5 than HFF. PRACTICAL APPLICATIONS: Black raspberry (BR: Rubus occidentalis) is abundant in flavonoids and anthocyanins. BR displays various biological activities and has been used to alleviate inflammatory conditions. In our study, BR supplementation showed promising effects against high-fat/high-fructose diet-induced inflammation and endothelial dysfunction in rats by decreasing markers of inflammation and improving vascular endothelial function. These findings suggest that BR consumption could have beneficial effects on the risk factors of cardiovascular disease.
Collapse
Affiliation(s)
- Sun Young Park
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| | | | - Zhaoyan Lin
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, Korea.,BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul, Korea
| | - Ho-Kyung Kwak
- Division of Human Ecology, Korea National Open University, Seoul, Korea
| |
Collapse
|
20
|
Araujo-Silva VC, Santos-Silva A, Lourenço AS, Barros-Barbosa CM, Moraes-Souza RQ, Soares TS, Karki B, Paula VG, Sinzato YK, Damasceno DC, Volpato GT. Congenital Anomalies Programmed by Maternal Diabetes and Obesity on Offspring of Rats. Front Physiol 2021; 12:701767. [PMID: 34447317 PMCID: PMC8383734 DOI: 10.3389/fphys.2021.701767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023] Open
Abstract
Embryo-fetal exposure to maternal disorders during intrauterine life programs long-term consequences for the health and illness of offspring. In this study, we evaluated whether mild diabetic rats that were given high-fat/high-sugar (HF/HS) diet presented maternal and fetal changes at term pregnancy. Female rats received citrate buffer (non-diabetic-ND) or streptozotocin (diabetic-D) after birth. According to the oral glucose tolerance test (OGTT), the experimental groups (n = 11 animals/group) were composed of non-diabetic and diabetic receiving standard diet (S) or HF/HS diet. High-fat/high-sugar diet (30% kcal of lard) in chow and water containing 5% sucrose and given 1 month before mating and during pregnancy. During and at the end of pregnancy, obesity and diabetes features were determined. After laparotomy, blood samples, periovarian fat, and uterine content were collected. The diabetic rats presented a higher glycemia and percentage of embryonic losses when compared with the NDS group. Rats DHF/HS presented increased obesogenic index, caloric intake, and periovarian fat weight and reduced gravid uterus weight in relation to the other groups. Besides, this association might lead to the inflammatory process, confirmed by leukocytosis. Obese rats (NDHF/HS and DHF/HS) showed higher triglyceride levels and their offspring with lower fetal weight and ossification sites, indicating intrauterine growth restriction. This finding may contribute to vascular alterations related to long-term hypertensive disorders in adult offspring. The fetuses from diabetic dams showed higher percentages of skeletal abnormalities, and DHF/HS dams still had a higher rate of anomalous fetuses. Thus, maternal diabetes and/or obesity induces maternal metabolic disorders that contribute to affect fetal development and growth.
Collapse
Affiliation(s)
- Vanessa Caruline Araujo-Silva
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Alice Santos-Silva
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Andressa Silva Lourenço
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Cristielly Maria Barros-Barbosa
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Rafaianne Queiroz Moraes-Souza
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.,Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Thaigra Sousa Soares
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.,Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Barshana Karki
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Verônyca Gonçalves Paula
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.,Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| |
Collapse
|
21
|
Fourny N, Lan C, Bernard M, Desrois M. Male and Female Rats Have Different Physiological Response to High-Fat High-Sucrose Diet but Similar Myocardial Sensitivity to Ischemia-Reperfusion Injury. Nutrients 2021; 13:2914. [PMID: 34578791 PMCID: PMC8472056 DOI: 10.3390/nu13092914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
Prediabetes is a strong predictor of type 2 diabetes and its associated cardiovascular complications, but few studies explore sexual dimorphism in this context. Here, we aim to determine whether sex influences physiological response to high-fat high-sucrose diet (HFS) and myocardial tolerance to ischemia-reperfusion injury. Male and female Wistar rats were subjected to standard (CTRL) or HFS diet for 5 months. Then, ex-vivo experiments on isolated perfused heart model were performed to evaluate tolerance to ischemia-reperfusion injury. HFS diet induced fasting hyperglycemia and increased body fat percent to a similar level in both sexes. However, glucose intolerance was more pronounced in female HFS. Cholesterol was increased only in female while male displayed higher level of plasmatic leptin. We observed increased heart weight to tibia length ratio only in males, but we showed a similar decrease in tolerance to ischemia-reperfusion injury in female and male HFS compared with respective controls, characterized by impaired cardiac function, energy metabolism and coronary flow during reperfusion. In conclusion, as soon as glucose intolerance and hyperglycemia develop, we observe higher sensitivity of hearts to ischemia-reperfusion injury without difference between males and females.
Collapse
Affiliation(s)
- Natacha Fourny
- Aix Marseille University, CNRS, CRMBM, 13005 Marseille, France; (C.L.); (M.B.); (M.D.)
| | | | | | | |
Collapse
|
22
|
Gunawan S, Aulia A, Soetikno V. Development of rat metabolic syndrome models: A review. Vet World 2021; 14:1774-1783. [PMID: 34475697 PMCID: PMC8404106 DOI: 10.14202/vetworld.2021.1774-1783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS) has become a global problem. With the increasing prevalence of MetS worldwide, understanding its pathogenesis and treatment modalities are essential. Animal models should allow an appropriate representation of the clinical manifestations of human conditions. Rats are the most commonly used experimental animals for the study. The development of a proper MetS model using rats will contribute to the successful application of research findings to the clinical setting. Various intervention methods are used to induce MetS through diet induction with various compositions, chemicals, or a combination of both. This review will provide a comprehensive overview of several studies on the development of rat MetS models, along with the characteristics of the clinical manifestations resulting from each study.
Collapse
Affiliation(s)
- Shirly Gunawan
- Department of Pharmacology, Faculty of Medicine, Universitas Tarumanagara, Jakarta, Indonesia
- Doctoral Programme in Biomedical Science Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ahmad Aulia
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Vivian Soetikno
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
23
|
Pharmacological potential of ferulic acid for the treatment of metabolic diseases and its mechanism of action: A review. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Rodríguez-Daza MC, Pulido-Mateos EC, Lupien-Meilleur J, Guyonnet D, Desjardins Y, Roy D. Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Front Nutr 2021; 8:689456. [PMID: 34268328 PMCID: PMC8276758 DOI: 10.3389/fnut.2021.689456] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The genome of gut microbes encodes a collection of enzymes whose metabolic functions contribute to the bioavailability and bioactivity of unabsorbed (poly)phenols. Datasets from high throughput sequencing, metabolome measurements, and other omics have expanded the understanding of the different modes of actions by which (poly)phenols modulate the microbiome conferring health benefits to the host. Progress have been made to identify direct prebiotic effects of (poly)phenols; albeit up to date, these compounds are not recognized as prebiotics sensu stricto. Interestingly, certain probiotics strains have an enzymatic repertoire, such as tannase, α-L-rhamnosidase, and phenolic acid reductase, involved in the transformation of different (poly)phenols into bioactive phenolic metabolites. In vivo studies have demonstrated that these (poly)phenol-transforming bacteria thrive when provided with phenolic substrates. However, other taxonomically distinct gut symbionts of which a phenolic-metabolizing activity has not been demonstrated are still significantly promoted by (poly)phenols. This is the case of Akkermansia muciniphila, a so-called antiobesity bacterium, which responds positively to (poly)phenols and may be partially responsible for the health benefits formerly attributed to these molecules. We surmise that (poly)phenols broad antimicrobial action free ecological niches occupied by competing bacteria, thereby allowing the bloom of beneficial gut bacteria. This review explores the capacity of (poly)phenols to promote beneficial gut bacteria through their direct and collaborative bacterial utilization and their inhibitory action on potential pathogenic species. We propose the term duplibiotic, to describe an unabsorbed substrate modulating the gut microbiota by both antimicrobial and prebiotic modes of action. (Poly)phenol duplibiotic effect could participate in blunting metabolic disturbance and gut dysbiosis, positioning these compounds as dietary strategies with therapeutic potential.
Collapse
Affiliation(s)
- Maria Carolina Rodríguez-Daza
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Elena C Pulido-Mateos
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Joseph Lupien-Meilleur
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Guyonnet
- Diana Nova, Symrise Nutrition, Clichy-la-Garenne, France
| | - Yves Desjardins
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Roy
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| |
Collapse
|
25
|
Degradation Products of Complex Arabinoxylans by Bacteroides intestinalis Enhance the Host Immune Response. Microorganisms 2021; 9:microorganisms9061126. [PMID: 34067445 PMCID: PMC8224763 DOI: 10.3390/microorganisms9061126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteroides spp. of the human colonic microbiome degrade complex arabinoxylans from dietary fiber and release ferulic acid. Several studies have demonstrated the beneficial effects of ferulic acid. Here, we hypothesized that ferulic acid or the ferulic acid-rich culture supernatant of Bacteroides intestinalis, cultured in the presence of complex arabinoxylans, enhances the immune response. Ferulic acid and the culture supernatant of bacteria cultured in the presence of insoluble arabinoxylans significantly decreased the expression of tumor necrosis factor-α and increased the expression of interleukin-10 and transforming growth factor β1 from activated dendritic cells compared to controls. The number of granulocytes in mesenteric lymph nodes, the number of spleen monocytes/granulocytes, and interleukin-2 and interleukin-12 plasma levels were significantly increased in mice treated with ferulic acid or the culture supernatant of bacteria cultured with insoluble arabinoxylans. Ferulic acid or the culture supernatant of bacteria cultured with insoluble arabinoxylans increased the expression of interleukin-12, interferon-α, and interferon-β in intestinal epithelial cell lines. This study shows that ferulic acid or the ferulic acid-rich culture supernatant of the colonic bacterium Bacteroides intestinalis, cultured with insoluble arabinoxylans, exerts anti-inflammatory activity in dendritic cells under inflammatory conditions and enhances the Th1-type immune response under physiological conditions in mice.
Collapse
|
26
|
Bunbupha S, Prasarttong P, Poasakate A, Maneesai P, Pakdeechote P. Imperatorin alleviates metabolic and vascular alterations in high-fat/high-fructose diet-fed rats by modulating adiponectin receptor 1, eNOS, and p47 phox expression. Eur J Pharmacol 2021; 899:174010. [PMID: 33711309 DOI: 10.1016/j.ejphar.2021.174010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/20/2021] [Accepted: 02/28/2021] [Indexed: 12/16/2022]
Abstract
In the present study, the therapeutic effects of imperatorin on metabolic and vascular alterations and possible underlying mechanisms were investigated in high-fat/high-fructose diet (HFFD)-fed rats. Male Sprague-Dawley rats were fed a high-fat diet plus 15% fructose in drinking water for 16 weeks. HFFD-fed rats were treated with imperatorin (15 or 30 mg/kg/day) for the last 4 weeks. In HFFD-fed rats, imperatorin significantly reduced obesity, hypertension, dyslipidemia, and insulin resistance. Imperatorin markedly improved vascular endothelial function and alleviated changes in vascular morphology. Furthermore, imperatorin treatment significantly increased the plasma levels of the nitric oxide metabolite and adiponectin, and upregulated adiponectin receptor 1 and endothelial nitric oxide synthase (eNOS) protein expression in the thoracic aorta. Imperatorin treatment decreased vascular superoxide anion production and downregulated aortic NADPH oxidase subunit p47phox protein expression. These findings indicated that imperatorin alleviates HFFD-induced metabolic and vascular alterations in rats. The possible underlying mechanism may involve the restoration of adiponectin receptor 1 and eNOS expression and suppression of p47phox expression.
Collapse
Affiliation(s)
- Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Maha Sarakham, 44000, Thailand
| | - Patoomporn Prasarttong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anuson Poasakate
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand; Cardiovascular Research Group, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand; Cardiovascular Research Group, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
27
|
Mengesha T, Sekaran NG, Mehare T. Hepatoprotective effect of silymarin on fructose induced nonalcoholic fatty liver disease in male albino wistar rats. BMC Complement Med Ther 2021; 21:104. [PMID: 33785007 PMCID: PMC8011178 DOI: 10.1186/s12906-021-03275-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/15/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease in the Western world, and it's likely to parallel the increasing prevalence of type 2 diabetes, obesity, and other components of metabolic syndrome. However, optimal treatment for NAFLD has not been established yet. Therefore, this study investigated the hepatoprotective effect of silymarin on fructose-induced nonalcoholic fatty liver disease in rats. METHODS Thirty male Wistar rats were randomly divided into five groups; normal control group that consumed tap water, silymarin control group that consumed tap water and silymarin (400 mg/kg/day), fructose control group that consumed 20% fructose solution, treatment group that consumed 20% fructose solution and silymarin (200 mg/kg/day), and another treatment group that consumed 20% fructose solution and silymarin (400 mg/kg/day). Hepatic triglyceride, serum lipid profile, lipid peroxidation, antioxidant level, morphological features, and histopathological changes were investigated. The data were analyzed using one-way analysis of variance (ANOVA) followed by Tukey multiple comparison test. Statistical significance was determined at p < 0.05. RESULTS This study showed that the fructose control group had a significantly high value in the stage of steatosis grade, hepatic triglyceride, serum triglyceride, total cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, aspartate aminotransferase, and hepatic malondialdehyde concentration as compared to the normal control. However, significantly low values of reduced glutathione and plasma total antioxidant capacity were found. The altered parameters due to fructose drastic effect were ameliorated by silymarin treatment. CONCLUSIONS The fructose control group developed dyslipidemia, oxidative stress, and mild steatosis that are the characteristics features of NAFLD. However, silymarin-treated groups showed amelioration in oxidative stress, dyslipidemia, and steatosis.
Collapse
Affiliation(s)
- Tewodros Mengesha
- Department of Biomedical Science, College of Medicine and Health Science, Dilla University, Dilla, Ethiopia
| | - N. Gnana Sekaran
- Department of Biochemistry, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tsegaye Mehare
- Department of Biomedical Science, College of Medicine and Health Science, Dilla University, Dilla, Ethiopia
| |
Collapse
|
28
|
Wang Y, Chen X, Huang Z, Chen D, Yu B, Yu J, Chen H, He J, Luo Y, Zheng P. Dietary Ferulic Acid Supplementation Improves Antioxidant Capacity and Lipid Metabolism in Weaned Piglets. Nutrients 2020; 12:nu12123811. [PMID: 33322714 PMCID: PMC7763429 DOI: 10.3390/nu12123811] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Ferulic acid (FA) is a phenolic compound that has antioxidant, hepatoprotective, anticarcinogenic, anti-inflammatory, antiallergic, antimicrobial, antiviral, and vasodilatory effects. This study was conducted to explore the effects of dietary FA supplementation on antioxidant capacity and lipid metabolism in weaned piglets. Eighteen 21-day-old castrated male DLY (Duroc × Landrace × Yorkshire) weaned piglets were randomly divided into control, 0.05%, and 0.45% FA groups. The results showed that, in serum, CAT and T-SOD activities and content of HDL-C were increased, but the content of MDA and the activities of T-CHO and LDL-C were decreased, by FA supplementation. In liver, dietary FA supplementation increased CAT, T-SOD, and GSH-PX activities and upregulated the mRNA levels of SOD1, SOD2, CAT, GST, GPX1, GR, Nrf2, HSL, CPT1b, and PPARα but decreased the contents of MDA and TG. Furthermore, dietary FA supplementation increased the protein level of Nrf2, HO-1, and NQO-1. In longissimus dorsi muscle, dietary FA supplementation increased the activity of T-SOD and the mRNA abundance of SOD1, SOD2, CAT, GST, GPX1, GR, and Nrf2 but decreased the contents of MDA and T-CHO. Additionally, dietary FA supplementation increased the protein expressions of Nrf2, HO-1, and NQO1. Together, our data suggest that FA could improve antioxidant capacity and lipid metabolism in weaned piglets.
Collapse
Affiliation(s)
- Youxia Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.C.); (D.C.); (B.Y.); (J.Y.); (J.H.); (Y.L.); (P.Z.)
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.C.); (D.C.); (B.Y.); (J.Y.); (J.H.); (Y.L.); (P.Z.)
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.C.); (D.C.); (B.Y.); (J.Y.); (J.H.); (Y.L.); (P.Z.)
- Correspondence: ; Tel./Fax: +86-28-8629-0976
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.C.); (D.C.); (B.Y.); (J.Y.); (J.H.); (Y.L.); (P.Z.)
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.C.); (D.C.); (B.Y.); (J.Y.); (J.H.); (Y.L.); (P.Z.)
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.C.); (D.C.); (B.Y.); (J.Y.); (J.H.); (Y.L.); (P.Z.)
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China;
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.C.); (D.C.); (B.Y.); (J.Y.); (J.H.); (Y.L.); (P.Z.)
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.C.); (D.C.); (B.Y.); (J.Y.); (J.H.); (Y.L.); (P.Z.)
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.C.); (D.C.); (B.Y.); (J.Y.); (J.H.); (Y.L.); (P.Z.)
| |
Collapse
|
29
|
Williamson G, Sheedy K. Effects of Polyphenols on Insulin Resistance. Nutrients 2020; 12:E3135. [PMID: 33066504 PMCID: PMC7602234 DOI: 10.3390/nu12103135] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Insulin resistance (IR) is apparent when tissues responsible for clearing glucose from the blood, such as adipose and muscle, do not respond properly to appropriate signals. IR is estimated based on fasting blood glucose and insulin, but some measures also incorporate an oral glucose challenge. Certain (poly)phenols, as supplements or in foods, can improve insulin resistance by several mechanisms including lowering postprandial glucose, modulating glucose transport, affecting insulin signalling pathways, and by protecting against damage to insulin-secreting pancreatic β-cells. As shown by intervention studies on volunteers, the most promising candidates for improving insulin resistance are (-)-epicatechin, (-)-epicatechin-containing foods and anthocyanins. It is possible that quercetin and phenolic acids may also be active, but data from intervention studies are mixed. Longer term and especially dose-response studies on mildly insulin resistant participants are required to establish the extent to which (poly)phenols and (poly)phenol-rich foods may improve insulin resistance in compromised groups.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia;
| | | |
Collapse
|
30
|
Pan R, Xu T, Bai J, Xia S, Liu Q, Li J, Xiao X, Dong Y. Effect of Lactobacillus plantarum fermented barley on plasma glycolipids and insulin sensitivity in subjects with metabolic syndrome. J Food Biochem 2020; 44:e13471. [PMID: 32985001 DOI: 10.1111/jfbc.13471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Fermented barley (FB) flour by Lactobacillus plantarum is richer in dietary fiber, polyphenols, gamma-aminobutyric acid, and other biologically active ingredients. This study aimed to determine the impacts of fermented barley - wheat flour compound noodle (FBWN) on glucose and fat metabolism in subjects with metabolic syndrome. This was a single-blinded and parallel 10-week clinical trial study. Subjects were randomly assigned into the trial group (FBWN) and whole wheat noodles group (WWN), and were measured on the beginning of week 3 and the ending of week 10. The glucose level at 30 and 60 min was significantly decreased after FBWN intervention. Levels of fasting blood glucose, HbA1c, and TG were all declined after FBWN intervention compared to before in the trial group. Moreover, the fat mass, fat rate, and visceral fat were decreased by 6.48, 7.19, 6.3 kg after FBWN intervention, respectively, while muscle mass and basal metabolic rate rose 7.44 kg and 252.60 kcal. PRACTICAL APPLICATIONS: Many studies have illustrated that the extraction of fermented barley held the activities of anti-obesity, antitumor, and so on. Moreover, this present study evaluated the effects of fermented barley by Lactobacillus plantarum on patients with metabolic syndrome. Results indicated that FB benefits the subjects on improving plasma glycolipids and insulin sensitivity, decreasing visceral fat level, and increasing satiety. The findings showed that the products of FB may be beneficial to dietary manipulations, thus, reducing the burden of patients.
Collapse
Affiliation(s)
- Ruirong Pan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China.,Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, PR China
| | - Tian Xu
- College of Early Childhood Education, Jiangsu Second Normal University, Nanjing, PR China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Song Xia
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, PR China
| | - Qiang Liu
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, PR China
| | - Jie Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Ying Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
31
|
Bovolini A, Garcia J, Silva AF, Andrade MA, Duarte JA. Islets of Langerhans phenotype alterations induced by fatty diet and physical activity levels in Wistar rats. Nutrition 2020; 79-80:110838. [PMID: 32569951 DOI: 10.1016/j.nut.2020.110838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Physical inactivity (PIn) and a fatty diet (FD) are closely linked to development of metabolic syndrome (MetS), overloading the endocrine pancreas seeking energy homeostasis. However, the relative contribution of FD and PIn to the pancreatic overload is unknown. The aim of this study was to verify the isolated and conjugated influence of FD and PIn in the islets of Langer hans (islets) structure and function related to overload in Wistar rats. METHODS Male Wistar rats were divided into four groups (n = 10/group): active groups, fed with fat (AFD) or standard (ASD) diet; and physically inactive groups, fed with fat (SFD) or standard (SSD) diet for 21 wk. Glucose tolerance (GT) and insulin sensitivity (IS) were assessed before sacrifice. Retroperitoneal adipose tissue and pancreas were weighted (PW), and pancreas samples processed for histologic analyses. RESULTS Only the FD-fed animals presented MS. Compared with standard diet, FD impaired GT and IS, decreased PW, and enlarged islets dimensions, with islets cellular death, inflammatory response, and enhanced collagen content, which were attenuated in AFD. Independent of the diet, PIn groups presented higher amounts of islets connective tissue, but without influence on inflammatory reaction and cellular death. The GT impairment was higher in the FD-fed groups, whereas the decreased IS was more pronounced in the PIn groups. CONCLUSION FD induced MS with detrimental effects on pancreas overload, inducing islets morphologic and functional maladaptation, which were attenuated in active animals. Physical activity was not able to prevent FD-induced MS. FD showed a negative influence on GT, whereas PIn mainly affected IS.
Collapse
Affiliation(s)
- Antonio Bovolini
- CIAFEL Laboratory of Biochemistry and Experimental Morphology, Sports Faculty, University of Porto, Porto, Portugal
| | - Juliana Garcia
- CITAB Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.
| | - Ana Filipa Silva
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - José Alberto Duarte
- CIAFEL Laboratory of Biochemistry and Experimental Morphology, Sports Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
32
|
Tran V, De Silva TM, Sobey CG, Lim K, Drummond GR, Vinh A, Jelinic M. The Vascular Consequences of Metabolic Syndrome: Rodent Models, Endothelial Dysfunction, and Current Therapies. Front Pharmacol 2020; 11:148. [PMID: 32194403 PMCID: PMC7064630 DOI: 10.3389/fphar.2020.00148] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/04/2020] [Indexed: 12/30/2022] Open
Abstract
Metabolic syndrome is characterized by visceral obesity, dyslipidemia, hyperglycemia and hypertension, and affects over one billion people. Independently, the components of metabolic syndrome each have the potential to affect the endothelium to cause vascular dysfunction and disrupt vascular homeostasis. Rodent models of metabolic syndrome have significantly advanced our understanding of this multifactorial condition. In this mini-review we compare the currently available rodent models of metabolic syndrome and consider their limitations. We also discuss the numerous mechanisms by which metabolic abnormalities cause endothelial dysfunction and highlight some common pathophysiologies including reduced nitric oxide production, increased reactive oxygen species and increased production of vasoconstrictors. Additionally, we explore some of the current therapeutics for the comorbidities of metabolic syndrome and consider how these benefit the vasculature.
Collapse
Affiliation(s)
- Vivian Tran
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Kyungjoon Lim
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Maria Jelinic
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
33
|
Zhao G, Huang S, Ma S, Zhang D, Yang B, Sun J, Huang M, Lin H, Xie M. Protective effect of ferulic acid on human umbilical vein endothelial cell model of cold stress. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_631_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
34
|
Nakhaei H, Mogharnasi M, Fanaei H. Effect of swimming training on levels of asprosin, lipid profile, glucose and insulin resistance in rats with metabolic syndrome. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.obmed.2019.100111] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Reshidan NH, Abd Muid S, Mamikutty N. The effects of Pandanus amaryllifolius (Roxb.) leaf water extracts on fructose-induced metabolic syndrome rat model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:232. [PMID: 31462242 PMCID: PMC6714300 DOI: 10.1186/s12906-019-2627-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Metabolic syndrome is a non-communicable disease inclusive of risk factors such as central obesity, hypertension, hyperglycaemia and dyslipidaemia. In this present study, we investigated the ability of Pandanus amaryllifolius (PA) leaf water extract to reverse the cluster of diseases in an established rat model induced by fructose in drinking water. METHODS Thirty healthy adult male Wistar rats (150-180 g) were randomly divided into three groups which included control (C; n = 6), PA extract (PAE; n = 6) and Metabolic Syndrome (MetS; n = 18). Food and fluid were given ad libitum for 8 weeks. These groups differed in fluid intake whereby rats received tap water, 10% of PA leaf water extracts and 20% of fructose in drinking water in group C, PAE and MetS, respectively. After 8 weeks, the MetS group was further subdivided into three subgroups namely MetS1 (n = 6), MetS2 (n = 6) and MetS3 (n = 6). The C, PAE and MetS1 were sacrificed. MetS1 group was sacrificed as the control for metabolic syndrome. MetS2 and MetS3 groups were treated with only tap water and 10% of PA leaf water extract respectively for another 8 weeks. The parameters for physiological and metabolic changes such as obesity, hypertension, hyperglycaemia, dyslipidaemia, and inflammatory biomarkers (NFκβ p65, TNFα, leptin and adiponectin) were measured. RESULTS The intake of 20% of fructose in drinking water induced full blown of metabolic syndrome symptoms, including obesity, hypertension, dyslipidaemia and hyperglycaemia in male Wistar rats. Subsequently, treatment with PA leaf water extract improved obesity parameters including BMI, abdominal adipose tissue deposition and adipocytes size, systolic and diastolic blood pressures, fasting plasma glucose, triglycerides, high density lipoprotein with neutral effects on inflammatory biomarkers. CONCLUSIONS Administration of PA in metabolic syndrome rat model attenuates most of the metabolic syndrome symptoms as well as improves obesity. Therefore, PA which is rich in total flavonoids and total phenolic acids can be suggested as a useful dietary supplement to improve metabolic syndrome components induces by fructose.
Collapse
Affiliation(s)
- Nur Hidayah Reshidan
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000 Sungai Buloh, Selangor Malaysia
| | - Suhaila Abd Muid
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000 Sungai Buloh, Selangor Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000 Sungai Buloh, Selangor Malaysia
| | - Norshalizah Mamikutty
- Sulaiman Al Rajhi College, Faculty of Medicine, Kingdom of Saudi Arabia, Bukayriyah, 51941 Saudi Arabia
| |
Collapse
|
36
|
McCarty MF, Iloki-Assanga S, Lujany LML. Nutraceutical targeting of TLR4 signaling has potential for prevention of cancer cachexia. Med Hypotheses 2019; 132:109326. [PMID: 31421423 DOI: 10.1016/j.mehy.2019.109326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 12/25/2022]
Abstract
The mechanisms underlying cancer cachexia - the proximate cause of at least 20% of cancer-related deaths - have until recently remained rather obscure. New research, however, clarifies that cancers evoking cachexia release microvesicles rich in heat shock proteins 70 and 90, and that these extracellular heat shock proteins induce cachexia by serving as agonists for toll-like receptor 4 (TLR4) in skeletal muscle, macrophages, and adipocytes. Hence, safe nutraceutical measures which can down-regulate TLR4 signaling can be expected to aid prevention and control of cancer cachexia. There is reason to suspect that phycocyanobilin, ferulic acid, glycine, long-chain omega-3s, green tea catechins, β-hydroxy-β-methylbutyrate, carnitine, and high-dose biotin may have some utility in this regard.
Collapse
|
37
|
El-Mansi AA, ElSayyad HI, Elshershaby EM, Al-Ashry NE. Dietary supplementation of barley and/or dates attenuate hypercholesterolemic-induced endometrial dysfunction in Wistar albino rats via alleviation of apoptotic pathways and enhancing oxidative capacity. J Food Biochem 2019; 43:e13001. [PMID: 31373029 DOI: 10.1111/jfbc.13001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022]
Abstract
Our study was conducted to characterize the efficacy of barley and/or date palm fruits (10%) in alleviation of hypercholesterolemic endometrial insults in obese rat model. Sixty-four Wistar albino rats were randomized into eight groups (n = 8); control, hypercholesterolemic- and hypercholesterolemic-treated groups. Animals were subjected to treatment for 4 months. After sacrifice, serum and uterine tissues were collected and processed for biochemical, histological, immunohistochemical, and electron microscopic investigations. In hypercholesterolemic rats, the endometrium displayed hyperplasia with necrotic patches in the surface epithelium and its glandular lining cells. Also, there was a remarkable increase in the endometrial thickness and significant decrease in corresponding glandular numbers. Prompted by these findings, immunohistochemical localization revealed that expression of proliferating cell nuclear antigen was downregulated, while cleaved caspase-3 was upregulated in the endometrial cells in hypercholesterolemic group. Accordingly, there was remarkable depletion of antioxidant enzymatic activities associated with increased lipid peroxidation and apoptotic markers. Contradictory, supplementation of barley and/or dates to hypercholesterolemic groups showed intriguing amelioration for the histological architecture of the endometrium and balancing its oxidative redox. In conclusion, the administration of barley and/or dates confers enhanced synergistic effects in attenuation of hypercholesterolemic induced-endometrial dysfunction. This is clear evidence that endometrial amelioration was directly linked to the implication of highly potential antioxidant capacity of barley and/or dates phytochemicals, β-glucan, polyphenols, and other trace elements, which can be utilized to establish a phyto-therapeutic strategy for activating endometrial cell regeneration. PRACTICAL APPLICATIONS: Barley and dates confer both hypoglycemic and hypocholesterolemic potentials. Therefore, their ingredients would be implicated in the amelioration of uterine functions in obese women. These favorable potentials were directly linked to the restraining of endometrial inflammation and retrieving the oxidative capacity. Furthermore, our findings demonstrated that barley and dates substantially diminished the expression of TNF-α, mitigated DNA damage and prevented leukocytic infiltration in the endometrial tissue; based on their high content of dietary phytochemicals, β-glucan, polyphenols, and other trace elements.
Collapse
Affiliation(s)
- Ahmed A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Hassan I ElSayyad
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Effat M Elshershaby
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Nermeen E Al-Ashry
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
38
|
Cardiac remodeling and higher sensitivity to ischemia–reperfusion injury in female rats submitted to high-fat high-sucrose diet: An in vivo/ex vivo longitudinal follow-up. J Nutr Biochem 2019; 69:139-150. [DOI: 10.1016/j.jnutbio.2019.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
|
39
|
Wu W, Qiu J, Wang A, Li Z. Impact of whole cereals and processing on type 2 diabetes mellitus: a review. Crit Rev Food Sci Nutr 2019; 60:1447-1474. [DOI: 10.1080/10408398.2019.1574708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Weijing Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian, Beijing, China
- Laboratory of nutrition and food safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Ju Qiu
- Ministry of Agriculture, Institute of Food and Nutrition Development, Haidian, Beijing, China
| | - Aili Wang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, USA
| | - Zaigui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian, Beijing, China
| |
Collapse
|
40
|
Rahman MM, Kim MJ, Kim JH, Kim SH, Go HK, Kweon MH, Kim DH. Desalted Salicornia europaea powder and its active constituent, trans-ferulic acid, exert anti-obesity effects by suppressing adipogenic-related factors. PHARMACEUTICAL BIOLOGY 2018; 56. [PMID: 29521146 PMCID: PMC6130585 DOI: 10.1080/13880209.2018.1436073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
CONTEXT Salicornia europaea (Amaranthaceae) (SE) has been shown to reduce obesity, but it remains a problem as a food supplement because of its high salt content (25-35% NaCl). OBJECTIVES This study investigated the anti-obesity effects and mechanism of action of desalted SE powder (DSP). MATERIALS AND METHODS Sprague-Dawley rats (n = 50) were divided into a normal control group (NC), a high-fat diet (HFD)-induced obesity control group (HFD), and HFD groups co-administered DSP (250 and 500 mg/kg) or Garcinia cambogia (Clusiaceae) extract (GE, 200 mg/kg, standard control) orally each day for 12 weeks. RESULTS The body weight was significantly reduced by co-administration of DSP (596.51 ± 19.84 kg, 4.60% and 562.08 ± 9.74 kg, 10.10%, respectively) and GE (576.00 ± 11.29 kg, 7.88%) relative to the HFD group (625.25 ± 14.02 kg) and was accompanied by reduced abdominal fat mass, and serum lipid levels, with no effects on feed intake. To find the underlying mechanism of the anti-obesity effects, trans-ferulic acid (TFA) was identified as the main ingredient and investigated with regard to whether it attenuated adipogenesity in 3T3L-1 cells. DSP-derived TFA suppressed adipocyte differentiation and accumulation of intracellular lipids. TFA also down-regulated the adipogenesis-related gene expression of sterol regulatory element-binding protein 1, peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding protein-α and fatty acid synthase. CONCLUSIONS These findings suggest that DSP may be considered for use as a food supplement intent of controlling obesity through its antiobesity and antiadipogenic properties.
Collapse
Affiliation(s)
| | - Myung-Jin Kim
- Research Center, KNOTUS Co. Ltd, Guri-Si, Gyeonggi-Do, Republic of Korea
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jin-Hyoung Kim
- Research Center, KNOTUS Co. Ltd, Guri-Si, Gyeonggi-Do, Republic of Korea
| | - Sok-Ho Kim
- Department of Biofood research, Knotus Life Science Inc, Jeongeup, Republic of Korea
| | - Hyeon-Kyu Go
- Research Center, KNOTUS Co. Ltd, Guri-Si, Gyeonggi-Do, Republic of Korea
| | - Mee-Hyang Kweon
- Research Center, Phyto Corporation, Seoul, Republic of Korea
| | - Do-Hyung Kim
- Research Center, KNOTUS Co. Ltd, Guri-Si, Gyeonggi-Do, Republic of Korea
- CONTACT Do-Hyung KimResearch Center, KNOTUS Co. Ltd, 189 Donggureung-Ro, Guri-Si, Gyeonggi-Do, Republic of Korea
| |
Collapse
|
41
|
Cheng HS, Phang SCW, Ton SH, Abdul Kadir K, Tan JBL. Purified ingredient-based high-fat diet is superior to chow-based equivalent in the induction of metabolic syndrome. J Food Biochem 2018; 43:e12717. [PMID: 31353646 DOI: 10.1111/jfbc.12717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/13/2018] [Accepted: 10/06/2018] [Indexed: 12/27/2022]
Abstract
The present study aimed to outline the physiological and metabolic disparity between chow- and purified ingredient-based high-fat diets and their efficacy in the induction of metabolic syndrome (MetS). Male, 3-week-old Sprague Dawley rats were randomly assigned to chow-based control diet, chow-based high-fat diet, purified control diet, and purified high-fat diet for 12 weeks. Physical and biochemical changes were documented. Chow-based diets, irrespective of the lipid content, resulted in significantly lower weight gain and organ weight compared to purified ingredient-based diets. Circulating insulin, total proteins, albumin, and certain lipid components like the triglycerides, total cholesterol, and high-density lipoprotein-cholesterol were also lower in the chow-based diet groups. Both chow- and purified high-fat diets induced central obesity, hypertension, and hyperglycaemia, but the latter was associated with earlier onset of the metabolic aberrations and additionally, dyslipidaemia. In conclusion, purified high-fat diet is a better diet for MetS induction in rats. PRACTICAL APPLICATIONS: Modeling metabolic syndrome is commonly accomplished with the use of chow- or purified ingredient diets enriched with carbohydrates and/or lipids, but the differences and associated drawbacks are unclear. This study highlights that chow- or modified chow-based diets have a tendency to introduce unwanted metabolic changes which are inconsistent with the progression of metabolic syndrome. Thus, the use of these diets in metabolic disease study should be avoided. On the other hand, purified high-fat diet which can effectively induce the features of metabolic syndrome is highly recommended.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Sonia Chew Wen Phang
- School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - So Ha Ton
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Khalid Abdul Kadir
- School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
42
|
El-Ashmawy NE, Al-Ashmawy GM, Kamel AA. Docosahexaenoic acid-flurbiprofen combination ameliorates metaflammation in rats fed on high-carbohydrate high-fat diet. Biomed Pharmacother 2018; 109:233-241. [PMID: 30396081 DOI: 10.1016/j.biopha.2018.10.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Potential benefits of combining docosahexaenoic acid (DHA), an omega-3 fatty acid with flurbiprofen (Flu), a non-steroidal anti-inflammatory drug in ameliorating obesity remain to be elucidated. This study aimed to investigate the possible protective effects of DHA and Flu, either alone or in combination, against obesity-induced metaflammation and to clarify the underlying molecular mechanisms. METHODS Seventy-five male Wistar rats were divided into five groups: normal diet (ND) group, high-carbohydrate high-fat diet (HCHFD) control group, DHA group (HCHFD + 200 mg/kg DHA), Flu group (HCHFD + 10 mg/kg Flu), and DHA + Flu group (HCHFD + DHA + Flu). Treatments were administered orally daily for 8 consecutive weeks, parallel with the start of diets. RESULTS Plasma levels of glucose, insulin, and TGs were significantly reduced in DHA, Flu, and DHA + Flu treated groups, while HDL-C concentrations were significantly elevated in the same groups, compared to HCHFD control group. Only Flu and DHA + Flu groups showed a significant decrease in plasma levels of leptin, TC, and LDL-C, relative to HCHFD control group. Concentrations of phosphorylated adenosine monophosphate-activated protein kinase (pAMPK) and resolvin D1 (RvD1) in epididymal adipose tissue (EAT) were significantly increased in the three treated groups, compared with HCHFD control group. Expression of AMPK-α1 subunit in EAT was significantly increased, whereas expression of nuclear factor kappa B (NF-κB) was significantly decreased in EAT of the three treated groups, relative to HCHFD control group. CONCLUSIONS Docosahexaenoic acid-flurbiprofen combination showed an ameliorative effect on obesity-associated metaflammation and its consequences in rats.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Postal Code: 31527, Egypt.
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Postal Code: 31527, Egypt.
| | - Asmaa A Kamel
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Postal Code: 31527, Egypt.
| |
Collapse
|
43
|
Wang W, Pan Y, Zhou H, Wang L, Chen X, Song G, Liu J, Li A. Ferulic acid suppresses obesity and obesity-related metabolic syndromes in high fat diet-induced obese C57BL/6J mice. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1516739] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Weiwei Wang
- Academy of State Administration of Grain, Beijing, P. R. People’s Republic of China
| | - Yiou Pan
- Academy of State Administration of Grain, Beijing, P. R. People’s Republic of China
- Henan University of Science and Technology, Luoyang, P. R. People’s Republic of China
| | - Hang Zhou
- Academy of State Administration of Grain, Beijing, P. R. People’s Republic of China
| | - Li Wang
- Academy of State Administration of Grain, Beijing, P. R. People’s Republic of China
| | - Xi Chen
- Academy of State Administration of Grain, Beijing, P. R. People’s Republic of China
| | - Ge Song
- Academy of State Administration of Grain, Beijing, P. R. People’s Republic of China
| | - Jianxue Liu
- Henan University of Science and Technology, Luoyang, P. R. People’s Republic of China
| | - Aike Li
- Academy of State Administration of Grain, Beijing, P. R. People’s Republic of China
| |
Collapse
|
44
|
Mei C, Fang Z, Yin R, Yang R, Tang K. Spicy food and self-reported fractures. Clin Nutr 2018; 38:2239-2245. [PMID: 30316535 DOI: 10.1016/j.clnu.2018.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/14/2018] [Accepted: 09/24/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND & AIMS Population-based evidence that suggests health effects of spicy consumptions on fracture was scant. The study aimed to explore the association of spicy food intake with self-reported history of fractures in the Chinese populations. METHODS Data was drawn from the baseline survey of a large cohort study conducted in China between 2004 and 2008. A total of 512,891 adults (including 302,632 females) were included. Frequency, strength and duration of spicy food consumption were assessed using a survey questionnaire. Fracture history was self-reported based on physician's diagnoses. Multivariate logistic regression models stratified by socio-economic factors, body mass index and other lifestyle factors were performed adjusting for potential confounders. RESULTS The prevalence of daily spicy food intake was 30.32% in males and 29.90% in females. The adjusted odds ratios for fractures were 1.04 (95% CI: 1.01-1.07) for those who ate spicy food occasionally, 1.10 (95% CI: 1.05-1.16) for those who ate one or two days a week, 1.15 (95% CI: 1.09-1.20) for three to five days a week, and 1.12 (95% CI: 1.07-1.17) for daily consumers, compared to participants who never ate spicy food. Participants who ate weak spicy food (OR: 1.10, 95% CI: 1.14-1.23), moderate spicy food (OR: 1.11, 95% CI: 1.06-1.15) and strong spicy food (OR: 1.18, 95% CI: 1.12-1.25) were more strongly associated with self-reported history of fracture. In addition, the strengths of associations were consistently stronger with the duration of spicy food exposure. In stratified analyses, the strength of such an association appeared stronger in rural areas (OR: 1.14, 95% CI: 1.09-1.20) than urban (OR: 1.09, 95% CI: 1.05-1.12). The correlation was consistently stronger in males than in females. CONCLUSIONS Among Chinese adults, a positive cross-sectional association between the level of spicy food intake and history of fractures was found in both sexes.
Collapse
Affiliation(s)
- Chuchu Mei
- School of Public Health, Peking University Health Science Centre, 38 Xueyuan Rd, Beijing 100191, China
| | - Zhe Fang
- School of Public Health, Peking University Health Science Centre, 38 Xueyuan Rd, Beijing 100191, China
| | - Ruoyu Yin
- Institute for Medical Humanities, Peking University Health Science Centre, 38 Xueyuan Rd, Beijing 100191, China
| | - Ruotong Yang
- School of Public Health, Peking University Health Science Centre, 38 Xueyuan Rd, Beijing 100191, China
| | - Kun Tang
- Research Center for Public Health, Tsinghua University, Haidian District, Beijing 100084, China.
| |
Collapse
|
45
|
McCarty MF, Assanga SBI. Ferulic acid may target MyD88-mediated pro-inflammatory signaling - Implications for the health protection afforded by whole grains, anthocyanins, and coffee. Med Hypotheses 2018; 118:114-120. [PMID: 30037596 DOI: 10.1016/j.mehy.2018.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
Higher dietary intakes of anthocyanins have been linked epidemiologically to decreased risk for metabolic syndrome, type 2 diabetes and cardiovascular events; clinical trials and rodent studies evaluating ingestion of anthocyanin-rich extracts confirm favorable effects of these agents on endothelial function and metabolic syndrome. However, these benefits of anthocyanins are lost in rats whose gut microbiome has been eliminated with antibiotic treatment - pointing to bacterial metabolites of anthocyanins as the likely protective agents. A human pharmacokinetic assessment of orally administered cyanidin-3-O-glucoside, a prominent anthocyanin, has revealed that, whereas this compound is minimally absorbed, ferulic acid (FA) is one of its primary metabolites that appears in plasma. FA is a strong antioxidant and phase 2 inducer that has exerted marked anti-inflammatory effects in a number of rodent and cell culture studies; in particular, FA is highly protective in rodent models of diet-induced weight gain and metabolic syndrome. FA, a precursor for lignan synthesis, is widely distributed in plant-based whole foods, mostly in conjugated form; whole grains are a notable source. Coffee ingestion boosts plasma FA owing to gastrointestinal metabolism of chlorogenic acid. Hence, it is reasonable to suspect that FA mediates some of the broad health benefits that have been associated epidemiologically with frequent consumption of whole grains, anthocyanins, coffee, and unrefined plant-based foods. The molecular basis of the anti-inflammatory effects of FA may have been clarified by a recent study demonstrating that FA can target the adaptor protein MyD88; this plays an essential role in pro-inflammatory signaling by most toll-like receptors and interleukin-1β. If feasible oral intakes of FA can indeed down-regulate MyD88-dependent signaling, favorable effects of FA on neurodegeneration, hypothalamic inflammation, weight gain, adipocyte and beta cell function, adiponectin secretion, vascular health, and cartilage and bone integrity can be predicted. Since FA is well tolerated, safe, and natural, it may have great potential as a protective nutraceutical, and clinical trials evaluating its effects are needed.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity, 811 B Nahant Ct., San Diego, CA 92109, USA.
| | | |
Collapse
|
46
|
Lund MT, Salomonsson M, Jonassen TEN, Holstein-Rathlou NH. A method for assessment of the dynamic response of the arterial baroreflex. Acta Physiol (Oxf) 2018; 222. [PMID: 28872781 DOI: 10.1111/apha.12962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/11/2017] [Accepted: 08/30/2017] [Indexed: 11/28/2022]
Abstract
AIM The baroreflex is a key mechanism in cardiovascular regulation, and alterations in baroreceptor function are seen in many diseases, including heart failure, obesity and hypertension. We propose a new method for analysing baroreceptor function from continuous blood pressure (BP) and heart rate (HR) in both health and disease. METHODS Forty-eight-hour data series of BP and HR were collected with telemetry. Sprague Dawley rats on standard chow (n = 11) served as controls, while rats on a high-fat, high-fructose (HFHC) diet (n = 6) constituted the obese-hypertensive model. A third group of rats underwent autonomic blockade (n = 6). An autoregressive-moving-average with exogenous inputs (ARMAX) model was applied to the data and compared with the α-coefficient. RESULTS Autonomic blockade caused a significant reduction in the strength of the baroreflex as estimated by ARMAX [ARMAX- baroreflex sensitivity (BRS)] -0.03 ± 0.01 vs. -0.19 ± 0.04 bpm heartbeat-1) . Both methods showed a ~50% reduction in BRS in the obese-hypertensive group compared with control (body weight 531 ± 27 vs. 458 ± 19 g, P < 0.05; mean arterial pressure 119 ± 3 vs. 102 ± 1 mmHg, P < 0.05; ARMAX-BRS -0.08 ± 0.01 vs. -0.15 ± 0.01 bpm heartbeat-1 , P < 0.05; α-coefficient BRS 0.51 ± 0.07 vs. 0.89 ± 0.07 ms mmHg-1 , P < 0.05). The ARMAX method additionally showed the open-loop gain of the baroreflex to be reduced by ~50% in the obese-hypertensive group (-2.3 ± 0.3 vs. -4.1 ± 0.3 bpm, P < 0.05), while the rate constant was similar between groups. CONCLUSION The ARMAX model represents an efficient method for estimating several aspects of the baroreflex. The open-loop gain of the baroreflex was attenuated in obese-hypertensive rats compared with control, while the time response was similar. The algorithm can be applied to other species including humans.
Collapse
Affiliation(s)
- M. T. Lund
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen N Denmark
| | - M. Salomonsson
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen N Denmark
| | - T. E. N. Jonassen
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen N Denmark
| | | |
Collapse
|
47
|
Guo X, Zhang T, Shi L, Gong M, Jin J, Zhang Y, Liu R, Chang M, Jin Q, Wang X. The relationship between lipid phytochemicals, obesity and its related chronic diseases. Food Funct 2018; 9:6048-6062. [DOI: 10.1039/c8fo01026a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review focuses on phytochemicals in oils, and summarizes the mechanisms of the anti-obesity effects of these compounds in in vitro studies, animal models, and human trials.
Collapse
|
48
|
Qin L, Zhao Y, Zhang B, Li Y. Amentoflavone improves cardiovascular dysfunction and metabolic abnormalities in high fructose and fat diet-fed rats. Food Funct 2018; 9:243-252. [PMID: 29168869 DOI: 10.1039/c7fo01095h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome (MS) is a leading cause of mortality and morbidity in Western countries.
Collapse
Affiliation(s)
- Li Qin
- Cardiovascular Medicine Ward 2
- Zhengzhou Central Hospital Affiliated to Zhengzhou University (Zhengzhou Central Hospital)
- Zhengzhou 450000
- China
| | - Ying Zhao
- Cardiovascular Medicine Ward 5
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450000
- China
| | - Bin Zhang
- The clinical Laboratory
- The First Affiliated Hospital of Xinxiang Medical University
- Weihui 453100
- China
| | - Yan Li
- Cardiovascular Medicine Ward 2
- Zhengzhou Central Hospital Affiliated to Zhengzhou University (Zhengzhou Central Hospital)
- Zhengzhou 450000
- China
| |
Collapse
|
49
|
Wong SK, Chin KY, Suhaimi FH, Ahmad F, Jamil NA, Ima-Nirwana S. Osteoporosis is associated with metabolic syndrome induced by high-carbohydrate high-fat diet in a rat model. Biomed Pharmacother 2017; 98:191-200. [PMID: 29257979 DOI: 10.1016/j.biopha.2017.12.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the bone quality in rats induced with metabolic syndrome (MetS) using high-carbohydrate high-fat (HCHF) diet. Male Wistar rats (n = 14) were randomized into two groups. The normal group was given standard rat chow. The MetS group was given HCHF diet. Diet regimen was assigned for a period of 20 weeks. Metabolic syndrome parameters were measured monthly until MetS was established. Left tibiae were scanned using micro-computed tomography at week 0, 8, 12, 16, and 20 to analyze the trabecular and cortical bone structure. At the end of the study, rats were euthanized and their bones were harvested for analysis. Metabolic syndrome was established at week 12 in the HCHF rats. Significant deterioration of trabecular bone was observed at week 20 in the HCHF group (p < 0.05). The HCHF diet also decreased cortical and tissue area significantly (p < 0.05), but did not affect cortical thickness and bone calcium content (p > 0.05). Femur length and width in the HCHF group were significantly shorter than the normal group (p < 0.05). The biomechanical strength test showed that the femur of the HCHF rats could endure significantly lower force, but significantly higher displacement and strain compared to the normal rats (p < 0.05). In conclusion, HCHF diet-induced MetS can cause adverse effects on the bone.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Farihah Hj Suhaimi
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Nor Aini Jamil
- School of Healthcare Sciences, Faculty of Health Science, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
50
|
Oliveira PS, Chaves VC, Bona NP, Soares MSP, Cardoso JDS, Vasconcellos FA, Tavares RG, Vizzotto M, Silva LMCD, Grecco FB, Gamaro GD, Spanevello RM, Lencina CL, Reginatto FH, Stefanello FM. Eugenia uniflora fruit (red type) standardized extract: a potential pharmacological tool to diet-induced metabolic syndrome damage management. Biomed Pharmacother 2017; 92:935-941. [DOI: 10.1016/j.biopha.2017.05.131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/22/2017] [Accepted: 05/28/2017] [Indexed: 11/25/2022] Open
|