1
|
Liu F, Yang Z, Li J, Wu T, Li X, Zhao L, Wang W, Yu W, Zhang G, Xu Y. Targeting programmed cell death in diabetic kidney disease: from molecular mechanisms to pharmacotherapy. Mol Med 2024; 30:265. [PMID: 39707216 DOI: 10.1186/s10020-024-01020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
Diabetic kidney disease (DKD), one of the most prevalent microvascular complications of diabetes, arises from dysregulated glucose and lipid metabolism induced by hyperglycemia, resulting in the deterioration of renal cells such as podocytes and tubular epithelial cells. Programmed cell death (PCD), comprising apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis, represents a spectrum of cell demise processes intricately governed by genetic mechanisms in vivo. Under physiological conditions, PCD facilitates the turnover of cellular populations and serves as a protective mechanism to eliminate impaired podocytes or tubular epithelial cells, thereby preserving renal tissue homeostasis amidst hyperglycemic stress. However, existing research predominantly elucidates individual modes of cell death, neglecting the intricate interplay and mutual modulation observed among various forms of PCD. In this comprehensive review, we delineate the diverse regulatory mechanisms governing PCD and elucidate the intricate crosstalk dynamics among distinct PCD pathways. Furthermore, we review recent advancements in understanding the pathogenesis of PCD and explore their implications in DKD. Additionally, we explore the potential of natural products derived primarily from botanical sources as therapeutic agents, highlighting their multifaceted effects on modulating PCD crosstalk, thereby proposing novel strategies for DKD treatment.
Collapse
Affiliation(s)
- Fengzhao Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhenyu Yang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jixin Li
- Xi Yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiangyu Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Lijuan Zhao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wenru Wang
- Xi Yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wenfei Yu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Guangheng Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China.
| |
Collapse
|
2
|
Zhang ML, Li WX, Wang XY, Chen XF, Zhang H, Meng GQ, Chen YL, Wu YL, Yang LQ, Zhang SQ, Feng KR, Niu L, Tang JF. Characterizing metabolomic and transcriptomic changes, and investigating the therapeutic mechanism of Psoralea corylifolia linn. In the treatment of kidney-yang deficiency syndrome in rats. Heliyon 2024; 10:e39006. [PMID: 39524713 PMCID: PMC11550036 DOI: 10.1016/j.heliyon.2024.e39006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Kidney-yang deficiency syndrome (KYDS) is characterized by a metabolic disorder stemming from neuroendocrine dysregulation, often associated with hepatic dysfunction. In traditional Chinese medicine, Psoralea corylifolia Linn. (BGZ) is commonly utilized for treating KYDS. However, the specific therapeutic effects of BGZ on liver function regulation remain unclear. To evaluate the protective effects of BGZ against KYDS in rats, organ index, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and other biochemical indices were analyzed. Hematoxylin and eosin (HE) staining was utilized to assess liver histopathology. Additionally, transcriptomic and metabolomic analyses were conducted to identify potential biomarkers. BGZ treatment led to a significant reduction in ALT and AST levels, accompanied by improvements in liver histopathology in rats with KYDS. Moreover, BGZ induced significant alterations in 92 differentially expressed genes (DEGs) and 20 metabolites in the KYDS rat model. The comprehensive examination of metabolites and DEGs identified potential mechanisms underlying the therapeutic effects of BGZ, highlighting the neuroactive ligand-receptor interaction, cAMP signaling pathway, calcium signaling pathway, and cytokine-cytokine receptor interaction as key mechanisms. Validation of key targets within the cAMP pathway was substantiated through enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction. The cAMP pathway emerges as a plausible mechanism through which BGZ exerts protective effects against KYDS. The findings of this study contribute to an improved understanding of the therapeutic actions of BGZ and establish a groundwork for further research into the complex pathways involved, as well as the potential for drug-targeted therapies for KYDS.
Collapse
Affiliation(s)
- Ming-Liang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Wei-Xia Li
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiao-Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Xiao-Fei Chen
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Hui Zhang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Gao-Quan Meng
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu-Long Chen
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ya-Li Wu
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Liu-Qing Yang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Shu-Qi Zhang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Ke-Ran Feng
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Lu Niu
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Jin-Fa Tang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
3
|
Huang Q, Tang J, Ding Y, Li F. Application and design considerations of ROS-based nanomaterials in diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1351497. [PMID: 38742196 PMCID: PMC11089164 DOI: 10.3389/fendo.2024.1351497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetic nephropathy (DKD) is a common chronic complication of diabetes mellitus and an important cause of cardiovascular-related death. Oxidative stress is a key mechanism leading to diabetic nephropathy. However, the current main therapeutic approach remains combination therapy and lacks specific therapies targeting oxidative stress. With the development of nanotechnology targeting ROS, therapeutic fluids regarding their treatment of diabetic nephropathy have attracted attention. In this review, we provide a brief overview of various ROS-based nanomaterials for DKD, including ROS-scavenging nanomaterials, ROS-associated nanodelivery materials, and ROS-responsive nanomaterials. In addition, we summarize and discuss key factors that should be considered when designing ROS-based nanomaterials, such as biosafety, efficacy, targeting, and detection and monitoring of ROS.
Collapse
Affiliation(s)
| | | | - Yunchuan Ding
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Fangping Li
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Qin Z, Xie L, Li W, Wang C, Li Y. New Insights into Mechanisms Traditional Chinese Medicine for Allergic Rhinitis by Regulating Inflammatory and Oxidative Stress Pathways. J Asthma Allergy 2024; 17:97-112. [PMID: 38405022 PMCID: PMC10888064 DOI: 10.2147/jaa.s444923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Allergy rhinitis (AR) is becoming more common and has serious medical and societal consequences. Sneezing, paroxysmal nasal blockage, nasal itching, mucosal edema, coughing, and rhinorrhea are symptoms of this type I allergic immunological illness. Immunoglobulin E-mediated inflammation is the cause of it. Because AR is prone to recurrent attacks, extended medication therapy may impair its effectiveness. In addition to negatively affecting the patients' physical health, this can also negatively impact their mental health. During AR development, there are inflammatory and oxidative stress responses that are linked to problems in a number of signal transduction pathways. By using the terms "allergic rhinitis", "traditional Chinese medicine", "inflammation", and "oxidative stress", we screened for pertinent research published over the previous five years in databases like PubMed. We saw that NF-KB, TLR, IL-33/ST2, PI3K/AKT, MAPK, and Nrf2 are some of the most important inflammatory and oxidative stress pathways in AR. Studies have revealed that antioxidant and anti-inflammatory therapy reduced the risk of AR and was therapeutic; however, the impact of the therapy varies widely. The Chinese medical system places a high value on traditional Chinese medicine (TCM), which has been there for virtually all of China's 5000-year history. By influencing signaling pathways related to inflammation and oxidative stress, Chinese herbal medicine and its constituent compounds have been shown to prevent allergic rhinitis. This review will focus on this evidence and provide references for clinical treatment and scientific research applications.
Collapse
Affiliation(s)
- Zhu Qin
- Department of Otolaryngology, Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Liangzhen Xie
- Department of Otolaryngology, Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
- Department of Otolaryngology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Wentao Li
- Department of Otolaryngology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Chao Wang
- Department of Otolaryngology, Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Yan Li
- Department of Otolaryngology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
5
|
Park J, Seo E, Jun HS. Bavachin alleviates diabetic nephropathy in db/db mice by inhibition of oxidative stress and improvement of mitochondria function. Biomed Pharmacother 2023; 161:114479. [PMID: 36921531 DOI: 10.1016/j.biopha.2023.114479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetic nephropathy (DN) is a major complication of diabetes mellitus. Psoralea corylifolia L. seed (PCS) is a traditional medicine effective against various diseases. In this study, we aimed to investigate the effect of bavachin, the major active component of PCS, on DN in db/db mice. Bavachin (10 mg/kg/day) was administered orally to 12-week-old male db/db mice for 6 wk. For in vitro experiments, SV40 MES13 cells were treated with bavachin in the presence of 25 mM glucose. Food and water intake and urine mass were significantly increased in db/db mice compared to wild-type CON mice, but bavachin administration significantly reduced these increases. Urinary microalbumin, blood urea nitrogen, and creatinine clearance which were significantly increased in db/db mice, were also decreased by bavachin administration. Glomerular area and collagen deposition in the kidney were significantly decreased in db/db mice following bavachin administration. Increased renal levels of fibrotic factors, fibronectin, COL1A1, and α-SMA, were reduced following bavachin administration. Protein expressions of antioxidant enzymes, namely SOD2, catalase, and HO-1, and mitochondrial function-related factors, namely SIRT1, PGC1α, Nrf1, and mtTFA, were reduced in the kidney tissues of db/db mice compared to wild-type CON mice, and bavachin administration upregulated these protein expressions. In vitro studies also showed that bavachin decreases mitochondria ROS production, increases the expression of PGC-1α and SIRT1, and decreases the expression of α-SMA in high glucose-treated SV40 MES13 cells. Based on these results, bavachin improved DN by inhibiting oxidative stress and enhancing mitochondrial function.
Collapse
Affiliation(s)
- Jisu Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea
| | - Eunhui Seo
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea; Gachon Medical Research Institute, Gil Hospital, Incheon 21565, Republic of Korea.
| |
Collapse
|
6
|
Ma J, Wang X, Xu M, Chang Y, Dong M, Sun C, Wang Y, Zhang J, Xu N, Liu W. Raspberry Ketone Protects Kidney Damage in Diabetic Nephropathy by Improving Kidney Mitochondrial Dysfunction. Nat Prod Commun 2023. [DOI: 10.1177/1934578x221148619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial dysfunction and oxidative stress play essential roles in the pathogenesis of diabetic nephropathy (DN). The respiratory oxygen consumption and oxidative stress status of kidney mitochondria are closely associated with the development of DN. In this study, raspberry ketone (RK), the predominant bioactive component extracted from raspberry, was applied to treat the established DN mice model. This study investigated whether RK protects the kidneys of high-fat and high-sugar/streptozotocin (STZ)-induced diabetic rats by inhibiting oxidative stress and ameliorating mitochondrial dysfunction. Besides, the DN mice models were established by injecting high-fat and high-sugar/STZ (130 mg/kg, intraperitoneal injection). The animals were randomly divided into the control group (normal saline, ig), DN group (normal saline, ig), DN + RK group (200 mg/kg RK + normal saline, ig), DN + RK group (400 mg/kg RK + normal saline, ig), and DN + Metformin (Met) (200 mg/kg Met + normal saline, ig). Regular monitoring of fasting blood glucose (FBG) levels was observed in mice. After 10 weeks of drug treatment, the kidneys of mice in each group were analyzed using ultrasound, and the mice were euthanized humanely. Kidney weight (KW)/body weight (BW) and kidney injury, mitochondrial function, and oxidative stress indicators were determined. The histopathological changes in renal tissue were observed after hematoxylin and eosin (H&E) staining. The results recommended that RK has a renoprotective function on DN mice by improving mitochondrial dysfunction and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Jiawang Ma
- College of Life Science, Jilin Agricultural University, Changchun, PR China
| | - Xin Wang
- College of Life Science, Jilin Agricultural University, Changchun, PR China
| | - Meng Xu
- College of Life Science, Jilin Agricultural University, Changchun, PR China
| | - Ying Chang
- Teaching Affairs Office, Jilin Medical University, Jilin, PR China
| | - Mingxin Dong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, PR China
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, PR China
| | - Yan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, PR China
| | - Jianxu Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, PR China
| | - Na Xu
- Teaching Affairs Office, Jilin Medical University, Jilin, PR China
| | - Wensen Liu
- College of Life Science, Jilin Agricultural University, Changchun, PR China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, PR China
| |
Collapse
|
7
|
Wan F, Ma F, Wu J, Qiao X, Chen M, Li W, Ma L. Effect of Lycium barbarum Polysaccharide on Decreasing Serum Amyloid A3 Expression through Inhibiting NF- κB Activation in a Mouse Model of Diabetic Nephropathy. Anal Cell Pathol (Amst) 2022; 2022:7847135. [PMID: 35132370 PMCID: PMC8817866 DOI: 10.1155/2022/7847135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022] Open
Abstract
Lycium barbarum polysaccharide (LBP) as one of the main bioactive constituents of the fruit of Lycium barbarum L. (LBL.) has many pharmacological activities, but its antihyperglycemic activity is not fully understood yet. This study investigated the hypoglycemic and renal protective effects of LBP on high-fat diet/streptozotocin- (HFD/STZ-) induced diabetic nephropathy (DN) in mice. Blood glucose was assessed before and after 8-week administration of LBP, and the homeostasis model assessment-insulin resistance (HOMA-IR) index was calculated for evaluating the antidiabetic effect of LBP. Additionally, serum creatinine (sCr), blood urea nitrogen (BUN), and urine microalbumin were tested to evaluate the renal function. HE and PAS stainings were performed to evaluate the morphology and injury of the kidney. The results showed that LBP significantly reduces the glucose level and ameliorates the insulin resistance of diabetic mice. Importantly, LBP improves renal function by lowering the levels of sCr, BUN, and microalbumin in diabetic mice and relieves the injury in the renal glomeruli and tubules of the DN mice. Furthermore, LBP attenuates renal inflammation as evidenced by downregulating the mRNA levels of TNFα, IL1 β, IL6, and SAA3 in the renal cortex, as well as reducing the elevated circulating level and protein depositions of SAA3 in the kidney. In addition, our western blot results showed that NF-κB p65 nuclear translocation and the degradation of inhibitory κB-α (IκBα) occurred during the progress of inflammation, and such activated signaling was restrained by LBP. In conclusion, our findings suggest that LBP is a potential antidiabetic agent, which ameliorates the inflammation in DN through inhibiting NF-κB activation.
Collapse
Affiliation(s)
- Fengqi Wan
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, China
| | - Fulin Ma
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, China
| | - Jiaxin Wu
- School of Pharmacy, Lanzhou University, No. 99 Donggang West Road, Lanzhou 730000, China
| | - Xinyu Qiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, China
| | - Minxue Chen
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Liang Ma
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
8
|
Chung H, Seo E, Jun HS. Effects of Psoralea corylifolia L. seed extract on AGEs-induced cell proliferation and fibrotic factor expression in mesangial cells. Exp Ther Med 2021; 22:1332. [PMID: 34630686 PMCID: PMC8495585 DOI: 10.3892/etm.2021.10767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy is a microvascular complication of diabetes that is characterized by mesangial expansion and thickening of the glomerular basement membrane. The production of advanced glycation end products (AGEs) increases in diabetic patients. Activation of the receptor of AGE (RAGE) signaling pathway induces mesangial expansion via the reactive oxygen species (ROS)-mediated production of pro-inflammatory and extracellular matrix molecules. The Psoralea corylifolia L. seed (PCS) is a widely used herbal medicine with various biological activities. The current study investigated the effect of PCS extract on mesangial cell proliferation and the RAGE signaling pathway in SV40 MES 13 cells. SV40 MES 13 cells were harvested after treatment with various concentrations of PCS extract at 10 µg/ml AGEs for 24 h. The results revealed that the PCS extract inhibited AGEs-induced mesangial cell proliferation and cyclin protein expression in a concentration-dependent manner. In addition, the AGEs-induced expression of fibrotic factors, such as transforming growth factor β, fibronectin and collagen, was reduced in mesangial cells after exposure to the PCS extract. The PCS extract also reduced RAGE expression and inhibited the expression of its downstream signaling pathways, such as NADPH oxidase, intracellular ROS and phospho-NF-κB. In conclusion, the data suggested that the PCS extract attenuated AGEs-induced renal mesangial cell proliferation and fibrosis via the suppression of oxidative stress and the downregulation of inflammatory and fibrotic factor expression.
Collapse
Affiliation(s)
- Hyunah Chung
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Eunhui Seo
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea.,Gachon Medical Research Institute, Gil Hospital, Incheon 21565, Republic of Korea
| |
Collapse
|
9
|
Tang G, Li S, Zhang C, Chen H, Wang N, Feng Y. Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management. Acta Pharm Sin B 2021; 11:2749-2767. [PMID: 34589395 PMCID: PMC8463270 DOI: 10.1016/j.apsb.2020.12.020] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/17/2020] [Accepted: 12/25/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic nephropathy (DN) has been recognized as a severe complication of diabetes mellitus and a dominant pathogeny of end-stage kidney disease, which causes serious health problems and great financial burden to human society worldwide. Conventional strategies, such as renin-angiotensin-aldosterone system blockade, blood glucose level control, and bodyweight reduction, may not achieve satisfactory outcomes in many clinical practices for DN management. Notably, due to the multi-target function, Chinese medicine possesses promising clinical benefits as primary or alternative therapies for DN treatment. Increasing studies have emphasized identifying bioactive compounds and molecular mechanisms of reno-protective effects of Chinese medicines. Signaling pathways involved in glucose/lipid metabolism regulation, antioxidation, anti-inflammation, anti-fibrosis, and podocyte protection have been identified as crucial mechanisms of action. Herein, we summarize the clinical efficacies of Chinese medicines and their bioactive components in treating and managing DN after reviewing the results demonstrated in clinical trials, systematic reviews, and meta-analyses, with a thorough discussion on the relative underlying mechanisms and molecular targets reported in animal and cellular experiments. We aim to provide comprehensive insights into the protective effects of Chinese medicines against DN.
Collapse
Key Words
- ACEI, angiotensin-converting enzyme inhibitor
- ADE, adverse event
- AGEs, advanced glycation end-products
- AM, mesangial area
- AMPKα, adenosine monophosphate-activated protein kinase α
- ARB, angiotensin receptor blocker
- AREs, antioxidant response elements
- ATK, protein kinase B
- BAX, BCL-2-associated X protein
- BCL-2, B-cell lymphoma 2
- BCL-XL, B-cell lymphoma-extra large
- BMP-7, bone morphogenetic protein-7
- BUN, blood urea nitrogen
- BW, body weight
- C, control group
- CCR, creatinine clearance rate
- CD2AP, CD2-associated protein
- CHOP, C/EBP homologous protein
- CI, confidence interval
- COL-I/IV, collagen I/IV
- CRP, C-reactive protein
- CTGF, connective tissue growth factor
- Chinese medicine
- D, duration
- DAG, diacylglycerol
- DG, glomerular diameter
- DKD, diabetic kidney disease
- DM, diabetes mellitus
- DN, diabetic nephropathy
- Diabetic kidney disease
- Diabetic nephropathy
- EMT, epithelial-to-mesenchymal transition
- EP, E-prostanoid receptor
- ER, endoplasmic reticulum
- ESRD, end-stage renal disease
- ET-1, endothelin-1
- ETAR, endothelium A receptor
- FBG, fasting blood glucose
- FN, fibronectin
- GCK, glucokinase
- GCLC, glutamate-cysteine ligase catalytic subunit
- GFR, glomerular filtration rate
- GLUT4, glucose transporter type 4
- GPX, glutathione peroxidase
- GRB 10, growth factor receptor-bound protein 10
- GRP78, glucose-regulated protein 78
- GSK-3, glycogen synthase kinase 3
- Gαq, Gq protein alpha subunit
- HDL-C, high density lipoprotein-cholesterol
- HO-1, heme oxygenase-1
- HbA1c, glycosylated hemoglobin
- Herbal medicine
- ICAM-1, intercellular adhesion molecule-1
- IGF-1, insulin-like growth factor 1
- IGF-1R, insulin-like growth factor 1 receptor
- IKK-β, IκB kinase β
- IL-1β/6, interleukin 1β/6
- IR, insulin receptor
- IRE-1α, inositol-requiring enzyme-1α
- IRS, insulin receptor substrate
- IκB-α, inhibitory protein α
- JAK, Janus kinase
- JNK, c-Jun N-terminal kinase
- LC3, microtubule-associated protein light chain 3
- LDL, low-density lipoprotein
- LDL-C, low density lipoprotein-cholesterol
- LOX1, lectin-like oxidized LDL receptor 1
- MAPK, mitogen-activated protein kinase
- MCP-1, monocyte chemotactic protein-1
- MD, mean difference
- MDA, malondialdehyde
- MMP-2, matrix metallopeptidase 2
- MYD88, myeloid differentiation primary response 88
- Molecular target
- N/A, not applicable
- N/O, not observed
- N/R, not reported
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOX-4, nicotinamide adenine dinucleotide phosphate-oxidase-4
- NQO1, NAD(P)H:quinone oxidoreductase 1
- NRF2, nuclear factor erythroid 2-related factor 2
- OCP, oxidative carbonyl protein
- ORP150, 150-kDa oxygen-regulated protein
- P70S6K, 70-kDa ribosomal protein S6 kinase
- PAI-1, plasminogen activator inhibitor-1
- PARP, poly(ADP-Ribose) polymerase
- PBG, postprandial blood glucose
- PERK, protein kinase RNA-like eukaryotic initiation factor 2A kinase
- PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1α
- PGE2, prostaglandin E2
- PI3K, phosphatidylinositol 3 kinases
- PINK1, PTEN-induced putative kinase 1
- PKC, protein kinase C
- PTEN, phosphatase and tensin homolog
- RAGE, receptors of AGE
- RASI, renin-angiotensin system inhibitor
- RCT, randomized clinical trial
- ROS, reactive oxygen species
- SCr, serum creatinine
- SD, standard deviation
- SD-rat, Sprague–Dawley rat
- SIRT1, sirtuin 1
- SMAD, small mothers against decapentaplegic
- SMD, standard mean difference
- SMURF-2, SMAD ubiquitination regulatory factor 2
- SOCS, suppressor of cytokine signaling proteins
- SOD, superoxide dismutase
- STAT, signal transducers and activators of transcription
- STZ, streptozotocin
- Signaling pathway
- T, treatment group
- TBARS, thiobarbituric acid-reactive substance
- TC, total cholesterol
- TCM, traditional Chinese medicine
- TFEB, transcription factor EB
- TG, triglyceride
- TGBM, thickness of glomerular basement membrane
- TGF-β, tumor growth factor β
- TGFβR-I/II, TGF-β receptor I/II
- TII, tubulointerstitial injury index
- TLR-2/4, toll-like receptor 2/4
- TNF-α, tumor necrosis factor α
- TRAF5, tumor-necrosis factor receptor-associated factor 5
- UACR, urinary albumin to creatinine ratio
- UAER, urinary albumin excretion rate
- UMA, urinary microalbumin
- UP, urinary protein
- VCAM-1, vascular cell adhesion molecule-1
- VEGF, vascular endothelial growth factor
- WMD, weight mean difference
- XBP-1, spliced X box-binding protein 1
- cAMP, cyclic adenosine monophosphate
- eGFR, estimated GFR
- eIF2α, eukaryotic initiation factor 2α
- mTOR, mammalian target of rapamycin
- p-IRS1, phospho-IRS1
- p62, sequestosome 1 protein
- α-SMA, α smooth muscle actin
Collapse
Affiliation(s)
- Guoyi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
10
|
Improvement of E Se tea extracts on renal mesangial cell apoptosis and high-fat-diet/streptozotocin-induced diabetic nephropathy. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
11
|
Gao W, Jin Z, Zheng Y, Xu Y. Psoralen inhibits the inflammatory response and mucus production in allergic rhinitis by inhibiting the activator protein 1 pathway and the downstream expression of cystatin‑SN. Mol Med Rep 2021; 24:652. [PMID: 34278468 PMCID: PMC8299190 DOI: 10.3892/mmr.2021.12291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Psoralen (PSO) exerts anti-inflammatory pharmacological effects and plays an important role in a variety of inflammatory diseases. However, the effects of PSO with allergic rhinitis (AR) are yet to be reported. In the present study, an in vitro AR model was generated by inducing JME/CF15 human nasal epithelial cells with IL-13, after which MTT was used to assess the cytotoxicity of PSO. The expression levels of inflammatory cytokines (granulocyte-macrophage colony-stimulating factor and Eotaxin) were determined by ELISA. Furthermore, the expression of inflammatory IL-6 and −8, as well as mucin 5AC, was assessed by reverse transcription-quantitative PCR and western blotting, and cellular reactive oxygen species were detected using a 2′,7′-dichlorodihydrofluorescein diacetate fluorescent probe. Western blotting was also used to detect the expression and phosphorylation of c-Fos and c-Jun in the activator protein 1 (AP-1) pathway, as well as the expression of cystatin-SN (CST1). PSO inhibited the inflammatory response and mucus production in IL-13-induced JME/CF15 cells. Furthermore, the levels of c-Fos and c-Jun phosphorylation in the AP-1 pathway were decreased in IL-13-induced JME/CF15 cells following PSO treatment. The expression of pathway proteins was activated by the addition of PMA, an AP-1 pathway activator, which concurrently reversed the inhibitory effects of PSO on the inflammatory response and mucus formation. The addition of an AP-1 inhibitor (SP600125) further inhibited pathway activity, and IL-13-induced inflammation and mucus formation was restored. In conclusion, PSO regulates the expression of CST1 by inhibiting the AP-1 pathway, thus suppressing the IL-13-induced inflammatory response and mucus production in nasal mucosal epithelial cells.
Collapse
Affiliation(s)
- Wenying Gao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Zhenglong Jin
- Department of Neurology, Jiangmen Wuyi Hospital of TCM Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, Guangdong 529000, P.R. China
| | - Yanxia Zheng
- Department of TCM Pediatrics, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Youjia Xu
- Department of TCM Pediatrics, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
12
|
Liu D, Liu F, Li Z, Pan S, Xie J, Zhao Z, Liu Z, Zhang J, Liu Z. HNRNPA1-mediated exosomal sorting of miR-483-5p out of renal tubular epithelial cells promotes the progression of diabetic nephropathy-induced renal interstitial fibrosis. Cell Death Dis 2021; 12:255. [PMID: 33692334 PMCID: PMC7946926 DOI: 10.1038/s41419-021-03460-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy (DN) is a serious complication in type 1 and type 2 diabetes, and renal interstitial fibrosis plays a key role in DN progression. Here, we aimed to probe into the role and potential mechanism of miR-483-5p in DN-induced renal interstitial fibrosis. In this study, we corroborated that miR-483-5p expression was lessened in type 1 and type 2 diabetic mice kidney tissues and high glucose (HG)-stimulated tubular epithelial cells (TECs), and raised in the exosomes derived from renal tissues in type 1 and type 2 diabetic mice. miR-483-5p restrained the expressions of fibrosis-related genes in vitro and renal interstitial fibrosis in vivo. Mechanistically, miR-483-5p bound both TIMP2 and MAPK1, and TIMP2 and MAPK1 were bound up with the regulation of miR-483-5p on renal TECs under HG conditions. Importantly, HNRNPA1-mediated exosomal sorting transported cellular miR-483-5p out of TECs into the urine. Our results expounded that HNRNPA1-mediated exosomal sorting transported cellular miR-483-5p out of TECs into the urine, thus lessening the restraint of cellular miR-483-5p on MAPK1 and TIMP2 mRNAs, and ultimately boosting extracellular matrix deposition and the progression of DN-induced renal interstitial fibrosis.
Collapse
Affiliation(s)
- DongWei Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - FengXun Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ZhengYong Li
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ShaoKang Pan
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - JunWei Xie
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ZiHao Zhao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ZhenJie Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - JiaHui Zhang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ZhangSuo Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China.
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China.
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China.
| |
Collapse
|
13
|
Wang X, Ji Q, Hu W, Zhang Z, Hu F, Cao S, Wang Q, Hao Y, Gao M, Zhang X. Isobavachalcone prevents osteoporosis by suppressing activation of ERK and NF-κB pathways and M1 polarization of macrophages. Int Immunopharmacol 2021; 94:107370. [PMID: 33640858 DOI: 10.1016/j.intimp.2021.107370] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Abstract
Estrogen receptors alpha (ERα), a member of the nuclear receptor protein family, was found to play an important role in maintaining bone mass. Its downstream signaling proteins such as ERK and NF-κB were reported to be involved in development of osteoporosis, which meant that targeting ERα might be an effective strategy for searching for new drugs to prevent bone loss. In this study, we demonstrate that isobavachalcone (ISO), as one of bioactive compounds isolated from Psoralea corylifoliaLinn, has high affinity with ERα. The effects of ISO are investigated on receptor activator of NF-κB ligand (RANKL)-induced osteocalstogenesis. It is reported that ISO inhibits the RANKL-mediated increase of osteoclast-related genes MMP9, cathepsink and TRAR in RAW264.7 cells. Moreover, in vitro experiment shows that ISO exhibits an inhibitory effect on ERK and NF-κB signaling pathway, and suppresses RANKL-induced expression of osteoclast-related transcription factors NFATc1 and c-Fos. However, the impact of ISO in these molecules is eliminated by the application of ERα antagonist AZD9496.We further verified pharmacological effects of ISO in ovariectomized osteoporotic mice, and ISO significantly prevented bone loss and decreased M1 polarization of macrophages from marrow and spleen. Collectively, our data suggest that ISO prevents osteoporosis via suppressing activation of ERK and NF-κB signaling pathways as well as M1 polarization of macrophages.
Collapse
Affiliation(s)
- Xiangyu Wang
- Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Quanbo Ji
- Nankai University School of Medicine, Nankai University, Tianjin 300071, China; Department of Orthopaedics, the PLA General Hospital, Beijing 100000, China.
| | - Wenhao Hu
- Department of Orthopaedics, the PLA General Hospital, Beijing 100000, China
| | - Zhifa Zhang
- Department of Orthopaedics, the PLA General Hospital, Beijing 100000, China
| | - Fanqi Hu
- Department of Orthopaedics, the PLA General Hospital, Beijing 100000, China
| | - Shiqi Cao
- Department of Orthopaedics, the PLA General Hospital, Beijing 100000, China
| | - Qi Wang
- Department of Orthopaedics, the PLA General Hospital, Beijing 100000, China
| | - Yongyu Hao
- Department of Orthopaedics, the PLA General Hospital, Beijing 100000, China
| | - Meng Gao
- Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuesong Zhang
- Nankai University School of Medicine, Nankai University, Tianjin 300071, China; Department of Orthopaedics, the PLA General Hospital, Beijing 100000, China.
| |
Collapse
|
14
|
Hudlikar RR, Sargsyan D, Li W, Wu R, Zheng M, Kong AN. Epigenomic, Transcriptomic, and Protective Effect of Carotenoid Fucoxanthin in High Glucose-Induced Oxidative Stress in Mes13 Kidney Mesangial Cells. Chem Res Toxicol 2021; 34:713-722. [PMID: 33448797 DOI: 10.1021/acs.chemrestox.0c00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy (DN) is the major cause of kidney related diseases in patients induced by high glucose (HG) affecting around 40% of type 1 and 2 diabetic patients. It is characterized by excessive inflammation inducing factors, reactive oxygen species (ROS) overproduction, and potential epigenomic related changes. Fucoxanthin (FX), a carotenoid found in brown seaweed, has a structure which includes an allenic bond and a 5,6-monoepoxide in the molecule, with strong antioxidant and anti-inflammatory activity. However, understanding of the impact of FX on DN was lacking. In this study we tested the early effects of high glucose (HG) on mouse mesangial kidney Mes13 cells, a potential in vitro cell culture model of DN. Our results show that HG induced oxidative stress on kidney mesangial Mes13 cells, while FX treatment attenuates the oxidative stress by decreasing the ROS, demonstrated by flow cytometry. Next, we utilized next-generation sequencing (NGS) to profile the HG-induced early epigenomic and transcriptomic changes in this in vitro DN model and the protective effects of FX. Differentially expressed genes (DEGs) and differentially methylated regions (DMRs) were analyzed using R software in HG and FX treated groups. Differential regulation of signaling pathways was studied using Reactome Pathway Analysis in the comparison. DEG analysis shows that novel biomarkers with specific pathways, including interleukin regulation, Toll-like receptor pathway, and PKA phosphorylation pathways, were found to be modulated by the FX treatment. TGF β 1i1 (TGFB 1i1), MAP-3-kinase-13(MAP3K13) involved in crucial cellular processes including glucose metabolism, phosphodiesterase regulation was methylated in HG, which was demethylated with FX treatment. Integrated transcriptomic and CpG methylome analysis of DEGs and DMRs revealed that genes like adenylate cyclase (Adcy7), calponin 1 (CNN1), potassium voltage-gated channel interacting protein 2 (KCNIP2), phosphatidylinositol-4-phosphate 5-kinase type 1 β (PIP5K1B), and transmembrane protein with EGF-like and two follistatin-like domains 1 (TMEFF1), which were modulated by FX in HG-exposed Mes13 cells, potentially modulate ion channel transport and glucose metabolism. In summary, our current study shows that novel early epigenomic and transcriptomic biomarkers were altered during the disease progression of HG-induced DN and that FX modified these alterations potentially contributing to the protective effects of mesangial cells from the HG-induced oxidative stress and damage.
Collapse
Affiliation(s)
- Rasika R Hudlikar
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Davit Sargsyan
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Wenji Li
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Renyi Wu
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Meinizi Zheng
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | | |
Collapse
|
15
|
Wang W, Long H, Huang W, Zhang T, Xie L, Chen C, Liu J, Xiong D, Hu W. Bu-Shen-Huo-Xue Decoction Ameliorates Diabetic Nephropathy by Inhibiting Rac1/PAK1/p38MAPK Signaling Pathway in High-Fat Diet/Streptozotocin-Induced Diabetic Mice. Front Pharmacol 2020; 11:587663. [PMID: 33343355 PMCID: PMC7744471 DOI: 10.3389/fphar.2020.587663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN), a leading cause of end-stage renal disease, is associated with high morbidity and mortality rates worldwide and the development of new drugs to treat DN is urgently required. Bu-Shen-Huo-Xue (BSHX) decoction is a traditional Chinese herbal formula, made according to traditional Chinese medicine (TCM) theory, and has been used clinically to treat DN. In the present study, we established a high-fat diet/streptozotocin-induced diabetic mouse model and treated the mice with BSHX decoction to verify its therapeutic effects in vivo. Ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was applied to analyze the chemical composition and active compounds of BSHX decoction. Markers of podocyte epithelial-mesenchymal transition and the Rac1/PAK1/p38MAPK signaling pathway were evaluated to investigate the mechanism underlying function of BSHX decoction. BSHX decoction effectively alleviated diabetic symptoms, according to analysis of the renal function indicators, serum creatinine, blood urea nitrogen, serum uric acid, and urinary albumin excretion rate, as well as renal histopathology and ultrastructural pathology of DN mice. We identified 67 compounds, including 20 likely active compounds, in BSHX decoction. The podocyte markers, nephrin and podocin, were down-regulated, while the mesenchymal markers, α-SMA and FSP-1, were up-regulated in DN mouse kidney; however, the changes in these markers were reversed on treatment with BSHX decoction. GTP-Rac1 was markedly overexpressed in DN mice and its levels were significantly decreased in response to BSHX decoction. Similarly, levels of p-PAK1 and p-p38MAPK which indicate Rac1 activation, were reduced on treatment with BSHX decoction. Together, our data demonstrated that BSHX decoction ameliorated renal function and podocyte epithelial-mesenchymal transition via inhibiting Rac1/PAK1/p38MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Further, we generated a quality control standard and numerous potential active compounds from BSHX decoction for DN.
Collapse
Affiliation(s)
- Weisong Wang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Hongping Long
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Huang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Zhang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Lihua Xie
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Cheng Chen
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Jianhe Liu
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Dan Xiong
- Department of Nephrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Hu
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
16
|
Ren Y, Song X, Tan L, Guo C, Wang M, Liu H, Cao Z, Li Y, Peng C. A Review of the Pharmacological Properties of Psoralen. Front Pharmacol 2020; 11:571535. [PMID: 33013413 PMCID: PMC7500444 DOI: 10.3389/fphar.2020.571535] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Psoralen is the principal bioactive component in the dried fruits of Cullen corylifolium (L.) Medik (syn. Psoralea corylifolia L), termed "Buguzhi" in traditional Chinese medicine (TCM). Recent studies have demonstrated that psoralen displays multiple bioactive properties, beneficial for the treatment of osteoporosis, tumors, viruses, bacteria, and inflammation. The present review focuses on the research evidence relating to the properties of psoralen gathered over recent years. Firstly, multiple studies have demonstrated that psoralen exerts strong anti-osteoporotic effects via regulation of osteoblast/osteoclast/chondrocyte differentiation or activation due to the participation in multiple molecular mechanisms of the wnt/β-catenin, bone morphogenetic protein (BMP), inositol-requiring enzyme 1 (IRE1)/apoptosis signaling kinase 1 (ASK1)/c-jun N-terminal kinase (JNK) and the Protein Kinase B(AKT)/activator protein-1 (AP-1) axis, and the expression of miR-488, peroxisome proliferators-activated receptor-gamma (PPARγ), and matrix metalloproteinases (MMPs). In addition, the antitumor properties of psoralen are associated with the induction of ER stress-related cell death via enhancement of PERK: Pancreatic Endoplasmic Reticulum Kinase (PERK)/activating transcription factor (ATF), 78kD glucose-regulated protein (GRP78)/C/EBP homologous protein (CHOP), and 94kD glucose-regulated protein (GRP94)/CHOP signaling, and inhibition of P-glycoprotein (P-gp) or ATPase that overcomes multidrug resistance. Furthermore, multiple articles have shown that the antibacterial, anti-inflammatory and neuroprotective effects of psoralen are a result of its interaction with viral polymerase (Pol), destroying the formation of biofilm, and regulating the activation of tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β), interleukin 4/5/6/8/12/13 (IL-4/5/6/8/12/13), GATA-3, acetylcholinesterase (AChE), and the hypothalamic-pituitary-adrenal (HPA) axis. Finally, the toxic effects and mechanisms of action of psoralen have also been reviewed.
Collapse
Affiliation(s)
- Yali Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Xiaominting Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Lu Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Chuanjie Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Miao Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Hui Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China, Pharmaceutical University, Nanjing, China
| | - Zhixing Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Yuzhi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| |
Collapse
|
17
|
Dong WH, Chu QQ, Liu SQ, Deng DT, Xu Q. Isobavachalcone ameliorates diabetic nephropathy in rats by inhibiting the NF-κB pathway. J Food Biochem 2020; 44:e13405. [PMID: 32710574 DOI: 10.1111/jfbc.13405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 01/29/2023]
Abstract
Isobavachalcone (ISO) exhibits good anti-inflammatory activity. We evaluated the renoprotective effects of ISO against diabetic nephropathy (DN). Diabetic rats established by the single injection of streptozotocin (STZ) were orally treated with ISO. The levels of serum creatinine (Scr), blood urea nitrogen (BUN), and 24 hr urinary protein were measured. In this study, ISO effectively ameliorated renal damage by reducing BUN, Scr, and 24 hr urinary protein and also improved kidney pathological appearances. ISO prevented STZ-caused apoptosis in the glomerular tissue in vivo and blocked the high glucose (HG)-induced growth inhibitory effect in human renal glomerular endothelial cells in vitro. Moreover, ISO reduced pro-inflammatory mediator production and blocked the NF-κB pathway in the damaged renal tissues and HG-treated HRGEC cells. Taken together, the results of this study indicate that ISO consumption might have significant beneficial effects on the DN and this action might be correlated with the modulation of the NF-κB pathway. PRACTICAL APPLICATIONS: ISO is an active compound from the dried ripe fruit of Psoralea corylifolia L. seed, which is traditionally served as a food ingredient in Asia. In this investigation, we observed the beneficial effects of ISO on a murine model with DN. Further research revealed that the protective action of ISO might be connected with its weak hypoglycaemic and notable anti-inflammatory effects. Our research data suggest that ISO-enriched food might be a good choice for people suffering from DN.
Collapse
Affiliation(s)
- Wen-Hong Dong
- Department of General Practice, The First people's Hospital of Hefei, Hefei, China
| | - Qiang-Qiang Chu
- Department of General Practice, The First people's Hospital of Hefei, Hefei, China
| | - Shang-Quan Liu
- Department of Endocrinology, The First people's Hospital of Hefei, Hefei, China
| | - Da-Tong Deng
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Lin Y, Zhong L, Li H, Xu Y, Li X, Zheng D. Psoralen alleviates high glucose-induced HK-2 cell injury by inhibition of Smad 2 signaling via upregulation of microRNA 874. BMC Pharmacol Toxicol 2020; 21:52. [PMID: 32698907 PMCID: PMC7376944 DOI: 10.1186/s40360-020-00434-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022] Open
Abstract
Background Diabetic nephropathy (DN) causes the vast proportion of excess mortality for patients with diabetes. Novel therapeutic approaches slowing down its incidence is still lacking. Psoralen is the major active ingredient of Psoralea corylifolia Linn. (PCL), which was used to treat a number of diseases. In this study, we aimed to investigate whether psoralen could alleviate DN using in vitro model. Methods Cell viability assay and immunofluorescence were used to evaluate the effect of psoralen on high glucose (HG)-stimulated human kidney HK-2 cells (48 h). RT-qPCR was used to detect the expressions of miRNA in cells. Cell transfection, apoptosis assay, inflammatory cytokines detection and Western blot were further performed to explore the underlying molecular mechanisms. Results HG-induced toxicity of HK-2 cells was alleviated by psoralen. Meanwhile, the secretion of inflammatory cytokines and extracellular matrix (ECM) accumulation induced by HG in HK-2 cells were also decreased by psoralen. In addition, the expression of miR-874 in HK-2 cells was significantly upregulated by psoralen. Western blot assays indicated that psoralen could reverse HG-induced increase of TLR-4/NF-κB and Smad2 via upregulation of miR-874. Conclusion This study demonstrated that psoralen could significantly alleviate HG-induced HK-2 cell injury via upregulation of miR-874. In addition, HG-induced increase of TLR-4/NF-κB and Smad2 was revered by psoralen. Therefore, psoralen might serve as an agent for the treatment of DN.
Collapse
Affiliation(s)
- Yongtao Lin
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223001, PR China
| | - Lili Zhong
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223001, PR China
| | - Hailun Li
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223001, PR China
| | - Yong Xu
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223001, PR China
| | - Xiang Li
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223001, PR China
| | - Donghui Zheng
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223001, PR China.
| |
Collapse
|
19
|
Huang S, Tan M, Guo F, Dong L, Liu Z, Yuan R, Dongzhi Z, Lee DS, Wang Y, Li B. Nepeta angustifolia C. Y. Wu improves renal injury in HFD/STZ-induced diabetic nephropathy and inhibits oxidative stress-induced apoptosis of mesangial cells. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112771. [PMID: 32201300 DOI: 10.1016/j.jep.2020.112771] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/03/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As an important medicinal material constituting a variety of traditional Chinese medicine prescriptions, Nepeta angustifolia C. Y. Wu was used as a folk medicine to treat various vascular-related diseases including apoplexia, and cerebral haemorrhage in Tibet, China. Our previous studies have shown that this plant had a significant protective effect on vascular dysfunction of the intracerebral haemorrhage and diabetic rats. In present study, we aimed to investigate the protective effects and underlying mechanisms of Nepeta angustifolia on diabetic nephropathy (DN), a microvascular complication. AIM OF THE STUDY This study is aim to evaluate the protective effect of ethanol extracts of N. angustifolia (NA) on DN, and explore mechanism of action to provide basis for its pharmacological action against DN. MATERIALS AND METHODS High-fat diet and low-dose streptozotocin administration (HFD/STZ) induced diabetic rats were randomly divided into 5 groups (n = 8): the diabetic model group, metformin group, and three dose groups of NA (60 mg/kg, 120 mg/kg, 240 mg/kg). After administration of NA for 8 weeks, the blood, urine and renal tissue were collected for subsequent experiments. Biochemical markers (urine protein, Cr, BUN), oxidative stress makers (SOD, GSH-px and MDA) and pro-inflammatory mediators (TNF-α, IL-1β, IL-6 and MCP-1) were evaluated by commercial kit and ELISA, respectively. The effect of NA on DN was further confirmed by evaluation of renal histopathology by using the H&E, PAS and Masson staining. The H2O2-induced HBZY-1 cells (rat glomerular mesangial cells) were also been used to evaluate the renal protective effect of NA (50 μg/mL, 100 μg/mL, 200 μg/mL). The oxidative stress makers were detected by commercial kit. The levels of apoptosis and related proteins (caspase 3, 9) were detected by TUNEL assay and western blot analysis, respectively. The depolarization of mitochondrial membrane potential was detected by JC-1 staining assay. RESULTS The administration of NA is helpful to maintain near normal body weight, blood glucose, urine volume, urine protein, kidney index and serum levels of Cr and BUN. NA treatment significantly improve renal dysfunction by the down-regulation of renal oxidative stress and pro-inflammatory mediators in HFD/STZ induced diabetic rats. In vitro experiments, NA has a significant cellular protective effect in H2O2-induced HBZY-1 cells, as well as the regulation in increases of SOD level and the decreases of ROS and MDA levels. Furthermore, NA treatment can significantly inhibit H2O2 induced mesangial cells apoptosis by the increasing mitochondrial potential and suppressing caspases-madiated signaling pathway. CONCLUSIONS NA has obvious improvement on renal dysfunction in HFD/STZ induced diabetic rats. NA can protect mesangial cells by inhibiting oxidative stress induced apoptosis, which may be related to its regulation of mitochondrial-caspase apoptosis pathway.
Collapse
Affiliation(s)
- Shan Huang
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Meng Tan
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Feng Guo
- Department of Pharmacy, Baicheng Medical College, Baicheng, 137000, China
| | - Linsha Dong
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Zhiming Liu
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Ruiying Yuan
- Department of Medicament, College of Medicine, Tibet University, Lhasa, 850000, China
| | - Zhuoma Dongzhi
- Department of Medicament, College of Medicine, Tibet University, Lhasa, 850000, China; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, South Korea
| | - Yuefei Wang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China
| | - Bin Li
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, 266042, China.
| |
Collapse
|
20
|
Dragoș D, Manea MM, Timofte D, Ionescu D. Mechanisms of Herbal Nephroprotection in diabetes mellitus. J Diabetes Res 2020; 2020:5710513. [PMID: 32695828 PMCID: PMC7362309 DOI: 10.1155/2020/5710513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/24/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is a leading cause of kidney morbidity. Despite the multilayered complexity of the mechanisms involved in the pathogenesis of DN, the conventional treatment is limited to just a few drug classes fraught with the risk of adverse events, including the progression of renal dysfunction. Phytoceuticals offer a promising alternative as they act on the many-sidedness of DN pathophysiology, multitargeting its intricacies. This paper offers a review of the mechanisms underlying the protective action of these phytoagents, including boosting the antioxidant capabilities, suppression of inflammation, averting the proliferative and sclerosing/fibrosing events. The pathogenesis of DN is viewed as a continuum going from the original offense, high glucose, through the noxious products it generates (advanced glycation end-products, products of oxidative and nitrosative stress) and the signaling chains consequently brought into action, to the harmful mediators of inflammation, sclerosis, and proliferation that eventually lead to DN, despite the countervailing attempts of the protective mechanisms. Special attention was given to the various pathways involved, pointing out the ability of the phytoagents to hinder the deleterious ones (especially those leading to, driven by, or associated with TGF-β activation, SREBP, Smad, MAPK, PKC, NF-κB, NLRP3 inflammasome, and caspase), to promote the protective ones (PPAR-α, PPAR-γ, EP4/Gs/AC/cAMP, Nrf2, AMPK, and SIRT1), and to favorably modulate those with potentially dual effect (PI3K/Akt). Many phytomedicines have emerged as potentially useful out of in vitro and in vivo studies, but the scarcity of human trials seriously undermines their usage in the current clinical practice-an issue that stringently needs to be addressed.
Collapse
Affiliation(s)
- Dorin Dragoș
- Faculty of General Medicine, “Carol Davila” University of Medicine and Pharmacy, str. Dionisie Lupu nr. 37, sect 1, Bucharest 020021, Romania
- Nephrology Clinic of University Emergency Hospital, Splaiul Independentei nr. 169, sect. 5, Bucharest 050098, Romania
| | - Maria Mirabela Manea
- Faculty of General Medicine, “Carol Davila” University of Medicine and Pharmacy, str. Dionisie Lupu nr. 37, sect 1, Bucharest 020021, Romania
- National Institute of Neurology and Cerebrovascular Diseases, Şos. Berceni, Nr. 10-12, Sector 4, Bucharest 041914, Romania
| | - Delia Timofte
- Dialysis Department of University Emergency Hospital, Splaiul Independentei nr. 169, sect. 5, Bucharest 050098, Romania
| | - Dorin Ionescu
- Faculty of General Medicine, “Carol Davila” University of Medicine and Pharmacy, str. Dionisie Lupu nr. 37, sect 1, Bucharest 020021, Romania
- Nephrology Clinic of University Emergency Hospital, Splaiul Independentei nr. 169, sect. 5, Bucharest 050098, Romania
| |
Collapse
|
21
|
Du MY, Duan JX, Zhang CY, Yang HH, Guan XX, Zhong WJ, Liu YZ, Li ZM, Cheng YR, Zhou Y, Guan CX. Psoralen attenuates bleomycin-induced pulmonary fibrosis in mice through inhibiting myofibroblast activation and collagen deposition. Cell Biol Int 2020; 44:98-107. [PMID: 31329322 DOI: 10.1002/cbin.11205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/16/2019] [Indexed: 01/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) and chronic inflammation with limited therapeutic options. Psoralen, a major active component extracted from Psoralea corylifolia L. seed, has several biological effects. However, the role of psoralen in IPF is still unclear. Here, we hypothesized that psoralen played an essential role in IPF in the inhibition of fibroblast proliferation and inflammatory response. A murine model of IPF was established by injecting bleomycin (BLM) intratracheally, and psoralen was administered for 14 days from the 7th to 21st day after BLM injection. Our results demonstrated that psoralen treatment reduced body weight loss and improved the survival rate of mice with IPF. Histological and immunofluorescent examination showed that psoralen alleviated BLM-induced lung parenchymal inflammatory and fibrotic alteration. Furthermore, psoralen inhibited proliferation and collagen synthesis of mouse fibroblasts and partially reversed BLM-induced expression of α-smooth muscle actin at both the tissue and cell level. Moreover, psoralen decreased the expression of transforming growth factor-β1, interleukin-1β, and tumor necrosis factor-α in the lungs of BLM-stimulated mice. Our results reveale for the first time that psoralen exerts therapeutic effects against IPF in a BLM-induced murine model.
Collapse
Affiliation(s)
- Ming-Yuan Du
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.,Department of Vascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, China
| | - Jia-Xi Duan
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chen-Yu Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Hui-Hui Yang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Xin-Xin Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Wen-Jing Zhong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Yan-Zhe Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Zi-Ming Li
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Yu-Rui Cheng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| |
Collapse
|
22
|
Dong Z, Sun Y, Wei G, Li S, Zhao Z. A Nucleoside/Nucleobase-Rich Extract from Cordyceps Sinensis Inhibits the Epithelial-Mesenchymal Transition and Protects against Renal Fibrosis in Diabetic Nephropathy. Molecules 2019; 24:E4119. [PMID: 31739543 PMCID: PMC6891521 DOI: 10.3390/molecules24224119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Cordyceps Sinensis, a traditional Chinese medicine and a healthy food, has been used for the treatment of kidney disease for a long time. The aim of present study was to isolate a nucleoside/nucleobase-rich extract from Cordyceps Sinensis (CS-N), determine the contents of nucleosides and nucleobases, and explore its anti-diabetic nephropathy activity. CS-N was isolated and purified by using microporous resin and glucan columns and the unknown compounds were identified by using HPLC-DAD and LC-MS. The effects of CS-N on the epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) depositions, and the MAPK signaling pathway were evaluated in streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-exposed HK-2 cells. CS-N significantly attenuated the abnormity of renal functional parameters, ameliorated histopathological changes, and inhibited EMT and ECM accumulation by regulating p38/ERK signaling pathways. Our findings indicate that CS-N exerts a therapeutic effect on experimental diabetic renal fibrosis by mitigating the EMT and the subsequent ECM deposition with inhibition of p38 and ERK signaling pathways.
Collapse
Affiliation(s)
- Zhonghua Dong
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; (Z.D.); (Y.S.)
| | - Yueyue Sun
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; (Z.D.); (Y.S.)
| | - Guangwei Wei
- School of Basic Medical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China;
| | - Siying Li
- School of Basic Medical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China;
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; (Z.D.); (Y.S.)
- Shandong Engineering & Technology Research Center for Jujube Food and Drug, 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
23
|
Transformation of Psoralen and Isopsoralen by Human Intestinal Microbial In Vitro, and the Biological Activities of Its Metabolites. Molecules 2019; 24:molecules24224080. [PMID: 31718071 PMCID: PMC6891621 DOI: 10.3390/molecules24224080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022] Open
Abstract
Psoralen (P) and isopsoralen (IP) are the main active ingredients in the dried fruit of Psoralen corylifolia L. (PC), with a wide range of pharmacology activities. The intestinal bacteria biotransformation plays a central role in the metabolism of the complex ingredients in traditional Chinese medicine (TCM). Our study aimed to investigated the metabolic profile of P and IP in the intestinal condition, co-cultured with human fecal bacteria anaerobically. Four bio-transforming products were obtained, including 6,7-furano-hydrocoumaric acid (P-1) and 6,7-furano-hydro- coumaric acid methyl ester (P-2), which transformed from P, and 5,6-furano-hydrocoumaric acid (IP-1) and 5,6-furano-hydrocoumaric acid methyl ester (IP-2), which were transformed from IP. It is worth mentioning that IP-2 is a new compound that has not been published. Their structures were analyzed based on their spectroscopic data. Moreover, a highly sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was used to characterize the metabolic pathways of P, IP, and their bio-transforming products in the reaction samples. In addition, the dampening effects against the oxidative stress of P, IP, and their bio-transforming products by human intestinal flora were estimated in vitro via the human colorectal cells (HCT116) and heterogeneous human epithelial colorectal adenocarcinoma cells (Caco-2) cell lines. The results showed that the metabolites have stronger activity than P and IP, which possibly provides a basis for elucidating the treating mechanisms of PC extract against inflammatory bowel disease.
Collapse
|
24
|
Mou X, Zhou DY, Liu YH, Liu K, Zhou D. Identification of potential therapeutic target genes in mouse mesangial cells associated with diabetic nephropathy using bioinformatics analysis. Exp Ther Med 2019; 17:4617-4627. [PMID: 31105790 PMCID: PMC6507521 DOI: 10.3892/etm.2019.7524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 04/09/2019] [Indexed: 01/08/2023] Open
Abstract
The aim of the present study was to identify genes under the effect of transforming growth factor-β (TGF-β1), high glucose (HG) and glucosamine (GlcN) in MES-13 mesangial cells and elucidate the molecular mechanisms of diabetic nephropathy (DN). The gene expression datasets GSE2557 and GSE2558 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were independently screened using the GEO2R online tool. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery. The protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes and Cytoscape software. The hub genes were identified by the NetworkAnalyzer plugin. Overlapping genes were subjected to molecular docking analysis using SystemsDock. A total of 202 upregulated and 158 downregulated DEGs from the HG-treated groups, 138 upregulated and 103 downregulated DEGs from the GlcN-treated groups, and 81 upregulated and 44 downregulated DEGs from the TGF-β1-treated groups were identified. The majority of the DEGs were independently enriched in 'nucleosome assembly', 'chromatin silencing' and 'xenobiotic glucuronidation'. In addition, KEGG pathways were significantly enriched in 'systemic lupus erythematosus', 'protein processing in endoplasmic reticulum' and 'aldarate metabolism pathway', and 'TNF signaling pathway' intersected in the TGF-β1-treated and HG-treated groups. In total, eight hub genes, Jun, prostaglandin-endoperoxide synthase 2 (Ptgs2), fibronectin 1 (Fn1), cyclin-dependent kinase (Cdk)2, Fos, heat shock protein family A (Hsp70) member 5 (Hspa5), Hsp90b1 and homo sapiens hypoxia upregulated 1 (Hyou1), and three overlapping genes, Ras homolog gene family, member B (RHOB), complement factor H (CFH) and Krüppel-like factor 15 (KLF15), were selected. Valsartan with RHOB, and fosinopril with CFH and KLF15 had preferential binding activity. In conclusion, Jun, Ptgs2, Fn1, Cdk2, Fos, Hspa5, Hsp90b1, Hyou1, RHOB, CFH and KLF15 may be potential therapeutic targets for mesangial cells associated with DN, which may provide insight into DN treatment strategies.
Collapse
Affiliation(s)
- Xin Mou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Di Yi Zhou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Ying Hui Liu
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Kaiyuan Liu
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Danyang Zhou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
25
|
Zhao LL, Makinde EA, Shah MA, Olatunji OJ, Panichayupakaranant P. Rhinacanthins-rich extract and rhinacanthin C ameliorate oxidative stress and inflammation in streptozotocin-nicotinamide-induced diabetic nephropathy. J Food Biochem 2019; 43:e12812. [PMID: 31353582 DOI: 10.1111/jfbc.12812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/31/2019] [Accepted: 02/03/2019] [Indexed: 02/05/2023]
Abstract
In this present study, rhinacanthins-rich extract (RRE) and rhinacanthin C (RC) the main bioactive constituent of Rhinacanthus nasutus was investigated for their protective effect against diabetic nephropathy (DN). Diabetes was induced by administering nicotinamide (100 mg/kg, i.p.)/streptozotocin (60 mg/kg, i.p.) and diabetic rats were orally administered with RRE and RC for 4 weeks. RRE and RC significantly reduced the kidney index, renal oxidative stress markers, and pro-inflammatory cytokines. Furthermore, RRE and RC increased renal levels of glutathione, superoxide dismutase, catalase, and attenuated diabetic induced renal damages. In conclusion, RRE and RC confer protective effect against DN through the inhibition of oxidative stress and inflammation and could be a potential medicinal or nutritional supplement for the prevention of DN. PRACTICAL APPLICATIONS: Rhinacanthus nasutus is a medicinal plant that is extensively used in Thai traditional medicine as an antibacterial, antifungal, antidiabetic, and anti-inflammatory agent. The plant is rich in naphthoquinones, which confer it with several excellent bioactivities. The rich extract of the leaves was prepared with three major bioactive components and the extract was evaluated for its renoprotective effect in diabetic rats. The results from this study provides valuable pharmacological information that supports the use of the plant, especially the rich extract in the prevention and treatment of diabetes and diabetic complications.
Collapse
Affiliation(s)
- Ling-Ling Zhao
- Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | | | - Muhammad Ajmal Shah
- Faculty of Pharmaceutical Sciences, Department of Pharmacognosy, Government College University, Faisalabad, Pakistan
| | | | - Pharkphoom Panichayupakaranant
- Faculty of Pharmaceutical Sciences, Department of Pharmacognosy and Pharmaceutical Botany, Prince of Songkla University, Hat Yai, Thailand.,Faculty of Pharmaceutical Sciences, Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|