1
|
Olagunju AS, Sardinha AVD, Amarante-Mendes GP. Long-Lasting, Fine-Tuned Anti-Tumor Activity of Recombinant Listeria monocytogenes Vaccine Is Controlled by Pyroptosis and Necroptosis Regulatory and Effector Molecules. Pathogens 2024; 13:828. [PMID: 39452700 PMCID: PMC11510422 DOI: 10.3390/pathogens13100828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
One of the main objectives of developing new anti-cancer vaccine strategies is to effectively induce CD8+ T cell-mediated anti-tumor immunity. Live recombinant vectors, notably Listeria monocytogenes, have been shown to elicit a robust in vivo CD8+ T-cell response in preclinical settings. Significantly, it has been demonstrated that Listeria induces inflammatory/immunogenic cell death mechanisms such as pyroptosis and necroptosis in immune cells that favorably control immunological responses. Therefore, we postulated that the host's response to Listeria-based vectors and the subsequent induction of CD8+ T cell-mediated immunity would be compromised by the lack of regulatory or effector molecules involved in pyroptosis or necroptosis. To test our hypothesis, we used recombinant L. monocytogenes carrying the ovalbumin gene (LM.OVA) to vaccinate wild-type (WT), caspase-1/11-/-, gsdmd-/-, ripk3-/-, and mlkl-/- C57Bl/6 mice. We performed an in vivo cytotoxicity assay to assess the efficacy of OVA-specific CD8+ T lymphocytes in eliminating target cells in wild-type and genetically deficient backgrounds. Furthermore, we evaluated the specific anti-tumor immune response in mice inoculated with the B16F0 and B16F0.OVA melanoma cell lines. Our findings demonstrated that while caspase-1/11 and GSDMD deficiencies interfere with the rapid control of LM.OVA infection, neither of the KOs seems to contribute to the early activation of OVA-specific CTL responses. In contrast, the individual deficiency of each one of these proteins positively impacts the generation of long-lasting effector CD8+ T cells.
Collapse
Affiliation(s)
- Abolaji S. Olagunju
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (A.S.O.); (A.V.D.S.)
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT-iii), São Paulo 05508-000, SP, Brazil
| | - Andrew V. D. Sardinha
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (A.S.O.); (A.V.D.S.)
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT-iii), São Paulo 05508-000, SP, Brazil
| | - Gustavo P. Amarante-Mendes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (A.S.O.); (A.V.D.S.)
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT-iii), São Paulo 05508-000, SP, Brazil
| |
Collapse
|
2
|
Sukhina A, Queriault C, Hall E, Rome K, Aggarwal M, Nunn E, Weiss A, Nguyen J, Bailis W. Malnutrition drives infection susceptibility and dysregulated myelopoiesis that persists after refeeding intervention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608575. [PMID: 39229137 PMCID: PMC11370435 DOI: 10.1101/2024.08.19.608575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Undernutrition is one of the largest persistent global health crises, with nearly 1 billion people facing severe food insecurity. Infectious disease represents the main underlying cause of morbidity and mortality for malnourished individuals, with infection during malnutrition representing the leading cause of childhood mortality worldwide. In the face of this complex challenge, simple refeeding protocols have remained the primary treatment strategy. Although an association between undernutrition and infection susceptibility has been appreciated for over a century, the underlying mechanisms remain poorly understood and the extent to which refeeding intervention is sufficient to reverse nutritionally acquired immunodeficiency is unclear. Here we investigate how malnutrition leads to immune dysfunction and the ability of refeeding to repair it. We find that chronic malnutrition severely impairs the ability of animals to control a sub-lethal bacterial infection. Malnourished animals exhibit blunted immune cell expansion, impaired immune function, and accelerated contraction prior to pathogen clearance. While this defect is global, we find that myelopoiesis is uniquely impacted, resulting in in reduced neutrophil and monocyte numbers prior to and post-infection. Upon refeeding, we observe that animals recover body mass, size, cellularity across all major immune organs, the capacity to undergo normal immune cell expansion in response to infection, and a restoration in T cell responses. Despite this broad improvement, refed animals remain susceptible to bacterial infection, uncoupling global lymphoid atrophy from immunodeficiency. Mechanistically, we find peripheral neutrophil and monocyte numbers fail to fully recover and refed animals are unable to undergo normal emergency myelopoiesis. Altogether, this work identifies a novel cellular link between prior nutritional state and immunocompetency, highlighting dysregulated myelopoiesis as a major driver. We believe these findings illustrate how exposure to food scarcity is an immunologic variable, even post-recovery, which should be accounted for in patient medical history and current global public health policy.
Collapse
Affiliation(s)
- Alisa Sukhina
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104
| | - Clemence Queriault
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Elise Hall
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Kelly Rome
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Muskaan Aggarwal
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104
| | - Elizabeth Nunn
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley Weiss
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104
| | - Janet Nguyen
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Will Bailis
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104
| |
Collapse
|
3
|
Castillo JG, DeBarge R, Mende A, Tenvooren I, Marquez DM, Straub A, Busch DH, Spitzer MH, DuPage M. A mass cytometry approach to track the evolution of T cell responses during infection and immunotherapy by paired T cell receptor repertoire and T cell differentiation state analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575237. [PMID: 38260336 PMCID: PMC10802618 DOI: 10.1101/2024.01.11.575237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
T cell receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we developed a mass cytometric (CyTOF) approach combining antibodies specific for different TCR Vα- and Vβ-chains with antibodies against T cell activation and differentiation proteins to identify antigen-specific expansions of T cell subsets and assess aspects of cellular function. This strategy allowed for the identification of expansions of specific Vβ and Vα chain expressing CD8+ and CD4+ T cells with varying differentiation states in response to Listeria monocytogenes, tumors, and respiratory influenza infection. Expanded Vβ chain expressing T cells could be directly linked to the recognition of specific antigens from Listeria, tumor cells, or influenza. In the setting of influenza infection, we showed that the common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the clonal diversity and differentiation state of responding T cells. Thus, we present a new method to monitor broad changes in TCR specificity paired with T cell differentiation during adaptive immune responses.
Collapse
Affiliation(s)
- Jesse Garcia Castillo
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Rachel DeBarge
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- These authors contributed equally
| | - Abigail Mende
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany; Partner site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| |
Collapse
|
4
|
Meng F, Zhu T, Chen C, Yao H, Zhang R, Li J, Chen X, Huang J, Pan Z, Jiao X, Yin Y. A live attenuated DIVA vaccine affords protection against Listeria monocytogenes challenge in sheep. Microb Pathog 2023:106204. [PMID: 37327947 DOI: 10.1016/j.micpath.2023.106204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
Listeria monocytogenes (Lm) is a deadly foodborne pathogen that comprises 14 serotypes, among which, serotype 4b Lm is the primary cause of listeriosis outbreaks in humans and animals. Here, we evaluated the safety, immunogenicity, and protective efficacy of a serotype 4b vaccine candidate Lm NTSNΔactA/plcB/orfX in sheep. The infection dynamics, clinical features, and pathological observation verified that the triple genes deletion strain has adequate safety for sheep. Moreover, NTSNΔactA/plcB/orfX significantly stimulated humoral immune response and 78% protection against lethal wild-type strain challenge. Notably, the attenuated vaccine could differentiate infected and vaccinated animals (DIVA) via serology determination of the antibody against listeriolysin O (LLO, encoded by hly) and phosphatidylinositol-specific phospholipase C (PI-PLC, encoded by plcB). These data suggest that the serotype 4b vaccine candidate has high efficacy, safety, and DIVA characteristics, and may be used to prevent Lm infection in sheep, which provides a theoretical basis for its future application in livestock and poultry breeding.
Collapse
Affiliation(s)
- Fanzeng Meng
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Tengfei Zhu
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Chao Chen
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Hao Yao
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Renling Zhang
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Jing Li
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Xin'an Jiao
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Yuelan Yin
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China.
| |
Collapse
|
5
|
Robertson TF, Hou Y, Schrope J, Shen S, Rindy J, Sauer JD, Dinh HQ, Huttenlocher A. A tessellated lymphoid network provides whole-body T cell surveillance in zebrafish. Proc Natl Acad Sci U S A 2023; 120:e2301137120. [PMID: 37155881 PMCID: PMC10193988 DOI: 10.1073/pnas.2301137120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 05/10/2023] Open
Abstract
Homeostatic trafficking to lymph nodes allows T cells to efficiently survey the host for cognate antigen. Nonmammalian jawed vertebrates lack lymph nodes but maintain diverse T cell pools. Here, we exploit in vivo imaging of transparent zebrafish to investigate how T cells organize and survey for antigen in an animal devoid of lymph nodes. We find that naïve-like T cells in zebrafish organize into a previously undescribed whole-body lymphoid network that supports streaming migration and coordinated trafficking through the host. This network has the cellular hallmarks of a mammalian lymph node, including naïve T cells and CCR7-ligand expressing nonhematopoietic cells, and facilitates rapid collective migration. During infection, T cells transition to a random walk that supports antigen-presenting cell interactions and subsequent activation. Our results reveal that T cells can toggle between collective migration and individual random walks to prioritize either large-scale trafficking or antigen search in situ. This lymphoid network thus facilitates whole-body T cell trafficking and antigen surveillance in the absence of a lymph node system.
Collapse
Affiliation(s)
- Tanner F. Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Yiran Hou
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Jonathan Schrope
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53726
| | - Simone Shen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Julie Rindy
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Huy Q. Dinh
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI53792
| |
Collapse
|
6
|
Qiu Z, Khairallah C, Chu TH, Imperato JN, Lei X, Romanov G, Atakilit A, Puddington L, Sheridan BS. Retinoic acid signaling during priming licenses intestinal CD103+ CD8 TRM cell differentiation. J Exp Med 2023; 220:e20210923. [PMID: 36809399 PMCID: PMC9960115 DOI: 10.1084/jem.20210923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/02/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
CD8 tissue-resident memory T (TRM) cells provide frontline protection at barrier tissues; however, mechanisms regulating TRM cell development are not completely understood. Priming dictates the migration of effector T cells to the tissue, while factors in the tissue induce in situ TRM cell differentiation. Whether priming also regulates in situ TRM cell differentiation uncoupled from migration is unclear. Here, we demonstrate that T cell priming in the mesenteric lymph nodes (MLN) regulates CD103+ TRM cell differentiation in the intestine. In contrast, T cells primed in the spleen were impaired in the ability to differentiate into CD103+ TRM cells after entry into the intestine. MLN priming initiated a CD103+ TRM cell gene signature and licensed rapid CD103+ TRM cell differentiation in response to factors in the intestine. Licensing was regulated by retinoic acid signaling and primarily driven by factors other than CCR9 expression and CCR9-mediated gut homing. Thus, the MLN is specialized to promote intestinal CD103+ CD8 TRM cell development by licensing in situ differentiation.
Collapse
Affiliation(s)
- Zhijuan Qiu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Timothy H. Chu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jessica N. Imperato
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Xinyuan Lei
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Galina Romanov
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Amha Atakilit
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lynn Puddington
- Department of Immunology, University of Connecticut Health, Farmington, CT, USA
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
7
|
Kim J, Nguyen T, Cifello J, Ahmad R, Zhang Y, Yang Q, Lee JE, Li X, Kai Y, De S, Peng W, Ge K, Weng NP. Lysine methyltransferase Kmt2d regulates naive CD8 + T cell activation-induced survival. Front Immunol 2023; 13:1095140. [PMID: 36741385 PMCID: PMC9892454 DOI: 10.3389/fimmu.2022.1095140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Lysine specific methyltransferase 2D (Kmt2d) catalyzes the mono-methylation of histone 3 lysine 4 (H3K4me1) and plays a critical role in regulatory T cell generation via modulating Foxp3 gene expression. Here we report a role of Kmt2d in naïve CD8+ T cell generation and survival. In the absence of Kmt2d, the number of CD8+ T cells, particularly naïve CD8+ T cells (CD62Lhi/CD44lo), in spleen was greatly decreased and in vitro activation-related death significantly increased from Kmt2d fl/flCD4cre+ (KO) compared to Kmt2d fl/flCD4cre- (WT) mice. Furthermore, analyses by ChIPseq, RNAseq, and scRNAseq showed reduced H3K4me1 levels in enhancers and reduced expression of apoptosis-related genes in activated naïve CD8+ T cells in the absence of Kmt2d. Finally, we confirmed the activation-induced death of antigen-specific naïve CD8+ T cells in vivo in Kmt2d KO mice upon challenge with Listeria monocytogenes infection. These findings reveal that Kmt2d regulates activation-induced naïve CD8+ T cell survival via modulating H3K4me1 levels in enhancer regions of apoptosis and immune function-related genes.
Collapse
Affiliation(s)
- Jaekwan Kim
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Thomas Nguyen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jeffrey Cifello
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Raheel Ahmad
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Qian Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Ji-Eun Lee
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Xiang Li
- Department of Physics, George Washington University, Washington DC, WA, United States
| | - Yan Kai
- Department of Physics, George Washington University, Washington DC, WA, United States
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Weiqun Peng
- Department of Physics, George Washington University, Washington DC, WA, United States
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Nan-ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States,*Correspondence: Nan-ping Weng,
| |
Collapse
|
8
|
Robertson TF, Hou Y, Shen S, Rindy J, Sauer JD, Dinh HQ, Huttenlocher A. A tessellated lymphoid network provides whole-body T cell surveillance in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524414. [PMID: 36711463 PMCID: PMC9882119 DOI: 10.1101/2023.01.17.524414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Homeostatic trafficking to lymph nodes allows T cells to efficiently survey the host for cognate antigen. Non-mammalian jawed vertebrates lack lymph nodes but maintain similarly diverse T cell pools. Here, we exploit in vivo imaging of transparent zebrafish to investigate how T cells organize and survey for antigen in an animal devoid of lymph nodes. We find that naïve-like T cells in zebrafish organize into a previously undescribed whole-body lymphoid network that supports streaming migration and coordinated trafficking through the host. This network has the cellular hallmarks of a mammalian lymph node, including naïve T cells and CCR7-ligand expressing non-hematopoietic cells, and facilitates rapid collective migration. During infection, T cells transition to a random walk that supports antigen presenting cell interactions and subsequent activation. Our results reveal that T cells can toggle between collective migration and individual random walks to prioritize either large-scale trafficking or antigen search in situ . This novel lymphoid network thus facilitates whole-body T cell trafficking and antigen surveillance in the absence of a lymph node system. Significance Statement In mammals, lymph nodes play a critical role in the initiation of adaptive immune responses by providing a dedicated place for T cells to scan antigen-presenting cells. Birds, reptiles, amphibians, and fish all maintain diverse repertoires of T cells but lack lymph nodes, raising questions about how adaptive immunity functions in lower jawed vertebrates. Here, we describe a novel network of lymphocytes in zebrafish that supports whole-body T cell trafficking and provides a site for antigen search, mirroring the function of mammalian lymph nodes. Within this network, T cells can prioritize large-scale trafficking or antigen scanning by toggling between two distinct modes of migration. This network provides valuable insights into the evolution of adaptive immunity.
Collapse
|
9
|
Zhu L, Zhou X, Gu M, Kim J, Li Y, Ko CJ, Xie X, Gao T, Cheng X, Sun SC. Dapl1 controls NFATc2 activation to regulate CD8 + T cell exhaustion and responses in chronic infection and cancer. Nat Cell Biol 2022; 24:1165-1176. [PMID: 35773432 DOI: 10.1038/s41556-022-00942-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
CD8+ T cells are central mediators of immune responses against infections and cancer. Here we identified Dapl1 as a crucial regulator of CD8+ T cell responses to cancer and infections. Dapl1 deficiency promotes the expansion of tumour-infiltrating effector memory-like CD8+ T cells and prevents their functional exhaustion, coupled with increased antitumour immunity and improved efficacy of adoptive T cell therapy. Dapl1 controls activation of NFATc2, a transcription factor required for the effector function of CD8+ T cells. Although NFATc2 mediates induction of the immune checkpoint receptor Tim3, competent NFATc2 activation prevents functional exhaustion of CD8+ T cells. Interestingly, exhausted CD8+ T cells display attenuated NFATc2 activation due to Tim3-mediated feedback inhibition; Dapl1 deletion rescues NFATc2 activation and thereby prevents dysfunction of exhausted CD8+ T cells in chronic infection and cancer. These findings establish Dapl1 as a crucial regulator of CD8+ T cell immunity and a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Flagship Labs 91, Inc., Cambridge, MA, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiseong Kim
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Bristol Myers Squibb, Seattle, WA, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,AbbVie, South San Francisco, CA, USA
| | - Tianxiao Gao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Memorial Hermann-Texas Medical Center, Houston, TX, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Khairallah C, Chu TH, Qiu Z, Imperato JN, Yang D, Sheridan BS. The accumulation of Vγ4 T cells with aging is associated with an increased adaptive Vγ4 T cell response after foodborne Listeria monocytogenes infection of mice. Immun Ageing 2022; 19:19. [PMID: 35501808 PMCID: PMC9063344 DOI: 10.1186/s12979-022-00275-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/19/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND It is generally accepted that aging has detrimental effects on conventional T cell responses to systemic infections. However, most pathogens naturally invade the body through mucosal barriers. Although mucosal sites are highly enriched in unconventional immune sentinels like γδ T cells, little is currently known about the impact of aging on unconventional mucosal T cell responses. We previously established that foodborne infection with a mouse-adapted internalin A mutant Listeria monocytogenes (Lm) generates an adaptive intestinal memory CD44hi CD27neg Vγ4 T cells capable of co-producing IL-17A and IFNγ. Therefore, we used this model to evaluate the impact of aging on adaptive Vγ4 T cell responses elicited by foodborne infection. RESULTS Foodborne Lm infection of female Balb/c and C57BL/6 mice led to an increased adaptive CD44hi CD27neg Vγ4 T cell response associated with aging. Moreover, Lm-elicited CD44hi CD27neg Vγ4 T cells maintained diverse functional subsets despite some alterations favoring IL-17A production as mice aged. In contrast to the documented susceptibility of aged mice to intravenous Lm infection, mice contained bacteria after foodborne Lm infection suggesting that elevated bacterial burden was not a major factor driving the increased adaptive CD44hi CD27neg Vγ4 T cell response associated with mouse age. However, CD44hi CD27neg Vγ4 T cells accumulated in naïve mice as they aged suggesting that an increased precursor frequency contributes to the robust Lm-elicited mucosal response observed. Body mass did not appear to have a strong positive association with CD44hi CD27neg Vγ4 T cells within age groups. Although an increased adaptive CD44hi CD27neg Vγ4 T cell response may contribute to foodborne Lm resistance of C57BL/6 mice aged 19 or more months, neither anti-TCRδ or anti-IL-17A treatment impacted Lm colonization after primary infection. These results suggest that γδTCR signaling and IL-17A are dispensable for protection after primary foodborne Lm infection consistent with the role of conventional T cells during the early innate immune response to Lm. CONCLUSIONS Lm-elicited adaptive Vγ4 T cells appear resistant to immunosenescence and memory Vγ4 T cells could be utilized to provide protective immune functions during enteric infection of aged hosts. As such, oral immunization might offer an efficient therapeutic approach to generate unconventional memory T cells in the elderly.
Collapse
Affiliation(s)
- Camille Khairallah
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Timothy H. Chu
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Zhijuan Qiu
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Jessica N. Imperato
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Daniella Yang
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Brian S. Sheridan
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| |
Collapse
|
11
|
Protective Immunity against Listeria monocytogenes in Rats, Provided by HCl- and NaOH-Induced Listeria monocytogenes Bacterial Ghosts (LMGs) as Vaccine Candidates. Int J Mol Sci 2022; 23:ijms23041946. [PMID: 35216061 PMCID: PMC8876606 DOI: 10.3390/ijms23041946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
Listeria monocytogenes (Lm) bacterial ghosts (LMGs) were produced by the minimum inhibitory concentration (MIC) of HCl, H2SO4, and NaOH. Acid and alkali effects on the LMGs were compared by in vitro and in vivo analyses. Scanning electron microscope showed that all chemicals form lysis pores on the Lm cell envelopes. Real-time qPCR revealed a complete absence of genomic DNA in HCl- and H2SO4-induced LMGs but not in NaOH-induced LMGs. HCl-, H2SO4- and NaOH-induced LMGs showed weaker or missing protein bands on SDS-PAGE gel when compared to wild-type Lm. Murine macrophages exposed to the HCl-induced LMGs showed higher cell viability than those exposed to NaOH-induced LMGs or wild-type Lm. The maximum level of cytokine expression (TNF-α, iNOS, IFN-γ, and IL-10 mRNA) was observed in the macrophages exposed to NaOH-induced LMGs, while that of IL-1β mRNA was observed in the macrophages exposed to HCl-induced LMGs. To investigate LMGs as a vaccine candidate, mice were divided into PBS buffer-injected, HCl- and NaOH-induced LMGs immunized groups. Mice vaccinated with HCl- and NOH-induced LMGs, respectively, significantly increased in specific IgG antibodies, bactericidal activities of serum, and CD4+ and CD8+ T-cell population. Antigenic Lm proteins reacted with antisera against HCl- and NOH-induced LMGs, respectively. Bacterial loads in HCl- and NaOH-induced LMGs immunized mice were significantly lower than PBS-injected mice after virulent Lm challenges. It suggested that vaccination with LMGs induces both humoral and cell-mediated immune responses and protects against virulent challenges.
Collapse
|
12
|
The use of foodborne infection to evaluate bacterial pathogenesis and host response. Methods Cell Biol 2022; 168:299-314. [PMID: 35366988 PMCID: PMC10064862 DOI: 10.1016/bs.mcb.2021.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Foodborne bacterial infections are a major cause of gastrointestinal illness. Murine models have been widely used to interrogate bacterial pathogenesis and host response to better understand the pathogens that cause gastrointestinal disease. Humans are usually exposed to these pathogens through consumption of contaminated food products. However, most murine models of foodborne infection rely on oral gavage to deliver pathogens directly into the stomach. While expedient, the gavage procedure may lead to microabrasions in the esophagus that allow direct access of the pathogen to the blood, which can alter bacterial pathogenesis and the host response under study. In this chapter, the alternative approach of foodborne infection through the consumption of inoculated food is described using the human pathogen Listeria monocytogenes (Lm). A detailed protocol of this methodology is provided with details of assessing bacterial burden and the host immune response. Translation of these methods to other foodborne pathogens will allow a more accurate assessment of bacterial pathogenesis and host immunity in more physiologic murine models.
Collapse
|
13
|
Jakic B, Kimpel J, Olson WJ, Labi V, Hermann-Kleiter N. Bacterial Infection with Listeria monocytogenes in Mice and Subsequent Analysis of Antigen-Specific CD8 T Cell Responses. Bio Protoc 2021; 11:e4247. [PMID: 35005092 PMCID: PMC8678912 DOI: 10.21769/bioprotoc.4247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2024] Open
Abstract
Pathogens such as bacteria, viruses, fungi, or protozoa can cause acute and chronic infections in their hosts. The intracellular bacterium Listeria monocytogenes serves as a model pathogen to assess the molecular mechanisms regulating CD8 T cell activation, differentiation, and function. We set up an experimental workflow to investigate cell-intrinsic roles of the nuclear receptor NR2F6 in CD8 T cell memory formation upon Listeria monocytogenes (LmOVA) infection ( Jakic et al., 2021 ). The current protocol details how to cultivate ovalbumin-expressing LmOVA, infect naïve C57BL/6 mice with these bacteria and determine the bacterial load in host organs. Furthermore, we describe how to evaluate antigen-specific CD8 T cell responses and discriminate between short-lived effector and memory precursor cells in vivo following LmOVA infection (Figure 1). To assess CD8 T cell-intrinsic molecular mechanisms, we integrated an adoptive cell transfer (ACT) experiment of genetically modified naïve OT-I CD8 T cells into congenic hosts before LmOVA infection. Graphic abstract: Figure 1.Experimental workflow depicting the steps for infection of mice with Listeria and subsequent analysis of antigen-specific CD8 memory responses. Bacteria (ovalbumin expressing Listeria monocytogenes) are thawed and grown on lysogeny broth (LB) plates overnight (ON). A single colony is picked and grown in LB medium ON. Bacteria from the exponential growth phase are then injected into a C57BL/6 mouse via tail vein injection. Colony forming units (CFU) of the bacteria can be detected in the spleen on day 3 post injection. Antigen-specific CD8 T cell immune response can be investigated during the acute phase (d3 after infection), during the peak of the adaptive immune response (d7), the clearance phase (d26), or the memory phase (d70) by flow cytometry. Created with BioRender.com.
Collapse
Affiliation(s)
- Bojana Jakic
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Janine Kimpel
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - William J. Olson
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Verena Labi
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Institute of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Descoeudres N, Jouneau L, Henry C, Gorrichon K, Derré-Bobillot A, Serror P, Gillespie LL, Archambaud C, Pagliuso A, Bierne H. An Immunomodulatory Transcriptional Signature Associated With Persistent Listeria Infection in Hepatocytes. Front Cell Infect Microbiol 2021; 11:761945. [PMID: 34858876 PMCID: PMC8631403 DOI: 10.3389/fcimb.2021.761945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Listeria monocytogenes causes severe foodborne illness in pregnant women and immunocompromised individuals. After the intestinal phase of infection, the liver plays a central role in the clearance of this pathogen through its important functions in immunity. However, recent evidence suggests that during long-term infection of hepatocytes, a subpopulation of Listeria may escape eradication by entering a persistence phase in intracellular vacuoles. Here, we examine whether this long-term infection alters hepatocyte defense pathways, which may be instrumental for bacterial persistence. We first optimized cell models of persistent infection in human hepatocyte cell lines HepG2 and Huh7 and primary mouse hepatocytes (PMH). In these cells, Listeria efficiently entered the persistence phase after three days of infection, while inducing a potent interferon response, of type I in PMH and type III in HepG2, while Huh7 remained unresponsive. RNA-sequencing analysis identified a common signature of long-term Listeria infection characterized by the overexpression of a set of genes involved in antiviral immunity and the under-expression of many acute phase protein (APP) genes, particularly involved in the complement and coagulation systems. Infection also altered the expression of cholesterol metabolism-associated genes in HepG2 and Huh7 cells. The decrease in APP transcripts was correlated with lower protein abundance in the secretome of infected cells, as shown by proteomics, and also occurred in the presence of APP inducers (IL-6 or IL-1β). Collectively, these results reveal that long-term infection with Listeria profoundly deregulates the innate immune functions of hepatocytes, which could generate an environment favorable to the establishment of persistent infection.
Collapse
Affiliation(s)
- Natalie Descoeudres
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Céline Henry
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Kevin Gorrichon
- Université Paris-Saclay, Institut de Biologie Intégrative de la Cellule, CEA, CNRS UMR 9198, Université Paris-Sud, Gif-sur-Yvette, France
| | | | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Laura Lee Gillespie
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Cristel Archambaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alessandro Pagliuso
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Hélène Bierne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
15
|
Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, Ortega AD. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021; 12:2509-2545. [PMID: 34612177 PMCID: PMC8496543 DOI: 10.1080/21505594.2021.1975526] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in food-processing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host's gastrointestinal tract. Then we dissect host-pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Juan J. Quereda
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Alvaro Morón-García
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
| | - Carla Palacios-Gorba
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Charlotte Dessaux
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa’. Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid. Madrid, Spain
| | - Alvaro D. Ortega
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
16
|
Xie X, Zhu L, Jie Z, Li Y, Gu M, Zhou X, Wang H, Chang JH, Ko CJ, Cheng X, Sun SC. TRAF2 regulates T cell immunity by maintaining a Tpl2-ERK survival signaling axis in effector and memory CD8 T cells. Cell Mol Immunol 2021; 18:2262-2274. [PMID: 33203937 PMCID: PMC8429472 DOI: 10.1038/s41423-020-00583-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/21/2020] [Indexed: 11/09/2022] Open
Abstract
Generation and maintenance of antigen-specific effector and memory T cells are central events in immune responses against infections. We show that TNF receptor-associated factor 2 (TRAF2) maintains a survival signaling axis in effector and memory CD8 T cells required for immune responses against infections. This signaling axis involves activation of Tpl2 and its downstream kinase ERK by NF-κB-inducing kinase (NIK) and degradation of the proapoptotic factor Bim. NIK mediates Tpl2 activation by stimulating the phosphorylation and degradation of the Tpl2 inhibitor p105. Interestingly, while NIK is required for Tpl2-ERK signaling under normal conditions, uncontrolled NIK activation due to loss of its negative regulator, TRAF2, causes constitutive degradation of p105 and Tpl2, leading to severe defects in ERK activation and effector/memory CD8 T cell survival. Thus, TRAF2 controls a previously unappreciated signaling axis mediating effector/memory CD8 T cell survival and protective immunity.
Collapse
Affiliation(s)
- Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Hui Wang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jae-Hoon Chang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Precursor Abundance Influences Divergent Antigen-Specific CD8 + T Cell Responses after Yersinia pseudotuberculosis Foodborne Infection. Infect Immun 2021; 89:e0026521. [PMID: 34031132 DOI: 10.1128/iai.00265-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Primary infection of C57BL/6 mice with the bacterial pathogen Yersinia pseudotuberculosis elicits an unusually large H-2Kb-restricted CD8+ T cell response to the endogenous and protective bacterial epitope YopE69-77. To better understand the basis for this large response, the model OVA257-264 epitope was inserted into YopE in Y. pseudotuberculosis and antigen-specific CD8+ T cells in mice were characterized after foodborne infection with the resulting strain. The epitope YopE69-77 elicited significantly larger CD8+ T cell populations in the small intestine, mesenteric lymph nodes (MLNs), spleen, and liver between 7 and 30 days postinfection, despite residing in the same protein and having an affinity for H-2Kb similar to that of OVA257-264. YopE-specific CD8+ T cell precursors were ∼4.6 times as abundant as OVA-specific precursors in the MLNs, spleens, and other lymph nodes of naive mice, explaining the dominance of YopE69-77 over OVA257-264 at early infection times. However, other factors contributed to this dominance, as the ratio of YopE-specific to OVA-specific CD8+ T cells increased between 7 and 30 days postinfection. We also compared the YopE-specific and OVA-specific CD8+ T cells generated during infection for effector and memory phenotypes. Significantly higher percentages of YopE-specific cells were characterized as short-lived effectors, while higher percentages of OVA-specific cells were memory precursor effectors at day 30 postinfection in spleen and liver. Our results suggest that a large precursor number contributes to the dominance and effector and memory functions of CD8+ T cells generated in response to the protective YopE69-77 epitope during Y. pseudotuberculosis infection of C57BL/6 mice.
Collapse
|
18
|
Cho K, Spasova D, Hong SW, O E, Surh CD, Im SH, Kim KS. Listeria monocytogenes Establishes Commensalism in Germ-Free Mice Through the Reversible Downregulation of Virulence Gene Expression. Front Immunol 2021; 12:666088. [PMID: 34012449 PMCID: PMC8126713 DOI: 10.3389/fimmu.2021.666088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022] Open
Abstract
The intestine harbors a complex community of bacterial species collectively known as commensal microbiota. Specific species of resident bacteria, as known as pathobiont, have pathogenic potential and can induce apparent damage to the host and intestinal inflammation in a certain condition. However, the host immune factors that permit its commensalism under steady state conditions are not clearly understood. Here, we studied the gut fitness of Listeria monocytogenes by using germ-free (GF) mice orally infected with this food-borne pathogen. L. monocytogenes persistently exists in the gut of GF mice without inducing chronic immunopathology. L. monocytogenes at the late phase of infection is not capable of infiltrating through the intestinal barrier. L. monocytogenes established the commensalism through the reversible down regulation of virulence gene expression. CD8+ T cells were found to be sufficient for the commensalism of L. monocytogenes. CD8+ T cells responding to L. monocytogenes contributed to the down-regulation of virulence gene expression. Our data provide important insights into the host-microbe interaction and have implications for developing therapeutics against immune disorders induced by intestinal pathogens or pathobionts.
Collapse
Affiliation(s)
- Kyungjin Cho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Darina Spasova
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Sung-Wook Hong
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Eunju O
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Charles D Surh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.,Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Kwang Soon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| |
Collapse
|
19
|
Qiu Z, Chu TH, Sheridan BS. TGF-β: Many Paths to CD103 + CD8 T Cell Residency. Cells 2021; 10:cells10050989. [PMID: 33922441 PMCID: PMC8145941 DOI: 10.3390/cells10050989] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
CD8 tissue-resident memory T (TRM) cells primarily reside in nonlymphoid tissues without recirculating and provide front-line protective immunity against infections and cancers. CD8 TRM cells can be generally divided into CD69+ CD103− TRM cells (referred to as CD103− TRM cells) and CD69+ CD103+ TRM cells (referred to as CD103+ TRM cells). TGF-β plays a critical role in the development and maintenance of CD103+ CD8 TRM cells. In this review, we summarize the current understanding of tissue-specific activation of TGF-β mediated by integrins and how it contributes to CD103+ CD8 TRM cell development and maintenance. Furthermore, we discuss the underlying mechanisms utilized by TGF-β to regulate the development and maintenance of CD103+ CD8 TRM cells. Overall, this review highlights the importance of TGF-β in regulating this unique subset of memory CD8 T cells that may shed light on improving vaccine design to target this population.
Collapse
|
20
|
Tang-Huau TL, Rosenke K, Meade-White K, Carmody A, Smith BJ, Bosio CM, Jarvis MA, Feldmann H. Mastomys natalensis Has a Cellular Immune Response Profile Distinct from Laboratory Mice. Viruses 2021; 13:v13050729. [PMID: 33922222 PMCID: PMC8145423 DOI: 10.3390/v13050729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/11/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022] Open
Abstract
The multimammate mouse (Mastomys natalensis; M. natalensis) has been identified as a major reservoir for multiple human pathogens including Lassa virus (LASV), Leishmania spp., Yersinia spp., and Borrelia spp. Although M. natalensis are related to well-characterized mouse and rat species commonly used in laboratory models, there is an absence of established assays and reagents to study the host immune responses of M. natalensis. As a result, there are major limitations to our understanding of immunopathology and mechanisms of immunological pathogen control in this increasingly important rodent species. In the current study, a large panel of commercially available rodent reagents were screened to identify their cross-reactivity with M. natalensis. Using these reagents, ex vivo assays were established and optimized to evaluate lymphocyte proliferation and cytokine production by M. natalensis lymphocytes. In contrast to C57BL/6J mice, lymphocytes from M. natalensis were relatively non-responsive to common stimuli such as phytohaemagglutinin P and lipopolysaccharide. However, they readily responded to concanavalin A stimulation as indicated by proliferation and cytokine production. In summary, we describe lymphoproliferative and cytokine assays demonstrating that the cellular immune responses in M. natalensis to commonly used mitogens differ from a laboratory-bred mouse strain.
Collapse
Affiliation(s)
- Tsing-Lee Tang-Huau
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA; (K.R.); (K.M.-W.)
- Correspondence: (T.-L.T.-H.); (H.F.); Tel.: +1-4063757410 (H.F.)
| | - Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA; (K.R.); (K.M.-W.)
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA; (K.R.); (K.M.-W.)
| | - Aaron Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA;
| | - Brian J. Smith
- Rocky Mountain Veterinary Branch Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA;
| | - Catharine M. Bosio
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA;
| | - Michael A. Jarvis
- Faculty of Health: Medicine, Dentistry and Human Sciences, School of Biomedical Sciences, University of Plymouth, PL4 8AA, UK;
- The Vaccine Group (TVG) Ltd., 14 Research Way, Derriford Research Facility, Plymouth Science Park, Plymouth PL6 8BU, UK
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA; (K.R.); (K.M.-W.)
- Correspondence: (T.-L.T.-H.); (H.F.); Tel.: +1-4063757410 (H.F.)
| |
Collapse
|
21
|
Imperato JN, Xu D, Romagnoli PA, Qiu Z, Perez P, Khairallah C, Pham QM, Andrusaite A, Bravo-Blas A, Milling SWF, Lefrancois L, Khanna KM, Puddington L, Sheridan BS. Mucosal CD8 T Cell Responses Are Shaped by Batf3-DC After Foodborne Listeria monocytogenes Infection. Front Immunol 2020; 11:575967. [PMID: 33042159 PMCID: PMC7518468 DOI: 10.3389/fimmu.2020.575967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
While immune responses have been rigorously examined after intravenous Listeria monocytogenes (Lm) infection, less is understood about its dissemination from the intestines or the induction of adaptive immunity after more physiologic models of foodborne infection. Consequently, this study focused on early events in the intestinal mucosa and draining mesenteric lymph nodes (MLN) using foodborne infection of mice with Lm modified to invade murine intestinal epithelium (InlAMLm). InlAMLm trafficked intracellularly from the intestines to the MLN and were associated with Batf3-independent dendritic cells (DC) in the lymphatics. Consistent with this, InlAMLm initially disseminated from the gut to the MLN normally in Batf3–/– mice. Activated migratory DC accumulated in the MLN by 3 days post-infection and surrounded foci of InlAMLm. At this time Batf3–/– mice displayed reduced InlAMLm burdens, implicating cDC1 in maximal bacterial accumulation in the MLN. Batf3–/– mice also exhibited profound defects in the induction and gut-homing of InlAMLm-specific effector CD8 T cells. Restoration of pathogen burden did not rescue antigen-specific CD8 T cell responses in Batf3–/– mice, indicating a critical role for Batf3 in generating anti-InlAMLm immunity following foodborne infection. Collectively, these data suggest that DC play diverse, dynamic roles in the early events following foodborne InlAMLm infection and in driving the establishment of intestinal Lm-specific effector T cells.
Collapse
Affiliation(s)
- Jessica Nancy Imperato
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Daqi Xu
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Pablo A Romagnoli
- Centro de Investigacion en Medicina Traslacional Severo Amuchastegui, Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Pedro Perez
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Camille Khairallah
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Quynh-Mai Pham
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Anna Andrusaite
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | - Simon W F Milling
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Leo Lefrancois
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Kamal M Khanna
- Department of Microbiology, New York University, New York City, NY, United States
| | - Lynn Puddington
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
22
|
Shepherd FR, McLaren JE. T Cell Immunity to Bacterial Pathogens: Mechanisms of Immune Control and Bacterial Evasion. Int J Mol Sci 2020; 21:E6144. [PMID: 32858901 PMCID: PMC7504484 DOI: 10.3390/ijms21176144] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The human body frequently encounters harmful bacterial pathogens and employs immune defense mechanisms designed to counteract such pathogenic assault. In the adaptive immune system, major histocompatibility complex (MHC)-restricted αβ T cells, along with unconventional αβ or γδ T cells, respond to bacterial antigens to orchestrate persisting protective immune responses and generate immunological memory. Research in the past ten years accelerated our knowledge of how T cells recognize bacterial antigens and how many bacterial species have evolved mechanisms to evade host antimicrobial immune responses. Such escape mechanisms act to corrupt the crosstalk between innate and adaptive immunity, potentially tipping the balance of host immune responses toward pathological rather than protective. This review examines the latest developments in our knowledge of how T cell immunity responds to bacterial pathogens and evaluates some of the mechanisms that pathogenic bacteria use to evade such T cell immunosurveillance, to promote virulence and survival in the host.
Collapse
Affiliation(s)
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
23
|
Qiu Z, Khairallah C, Romanov G, Sheridan BS. Cutting Edge: Batf3 Expression by CD8 T Cells Critically Regulates the Development of Memory Populations. THE JOURNAL OF IMMUNOLOGY 2020; 205:901-906. [PMID: 32669309 DOI: 10.4049/jimmunol.2000228] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/24/2020] [Indexed: 01/27/2023]
Abstract
The basic leucine zipper transcription factor ATF-like 3 (BATF3) is required for the development of conventional type 1 dendritic cells that are essential for cross-presentation and CD8 T cell-mediated immunity against intracellular pathogens and tumors. However, whether BATF3 intrinsically regulates CD8 T cell responses is not well studied. In this article, we report a role for cell-intrinsic Batf3 expression in regulating the establishment of circulating and resident memory T cells after foodborne Listeria monocytogenes infection of mice. Consistent with other studies, Batf3 expression by CD8 T cells was dispensable for the primary response. However, Batf3 -/- T cells underwent increased apoptosis during contraction to contribute to a substantially reduced memory population. Batf3 -/- memory cells had an impaired ability to mount a robust recall response but remained functional. These findings reveal a cell-intrinsic role of Batf3 in regulating CD8 T cell memory development.
Collapse
Affiliation(s)
- Zhijuan Qiu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Camille Khairallah
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Galina Romanov
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
24
|
Rana A, de Almeida FC, Paico Montero HA, Gonzales Carazas MM, Bortoluci KR, Sad S, Amarante-Mendes GP. RIPK3 and Caspase-1/11 Are Necessary for Optimal Antigen-Specific CD8 T Cell Response Elicited by Genetically Modified Listeria monocytogenes. Front Immunol 2020; 11:536. [PMID: 32328060 PMCID: PMC7160319 DOI: 10.3389/fimmu.2020.00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/09/2020] [Indexed: 11/26/2022] Open
Abstract
Efficient induction of effector and long-term protective antigen-specific CD8+ T memory response by vaccination is essential to eliminate malignant and pathogen-infected cells. Intracellular infectious bacteria, including Listeria monocytogenes, have been considered potent vectors to carry multiple therapeutic proteins and generate antigen-specific CD8+ T cell responses. Although the role of molecules involved in inflammatory cell death pathways, such as necroptosis (RIPK3-mediated) and pyroptosis (Caspase-1/11-mediated), as effectors of immune response against intracellular bacteria are relatively well understood, their contribution to the adjuvant effect of recombinant bacterial vectors in the context of antigen-specific CD8+ T cell response remained obscure. Therefore, we evaluated the impact of RIPK3 and Caspase-1/11 (Casp-1/11) individual and combined deficiencies on the modulation of antigen-specific CD8+ T cell response during vaccination of mice with ovalbumin-expressing L. monocytogenes (LM-OVA). We observed that Casp-1/11 but not RIPK3 deficiency negatively impacts the capacity of mice to clear LM-OVA. Importantly, both RIPK3 and Casp-1/11 are necessary for optimal LM-OVA-mediated antigen-specific CD8+ T cell response, as measured by in vivo antigen-specific CD8+ T cell proliferation, target cell elimination, and cytokine production. Furthermore, Casp-1/11 and Casp-1/11/RIPK3 combined deficiencies restrict the early initiation of antigen-specific CD8+ T cell memory response. Taken together, our findings demonstrate that RIPK3 and Casp-1/11 influence the quality of CD8+ T cell responses induced by recombinant L. monocytogenes vectors.
Collapse
Affiliation(s)
- Aamir Rana
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Felipe Campos de Almeida
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | | | | | - Karina R Bortoluci
- Departamento de Ciências Biológicas, Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Gustavo P Amarante-Mendes
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| |
Collapse
|
25
|
Lewis SM, Williams A, Eisenbarth SC. Structure and function of the immune system in the spleen. Sci Immunol 2020; 4:4/33/eaau6085. [PMID: 30824527 DOI: 10.1126/sciimmunol.aau6085] [Citation(s) in RCA: 601] [Impact Index Per Article: 120.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
The spleen is the largest secondary lymphoid organ in the body and, as such, hosts a wide range of immunologic functions alongside its roles in hematopoiesis and red blood cell clearance. The physical organization of the spleen allows it to filter blood of pathogens and abnormal cells and facilitate low-probability interactions between antigen-presenting cells (APCs) and cognate lymphocytes. APCs specific to the spleen regulate the T and B cell response to these antigenic targets in the blood. This review will focus on cell types, cell organization, and immunologic functions specific to the spleen and how these affect initiation of adaptive immunity to systemic blood-borne antigens. Potential differences in structure and function between mouse and human spleen will also be discussed.
Collapse
Affiliation(s)
- Steven M Lewis
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adam Williams
- Jackson Laboratory for Genomic Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA.,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
26
|
IL-10-Dependent Crosstalk between Murine Marginal Zone B Cells, Macrophages, and CD8α + Dendritic Cells Promotes Listeria monocytogenes Infection. Immunity 2019; 51:64-76.e7. [PMID: 31231033 DOI: 10.1016/j.immuni.2019.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 03/20/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023]
Abstract
Type 1 CD8α+ conventional dendritic cells (cDC1s) are required for CD8+ T cell priming but, paradoxically, promote splenic Listeria monocytogenes infection. Using mice with impaired cDC2 function, we ruled out a role for cDC2s in this process and instead discovered an interleukin-10 (IL-10)-dependent cellular crosstalk in the marginal zone (MZ) that promoted bacterial infection. Mice lacking the guanine nucleotide exchange factor DOCK8 or CD19 lost IL-10-producing MZ B cells and were resistant to Listeria. IL-10 increased intracellular Listeria in cDC1s indirectly by reducing inducible nitric oxide synthase expression early after infection and increasing intracellular Listeria in MZ metallophilic macrophages (MMMs). These MMMs trans-infected cDC1s, which, in turn, transported Listeria into the white pulp to prime CD8+ T cells. However, this also facilitated bacterial expansion. Therefore, IL-10-mediated crosstalk between B cells, macrophages, and cDC1s in the MZ promotes both Listeria infection and CD8+ T cell activation.
Collapse
|
27
|
D'Orazio SEF. Innate and Adaptive Immune Responses during Listeria monocytogenes Infection. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0065-2019. [PMID: 31124430 PMCID: PMC11086964 DOI: 10.1128/microbiolspec.gpp3-0065-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
It could be argued that we understand the immune response to infection with Listeria monocytogenes better than the immunity elicited by any other bacteria. L. monocytogenes are Gram-positive bacteria that are genetically tractable and easy to cultivate in vitro, and the mouse model of intravenous (i.v.) inoculation is highly reproducible. For these reasons, immunologists frequently use the mouse model of systemic listeriosis to dissect the mechanisms used by mammalian hosts to recognize and respond to infection. This article provides an overview of what we have learned over the past few decades and is divided into three sections: "Innate Immunity" describes how the host initially detects the presence of L. monocytogenes and characterizes the soluble and cellular responses that occur during the first few days postinfection; "Adaptive Immunity" discusses the exquisitely specific T cell response that mediates complete clearance of infection and immunological memory; "Use of Attenuated Listeria as a Vaccine Vector" highlights the ways that investigators have exploited our extensive knowledge of anti-Listeria immunity to develop cancer therapeutics.
Collapse
Affiliation(s)
- Sarah E F D'Orazio
- University of Kentucky, Microbiology, Immunology & Molecular Genetics, Lexington, KY 40536-0298
| |
Collapse
|
28
|
Zhang X, Su L, Huang H, Jiang M, Liu S, Li Y, Liu T, Zhou Y, Tang T, Mahdy SE, Wang C. Coating With Chitooligosaccharides Enhances the Cytokine Induction of Listeria ivanovii-Based Vaccine Strain. J Pharm Sci 2019; 108:2926-2933. [PMID: 30995448 DOI: 10.1016/j.xphs.2019.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 11/28/2022]
Abstract
Listeria ivanovi (LI) is an available live bacterial vaccine vector. This work attempted to coat LI-based vaccine candidates (LI-Rv0129c) with chitooligosaccharides (COSs) as an adjuvant to enhance the cellular immune responses induced. COS-bacteria composite was achieved by mixing the bacteria suspension with equal volume of COS solution, and this process accompanied with the increase of bacteria superficial zeta potential and formation of special superficial configurations. COS coating improved the ratio swallowed by the macrophage-like RAW264.7 cells from 0.54% to 2.88% (p < 0.001). In vivo, the COS-coated LI-Rv0129c strain did elicit significantly higher specific CD4+ IFN-γ, CD4+ TNF-α or CD8+ IFN-γ secretion (0.91%, 1.00%, 0.30%, respectively) than naked LI-Rv0129c (0.32%, 0.38%, 0.07%, respectively) (p < 0.01). These results demonstrated that COS is a promising adjuvant to enhance the protective cellular immune responses induced by LI-based vaccine strains. Our work provided a notion for developing adjuvant for Listeria and other bacterial vector-based vaccines.
Collapse
Affiliation(s)
- Xiang Zhang
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Lin Su
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Huan Huang
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Mingjuan Jiang
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Sijing Liu
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yongyu Li
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Ting Liu
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yuzhen Zhou
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Tian Tang
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Safy Eidin Mahdy
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China.
| |
Collapse
|
29
|
Gaudino SJ, Kumar P. Cross-Talk Between Antigen Presenting Cells and T Cells Impacts Intestinal Homeostasis, Bacterial Infections, and Tumorigenesis. Front Immunol 2019; 10:360. [PMID: 30894857 PMCID: PMC6414782 DOI: 10.3389/fimmu.2019.00360] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/12/2019] [Indexed: 11/21/2022] Open
Abstract
Innate immunity is maintained in part by antigen presenting cells (APCs) including dendritic cells, macrophages, and B cells. APCs interact with T cells to link innate and adaptive immune responses. By displaying bacterial and tumorigenic antigens on their surface via major histocompatibility complexes, APCs can directly influence the differentiation of T cells. Likewise, T cell activation, differentiation, and effector functions are modulated by APCs utilizing multiple mechanisms. The objective of this review is to describe how APCs interact with and influence the activation of T cells to maintain innate immunity during exposure to microbial infection and malignant cells. How bacteria and cancer cells take advantage of some of these interactions for their own benefit will also be discussed. While this review will cover a broad range of topics, a general focus will be held around pathogens, cancers, and interactions that typically occur within the gastrointestinal tract.
Collapse
Affiliation(s)
- Stephen J Gaudino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| | - Pawan Kumar
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
30
|
Lu G, Xu L, Zhang T, Deng X, Wang J. A potential bio-control agent from baical skullcap root against listeriosis via the inhibition of sortase A and listeriolysin O. J Cell Mol Med 2019; 23:2042-2051. [PMID: 30585434 PMCID: PMC6378236 DOI: 10.1111/jcmm.14110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/01/2018] [Indexed: 01/29/2023] Open
Abstract
Listeria monocytogenes (LM) is a classical model intracellular pathogen and the leading cause of listeriosis, which has long been a global public health issue. The successful infection of LM is related to a series of virulence factors, such as the transpeptidase enzyme sortase A (SrtA) and listeriolysin O (LLO), which are crucial for bacterial internalization and escape from phagosomes respectively. It is speculated that targeting multiple virulence factors may be due to a synergistic effect on listeriosis therapy. In this study, an active flavonoids component of Scutellaria baicalensis Georgi, baicalein, was found to potently block both listerial SrtA catalyzed activity and LLO hemolytic activity within 16 μg/mL. After pretreatment with baicalein, 86.30 (±11.35) % of LM failed to associate with Caco-2 cells compared to the LM without preincubation (regarded as 100% internalization). Furthermore, baicalein addition may aid in bacterial degradation and clearance in macrophagocytes. During a 5 h observation, LM in cells incubated with baicalein showed significantly decreased vacuole escapes and sluggish endocellular growth. In addition, baicalein directly prevented LM-induced cells injury and mice fatality (survival rate from 10.00% to 54.55% in 4 days post-intraperitoneal injection). Taken together, as an antagonist against SrtA and LLO, baicalein can be further developed into a biotherapeutic agent for listeriosis.
Collapse
Affiliation(s)
- Gejin Lu
- Center of Infection and Immunity, First HospitalJilin UniversityChangchunJilin, 130021China
- Key Laboratory of Zoonosis, Ministry of EducationInstitute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchunJilin, 130062China
| | - Lei Xu
- Center of Infection and Immunity, First HospitalJilin UniversityChangchunJilin, 130021China
- Key Laboratory of Zoonosis, Ministry of EducationInstitute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchunJilin, 130062China
| | - Tong Zhang
- Center of Infection and Immunity, First HospitalJilin UniversityChangchunJilin, 130021China
- Key Laboratory of Zoonosis, Ministry of EducationInstitute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchunJilin, 130062China
| | - Xuming Deng
- Center of Infection and Immunity, First HospitalJilin UniversityChangchunJilin, 130021China
- Key Laboratory of Zoonosis, Ministry of EducationInstitute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchunJilin, 130062China
| | - Jianfeng Wang
- Center of Infection and Immunity, First HospitalJilin UniversityChangchunJilin, 130021China
- Key Laboratory of Zoonosis, Ministry of EducationInstitute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchunJilin, 130062China
| |
Collapse
|