1
|
Campisi M, Cannella L, Bordin A, Moretto A, Scapellato ML, Mason P, Liviero F, Pavanello S. Revealing the Hidden Impacts: Insights into Biological Aging and Long-Term Effects in Pauci- and Asymptomatic COVID-19 Healthcare Workers. Int J Mol Sci 2024; 25:8056. [PMID: 39125624 PMCID: PMC11311509 DOI: 10.3390/ijms25158056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
This study explores the role of inflammation and oxidative stress, hallmarks of COVID-19, in accelerating cellular biological aging. We investigated early molecular markers-DNA methylation age (DNAmAge) and telomere length (TL)-in blood leukocytes, nasal cells (NCs), and induced sputum (IS) one year post-infection in pauci- and asymptomatic healthcare workers (HCWs) infected during the first pandemic wave (February-May 2020), compared to COPD patients, model for "aged lung". Data from questionnaires, Work Ability Index (WAI), blood analyses, autonomic cardiac balance assessments, heart rate variability (HRV), and pulmonary function tests were collected. Elevated leukocyte DNAmAge significantly correlated with advancing age, male sex, daytime work, and an aged phenotype characterized by chronic diseases, elevated LDL and glycemia levels, medications affecting HRV, and declines in lung function, WAI, lymphocyte count, hemoglobin levels, and HRV (p < 0.05). Increasing age, LDL levels, job positions involving intensive patient contact, and higher leukocyte counts collectively contributed to shortened leukocyte TL (p < 0.05). Notably, HCWs exhibited accelerated biological aging in IS cells compared to both blood leukocytes (p ≤ 0.05) and NCs (p < 0.001) and were biologically older than COPD patients (p < 0.05). These findings suggest the need to monitor aging in pauci- and asymptomatic COVID-19 survivors, who represent the majority of the general population.
Collapse
Affiliation(s)
- Manuela Campisi
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
| | - Luana Cannella
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
| | - Anna Bordin
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Angelo Moretto
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Maria Luisa Scapellato
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Paola Mason
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Filippo Liviero
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Sofia Pavanello
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | | |
Collapse
|
2
|
Lian X, Li Y, Wang W, Zuo J, Yu T, Wang L, Song L. The Modification of H3K4me3 Enhanced the Expression of CgTLR3 in Hemocytes to Increase CgIL17-1 Production in the Immune Priming of Crassostrea gigas. Int J Mol Sci 2024; 25:1036. [PMID: 38256110 PMCID: PMC10816183 DOI: 10.3390/ijms25021036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Increasing evidence confirms that histone modification plays a critical role in preserving long-term immunological memory. Immune priming is a novel form of immunological memory recently verified in invertebrates. Toll-like receptor (TLR) signaling and cytokines have been reported to be involved in the immune priming of the Pacific oyster Crassostrea gigas. In the present study, the expression of Toll-like receptor 3 (CgTLR3), myeloid differentiation factor 88-2 (CgMyd88-2) and interleukin 17-1 (CgIL17-1) was found to be elevated in the hemocytes of C. gigas at 6 h after the secondary stimulation with Vibrio splendidus, which was significantly higher than that at 6 h after the primary stimulation (p < 0.05). A significant increase in histone H3 lysine 4 trimethylation (H3K4me3) enrichment was detected in the promoter region of the CgTLR3 gene at 7 d after the primary stimulation with inactivated V. splendidus (p < 0.05). After the treatment with a histone methyltransferase inhibitor (5'-methylthioadenosine, MTA), the level of H3K4me3 at the promoter of the CgTLR3 gene decreased significantly at 7 d after the primary stimulation with inactivated V. splendidus (p < 0.05), and the expression of CgTLR3, CgMyD88-2 and CgIL17-1 was significantly repressed at 6 h after the secondary stimulation with V. splendidus (p < 0.05). Conversely, the treatment with monomethyl fumarate (MEF, an inhibitor of histone demethylases) resulted in a significant increase in H3K4me3 enrichment levels at the CgTLR3 promoter at 7 d after the primary stimulation (p < 0.05), and the expression of CgTLR3, CgMyD88-2 and CgIL17-1 was observed to increase significantly at 6 h after the secondary stimulation (p < 0.05). These results suggested that H3K4me3 regulated MyD88-dependent TLR signaling in the hemocytes of C. gigas, which defined the role of histone modifications in invertebrate immune priming.
Collapse
Affiliation(s)
- Xingye Lian
- School of Life Science, Liaoning Normal University, Dalian 116029, China; (X.L.); (Y.L.)
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Yinan Li
- School of Life Science, Liaoning Normal University, Dalian 116029, China; (X.L.); (Y.L.)
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Jiajun Zuo
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Tianqi Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
3
|
Saksena NK, Reddy SB, Miranda-Saksena M, Cardoso THS, Silva EMA, Ferreira JC, Rabeh WM. SARS-CoV-2 variants, its recombinants and epigenomic exploitation of host defenses. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166836. [PMID: 37549720 DOI: 10.1016/j.bbadis.2023.166836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Since 2003, we have seen the emergence of novel viruses, such as SARS-CoV-1, MERS, ZIKA, swine flu virus H1N1, Marburg, Monkeypox, Ebola, and SARS-CoV-2, but none of them gained pandemic proportions similar to SARS-CoV-2. This could be attributed to unique viral traits, allowing its rapid global dissemination following its emergence in October 2019 in Wuhan, China, which appears to be primarily driven by the emergence of highly transmissible and virulent variants that also associate, in some cases, with severe disease and considerable mortality caused by fatal pneumonia, acute respiratory distress syndrome (ARDS) in infected individuals. Mechanistically, several factors are involved in viral pathogenesis, and epigenetic alterations take the front seat in host-virus interactions. The molecular basis of all viral infections, including SARS-CoV-2, tightly hinges on the transitory silencing of the host gene machinery via epigenetic modulation. SARS-CoV-2 also hijacks and subdues the host gene machinery, leading to epigenetic modulation of the critical host elements responsible for antiviral immunity. Epigenomics is a powerful, unexplored avenue that can provide a profound understanding of virus-host interactions and lead to the development of epigenome-based therapies and vaccines to counter viruses. This review discusses current developments in SARS-CoV-2 variation and its role in epigenetic modulation in infected hosts. This review provides an overview, especially in the context of emerging viral strains, their recombinants, and their possible roles in the epigenetic exploitation of host defense and viral pathogenesis. It provides insights into host-virus interactions at the molecular, genomic, and immunological levels and sheds light on the future of epigenomics-based therapies for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nitin K Saksena
- Victoria University, Footscray Campus, Melbourne, VIC. Australia.
| | - Srinivasa Bonam Reddy
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Thyago H S Cardoso
- OMICS Centre of Excellence, G42 Healthcare, Mazdar City, Abu Dhabi, United Arab Emirates.
| | - Edson M A Silva
- Science Division, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana C Ferreira
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| | - Wael M Rabeh
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Locatelli M, Faure-Dupuy S. Virus hijacking of host epigenetic machinery to impair immune response. J Virol 2023; 97:e0065823. [PMID: 37656959 PMCID: PMC10537592 DOI: 10.1128/jvi.00658-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023] Open
Abstract
Epigenetic modifications, such as DNA hypermethylation, histone acetylation/methylation, or nucleosome positioning, result in differential gene expression. These modifications can have an impact on various pathways, including host antiviral immune responses. In this review, we summarize the current understanding of epigenetic modifications induced by viruses to counteract host antiviral immune responses, which are crucial for establishing and maintaining infection of viruses. Finally, we provide insights into the potential use of epigenetic modulators in combating viral infections and virus-induced diseases.
Collapse
Affiliation(s)
- Maëlle Locatelli
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Suzanne Faure-Dupuy
- Université de Paris Cité, Institut Cochin, Inserm U1016-CNRS UMR8104, Paris, France
| |
Collapse
|
5
|
Behura A, Naik L, Patel S, Das M, Kumar A, Mishra A, Nayak DK, Manna D, Mishra A, Dhiman R. Involvement of epigenetics in affecting host immunity during SARS-CoV-2 infection. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166634. [PMID: 36577469 PMCID: PMC9790847 DOI: 10.1016/j.bbadis.2022.166634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 19 (COVID-19) is caused by a highly contagious RNA virus Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2), originated in December 2019 in Wuhan, China. Since then, it has become a global public health concern and leads the disease table with the highest mortality rate, highlighting the necessity for a thorough understanding of its biological properties. The intricate interaction between the virus and the host immune system gives rise to diverse implications of COVID-19. RNA viruses are known to hijack the host epigenetic mechanisms of immune cells to regulate antiviral defence. Epigenetics involves processes that alter gene expression without changing the DNA sequence, leading to heritable phenotypic changes. The epigenetic landscape consists of reversible modifications like chromatin remodelling, DNA/RNA methylation, and histone methylation/acetylation that regulates gene expression. The epigenetic machinery contributes to many aspects of SARS-CoV-2 pathogenesis, like global DNA methylation and receptor angiotensin-converting enzyme 2 (ACE2) methylation determines the viral entry inside the host, viral replication, and infection efficiency. Further, it is also reported to epigenetically regulate the expression of different host cytokines affecting antiviral response. The viral proteins of SARS-CoV-2 interact with various host epigenetic enzymes like histone deacetylases (HDACs) and bromodomain-containing proteins to antagonize cellular signalling. The central role of epigenetic factors in SARS-CoV-2 pathogenesis is now exploited as promising biomarkers and therapeutic targets against COVID-19. This review article highlights the ability of SARS-CoV-2 in regulating the host epigenetic landscape during infection leading to immune evasion. It also discusses the ongoing therapeutic approaches to curtail and control the viral outbreak.
Collapse
Affiliation(s)
- Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Debraj Manna
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
6
|
Epigenetic Targets and Pathways Linked to SARS-CoV-2 Infection and Pathology. Microorganisms 2023; 11:microorganisms11020341. [PMID: 36838306 PMCID: PMC9967649 DOI: 10.3390/microorganisms11020341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
The scale at which the SARS-CoV-2/COVID-19 pandemic has spread remains enormous. Provided the genetic makeup of the virus and humans is readily available, the quest for knowing the mechanism and epidemiology continues to prevail across the entire scientific community. Several aspects, including immunology, molecular biology, and host-pathogen interaction, are continuously being dug into for preparing the human race for future pandemics. The exact reasons for vast differences in symptoms, pathophysiological implications of COVID-infections, and mortality differences remain elusive. Hence, researchers are also looking beyond traditional genomics, proteomics, and transcriptomics approach, especially entrusting the environmental regulation of the genetic landscape of COVID-human interactions. In line with these questions lies a critical process called epigenetics. The epigenetic perturbations in both host and parasites are a matter of great interest to unravel the disparities in COVID-19 mortalities and pathology. This review provides a deeper insight into current research on the epigenetic landscape of SARS-CoV-2 infection in humans and potential targets for augmenting the ongoing investigation. It also explores the potential targets, pathways, and networks associated with the epigenetic regulation of processes involved in SARS-CoV-2 pathology.
Collapse
|
7
|
Nitin S, Srinivasa R. B, Monica MS, Thyago H. C. Incursions by severe acute respiratory syndrome coronavirus-2 on the host anti-viral immunity during mild, moderate, and severe coronavirus disease 2019 disease. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/ei.2022.00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in the human host can lead to various clinical manifestations, from symptomless carriers to mild to moderate to severe/critical illness. Therefore, the clinical classification of SARS-CoV-2 disease, based on severity, is a reliable way to predict disease states in SARS-CoV-2 infection. Recent studies on genomics, transcriptomics, epigenomics, and immunogenomics, along with spatial analysis of immune cells have delineated and defined the categorization of these disease groups using these high throughout technologies. These technologies hold the promise of providing not only a detailed but a holistic view of SARS-CoV-2-led pathogenesis. The main genomic, cellular, and immunologic features of each disease category, and what separates them spatially and molecularly are discussed in this brief review to provide a foundational spatial understanding of SARS-CoV-2 immunopathogenesis.
Collapse
Affiliation(s)
- Saksena Nitin
- Institute for Health and Sport, Victoria University, Footscray Campus, Melbourne VIC. 3011, Australia; Aegros Therapeutics Pty Ltd, Macquarie Park, Sydney 2019, Australia
| | - Bonam Srinivasa R.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Miranda-Saksena Monica
- Westmead Institute of Medical Research (WIMR), Herpes Virus Laboratory, Sydney 2145, Australia
| | - Cardoso Thyago H.
- OMICS Centre of Excellence, G42 Healthcare, Mazdar City, Abu Dhabi 3079, United Arab Emirates
| |
Collapse
|
8
|
Kumawat A, Namsani S, Pramanik D, Roy S, Singh JK. Integrated docking and enhanced sampling-based selection of repurposing drugs for SARS-CoV-2 by targeting host dependent factors. J Biomol Struct Dyn 2022; 40:9897-9908. [PMID: 34155961 PMCID: PMC8220434 DOI: 10.1080/07391102.2021.1937319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since the onset of global pandemic, the most focused research currently in progress is the development of potential drug candidates and clinical trials of existing FDA approved drugs for other relevant diseases, in order to repurpose them for the COVID-19. At the same time, several high throughput screenings of drugs have been reported to inhibit the viral components during the early course of infection but with little proven efficacies. Here, we investigate the drug repurposing strategies to counteract the coronavirus infection which involves several potential targetable host proteins involved in viral replication and disease progression. We report the high throughput analysis of literature-derived repurposing drug candidates that can be used to target the genetic regulators known to interact with viral proteins based on experimental and interactome studies. In this work we have performed integrated molecular docking followed by molecular dynamics (MD) simulations and free energy calculations through an expedite in silico process where the number of screened candidates reduces sequentially at every step based on physicochemical interactions. We elucidate that in addition to the pre-clinical and FDA approved drugs that targets specific regulatory proteins, a range of chemical compounds (Nafamostat, Chloramphenicol, Ponatinib) binds to the other gene transcription and translation regulatory proteins with higher affinity and may harbour potential for therapeutic uses. There is a rapid growing interest in the development of combination therapy for COVID-19 to target multiple enzymes/pathways. Our in silico approach would be useful in generating leads for experimental screening for rapid drug repurposing against SARS-CoV-2 interacting host proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amit Kumawat
- Prescience Insilico Private Limited, Bangalore, India,Department of Chemical Engineering, Indian Institute of Technology, Kanpur, India
| | | | - Debabrata Pramanik
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, India
| | - Sudip Roy
- Prescience Insilico Private Limited, Bangalore, India,CONTACT Sudip Roy ;
| | - Jayant K. Singh
- Prescience Insilico Private Limited, Bangalore, India,Department of Chemical Engineering, Indian Institute of Technology, Kanpur, India,Jayant K. Singh
| |
Collapse
|
9
|
Papagerakis S, Said R, Ketabat F, Mahmood R, Pundir M, Lobanova L, Guenther G, Pannone G, Lavender K, McAlpin BR, Moreau A, Chen X, Papagerakis P. When the clock ticks wrong with COVID-19. Clin Transl Med 2022; 12:e949. [PMID: 36394205 PMCID: PMC9670202 DOI: 10.1002/ctm2.949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the coronavirus family that causes the novel coronavirus disease first diagnosed in 2019 (COVID-19). Although many studies have been carried out in recent months to determine why the disease clinical presentations and outcomes can vary significantly from asymptomatic to severe or lethal, the underlying mechanisms are not fully understood. It is likely that unique individual characteristics can strongly influence the broad disease variability; thus, tailored diagnostic and therapeutic approaches are needed to improve clinical outcomes. The circadian clock is a critical regulatory mechanism orchestrating major physiological and pathological processes. It is generally accepted that more than half of the cell-specific genes in any given organ are under circadian control. Although it is known that a specific role of the circadian clock is to coordinate the immune system's steady-state function and response to infectious threats, the links between the circadian clock and SARS-CoV-2 infection are only now emerging. How inter-individual variability of the circadian profile and its dysregulation may play a role in the differences noted in the COVID-19-related disease presentations, and outcome remains largely underinvestigated. This review summarizes the current evidence on the potential links between circadian clock dysregulation and SARS-CoV-2 infection susceptibility, disease presentation and progression, and clinical outcomes. Further research in this area may contribute towards novel circadian-centred prognostic, diagnostic and therapeutic approaches for COVID-19 in the era of precision health.
Collapse
Affiliation(s)
- Silvana Papagerakis
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Surgery, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Biochemistry, Microbiology and Immunology, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Otolaryngology – Head and Neck Surgery, Medical SchoolThe University of MichiganAnn ArborMichiganUSA
| | - Raed Said
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Surgery, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Anatomy, Physiology and Pharmacology, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Farinaz Ketabat
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Razi Mahmood
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Surgery, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Meenakshi Pundir
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Liubov Lobanova
- Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Greg Guenther
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Giuseppe Pannone
- Anatomic Pathology Unit, Department of Clinic and Experimental MedicineUniversity of FoggiaFoggiaItaly
| | - Kerry Lavender
- Department of Biochemistry, Microbiology and Immunology, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Blake R. McAlpin
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal DiseasesCentre Hospitalier Universitaire (CHU) Sainte‐Justine Research CenterMontrealQuebecCanada,Department of Stomatology, Faculty of Dentistry and Department of Biochemistry and Molecular Medicine, Faculty of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Xiongbiao Chen
- Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Mechanical Engineering, School of EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Petros Papagerakis
- Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
10
|
Foolchand A, Mazaleni S, Ghazi T, Chuturgoon AA. A Review: Highlighting the Links between Epigenetics, COVID-19 Infection, and Vitamin D. Int J Mol Sci 2022; 23:12292. [PMID: 36293144 PMCID: PMC9603374 DOI: 10.3390/ijms232012292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The highly transmittable and infectious COVID-19 remains a major threat worldwide, with the elderly and comorbid individuals being the most vulnerable. While vaccines are currently available, therapeutic drugs will help ease the viral outbreak and prevent serious health outcomes. Epigenetic modifications regulate gene expression through changes in chromatin structure and have been linked to viral pathophysiology. Since epigenetic modifications contribute to the life cycle of the virus and host immune responses to infection, epigenetic drugs are promising treatment targets to ameliorate COVID-19. Deficiency of the multifunctional secosteroid hormone vitamin D is a global health threat. Vitamin D and its receptor function to regulate genes involved in immunity, apoptosis, proliferation, differentiation, and inflammation. Amassed evidence also indicates the biological relations of vitamin D with reduced disease risk, while its receptor can be modulated by epigenetic mechanisms. The immunomodulatory effects of vitamin D suggest a role for vitamin D as a COVID-19 therapeutic agent. Therefore, this review highlights the epigenetic effects on COVID-19 and vitamin D while also proposing a role for vitamin D in COVID-19 infections.
Collapse
Affiliation(s)
| | | | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4041, South Africa
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4041, South Africa
| |
Collapse
|
11
|
Delshad M, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. Host genetic diversity and genetic variations of SARS-CoV-2 in COVID-19 pathogenesis and the effectiveness of vaccination. Int Immunopharmacol 2022; 111:109128. [PMID: 35963158 PMCID: PMC9359488 DOI: 10.1016/j.intimp.2022.109128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the outbreak of coronavirus disease 2019 (COVID-19), has shown a vast range of clinical manifestations from asymptomatic to life-threatening symptoms. To figure out the cause of this heterogeneity, studies demonstrated the trace of genetic diversities whether in the hosts or the virus itself. With this regard, this review provides a comprehensive overview of how host genetic such as those related to the entry of the virus, the immune-related genes, gender-related genes, disease-related genes, and also host epigenetic could influence the severity of COVID-19. Besides, the mutations in the genome of SARS-CoV-2 __leading to emerging of new variants__ per se affect the affinity of the virus to the host cells and enhance the immune escape capacity. The current review discusses these variants and also the latest data about vaccination effectiveness facing the most important variants.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Faridl M, Mellyani K, Khoirunnisa K, Septiani P, Giri-Rachman EA, Nugrahapraja H, Rahmawati E, Alamanda CNC, Ristandi RB, Rachman RW, Robiani R, Fibriani A. RNA sequence analysis of nasopharyngeal swabs from asymptomatic and mildly symptomatic patients with COVID-19. Int J Infect Dis 2022; 122:449-460. [PMID: 35760384 PMCID: PMC9233886 DOI: 10.1016/j.ijid.2022.06.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES The characterization of asymptomatic and mildly symptomatic patients with COVID-19 by observing changes in gene expression profile and possible bacterial coinfection is relevant to be investigated. We aimed to identify transcriptomic and coinfection profiles in both groups of patients. METHODS A ribonucleic acid (RNA) sequence analysis on nasopharyngeal swabs were performed using a shotgun sequencing pipeline. Differential gene analysis, viral genome assembly, and metagenomics analysis were further performed using the retrieved data. RESULTS Both groups of patients underwent a cilia modification and mRNA splicing. Modulations in macroautophagy, epigenetics, and cell cycle processes were observed specifically in the asymptomatic group. Modulation in the RNA transport was found specifically in the mildly symptomatic group. The mildly symptomatic group showed modulation in the RNA transport and upregulation of autophagy regulator genes and genes in the complement system. No link between viral variants and disease severity was found. Microbiome analysis revealed the elevation of Streptococcus pneumoniae and Veillonella parvula proportion in symptomatic patients. CONCLUSION A reduction in the autophagy influx and modification in the epigenetic profile might be involved in halting the disease progression. A global dysregulation of RNA processing and translation might cause more severe outcomes in symptomatic individuals. Coinfection by opportunistic microflora should be taken into account when assessing the possible outcome of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Miftahul Faridl
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | - Karlina Mellyani
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | - Karimatu Khoirunnisa
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | - Popi Septiani
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | | | - Husna Nugrahapraja
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | - Ema Rahmawati
- West Java Health Laboratory, Bandung, West Java, Indonesia
| | | | | | | | - Rini Robiani
- West Java Health Laboratory, Bandung, West Java, Indonesia
| | - Azzania Fibriani
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, West Java, Indonesia,Corresponding author at: School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, West Java, Indonesia
| |
Collapse
|
13
|
Patra SK, Szyf M. Epigenetic perspectives of COVID-19: Virus infection to disease progression and therapeutic control. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166527. [PMID: 36002132 PMCID: PMC9393109 DOI: 10.1016/j.bbadis.2022.166527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
COVID-19 has caused numerous deaths as well as imposed social isolation and upheaval world-wide. Although, the genome and the composition of the virus, the entry process and replication mechanisms are well investigated from by several laboratories across the world, there are many unknown remaining questions. For example, what are the functions of membrane lipids during entry, packaging and exit of virus particles? Also, the metabolic aspects of the infected tissue cells are poorly understood. In the course of virus replication and formation of virus particles within the host cell, the enhanced metabolic activities of the host is directly proportional to viral loads. The epigenetic landscape of the host cells is also altered, particularly the expression/repression of genes associated with cellular metabolism as well as cellular processes that are antagonistic to the virus. Metabolic pathways are enzyme driven processes and the expression profile and mechanism of regulations of the respective genes encoding those enzymes during the course of pathogen invasion might be highly informative on the course of the disease. Recently, the metabolic profile of the patients' sera have been analysed from few patients. In view of this, and to gain further insights into the roles that epigenetic mechanisms might play in this scenario in regulation of metabolic pathways during the progression of COVID-19 are discussed and summarised in this contribution for ensuring best therapy.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, McIntyre Medical Sciences Building, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
14
|
Kakkanas A, Karamichali E, Koufogeorgou EI, Kotsakis SD, Georgopoulou U, Foka P. Targeting the YXXΦ Motifs of the SARS Coronaviruses 1 and 2 ORF3a Peptides by In Silico Analysis to Predict Novel Virus-Host Interactions. Biomolecules 2022; 12:1052. [PMID: 36008946 PMCID: PMC9405953 DOI: 10.3390/biom12081052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/08/2023] Open
Abstract
The emerging SARS-CoV and SARS-CoV-2 belong to the family of "common cold" RNA coronaviruses, and they are responsible for the 2003 epidemic and the current pandemic with over 6.3 M deaths worldwide. The ORF3a gene is conserved in both viruses and codes for the accessory protein ORF3a, with unclear functions, possibly related to viral virulence and pathogenesis. The tyrosine-based YXXΦ motif (Φ: bulky hydrophobic residue-L/I/M/V/F) was originally discovered to mediate clathrin-dependent endocytosis of membrane-spanning proteins. Many viruses employ the YXXΦ motif to achieve efficient receptor-guided internalisation in host cells, maintain the structural integrity of their capsids and enhance viral replication. Importantly, this motif has been recently identified on the ORF3a proteins of SARS-CoV and SARS-CoV-2. Given that the ORF3a aa sequence is not fully conserved between the two SARS viruses, we aimed to map in silico structural differences and putative sequence-driven alterations of regulatory elements within and adjacently to the YXXΦ motifs that could predict variations in ORF3a functions. Using robust bioinformatics tools, we investigated the presence of relevant post-translational modifications and the YXXΦ motif involvement in protein-protein interactions. Our study suggests that the predicted YXXΦ-related features may confer specific-yet to be discovered-functions to ORF3a proteins, significant to the new virus and related to enhanced propagation, host immune regulation and virulence.
Collapse
Affiliation(s)
- Athanassios Kakkanas
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Eirini Karamichali
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Efthymia Ioanna Koufogeorgou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Stathis D. Kotsakis
- Laboratory of Bacteriology, Hellenic Pasteur Institute, 115-21 Athens, Greece;
| | - Urania Georgopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Pelagia Foka
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| |
Collapse
|
15
|
Attia MH. A cautionary note on altered pace of aging in the COVID-19 era. Forensic Sci Int Genet 2022; 59:102724. [PMID: 35598567 PMCID: PMC9112667 DOI: 10.1016/j.fsigen.2022.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is highly age-dependent due to hi-jacking the molecular control of the immune cells by the severe acute respiratory syndrome-corona virus 2 (SARS-CoV-2) leading to aberrant DNA methylation (DNAm) pattern of blood in comparison to normal individuals. These epigenetic modifications have been linked to perturbations to the epigenetic clock, development of long COVID-19 syndrome, and all-cause mortality risk. I reviewed the effects of COVID-19 on different molecular age markers such as the DNAm, telomere length (TL), and signal joint T-cell receptor excision circle (sjTREC). Integrating the accumulated clinical research data, COVID-19 and novel medical management may alter the pace of aging in adult individuals (<60 years). As such, COVID-19 might be a confounder in epigenetic age estimation similar to life style diversities, pathogens and pathologies which may influence the interpretation of DNAm data. Similarly, the SARS-CoV-2 affects T-lymphocyte function with possible influence on sjTREC levels. In contrast, TL measurements performed years before the SARS-CoV-2 pandemic proved that short TL predisposes to severe COVID- 19 independently from chronological age. However, the persistence of COVID-19 epigenetic scars and the durability of the immune response after vaccination and their effect on the ongoing pace of aging are still unknown. In the light of these data, the heterogeneous nature of the samples in these studies mandates a systematic evaluation of the currrent methods. SARS-CoV-2 may modify the reliability of the age estimation models in real casework because blood is the most common biological sample encountered in forensic contexts.
Collapse
|
16
|
Huoman J, Sayyab S, Apostolou E, Karlsson L, Porcile L, Rizwan M, Sharma S, Das J, Rosén A, Lerm M. Epigenetic rewiring of pathways related to odour perception in immune cells exposed to SARS-CoV-2 in vivo and in vitro. Epigenetics 2022; 17:1875-1891. [PMID: 35758003 PMCID: PMC9665140 DOI: 10.1080/15592294.2022.2089471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A majority of SARS-CoV-2 recoverees develop only mild-to-moderate symptoms, while some remain completely asymptomatic. Although viruses, including SARS-CoV-2, may evade host immune responses by epigenetic mechanisms including DNA methylation, little is known about whether these modifications are important in defence against and healthy recovery from COVID-19 in the host. To this end, epigenome-wide DNA methylation patterns from COVID-19 convalescents were compared to uninfected controls from before and after the pandemic. Peripheral blood mononuclear cell (PBMC) DNA was extracted from uninfected controls, COVID-19 convalescents, and symptom-free individuals with SARS-CoV-2-specific T cell-responses, as well as from PBMCs stimulated in vitro with SARS-CoV-2. Subsequently, the Illumina MethylationEPIC 850K array was performed, and statistical/bioinformatic analyses comprised differential DNA methylation, pathway over-representation, and module identification analyses. Differential DNA methylation patterns distinguished COVID-19 convalescents from uninfected controls, with similar results in an experimental SARS-CoV-2 infection model. A SARS-CoV-2-induced module was identified in vivo, comprising 66 genes of which six (TP53, INS, HSPA4, SP1, ESR1, and FAS) were present in corresponding in vitro analyses. Over-representation analyses revealed involvement in Wnt, muscarinic acetylcholine receptor signalling, and gonadotropin-releasing hormone receptor pathways. Furthermore, numerous differentially methylated and network genes from both settings interacted with the SARS-CoV-2 interactome. Altered DNA methylation patterns of COVID-19 convalescents suggest recovery from mild-to-moderate SARS-CoV-2 infection leaves longstanding epigenetic traces. Both in vitro and in vivo exposure caused epigenetic modulation of pathways thataffect odour perception. Future studies should determine whether this reflects host-induced protective antiviral defense or targeted viral hijacking to evade host defence.
Collapse
Affiliation(s)
- Johanna Huoman
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Shumaila Sayyab
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Eirini Apostolou
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lovisa Karlsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lucas Porcile
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Muhammad Rizwan
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sumit Sharma
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jyotirmoy Das
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anders Rosén
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Lerm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
17
|
Pang APS, Higgins-Chen AT, Comite F, Raica I, Arboleda C, Went H, Mendez T, Schotsaert M, Dwaraka V, Smith R, Levine ME, Ndhlovu LC, Corley MJ. Longitudinal Study of DNA Methylation and Epigenetic Clocks Prior to and Following Test-Confirmed COVID-19 and mRNA Vaccination. Front Genet 2022; 13:819749. [PMID: 35719387 PMCID: PMC9203887 DOI: 10.3389/fgene.2022.819749] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/25/2022] [Indexed: 01/01/2023] Open
Abstract
The host epigenetic landscape rapidly changes during SARS-CoV-2 infection, and evidence suggest that severe COVID-19 is associated with durable scars to the epigenome. Specifically, aberrant DNA methylation changes in immune cells and alterations to epigenetic clocks in blood relate to severe COVID-19. However, a longitudinal assessment of DNA methylation states and epigenetic clocks in blood from healthy individuals prior to and following test-confirmed non-hospitalized COVID-19 has not been performed. Moreover, the impact of mRNA COVID-19 vaccines upon the host epigenome remains understudied. Here, we first examined DNA methylation states in the blood of 21 participants prior to and following test-confirmed COVID-19 diagnosis at a median time frame of 8.35 weeks; 756 CpGs were identified as differentially methylated following COVID-19 diagnosis in blood at an FDR adjusted p-value < 0.05. These CpGs were enriched in the gene body, and the northern and southern shelf regions of genes involved in metabolic pathways. Integrative analysis revealed overlap among genes identified in transcriptional SARS-CoV-2 infection datasets. Principal component-based epigenetic clock estimates of PhenoAge and GrimAge significantly increased in people over 50 following infection by an average of 2.1 and 0.84 years. In contrast, PCPhenoAge significantly decreased in people fewer than 50 following infection by an average of 2.06 years. This observed divergence in epigenetic clocks following COVID-19 was related to age and immune cell-type compositional changes in CD4+ T cells, B cells, granulocytes, plasmablasts, exhausted T cells, and naïve T cells. Complementary longitudinal epigenetic clock analyses of 36 participants prior to and following Pfizer and Moderna mRNA-based COVID-19 vaccination revealed that vaccination significantly reduced principal component-based Horvath epigenetic clock estimates in people over 50 by an average of 3.91 years for those who received Moderna. This reduction in epigenetic clock estimates was significantly related to chronological age and immune cell-type compositional changes in B cells and plasmablasts pre- and post-vaccination. These findings suggest the potential utility of epigenetic clocks as a biomarker of COVID-19 vaccine responses. Future research will need to unravel the significance and durability of short-term changes in epigenetic age related to COVID-19 exposure and mRNA vaccination.
Collapse
Affiliation(s)
- Alina P. S. Pang
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Albert T. Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- VA Connecticut Healthcare System, West Haven, CT, United States
| | - Florence Comite
- Comite Center for Precision Medicine & Health, New York, NY, United States
- Lenox Hill Hospital/Northwell, New York, NY, United States
| | - Ioana Raica
- Comite Center for Precision Medicine & Health, New York, NY, United States
| | | | | | | | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Ryan Smith
- TruDiagnostic, Lexington, KY, United States
| | - Morgan E. Levine
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Lishomwa C. Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Michael J. Corley
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
18
|
Li Z, Mei Z, Ding S, Chen L, Li H, Feng K, Huang T, Cai YD. Identifying Methylation Signatures and Rules for COVID-19 With Machine Learning Methods. Front Mol Biosci 2022; 9:908080. [PMID: 35620480 PMCID: PMC9127386 DOI: 10.3389/fmolb.2022.908080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
The occurrence of coronavirus disease 2019 (COVID-19) has become a serious challenge to global public health. Definitive and effective treatments for COVID-19 are still lacking, and targeted antiviral drugs are not available. In addition, viruses can regulate host innate immunity and antiviral processes through the epigenome to promote viral self-replication and disease progression. In this study, we first analyzed the methylation dataset of COVID-19 using the Monte Carlo feature selection method to obtain a feature list. This feature list was subjected to the incremental feature selection method combined with a decision tree algorithm to extract key biomarkers, build effective classification models and classification rules that can remarkably distinguish patients with or without COVID-19. EPSTI1, NACAP1, SHROOM3, C19ORF35, and MX1 as the essential features play important roles in the infection and immune response to novel coronavirus. The six significant rules extracted from the optimal classifier quantitatively explained the expression pattern of COVID-19. Therefore, these findings validated that our method can distinguish COVID-19 at the methylation level and provide guidance for the diagnosis and treatment of COVID-19.
Collapse
Affiliation(s)
- Zhandong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Zi Mei
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Shijian Ding
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Hao Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| |
Collapse
|
19
|
Cao X, Li W, Wang T, Ran D, Davalos V, Planas-Serra L, Pujol A, Esteller M, Wang X, Yu H. Accelerated biological aging in COVID-19 patients. Nat Commun 2022; 13:2135. [PMID: 35440567 PMCID: PMC9018863 DOI: 10.1038/s41467-022-29801-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/30/2022] [Indexed: 01/01/2023] Open
Abstract
Chronological age is a risk factor for SARS-CoV-2 infection and severe COVID-19. Previous findings indicate that epigenetic age could be altered in viral infection. However, the epigenetic aging in COVID-19 has not been well studied. In this study, DNA methylation of the blood samples from 232 healthy individuals and 413 COVID-19 patients is profiled using EPIC methylation array. Epigenetic ages of each individual are determined by applying epigenetic clocks and telomere length estimator to the methylation profile of the individual. Epigenetic age acceleration is calculated and compared between groups. We observe strong correlations between the epigenetic clocks and individual's chronological age (r > 0.8, p < 0.0001). We also find the increasing acceleration of epigenetic aging and telomere attrition in the sequential blood samples from healthy individuals and infected patients developing non-severe and severe COVID-19. In addition, the longitudinal DNA methylation profiling analysis find that the accumulation of epigenetic aging from COVID-19 syndrome could be partly reversed at late clinic phases in some patients. In conclusion, accelerated epigenetic aging is associated with the risk of SARS-CoV-2 infection and developing severe COVID-19. In addition, the accumulation of epigenetic aging from COVID-19 may contribute to the post-COVID-19 syndrome among survivors.
Collapse
Affiliation(s)
- Xue Cao
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjuan Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Wang
- Research & Development, Thermo Fisher Scientific Inc., Los Angeles, CA, USA
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Veronica Davalos
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.,Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain.,Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Xiaolin Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huichuan Yu
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Sixto-López Y, Correa-Basurto J. HDAC inhibition as neuroprotection in COVID-19 infection. Curr Top Med Chem 2022; 22:1369-1378. [PMID: 35240959 DOI: 10.2174/1568026622666220303113445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
The SARS-CoV-2 virus is responsible of COVID-19 affecting millions of humans around the world. COVID-19 shows diverse clinical symptoms (fever, cough, fatigue, diarrhea, body aches, headaches, anosmia and hyposmia). Approximately 30% of the patients with COVID-19 showed neurological symptoms, these going from mild to severe manifestations including headache, dizziness, impaired consciousness, encephalopathy, anosmia, hypogeusia, hyposmia, psychology and psychiatry among others. The neurotropism of SARS-CoV-2 virus explains its neuroinvasion provoking neurological damage as acute demyelination, neuroinflammation etc. At molecular level, the COVID-19 patients had higher levels of cytokines and chemokines known as cytokines storms which disrupt the blood brain barrier allowing the entrance of monocytes and lymphocytes causing neuroinflammation, neurodegeneration and demyelination. In addition, ischemic, hemorrhagic strokes, seizures and encephalopathy have been observed due to the proinflammatory cytokines. In this sense, to avoid or decrease neurological damage due to SARS-CoV-2 infection, an early neuroprotective management should be adopted. Several approaches can be used; one of them includes the use of HDAC inhibitors (HDACi) due to their neuroprotective effects. Also, the HDACi down regulates the pro-inflammatory cytokines (IL-6 and TNF- decreasing the neurotoxicity. HDACi can also avoid and prevent the entrance of the virus into the Central nervous System (CNS) as well as decrease the virus replication by downregulating the virus receptors. Here we review the mechanisms that could explain how the SARS-CoV-2 virus could reach the CNS, induce the neurological damage and symptoms, as well as the possibility to use HDACi as neuroprotective therapy.
Collapse
Affiliation(s)
- Yudibeth Sixto-López
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México. Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Miguel Hidalgo, Mexico City, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México. Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Miguel Hidalgo, Mexico City, Mexico
| |
Collapse
|
21
|
de Carvalho Lima EN, Octaviano ALM, Piqueira JRC, Diaz RS, Justo JF. Coronavirus and Carbon Nanotubes: Seeking Immunological Relationships to Discover Immunotherapeutic Possibilities. Int J Nanomedicine 2022; 17:751-781. [PMID: 35241912 PMCID: PMC8887185 DOI: 10.2147/ijn.s341890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Since December 2019, the world has faced an unprecedented pandemic crisis due to a new coronavirus disease, coronavirus disease-2019 (COVID-19), which has instigated intensive studies on prevention and treatment possibilities. Here, we investigate the relationships between the immune activation induced by three coronaviruses associated with recent outbreaks, with special attention to SARS-CoV-2, the causative agent of COVID-19, and the immune activation induced by carbon nanotubes (CNTs) to understand the points of convergence in immune induction and modulation. Evidence suggests that CNTs are among the most promising materials for use as immunotherapeutic agents. Therefore, this investigation explores new possibilities of effective immunotherapies for COVID-19. This study aimed to raise interest and knowledge about the use of CNTs as immunotherapeutic agents in coronavirus treatment. Thus, we summarize the most important immunological aspects of various coronavirus infections and describe key advances and challenges in using CNTs as immunotherapeutic agents against viral infections and the activation of the immune response induced by CNTs, which can shed light on the immunotherapeutic possibilities of CNTs.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, SP, CEP 05508-010, Brazil
| | - Ana Luiza Moraes Octaviano
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, SP, CEP 05508-010, Brazil
| |
Collapse
|
22
|
Salvador-Pinos CA, Martinez EZ, Dueñas-Matute SE, Aguinaga RRD, Jácome JC, Michelena-Tupiza S, Cárdenas-Morales V. Health of the Newborn and Breastfeeding during the COVID-19 Pandemic: A Literature Review. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRICIA : REVISTA DA FEDERACAO BRASILEIRA DAS SOCIEDADES DE GINECOLOGIA E OBSTETRICIA 2022; 44:311-318. [PMID: 35100631 PMCID: PMC9948297 DOI: 10.1055/s-0041-1741449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The present article presents a literature review concerning the microbiota of breast milk and the influence of epigenetics in the susceptibility to COVID-19. METHODS A literature review. RESULTS Breastfeeding transfers microbiota, nutrients, diverse white blood cells, prebiotics, hormones, and antibodies to the baby, which provide short- and long-term immunological protection against several infectious, gastrointestinal, and respiratory illnesses. The little evidence available shows that breast milk very rarely carries the SARS-CoV-2 virus, and even in those cases, it has been discarded as the source of contagion. CONCLUSION The reviewed studies show evidence of a beneficial effect of breastfeeding and highlights its importance on the current pandemic due to the immune reinforcement that it provides. Breastfed individuals showed better clinical response due to the influence on the microbiota and to the nutritional and immune contribution provided by breast milk, compared with those who were not breastfed.
Collapse
Affiliation(s)
| | - Edson Zangiacomi Martinez
- Department of Social Medicine, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Susana Eulalia Dueñas-Matute
- Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito, Ecuador.,Department of Social Medicine, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Juan Carlos Jácome
- Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito, Ecuador
| | | | | |
Collapse
|
23
|
Destoumieux-Garzón D, Matthies-Wiesler F, Bierne N, Binot A, Boissier J, Devouge A, Garric J, Gruetzmacher K, Grunau C, Guégan JF, Hurtrez-Boussès S, Huss A, Morand S, Palmer C, Sarigiannis D, Vermeulen R, Barouki R. Getting out of crises: Environmental, social-ecological and evolutionary research is needed to avoid future risks of pandemics. ENVIRONMENT INTERNATIONAL 2022; 158:106915. [PMID: 34634622 PMCID: PMC8500703 DOI: 10.1016/j.envint.2021.106915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 05/05/2023]
Abstract
The implementation of One Health/EcoHealth/Planetary Health approaches has been identified as key (i) to address the strong interconnections between risk for pandemics, climate change and biodiversity loss and (ii) to develop and implement solutions to these interlinked crises. As a response to the multiple calls from scientists on that subject, we have here proposed seven long-term research questions regarding COVID-19 and emerging infectious diseases (EIDs) that are based on effective integration of environmental, ecological, evolutionary, and social sciences to better anticipate and mitigate EIDs. Research needs cover the social ecology of infectious disease agents, their evolution, the determinants of susceptibility of humans and animals to infections, and the human and ecological factors accelerating infectious disease emergence. For comprehensive investigation, they include the development of nature-based solutions to interlinked global planetary crises, addressing ethical and philosophical questions regarding the relationship of humans to nature and regarding transformative changes to safeguard the environment and human health. In support of this research, we propose the implementation of innovative multidisciplinary facilities embedded in social ecosystems locally: ecological health observatories and living laboratories. This work was carried out in the frame of the European Community project HERA (www.HERAresearchEU.eu), which aims to set priorities for an environment, climate and health research agenda in the European Union by adopting a systemic approach in the face of global environmental change.
Collapse
Affiliation(s)
| | - Franziska Matthies-Wiesler
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Germany.
| | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Aurélie Binot
- Animals, health, Territories, Risks and Ecosystem (ASTRE), University of Montpellier, Agricultural Research for Development (CIRAD), National Research Institute for Agriculture, Food and the Environment (INRAE), Montpellier, France
| | - Jérôme Boissier
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | | | - Jeanne Garric
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR Riverly, F-69625 Villeurbanne, France
| | - Kim Gruetzmacher
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin Germany
| | - Christoph Grunau
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Jean-François Guégan
- Animals, health, Territories, Risks and Ecosystem (ASTRE), University of Montpellier, Agricultural Research for Development (CIRAD), National Research Institute for Agriculture, Food and the Environment (INRAE), Montpellier, France; MIVEGEC, Univ Montpellier, IRD, CNRS, Montpellier, France
| | - Sylvie Hurtrez-Boussès
- MIVEGEC, Univ Montpellier, IRD, CNRS, Montpellier, France; Département de Biologie-Ecologie, Faculté des Sciences, Univ Montpellier, Montpellier, France
| | | | - Serge Morand
- Centre National de la Recherche Scientifique - UMR ASTRE, CIRAD, INRAE - Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Clare Palmer
- Department of Philosophy, YMCA Building, Texas A&M University, College Station, TX 77843, USA
| | - Denis Sarigiannis
- Aristotle University of Thessaloniki, Thessaloniki 54164, Greece; University School for Advanced Study IUSS, Pavia, Italy
| | | | | |
Collapse
|
24
|
Sethumadhavan DV, Jabeena CA, Govindaraju G, Soman A, Rajavelu A. The severity of SARS-CoV-2 infection is dictated by host factors? Epigenetic perspectives. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100079. [PMID: 34725650 PMCID: PMC8550886 DOI: 10.1016/j.crmicr.2021.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/02/2021] [Accepted: 10/24/2021] [Indexed: 12/15/2022] Open
Abstract
The emergence of COVID-19, caused by SARS-CoV-2 poses a significant threat to humans as it is highly contagious with increasing mortality. There exists a high degree of heterogeneity in the mortality rates of COVID-19 across the globe. There are multiple speculations on the varying degree of mortality. Still, all the clinical reports have indicated that preexisting chronic diseases like hypertension, diabetes, chronic obstructive pulmonary disease (COPD), kidney disorders, and cardiovascular diseases are associated with the increased risk for high mortality in SARS-CoV-2 infected patients. It is worth noting that host factors, mainly epigenetic factors could play a significant role in deciding the outcome of COVID-19 diseases. Over the recent years, it is evident that chronic diseases are developed due to altered epigenome that includes a selective loss/gain of DNA and histone methylation on the chromatin of the cells. Since, there is a high positive correlation between chronic diseases and elevated mortality due to SARS-CoV-2, in this review; we discuss the overall picture of the aberrant epigenome map in varying chronic ailments and its implications in COVID-19 disease severity and high mortality.
Collapse
Affiliation(s)
- Devadathan Valiyamangalath Sethumadhavan
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India.,Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India
| | - C A Jabeena
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India.,Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Gayathri Govindaraju
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India.,Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Aparna Soman
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India
| | - Arumugam Rajavelu
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India.,Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600 036, India
| |
Collapse
|
25
|
Rajeev R, Dwivedi AP, Sinha A, Agarwaal V, Dev RR, Kar A, Khosla S. Epigenetic interaction of microbes with their mammalian hosts. J Biosci 2021. [PMID: 34728591 PMCID: PMC8550911 DOI: 10.1007/s12038-021-00215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The interaction of microbiota with its host has the ability to alter the cellular functions of both, through several mechanisms. Recent work, from many laboratories including our own, has shown that epigenetic mechanisms play an important role in the alteration of these cellular functions. Epigenetics broadly refers to change in the phenotype without a corresponding change in the DNA sequence. This change is usually brought by epigenetic modifications of the DNA itself, the histone proteins associated with the DNA in the chromatin, non-coding RNA or the modifications of the transcribed RNA. These modifications, also known as epigenetic code, do not change the DNA sequence but alter the expression level of specific genes. Microorganisms seem to have learned how to modify the host epigenetic code and modulate the host transcriptome in their favour. In this review, we explore the literature that describes the epigenetic interaction of bacteria, fungi and viruses, with their mammalian hosts.
Collapse
|
26
|
Alveolar Regeneration in COVID-19 Patients: A Network Perspective. Int J Mol Sci 2021; 22:ijms222011279. [PMID: 34681944 PMCID: PMC8538208 DOI: 10.3390/ijms222011279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
A viral infection involves entry and replication of viral nucleic acid in a host organism, subsequently leading to biochemical and structural alterations in the host cell. In the case of SARS-CoV-2 viral infection, over-activation of the host immune system may lead to lung damage. Albeit the regeneration and fibrotic repair processes being the two protective host responses, prolonged injury may lead to excessive fibrosis, a pathological state that can result in lung collapse. In this review, we discuss regeneration and fibrosis processes in response to SARS-CoV-2 and provide our viewpoint on the triggering of alveolar regeneration in coronavirus disease 2019 (COVID-19) patients.
Collapse
|
27
|
AbdelHamid SG, Refaat AA, Benjamin AM, Elmawardy LA, Elgendy LA, Manolly MM, Elmaksoud NA, Sherif N, Hamdy NM. Deciphering epigenetic(s) role in modulating susceptibility to and severity of COVID-19 infection and/or outcome: a systematic rapid review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54209-54221. [PMID: 34383213 PMCID: PMC8359636 DOI: 10.1007/s11356-021-15588-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/19/2021] [Indexed: 05/14/2023]
Abstract
COVID-19 pandemic waves hitting worldwide result in drastic postinfection complications with interindividual variations, which raised the question for the cause of these observed variations. This urged to think "the impact of environment-affected genes"? In an attempt to unravel the impact of environment-affected genes, a systematic rapid review was conducted to study "the impact of host or viral epigenetic modulation on COVID-19 infection susceptibility and/or outcome." Electronic databases including Web of Science, SCOPUS, Cochrane Central Register of Controlled Trials, PubMed, and Google Scholar, and other databases were searched. The search strings included "COVID-19" OR "SARS-CoV-2" AND (Epigenetics'). Articles with randomized clinical trials (RCTs) and observational study designs, conducted on humans and available in the English language, were selected, with respect to "The interplay between the SARS-CoV-2 virus and Epigenetics" published from 2020 to February 2021 (but not limited to 2020, being expanded to 2015). Database search yielded 1330 articles; after screening, exclusion, and further filtrations, 51 articles were included. Susceptibility to COVID-19 infection is related to the viral-microRNAs (miRNAs) which alter virulence of the transmitted SARS-CoV-2 strains and impact host-miRNA-related innate immunity. Host-DNA methylation and/or chromatin remodeling may be implicated in severe cytokine storm that can ultimately results in fatal outcome.
Collapse
Affiliation(s)
- Sherihan G AbdelHamid
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Aya A Refaat
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Anthony M Benjamin
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Laila A Elmawardy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Lougine A Elgendy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Mark M Manolly
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Nada Abd Elmaksoud
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Nourhan Sherif
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt.
| |
Collapse
|
28
|
Zhang H, Chen H, Zhang J, Chen X, Guo B, Zhi P, Li Z, Liu G, Yang B, Chi X, Wang Y, Cao F, Ren J, Lu X. Bioinformatics analysis of SARS-CoV-2 infection-associated immune injury and therapeutic prediction for COVID-19. EMERGENCY AND CRITICAL CARE MEDICINE 2021; 1:20-28. [PMID: 38630100 PMCID: PMC8447736 DOI: 10.1097/ec9.0000000000000005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/19/2021] [Indexed: 11/26/2022]
Abstract
Background Severe acute respiratory syndrome coronavirus 2 is a highly contagious viral infection, without any available targeted therapies. The high mortality rate of COVID-19 is speculated to be related to immune damage. Methods In this study, clinical bioinformatics analysis was conducted on transcriptome data of coronavirus infection. Results Bioinformatics analysis revealed that the complex immune injury induced by coronavirus infection provoked dysfunction of numerous immune-related molecules and signaling pathways, including immune cells and toll-like receptor cascades. Production of numerous cytokines through the Th17 signaling pathway led to elevation in plasma levels of cytokines (including IL6, NF-κB, and TNF-α) followed by concurrent inflammatory storm, which mediates the autoimmune response. Several novel medications seemed to display therapeutic effects on immune damage associated with coronavirus infection. Conclusions This study provided insights for further large-scale studies on the target therapy on reconciliation of immunological damage associated with COVID-19.
Collapse
Affiliation(s)
- Haomin Zhang
- Department of Hematology, the Second Medical Center of the China PLA General Hospital & National Center for Clinical Medicine of Geriatric Diseases, Beijing, China
| | - Haoran Chen
- Management School, Shanxi Medical University, Taiyuan, China
| | - Jundong Zhang
- Department of Hematology, the Second Medical Center of the China PLA General Hospital & National Center for Clinical Medicine of Geriatric Diseases, Beijing, China
| | - Ximeng Chen
- Chinese Journal of Hepatobiliary Surgery, Beijing, China
| | - Bin Guo
- Department of Personnel, Cardiovascular Disease Hospital of Shanxi Province, Taiyuan, China
| | - Peng Zhi
- Department of Hematology, the Second Medical Center of the China PLA General Hospital & National Center for Clinical Medicine of Geriatric Diseases, Beijing, China
- Management School, Shanxi Medical University, Taiyuan, China
| | - Zhuoyang Li
- Management School, Shanxi Medical University, Taiyuan, China
| | - Geliang Liu
- Management School, Shanxi Medical University, Taiyuan, China
| | - Bo Yang
- Department of Hematology, the Second Medical Center of the China PLA General Hospital & National Center for Clinical Medicine of Geriatric Diseases, Beijing, China
| | - Xiaohua Chi
- Department of Pharmacy, China PLA Special Medical Center, Beijing, China
| | - Yixing Wang
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Cao
- Department of Cardiology, the Second Medical Center of the China PLA General Hospital, Beijing, China
| | - Jun Ren
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Xuechun Lu
- Department of Hematology, the Second Medical Center of the China PLA General Hospital & National Center for Clinical Medicine of Geriatric Diseases, Beijing, China
| |
Collapse
|
29
|
O’Donoghue SI, Schafferhans A, Sikta N, Stolte C, Kaur S, Ho BK, Anderson S, Procter JB, Dallago C, Bordin N, Adcock M, Rost B. SARS-CoV-2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms. Mol Syst Biol 2021; 17:e10079. [PMID: 34519429 PMCID: PMC8438690 DOI: 10.15252/msb.202010079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023] Open
Abstract
We modeled 3D structures of all SARS-CoV-2 proteins, generating 2,060 models that span 69% of the viral proteome and provide details not available elsewhere. We found that ˜6% of the proteome mimicked human proteins, while ˜7% was implicated in hijacking mechanisms that reverse post-translational modifications, block host translation, and disable host defenses; a further ˜29% self-assembled into heteromeric states that provided insight into how the viral replication and translation complex forms. To make these 3D models more accessible, we devised a structural coverage map, a novel visualization method to show what is-and is not-known about the 3D structure of the viral proteome. We integrated the coverage map into an accompanying online resource (https://aquaria.ws/covid) that can be used to find and explore models corresponding to the 79 structural states identified in this work. The resulting Aquaria-COVID resource helps scientists use emerging structural data to understand the mechanisms underlying coronavirus infection and draws attention to the 31% of the viral proteome that remains structurally unknown or dark.
Collapse
MESH Headings
- Amino Acid Transport Systems, Neutral/chemistry
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Binding Sites
- COVID-19/genetics
- COVID-19/metabolism
- COVID-19/virology
- Computational Biology/methods
- Coronavirus Envelope Proteins/chemistry
- Coronavirus Envelope Proteins/genetics
- Coronavirus Envelope Proteins/metabolism
- Coronavirus Nucleocapsid Proteins/chemistry
- Coronavirus Nucleocapsid Proteins/genetics
- Coronavirus Nucleocapsid Proteins/metabolism
- Host-Pathogen Interactions/genetics
- Humans
- Mitochondrial Membrane Transport Proteins/chemistry
- Mitochondrial Membrane Transport Proteins/genetics
- Mitochondrial Membrane Transport Proteins/metabolism
- Mitochondrial Precursor Protein Import Complex Proteins
- Models, Molecular
- Molecular Mimicry
- Neuropilin-1/chemistry
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Interaction Mapping/methods
- Protein Multimerization
- Protein Processing, Post-Translational
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Viral Matrix Proteins/chemistry
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/metabolism
- Viroporin Proteins/chemistry
- Viroporin Proteins/genetics
- Viroporin Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Seán I O’Donoghue
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- CSIRO Data61CanberraACTAustralia
- School of Biotechnology and Biomolecular Sciences (UNSW)KensingtonNSWAustralia
| | - Andrea Schafferhans
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- Department of Bioengineering SciencesWeihenstephan‐Tr. University of Applied SciencesFreisingGermany
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| | - Neblina Sikta
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | | | - Sandeep Kaur
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- School of Biotechnology and Biomolecular Sciences (UNSW)KensingtonNSWAustralia
| | - Bosco K Ho
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | | | | | - Christian Dallago
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| | - Nicola Bordin
- Institute of Structural and Molecular BiologyUniversity College LondonLondonUK
| | | | - Burkhard Rost
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| |
Collapse
|
30
|
Narożna M, Rubiś B. Anti-SARS-CoV-2 Strategies and the Potential Role of miRNA in the Assessment of COVID-19 Morbidity, Recurrence, and Therapy. Int J Mol Sci 2021; 22:8663. [PMID: 34445368 PMCID: PMC8395427 DOI: 10.3390/ijms22168663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, we have experienced a serious pandemic. Despite significant technological advances in molecular technologies, it is very challenging to slow down the infection spread. It appeared that due to globalization, SARS-CoV-2 spread easily and adapted to new environments or geographical or weather zones. Additionally, new variants are emerging that show different infection potential and clinical outcomes. On the other hand, we have some experience with other pandemics and some solutions in virus elimination that could be adapted. This is of high importance since, as the latest reports demonstrate, vaccine technology might not follow the new, mutated virus outbreaks. Thus, identification of novel strategies and markers or diagnostic methods is highly necessary. For this reason, we present some of the latest views on SARS-CoV-2/COVID-19 therapeutic strategies and raise a solution based on miRNA. We believe that in the face of the rapidly increasing global situation and based on analogical studies of other viruses, the possibility of using the biological potential of miRNA technology is very promising. It could be used as a promising diagnostic and prognostic factor, as well as a therapeutic target and tool.
Collapse
Affiliation(s)
- Maria Narożna
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4 Święcickiego St., 60-781 Poznan, Poland;
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland
| |
Collapse
|
31
|
Madhavan M, AlOmair LA, Ks D, Mustafa S. Exploring peptide studies related to SARS-CoV to accelerate the development of novel therapeutic and prophylactic solutions against COVID-19. J Infect Public Health 2021; 14:1106-1119. [PMID: 34280732 PMCID: PMC8253661 DOI: 10.1016/j.jiph.2021.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/18/2021] [Accepted: 06/27/2021] [Indexed: 01/18/2023] Open
Abstract
Recent advances in peptide research revolutionized therapeutic discoveries for various infectious diseases. In view of the ongoing threat of the COVID-19 pandemic, there is an urgent need to develop potential therapeutic options. Intense and accomplishing research is being carried out to develop broad-spectrum vaccines and treatment options for corona viruses, due to the risk of recurrent infection by the existing strains or pandemic outbreaks by new mutant strains. Developing a novel medicine is costly and time consuming, which increases the value of repurposing existing therapies. Since, SARS-CoV-2 shares significant genomic homology with SARS-CoV, we have summarized various peptides identified against SARS-CoV using in silico and molecular studies and also the peptides effective against SARS-CoV-2. Dissecting the molecular mechanisms underlying viral infection could yield fundamental insights in the discovery of new antiviral agents, targeting viral proteins or host factors. We postulate that these peptides can serve as effective components for therapeutic options against SARS-CoV-2, supporting clinical scientists globally in selectively identifying and testing the therapeutic and prophylactic agents for COVID-19 treatment. In addition, we also summarized the latest updates on peptide therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram, Kerala, India.
| | - Lamya A AlOmair
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Deepthi Ks
- Department of Microbiology, Government College for Women, Thiruvananthapuram, Kerala, India.
| | - Sabeena Mustafa
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| |
Collapse
|
32
|
Methylation of Host Genes Associated with Coronavirus Infection from Birth to 26 Years. Genes (Basel) 2021; 12:genes12081198. [PMID: 34440372 PMCID: PMC8392033 DOI: 10.3390/genes12081198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
DNA methylation (DNAm) patterns over time at 1146 CpGs on coronavirus-related genes were assessed to understand whether the varying differences in susceptibility, symptoms, and the outcomes of the SARS-CoV-2 infection in children and young adults could be explained through epigenetic alterations in a host cell’s transcriptional apparatus to coronaviruses. DNAm data from the Isle of Wight birth cohort (IOWBC) at birth, 10, 18, and 26 years of age were included. Linear mixed models with repeated measurements stratified by sex were used to examine temporal patterns, and cluster analysis was performed to identify CpGs following similar patterns. CpGs on autosomes and sex chromosomes were analyzed separately. The association of identified CpGs and expression of their genes were evaluated. Pathway enrichment analyses of the genes was conducted at FDR = 0.05. DNAm at 635 of the 1146 CpGs on autosomes showed statistically significant time effects (FDR = 0.05). The 635 CpGs were classified into five clusters with each representing a unique temporal pattern of DNAm. Of the 29 CpGs on sex chromosomes, DNAm at seven CpGs in males and eight CpGs in females showed time effects (FDR = 0.05). Sex-specific and non-specific associations of DNAm with gene expression were found at 24 and 93 CpGs, respectively. Genes which mapped the 643 CpGs represent 460 biological processes. We suggest that the observed variability in DNAm with advancing age may partially explain differing susceptibility, disease severity, and mortality of coronavirus infections among different age groups.
Collapse
|
33
|
Tovo PA, Garazzino S, Daprà V, Pruccoli G, Calvi C, Mignone F, Alliaudi C, Denina M, Scolfaro C, Zoppo M, Licciardi F, Ramenghi U, Galliano I, Bergallo M. COVID-19 in Children: Expressions of Type I/II/III Interferons, TRIM28, SETDB1, and Endogenous Retroviruses in Mild and Severe Cases. Int J Mol Sci 2021; 22:7481. [PMID: 34299101 PMCID: PMC8303145 DOI: 10.3390/ijms22147481] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
Children with the new coronavirus disease 2019 (COVID-19) have milder symptoms and a better prognosis than adult patients. Several investigations assessed type I, II, and III interferon (IFN) signatures in SARS-CoV-2 infected adults, however no data are available for pediatric patients. TRIM28 and SETDB1 regulate the transcription of multiple genes involved in the immune response as well as of human endogenous retroviruses (HERVs). Exogenous viral infections can trigger the activation of HERVs, which in turn can induce inflammatory and immune reactions. Despite the potential cross-talks between SARS-CoV-2 infection and TRIM28, SETDB1, and HERVs, information on their expressions in COVID-19 patients is lacking. We assessed, through a PCR real time Taqman amplification assay, the transcription levels of six IFN-I stimulated genes, IFN-II and three of its sensitive genes, three IFN-lIIs, as well as of TRIM28, SETDB1, pol genes of HERV-H, -K, and -W families, and of env genes of Syncytin (SYN)1, SYN2, and multiple sclerosis-associated retrovirus (MRSV) in peripheral blood from COVID-19 children and in control uninfected subjects. Higher expression levels of IFN-I and IFN-II inducible genes were observed in 36 COVID-19 children with mild or moderate disease as compared to uninfected controls, whereas their concentrations decreased in 17 children with severe disease and in 11 with multisystem inflammatory syndrome (MIS-C). Similar findings were found for the expression of TRIM-28, SETDB1, and every HERV gene. Positive correlations emerged between the transcriptional levels of type I and II IFNs, TRIM28, SETDB1, and HERVs in COVID-19 patients. IFN-III expressions were comparable in each group of subjects. This preserved induction of IFN-λs could contribute to the better control of the infection in children as compared to adults, in whom IFN-III deficiency has been reported. The upregulation of IFN-I, IFN-II, TRIM28, SETDB1, and HERVs in children with mild symptoms, their declines in severe cases or with MIS-C, and the positive correlations of their transcription in SARS-CoV-2-infected children suggest that they may play important roles in conditioning the evolution of the infection.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
| | - Silvia Garazzino
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (S.G.); (F.M.); (C.S.); (M.Z.)
| | - Valentina Daprà
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, 10126 Turin, Italy;
| | - Giulia Pruccoli
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
| | - Cristina Calvi
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, 10126 Turin, Italy;
| | - Federica Mignone
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (S.G.); (F.M.); (C.S.); (M.Z.)
| | - Carla Alliaudi
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, 10126 Turin, Italy;
| | - Marco Denina
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
| | - Carlo Scolfaro
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (S.G.); (F.M.); (C.S.); (M.Z.)
| | - Marisa Zoppo
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (S.G.); (F.M.); (C.S.); (M.Z.)
| | - Francesco Licciardi
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
| | - Ugo Ramenghi
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
| | - Ilaria Galliano
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, 10126 Turin, Italy;
| | - Massimiliano Bergallo
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, 10126 Turin, Italy;
| |
Collapse
|
34
|
Balnis J, Madrid A, Hogan KJ, Drake LA, Chieng HC, Tiwari A, Vincent CE, Chopra A, Vincent PA, Robek MD, Singer HA, Alisch RS, Jaitovich A. Blood DNA methylation and COVID-19 outcomes. Clin Epigenetics 2021; 13:118. [PMID: 34034806 PMCID: PMC8148415 DOI: 10.1186/s13148-021-01102-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There are no prior reports that compare differentially methylated regions of DNA in blood samples from COVID-19 patients to samples collected before the SARS-CoV-2 pandemic using a shared epigenotyping platform. We performed a genome-wide analysis of circulating blood DNA CpG methylation using the Infinium Human MethylationEPIC BeadChip on 124 blood samples from hospitalized COVID-19-positive and COVID-19-negative patients and compared these data with previously reported data from 39 healthy individuals collected before the pandemic. Prospective outcome measures such as COVID-19-GRAM risk-score and mortality were combined with methylation data. RESULTS Global mean methylation levels did not differ between COVID-19 patients and healthy pre-pandemic controls. About 75% of acute illness-associated differentially methylated regions were located near gene promoter regions and were hypo-methylated in comparison with healthy pre-pandemic controls. Gene ontology analyses revealed terms associated with the immune response to viral infections and leukocyte activation; and disease ontology analyses revealed a predominance of autoimmune disorders. Among COVID-19-positive patients, worse outcomes were associated with a prevailing hyper-methylated status. Recursive feature elimination identified 77 differentially methylated positions predictive of COVID-19 severity measured by the GRAM-risk score. CONCLUSION Our data contribute to the awareness that DNA methylation may influence the expression of genes that regulate COVID-19 progression and represent a targetable process in that setting.
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Andy Madrid
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Kirk J Hogan
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Lisa A Drake
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Hau C Chieng
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Anupama Tiwari
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Catherine E Vincent
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Amit Chopra
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Peter A Vincent
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Michael D Robek
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA.
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
35
|
Jelinek HF, Mousa M, Alefishat E, Osman W, Spence I, Bu D, Feng SF, Byrd J, Magni PA, Sahibzada S, Tay GK, Alsafar HS. Evolution, Ecology, and Zoonotic Transmission of Betacoronaviruses: A Review. Front Vet Sci 2021; 8:644414. [PMID: 34095271 PMCID: PMC8173069 DOI: 10.3389/fvets.2021.644414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Coronavirus infections have been a part of the animal kingdom for millennia. The difference emerging in the twenty-first century is that a greater number of novel coronaviruses are being discovered primarily due to more advanced technology and that a greater number can be transmitted to humans, either directly or via an intermediate host. This has a range of effects from annual infections that are mild to full-blown pandemics. This review compares the zoonotic potential and relationship between MERS, SARS-CoV, and SARS-CoV-2. The role of bats as possible host species and possible intermediate hosts including pangolins, civets, mink, birds, and other mammals are discussed with reference to mutations of the viral genome affecting zoonosis. Ecological, social, cultural, and environmental factors that may play a role in zoonotic transmission are considered with reference to SARS-CoV, MERS, and SARS-CoV-2 and possible future zoonotic events.
Collapse
Affiliation(s)
- Herbert F. Jelinek
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center of Heath Engineering Innovation, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Nuffield Department of Women's and Reproduction Health, Oxford University, Oxford, United Kingdom
| | - Eman Alefishat
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Wael Osman
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ian Spence
- Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Samuel F. Feng
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jason Byrd
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Paola A. Magni
- Discipline of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- Murdoch University Singapore, King's Centre, Singapore, Singapore
| | - Shafi Sahibzada
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Guan K. Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba S. Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
36
|
Dzobo K. Coronavirus Disease 19 and Future Ecological Crises: Hopes from Epigenomics and Unraveling Genome Regulation in Humans and Infectious Agents. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:269-278. [PMID: 33904782 DOI: 10.1089/omi.2021.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
With coronavirus disease 19 (COVID-19), we have witnessed a shift from public health to planetary health and a growing recognition of the importance of systems science in developing effective solutions against pandemics in the 21st century. COVID-19 and the history of frequent infectious outbreaks in the last two decades suggest that COVID-19 is likely a dry run for future ecological crises. Now is the right time to plan ahead and deploy the armamentarium of systems science scholarship for planetary health. The science of epigenomics, which investigates both genetic and nongenetic traits regarding heritable phenotypic alterations, and new approaches to understanding genome regulation in humans and pathogens offer veritable prospects to boost the global scientific capacities to innovate therapeutics and diagnostics against novel and existing infectious agents. Several reversible epigenetic alterations, such as chromatin remodeling and histone methylation, control and influence gene expression. COVID-19 lethality is linked, in part, to the cytokine storm, age, and status of the immune system in a given person. Additionally, due to reduced human mobility and daily activities, effects of the pandemic on the environment have been both positive and negative. For example, reduction in environmental pollution and lesser extraction from nature have potential positive corollaries on water and air quality. Negative effects include pollution as plastics and other materials were disposed in unconventional places and spaces in the course of the pandemic. I discuss the opportunities and challenges associated with the science of epigenomics, specifically with an eye to inform and prevent future ecological crises and pandemics that are looming on the horizon in the 21st century. In particular, this article underscores that epigenetics of both viruses and the host may influence virus infectivity and severity of attendant disease.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
37
|
Seroprevalence of Antibodies against SARS-CoV-2 in Children with Juvenile Idiopathic Arthritis a Case-Control Study. J Clin Med 2021; 10:jcm10081771. [PMID: 33921679 PMCID: PMC8073013 DOI: 10.3390/jcm10081771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
There is limited data on the effect of the novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) on pediatric rheumatology. We examined the prevalence of antibodies against SARS-CoV-2 in children with juvenile idiopathic arthritis (JIA) and a negative history of COVID-19 and the correlation of the presence of these antibodies with disease activity measured by juvenile arthritis disease activity score (JADAS). In total, 62 patients diagnosed with JIA, under treatment with various antirheumatic drugs, and 32 healthy children (control group) were included. Serum samples were analyzed for inflammatory markers and antibodies and their state evaluated with the juvenile arthritis disease activity score (JADAS). JIA patients do not have a higher seroprevalence of anti-SARS-CoV-2 antibodies than healthy subjects. We found anti-SARS-CoV-2 antibodies in JIA patients who did not have a history of COVID-19. The study showed no unequivocal correlation between the presence of SARS-CoV-2 antibodies and JIA activity; therefore, this relationship requires further observation. We also identified a possible link between patients’ humoral immune response and disease-modifying antirheumatic treatment, which will be confirmed in follow-up studies.
Collapse
|
38
|
Saksena N, Bonam SR, Miranda-Saksena M. Epigenetic Lens to Visualize the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Infection in COVID-19 Pandemic. Front Genet 2021; 12:581726. [PMID: 33828579 PMCID: PMC8019793 DOI: 10.3389/fgene.2021.581726] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
In <20 years, we have witnessed three different epidemics with coronaviruses, SARS-CoV, MERS-CoV, and SARS-CoV-2 in human populations, causing widespread mortality. SARS-CoV-2, through its rapid global spread, has led to the pandemic that we call COVID-19. As of February 1, 2021, the global infections linked to SARS-CoV-2 stand at 103,503,340, with 2,236,960 deaths, and 75,108,099 recoveries. This review attempts to highlight host-pathogen interaction with particular emphasis on the role of epigenetic machinery in regulating the disease. Although researchers, since the start of the pandemic, have been intensely engaged in diverse areas to understand the mechanisms involved in SARS-CoV-2 infection to find answers that can bring about innovative ways to swiftly treat and prevent disease progression, this review provides an overview on how the host epigenetics is modulated and subverted by SARS-CoV-2 to enter the host cells and drive immunopathogenesis. Epigenetics is the study that combines genetic and non-genetic factors controlling phenotypic variation, which are primarily a consequence of external and environmental stimuli. These stimuli alter the activity of a gene without impinging on the DNA code. In viral-host interactions, DNA/RNA methylation, non-coding RNAs, chromatin remodeling, and histone modifications are known to regulate and modulate host gene expression patterns. Viruses such as Coronaviruses (an RNA virus) show intrinsic association with these processes. They have evolved the ability to tamper with host epigenetic machinery to interfere with immune sensing pathways to evade host immune response, thereby enhancing its replication and pathogenesis post-entry. These epigenetic alterations allow the virus to weaken the host's immune response to successfully spread infection. How this occurs, and what epigenetic mechanisms are altered is poorly understood both for coronaviruses and other respiratory RNA viruses. The review highlights several cutting-edge aspects of epigenetic work primarily pertinent to SARS-CoV-2, which has been published between 2019 and 2020 to showcase the current knowledge both in terms of success and failures and take lessons that will assist us in understanding the disease to develop better treatments suited to kill SARS-CoV-2.
Collapse
Affiliation(s)
- Nitin Saksena
- EPIGENES Australia Pty Ltd, Melbourne, VIC, Australia
- Institute of Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe- Immuno-pathologie et Immuno-intervention Thérapeutique, Sorbonne Université, Université de Paris, Paris, France
| | - Monica Miranda-Saksena
- Herpes Neuropathogenesis Research Group, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
39
|
Tsabouri S, Makis A, Kosmeri C, Siomou E. Risk Factors for Severity in Children with Coronavirus Disease 2019: A Comprehensive Literature Review. Pediatr Clin North Am 2021; 68:321-338. [PMID: 33228941 PMCID: PMC7392074 DOI: 10.1016/j.pcl.2020.07.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected hundreds of thousands of people. The authors performed a comprehensive literature review to identify the underlying mechanisms and risk factors for severe COVID-19 in children. Children have accounted for 1.7% to 2% of the diagnosed cases of COVID-19. They often have milder disease than adults, and child deaths have been rare. The documented risk factors for severe disease in children are young age and underlying comorbidities. It is unclear whether male gender and certain laboratory and imaging findings are also risk factors. Reports on other potential factors have not been published.
Collapse
Affiliation(s)
- Sophia Tsabouri
- Department of Paediatrics, Child Health Department, School of Medicine, University of Ioannina, Stavros Niarchos Avenue 45500, Ioannina, Greece.
| | - Alexandros Makis
- Department of Paediatrics, Child Health Department, School of Medicine, University of Ioannina, Stavros Niarchos Avenue 45500, Ioannina, Greece
| | - Chrysoula Kosmeri
- Department of Paediatrics, Child Health Department, School of Medicine, University of Ioannina, Stavros Niarchos Avenue 45500, Ioannina, Greece
| | - Ekaterini Siomou
- Department of Paediatrics, Child Health Department, School of Medicine, University of Ioannina, Stavros Niarchos Avenue 45500, Ioannina, Greece
| |
Collapse
|
40
|
Corley MJ, Pang APS, Dody K, Mudd PA, Patterson BK, Seethamraju H, Bram Y, Peluso MJ, Torres L, Iyer NS, Premeaux TA, Yeung ST, Chandar V, Borczuk A, Schwartz RE, Henrich TJ, Deeks SG, Sacha JB, Ndhlovu LC. Genome-wide DNA methylation profiling of peripheral blood reveals an epigenetic signature associated with severe COVID-19. J Leukoc Biol 2021; 110:21-26. [PMID: 33464637 PMCID: PMC8013321 DOI: 10.1002/jlb.5hi0720-466r] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/17/2020] [Accepted: 12/29/2020] [Indexed: 01/26/2023] Open
Abstract
The global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is a highly pathogenic RNA virus causing coronavirus disease 2019 (COVID‐19) in humans. Although most patients with COVID‐19 have mild illness and may be asymptomatic, some will develop severe pneumonia, acute respiratory distress syndrome, multi‐organ failure, and death. RNA viruses such as SARS‐CoV‐2 are capable of hijacking the epigenetic landscape of host immune cells to evade antiviral defense. Yet, there remain considerable gaps in our understanding of immune cell epigenetic changes associated with severe SARS‐CoV‐2 infection pathology. Here, we examined genome‐wide DNA methylation (DNAm) profiles of peripheral blood mononuclear cells from 9 terminally‐ill, critical COVID‐19 patients with confirmed SARS‐CoV‐2 plasma viremia compared with uninfected, hospitalized influenza, untreated primary HIV infection, and mild/moderate COVID‐19 HIV coinfected individuals. Cell‐type deconvolution analyses confirmed lymphopenia in severe COVID‐19 and revealed a high percentage of estimated neutrophils suggesting perturbations to DNAm associated with granulopoiesis. We observed a distinct DNAm signature of severe COVID‐19 characterized by hypermethylation of IFN‐related genes and hypomethylation of inflammatory genes, reinforcing observations in infection models and single‐cell transcriptional studies of severe COVID‐19. Epigenetic clock analyses revealed severe COVID‐19 was associated with an increased DNAm age and elevated mortality risk according to GrimAge, further validating the epigenetic clock as a predictor of disease and mortality risk. Our epigenetic results reveal a discovery DNAm signature of severe COVID‐19 in blood potentially useful for corroborating clinical assessments, informing pathogenic mechanisms, and revealing new therapeutic targets against SARS‐CoV‐2.
Collapse
Affiliation(s)
- Michael J Corley
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Alina P S Pang
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,University of Hawaii, Honolulu, Hawaii, USA
| | - Kush Dody
- Amarex Clinical Research, LLC, Germantown, Maryland, USA
| | - Philip A Mudd
- Department of Emergency Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | | | | | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Leonel Torres
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Nikita S Iyer
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Thomas A Premeaux
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,University of Hawaii, Honolulu, Hawaii, USA
| | - Stephen T Yeung
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Vasuretha Chandar
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Alain Borczuk
- Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jonah B Sacha
- Vaccine & Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
41
|
Islam ABMMK, Khan MAAK, Ahmed R, Hossain MS, Kabir SMT, Islam MS, Siddiki AMAMZ. Transcriptome of nasopharyngeal samples from COVID-19 patients and a comparative analysis with other SARS-CoV-2 infection models reveal disparate host responses against SARS-CoV-2. J Transl Med 2021; 19:32. [PMID: 33413422 PMCID: PMC7790360 DOI: 10.1186/s12967-020-02695-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although it is becoming evident that individual's immune system has a decisive influence on SARS-CoV-2 disease progression, pathogenesis is largely unknown. In this study, we aimed to profile the host transcriptome of COVID-19 patients from nasopharyngeal samples along with virus genomic features isolated from respective host, and a comparative analyses of differential host responses in various SARS-CoV-2 infection systems. RESULTS Unique and rare missense mutations in 3C-like protease observed in all of our reported isolates. Functional enrichment analyses exhibited that the host induced responses are mediated by innate immunity, interferon, and cytokine stimulation. Surprisingly, induction of apoptosis, phagosome, antigen presentation, hypoxia response was lacking within these patients. Upregulation of immune and cytokine signaling genes such as CCL4, TNFA, IL6, IL1A, CCL2, CXCL2, IFN, and CCR1 were observed in lungs. Lungs lacked the overexpression of ACE2 as suspected, however, high ACE2 but low DPP4 expression was observed in nasopharyngeal cells. Interestingly, directly or indirectly, viral proteins specially non-structural protein mediated overexpression of integrins such as ITGAV, ITGA6, ITGB7, ITGB3, ITGA2B, ITGA5, ITGA6, ITGA9, ITGA4, ITGAE, and ITGA8 in lungs compared to nasopharyngeal samples suggesting the possible way of enhanced invasion. Furthermore, we found comparatively highly expressed transcription factors such as CBP, CEBP, NFAT, ATF3, GATA6, HDAC2, TCF12 which have pivotal roles in lung injury. CONCLUSIONS Even though this study incorporates a limited number of cases, our data will provide valuable insights in developing potential studies to elucidate the differential host responses on the viral pathogenesis in COVID-19, and incorporation of further data will enrich the search of an effective therapeutics.
Collapse
Affiliation(s)
| | | | - Rasel Ahmed
- Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh
| | - Md Sabbir Hossain
- Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh
| | - Shah Md Tamim Kabir
- Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh
| | - Md Shahidul Islam
- Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh
| | - A M A M Zonaed Siddiki
- Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University (CVASU), Khulshi, Chittagong, Bangladesh
| |
Collapse
|
42
|
Wei J, Alfajaro MM, DeWeirdt PC, Hanna RE, Lu-Culligan WJ, Cai WL, Strine MS, Zhang SM, Graziano VR, Schmitz CO, Chen JS, Mankowski MC, Filler RB, Ravindra NG, Gasque V, de Miguel FJ, Patil A, Chen H, Oguntuyo KY, Abriola L, Surovtseva YV, Orchard RC, Lee B, Lindenbach BD, Politi K, van Dijk D, Kadoch C, Simon MD, Yan Q, Doench JG, Wilen CB. Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection. Cell 2021; 184:76-91.e13. [PMID: 33147444 PMCID: PMC7574718 DOI: 10.1016/j.cell.2020.10.028] [Citation(s) in RCA: 341] [Impact Index Per Article: 113.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/11/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022]
Abstract
Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.
Collapse
Affiliation(s)
- Jin Wei
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Peter C DeWeirdt
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ruth E Hanna
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William J Lu-Culligan
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA; Department of Cell Biology, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Wesley L Cai
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Madison S Strine
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Vincent R Graziano
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Cameron O Schmitz
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jennifer S Chen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Madeleine C Mankowski
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Neal G Ravindra
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA
| | - Victor Gasque
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA
| | - Fernando J de Miguel
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ajinkya Patil
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Huacui Chen
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kasopefoluwa Y Oguntuyo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516, USA
| | - Robert C Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA; Department of Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - David van Dijk
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
43
|
Abstract
The COVID-19 pandemic is one of the most significant public health threats in recent history and has impacted the lives of almost everyone worldwide. Epigenetic mechanisms contribute to many aspects of the SARS-CoV-2 replication cycle, including expression levels of viral receptor ACE2, expression of cytokine genes as part of the host immune response, and the implication of various histone modifications in several aspects of COVID-19. SARS-CoV-2 proteins physically associate with many different host proteins over the course of infection, and notably there are several interactions between viral proteins and epigenetic enzymes such as HDACs and bromodomain-containing proteins as shown by correlation-based studies. The many contributions of epigenetic mechanisms to the viral life cycle and the host immune response to infection have resulted in epigenetic factors being identified as emerging biomarkers for COVID-19, and project epigenetic modifiers as promising therapeutic targets to combat COVID-19. This review article highlights the major epigenetic pathways at play during COVID-19 disease and discusses ongoing clinical trials that will hopefully contribute to slowing the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Rwik Sen
- Active Motif, Incorporated, 1914 Palomar Oaks Way, Suite 150, Carlsbad, CA 92008, USA
| | - Michael Garbati
- Active Motif, Incorporated, 1914 Palomar Oaks Way, Suite 150, Carlsbad, CA 92008, USA
| | - Kevin Bryant
- Active Motif, Incorporated, 1914 Palomar Oaks Way, Suite 150, Carlsbad, CA 92008, USA
| | - Yanan Lu
- Active Motif, Incorporated, 1914 Palomar Oaks Way, Suite 150, Carlsbad, CA 92008, USA
| |
Collapse
|
44
|
Rajeev R, Dwivedi AP, Sinha A, Agarwaal V, Dev RR, Kar A, Khosla S. Epigenetic interaction of microbes with their mammalian hosts. J Biosci 2021; 46:94. [PMID: 34728591 PMCID: PMC8550911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 02/11/2023]
Abstract
The interaction of microbiota with its host has the ability to alter the cellular functions of both, through several mechanisms. Recent work, from many laboratories including our own, has shown that epigenetic mechanisms play an important role in the alteration of these cellular functions. Epigenetics broadly refers to change in the phenotype without a corresponding change in the DNA sequence. This change is usually brought by epigenetic modifications of the DNA itself, the histone proteins associated with the DNA in the chromatin, non-coding RNA or the modifications of the transcribed RNA. These modifications, also known as epigenetic code, do not change the DNA sequence but alter the expression level of specific genes. Microorganisms seem to have learned how to modify the host epigenetic code and modulate the host transcriptome in their favour. In this review, we explore the literature that describes the epigenetic interaction of bacteria, fungi and viruses, with their mammalian hosts.
Collapse
Affiliation(s)
- Ramisetti Rajeev
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ambey Prasad Dwivedi
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Anunay Sinha
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Viplove Agarwaal
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | | | - Anjana Kar
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Sanjeev Khosla
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Institute of Microbial Technology (IMTech), Chandigarh, India
| |
Collapse
|
45
|
Rezinciuc S, Tian Z, Wu S, Hengel S, Pasa-Tolic L, Smallwood HS. Mapping Influenza-Induced Posttranslational Modifications on Histones from CD8+ T Cells. Viruses 2020; 12:v12121409. [PMID: 33302437 PMCID: PMC7762524 DOI: 10.3390/v12121409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
T cell function is determined by transcriptional networks that are regulated by epigenetic programming via posttranslational modifications (PTMs) to histone proteins and DNA. Bottom-up mass spectrometry (MS) can identify histone PTMs, whereas intact protein analysis by MS can detect species missed by bottom-up approaches. We used a novel approach of online two-dimensional liquid chromatography-tandem MS with high-resolution reversed-phase liquid chromatography (RPLC), alternating electron transfer dissociation (ETD) and collision-induced dissociation (CID) on precursor ions to maximize fragmentation of uniquely modified species. The first online RPLC separation sorted histone families, then RPLC or weak cation exchange hydrophilic interaction liquid chromatography (WCX-HILIC) separated species heavily clad in PTMs. Tentative identifications were assigned by matching proteoform masses to predicted theoretical masses that were verified with tandem MS. We used this innovative approach for histone-intact protein PTM mapping (HiPTMap) to identify and quantify proteoforms purified from CD8 T cells after in vivo influenza infection. Activation significantly altered PTMs following influenza infection, histone maps changed as T cells migrated to the site of infection, and T cells responding to secondary infections had significantly more transcription enhancing modifications. Thus, HiPTMap identified and quantified proteoforms and determined changes in CD8 T cell histone PTMs over the course of infection.
Collapse
Affiliation(s)
- Svetlana Rezinciuc
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Zhixin Tian
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Si Wu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Shawna Hengel
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Heather S. Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Children’s Foundation Research Institute, Memphis, TN 38105, USA
- Correspondence: ; Tel.: +1-(901)-448–3068
| |
Collapse
|
46
|
Circulating Cytokines and Lymphocyte Subsets in Patients Who Have Recovered from COVID-19. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7570981. [PMID: 33274223 PMCID: PMC7695995 DOI: 10.1155/2020/7570981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022]
Abstract
To investigate the immune status of people who previously had COVID-19 infections, we recruited two-week postrecovery patients and analyzed circulating cytokine and lymphocyte subsets. We measured levels of total lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD56+ NK cells and the serum concentrations of interleukin- (IL-) 1, IL-4, IL-6, IL-8, IL-10, transforming growth factor beta (TGF-β), tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ) by flow cytometry. We found that in most postrecovery patients, levels of total lymphocytes (66.67%), CD3+ T cells (54.55%), CD4+ T cells (54.55%), CD8+ T cells (81.82%), CD19+ B cells (69.70%), and CD56+ NK cells (51.52%) remained lower than normal, whereas most patients showed normal levels of IL-2 (100%), IL-4 (80.88%), IL-6 (79.41%), IL-10 (98.53%), TNF-α (89.71%), IFN-γ (100%), and IL-17 (97.06%). Compared to healthy controls, two-week postrecovery patients had significantly lower absolute numbers of total lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD56+ NK cells, along with significantly higher levels of IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ, and IL-17. Among postrecovery patients, T cells, particularly CD4+ T cells, were positively correlated with CD19+ B cell counts. Additionally, CD8+ T cells were positively correlated with CD4+ T cells and IL-2 levels, and IL-6 positively correlated with TNF-α and IFN-γ. These correlations were not observed in healthy controls. By ROC curve analysis, postrecovery decreases in lymphocyte subsets and increases in cytokines were identified as independent predictors of rehabilitation efficacy. These findings indicate that the immune system gradually recovers following COVID-19 infection; however, the sustained hyperinflammatory response for more than 14 days suggests a need to continue medical observation following discharge from the hospital. Longitudinal studies of a larger cohort of recovered patients are needed to fully understand the consequences of the infection.
Collapse
|
47
|
Crimi E, Benincasa G, Figueroa-Marrero N, Galdiero M, Napoli C. Epigenetic susceptibility to severe respiratory viral infections and its therapeutic implications: a narrative review. Br J Anaesth 2020; 125:1002-1017. [PMID: 32828489 PMCID: PMC7438995 DOI: 10.1016/j.bja.2020.06.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence of highly pathogenic strains of influenza virus and coronavirus (CoV) has been responsible for large epidemic and pandemic outbreaks characterised by severe pulmonary illness associated with high morbidity and mortality. One major challenge for critical care is to stratify and minimise the risk of multi-organ failure during the stay in the intensive care unit (ICU). Epigenetic-sensitive mechanisms, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) methylation, histone modifications, and non-coding RNAs may lead to perturbations of the host immune-related transcriptional programmes by regulating chromatin structure and gene expression patterns. Viruses causing severe pulmonary illness can use epigenetic-regulated mechanisms during host-pathogen interaction to interfere with innate and adaptive immunity, adequacy of inflammatory response, and overall outcome of viral infections. For example, Middle East respiratory syndrome-CoV and H5N1 can affect host antigen presentation through DNA methylation and histone modifications. The same mechanisms would presumably occur in patients with coronavirus disease 2019, in which tocilizumab may epigenetically reduce microvascular damage. Targeting epigenetic pathways by immune modulators (e.g. tocilizumab) or repurposed drugs (e.g. statins) may provide novel therapeutic opportunities to control viral-host interaction during critical illness. In this review, we provide an update on epigenetic-sensitive mechanisms and repurposed drugs interfering with epigenetic pathways which may be clinically suitable for risk stratification and beneficial for treatment of patients affected by severe viral respiratory infections.
Collapse
Affiliation(s)
- Ettore Crimi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Department of Anesthesiology and Critical Care Medicine, Ocala Health, Ocala, FL, USA.
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, Naples, Italy
| | - Neisaliz Figueroa-Marrero
- College of Medicine, University of Central Florida, Orlando, FL, USA; Department of Anesthesiology and Critical Care Medicine, Ocala Health, Ocala, FL, USA
| | - Massimiliano Galdiero
- Department of Experimental Medicine, Section of Microbiology and Virology, University Hospital, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, Naples, Italy; IRCCS SDN, Naples, Italy
| |
Collapse
|
48
|
Islam ABMMK, Khan MAAK. Lung transcriptome of a COVID-19 patient and systems biology predictions suggest impaired surfactant production which may be druggable by surfactant therapy. Sci Rep 2020; 10:19395. [PMID: 33173052 PMCID: PMC7656460 DOI: 10.1038/s41598-020-76404-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
An incomplete understanding of the molecular mechanisms behind impairment of lung pathobiology by COVID-19 complicates its clinical management. In this study, we analyzed the gene expression pattern of cells obtained from biopsies of COVID-19-affected patient and compared to the effects observed in typical SARS-CoV-2 and SARS-CoV-infected cell-lines. We then compared gene expression patterns of COVID-19-affected lung tissues and SARS-CoV-2-infected cell-lines and mapped those to known lung-related molecular networks, including hypoxia induced responses, lung development, respiratory processes, cholesterol biosynthesis and surfactant metabolism; all of which are suspected to be downregulated following SARS-CoV-2 infection based on the observed symptomatic impairments. Network analyses suggest that SARS-CoV-2 infection might lead to acute lung injury in COVID-19 by affecting surfactant proteins and their regulators SPD, SPC, and TTF1 through NSP5 and NSP12; thrombosis regulators PLAT, and EGR1 by ORF8 and NSP12; and mitochondrial NDUFA10, NDUFAF5, and SAMM50 through NSP12. Furthermore, hypoxia response through HIF-1 signaling might also be targeted by SARS-CoV-2 proteins. Drug enrichment analysis of dysregulated genes has allowed us to propose novel therapies, including lung surfactants, respiratory stimulants, sargramostim, and oseltamivir. Our study presents a distinct mechanism of probable virus induced lung damage apart from cytokine storm.
Collapse
|
49
|
Atlante S, Mongelli A, Barbi V, Martelli F, Farsetti A, Gaetano C. The epigenetic implication in coronavirus infection and therapy. Clin Epigenetics 2020; 12:156. [PMID: 33087172 PMCID: PMC7576975 DOI: 10.1186/s13148-020-00946-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Epigenetics is a relatively new field of science that studies the genetic and non-genetic aspects related to heritable phenotypic changes, frequently caused by environmental and metabolic factors. In the host, the epigenetic machinery can regulate gene expression through a series of reversible epigenetic modifications, such as histone methylation and acetylation, DNA/RNA methylation, chromatin remodeling, and non-coding RNAs. The coronavirus disease 19 (COVID-19) is a highly transmittable and pathogenic viral infection. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which emerged in Wuhan, China, and spread worldwide, causes it. COVID-19 severity and consequences largely depend on patient age and health status. In this review, we will summarize and comparatively analyze how viruses regulate the host epigenome. Mainly, we will be focusing on highly pathogenic respiratory RNA virus infections such as coronaviruses. In this context, epigenetic alterations might play an essential role in the onset of coronavirus disease complications. Although many therapeutic approaches are under study, more research is urgently needed to identify effective vaccine or safer chemotherapeutic drugs, including epigenetic drugs, to cope with this viral outbreak and to develop pre- and post-exposure prophylaxis against COVID-19.
Collapse
Affiliation(s)
- Sandra Atlante
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Alessia Mongelli
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Veronica Barbi
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Fabio Martelli
- Laboratorio di Cardiologia Molecolare, Policlinico San Donato IRCCS, Milan, Italy
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science “A. Ruberti” (IASI), National Research Council (CNR), Rome, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| |
Collapse
|
50
|
Patra S, Kerry RG, Maurya GK, Panigrahi B, Kumari S, Rout JR. Emerging Molecular Prospective of SARS-CoV-2: Feasible Nanotechnology Based Detection and Inhibition. Front Microbiol 2020; 11:2098. [PMID: 33193115 PMCID: PMC7606273 DOI: 10.3389/fmicb.2020.02098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The rapid dissemination of SARS-CoV-2 demonstrates how vulnerable it can make communities and is why it has attained the status of global pandemic. According to the estimation from Worldometer, the SARS-CoV-2 affected cases and deaths are exponentially increasing worldwide, marking the mortality rate as ∼3.8% with no probability of its cessation till now. Despite massive attempts and races among scientific communities in search of proper therapeutic options, the termination of this breakneck outbreak of COVID-19 has still not been made possible. Therefore, this review highlights the diverse molecular events induced by a viral infection, such as autophagy, unfolded protein response (UPR), and inflammasome, illustrating the intracellular cascades regulating viral replication inside the host cell. The SARS-CoV-2-mediated endoplasmic reticulum stress and apoptosis are also emphasized in the review. Additionally, host's immune response associated with SARS-CoV-2 infection, as well as the genetic and epigenetic changes, have been demonstrated, which altogether impart a better understanding of its epidemiology. Considering the drawbacks of available diagnostics and medications, herein we have presented the most sensitive nano-based biosensors for the rapid detection of viral components. Moreover, conceptualizing the viral-induced molecular changes inside its target cells, nano-based antiviral systems have also been proposed in this review.
Collapse
Affiliation(s)
- Sushmita Patra
- Department of Biotechnology, North Orissa University, Baripada, India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | - Bijayananda Panigrahi
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Swati Kumari
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | | |
Collapse
|