1
|
Lariviere PJ, Ashraf AHMZ, Gifford I, Tanguma SL, Barrick JE, Moran NA. Virulence-linked adhesin drives mutualist colonization of the bee gut via biofilm formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618124. [PMID: 39464101 PMCID: PMC11507737 DOI: 10.1101/2024.10.14.618124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Bacterial biofilms are stable multicellular structures that can enable long term host association. Yet, the role of biofilms in supporting gut mutualism is still not fully understood. Here, we investigate Snodgrassella alvi , a beneficial bacterial symbiont of honey bees, and find that biofilm formation is required for its colonization of the bee gut. We constructed fifteen S. alvi mutants containing knockouts of genes known to promote colonization with putative roles in biofilm formation. Genes required for colonization included staA and staB , encoding trimeric autotransporter adhesins (TAAs) and mltA , encoding a lytic transglycosylase. Intriguingly, TAAs are considered virulence factors in pathogens but support mutualism by the symbiont S. alvi. In vitro , biofilm formation was reduced in Δ staB cells and abolished in the other two mutants. Loss of staA also reduced auto-aggregation and cell-cell connections. Based on structural predictions, StaA/B are massive (>300 nm) TAAs with many repeats in their stalk regions. Further, we find that StaA/B are conserved across Snodgrassella species, suggesting that StaA/B-dependent colonization is characteristic of this symbiont lineage. Finally, staA deletion increases sensitivity to bactericidal antimicrobials, suggesting that the biofilm indirectly buffers against antibiotic stress. In all, the inability of two biofilm-deficient strains (Δ staA and Δ mltA ) to effectively mono-colonize bees indicates that S. alvi biofilm formation is required for colonization of the bee gut. We envision the bee gut system as a genetically tractable model for studying the physical basis of biofilm-mutualist-gut interactions.
Collapse
|
2
|
Li Q, Yu X, Ye L, Hou T, Liu Y, Liu G, Wang Q, Zhang D. Hypermucoviscous Multidrug-Resistant Klebsiella variicola Strain LL2208 Isolated from Chinese Longsnout Catfish ( Leiocassis longirostris): Highly Similar to Human K. variicola Strains. Pathogens 2024; 13:647. [PMID: 39204247 PMCID: PMC11356897 DOI: 10.3390/pathogens13080647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Outbreaks of bacterial diseases occur in farmed Chinese longsnout catfish (Leiocassis longirostris). Due to limited information on aquatic Klebsiella variicola-infected animals, this study aimed to identify strain LL2208 isolated from diseased L. longirostris, determine its biological features, and evaluate its risk to public health. Strain LL2208 was tested for molecular identification, challenge, string, biofilm formation, and antimicrobial susceptibility. Furthermore, the whole genome of the strain was sequenced and analyzed. Based on molecular identification, strain LL2208 was identified as K. variicola. Artificial infection showed that this strain was moderately virulent to L. longirostris with an LD50 = 7.92 × 107 CFU/mL. Antibiotic sensitivity tests showed that this strain was resistant to penicillins, macrolides, aminoglycosides, amphenicols, glycopeptides, and lincosamide, indicating multidrug resistance. Strain LL2208 has a genome size of 5,557,050 bp, with a GC content of 57.38%, harboring 30 antimicrobial resistance genes and numerous virulence-related genes. Its molecular type was ST595-KL16-O5. Collinearity analysis showed that strain LL2208 was highly similar to the human-derived K. variicola strain. In conclusion, the multidrug-resistant and virulent K. variicola strain LL2208 was isolated from fish and may have originated from humans. These results provide a foundation for further studies on the transmission of K. variicola between humans and aquatic animals.
Collapse
Affiliation(s)
- Qingyong Li
- Fisheries Research and Extension Center of Huizhou, Huizhou 516055, China; (Q.L.); (X.Y.); (L.Y.); (T.H.); (Y.L.); (G.L.)
| | - Xin Yu
- Fisheries Research and Extension Center of Huizhou, Huizhou 516055, China; (Q.L.); (X.Y.); (L.Y.); (T.H.); (Y.L.); (G.L.)
| | - Lin Ye
- Fisheries Research and Extension Center of Huizhou, Huizhou 516055, China; (Q.L.); (X.Y.); (L.Y.); (T.H.); (Y.L.); (G.L.)
| | - Tongyu Hou
- Fisheries Research and Extension Center of Huizhou, Huizhou 516055, China; (Q.L.); (X.Y.); (L.Y.); (T.H.); (Y.L.); (G.L.)
| | - Yi Liu
- Fisheries Research and Extension Center of Huizhou, Huizhou 516055, China; (Q.L.); (X.Y.); (L.Y.); (T.H.); (Y.L.); (G.L.)
| | - Guiming Liu
- Fisheries Research and Extension Center of Huizhou, Huizhou 516055, China; (Q.L.); (X.Y.); (L.Y.); (T.H.); (Y.L.); (G.L.)
| | - Qing Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China;
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Defeng Zhang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China;
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
3
|
Šístková J, Fialová T, Svoboda E, Varmužová K, Uher M, Číhalová K, Přibyl J, Dlouhý A, Pávková Goldbergová M. Insight into antibacterial effect of titanium nanotubular surfaces with focus on Staphylococcus aureus and Pseudomonas aeruginosa. Sci Rep 2024; 14:17303. [PMID: 39068252 PMCID: PMC11283573 DOI: 10.1038/s41598-024-68266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Materials used for orthopedic implants should not only have physical properties close to those of bones, durability and biocompatibility, but should also exhibit a sufficient degree of antibacterial functionality. Due to its excellent properties, titanium is still a widely used material for production of orthopedic implants, but the unmodified material exhibits poor antibacterial activity. In this work, the physicochemical characteristics, such as chemical composition, crystallinity, wettability, roughness, and release of Ti ions of the titanium surface modified with nanotubular layers were analyzed and its antibacterial activity against two biofilm-forming bacterial strains responsible for prosthetic joint infection (Staphylococcus aureus and Pseudomonas aeruginosa) was investigated. Electrochemical anodization (anodic oxidation) was used to prepare two types of nanotubular arrays with nanotubes differing in dimensions (with diameters of 73 and 118 nm and lengths of 572 and 343 nm, respectively). These two surface types showed similar chemistry, crystallinity, and surface energy. The surface with smaller nanotube diameter (TNT-73) but larger values of roughness parameters was more effective against S. aureus. For P. aeruginosa the sample with a larger nanotube diameter (TNT-118) had better antibacterial effect with proven cell lysis. Antibacterial properties of titanium nanotubular surfaces with potential in implantology, which in our previous work demonstrated a positive effect on the behavior of human gingival fibroblasts, were investigated in terms of surface parameters. The interplay between nanotube diameter and roughness appeared critical for the bacterial fate on nanotubular surfaces. The relationship of nanotube diameter, values of roughness parameters, and other surface properties to bacterial behavior is discussed in detail. The study is believed to shed more light on how nanotubular surface parameters and their interplay affect antibacterial activity.
Collapse
Affiliation(s)
- Jana Šístková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tatiana Fialová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Emil Svoboda
- Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Kounicova 65, Brno, 662 10, Czech Republic
| | - Kateřina Varmužová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Martin Uher
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kristýna Číhalová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Jan Přibyl
- Central European Institute for Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Antonín Dlouhý
- Institute of Physics of Materials, Czech Academy of Sciences, v. v. i., Žižkova 513/22, Brno, 616 62, Czech Republic
| | - Monika Pávková Goldbergová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
4
|
Chakraborty S, Rohit A, Prasanthi SJ, Chauhan A. A New Casjensviridae Bacteriophage Isolated from Hospital Sewage for Inactivation of Biofilms of Carbapenem Resistant Klebsiella pneumoniae Clinical Isolates. Pharmaceutics 2024; 16:904. [PMID: 39065601 PMCID: PMC11280391 DOI: 10.3390/pharmaceutics16070904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Klebsiella pneumoniae, a member of the ESKAPE pathogen group, is a prominent cause of hospital-acquired infections. The WHO has recognized carbapenem-resistant K. pneumoniae as a critical-one priority pathogen. These resilient superbugs have the ability to form biofilms and present a significant global threat. In the present study, we isolated and characterized a bacteriophage SAKp02, from hospital sewage, infectious to carbapenem-resistant K. pneumoniae patient isolates. SAKp02 could infect 43 of 72 clinical isolates, indicating a broad host spectrum. Whole genome analysis classified SAKp02 within the family Casjensviridae, with a 59,343 bp genome encoding 82 ORFs. Comparative genomic analysis revealed significant differences between SAKp02 and its closest viruses, indicating a distinct genetic makeup positioning it as a novel phage strain within the lineage. The SAKp02 genome comprises bacteriolytic enzymes, including holin, endolysin, and phage depolymerase, crucial for bacterial lysis and biofilm disruption. It reduced biofilm biomass by over threefold compared to the control and eradicated 99% of viable cells within a 4 h treatment period. Scanning electron microscopy corroborated the ability of the phage to dismantle biofilm matrices and lyse bacterial cells. Safe and effective treatments are warranted, and hence, the fully characterized lytic phages with therapeutic potential against drug-resistant clinical isolates of bacteria are needed. Our study is the first to report the antibacterial and antibiofilm activity of Casjensviridae phages, and our discovery of a novel K. pneumoniae phage broadens the arsenal against the bacteria.
Collapse
Affiliation(s)
- Sambuddha Chakraborty
- Department of Microbiology, Tripura University, Suryamaninagar 799022, India
- Department of Microbiology, University of Delhi South Campus, Benito Jaurez Marg, New Delhi 110021, India
| | - Anusha Rohit
- Madras Medical Mission Hospital, Chennai 600037, India
| | | | - Ashwini Chauhan
- Department of Microbiology, Tripura University, Suryamaninagar 799022, India
- Department of Microbiology, University of Delhi South Campus, Benito Jaurez Marg, New Delhi 110021, India
| |
Collapse
|
5
|
Michalski J, Cłapa T, Narożna D, Syguda A, van Oostrum P, Reimhult E. Morpholinium-based Ionic Liquids as Potent Antibiofilm and Sensitizing Agents for the Control of Pseudomonas aeruginosa. J Mol Biol 2024; 436:168627. [PMID: 38795768 DOI: 10.1016/j.jmb.2024.168627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Rising antimicrobial resistance is a critical threat to worldwide public health. To address the increasing antibiotic tolerance, diverse antimicrobial agents are examined for their ability to decrease bacterial resistance. One of the most relevant and persistent human pathogens is Pseudomonas aeruginosa. Our study investigates the anti-biofilm and sensitizing activity of 12 morpholinium-based ionic liquids with herbicidal anions on four clinically relevant P. aeruginosa strains. Among all tested compounds, four ionic liquids prevented biofilm formation at sub-minimum inhibitory concentrations for all investigated strains. For the first time, we established a hormetic effect on biofilm formation for P. aeruginosa strains subjected to an ionic liquid treatment. Interestingly, while ionic liquids with 4,4-didecylmorpholinium [Dec2Mor]+ are more efficient against planktonic bacteria, 4-decyl-4-ethylmorpholinium [DecEtMor]+ showed more potent inhibition of biofilm formation. Ionic liquids with 4,4-didecylmorpholinium ([Dec2Mor]+) cations even induced biofilm formation by strain 39016 at high concentrations due to flocculation. Morpholinium-based ionic liquids were also shown to enhance the efficacy of commonly used antibiotics from different chemical groups. We demonstrate that this synergy is associated with the mode of action of the antibiotics.
Collapse
Affiliation(s)
- Jakub Michalski
- Poznań University of Life Sciences, Department of Biochemistry and Biotechnology, Dojazd 11, 60-632 Poznan, Poland
| | - Tomasz Cłapa
- Poznań University of Life Sciences, Department of Biochemistry and Biotechnology, Dojazd 11, 60-632 Poznan, Poland.
| | - Dorota Narożna
- Poznań University of Life Sciences, Department of Biochemistry and Biotechnology, Dojazd 11, 60-632 Poznan, Poland
| | - Anna Syguda
- Poznan University of Technology, Department of Chemical Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Peter van Oostrum
- BOKU University, Department of Bionanosciences, Institute of Colloid and Biointerface Science, Muthgasse 11-II, A-1090 Vienna, Austria
| | - Erik Reimhult
- BOKU University, Department of Bionanosciences, Institute of Colloid and Biointerface Science, Muthgasse 11-II, A-1090 Vienna, Austria
| |
Collapse
|
6
|
Tian S, Shi L, Ren Y, van der Mei HC, Busscher HJ. A normalized parameter for comparison of biofilm dispersants in vitro. Biofilm 2024; 7:100188. [PMID: 38495770 PMCID: PMC10943042 DOI: 10.1016/j.bioflm.2024.100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Dispersal of infectious biofilms increases bacterial concentrations in blood. To prevent sepsis, the strength of a dispersant should be limited to allow the immune system to remove dispersed bacteria from blood, preferably without antibiotic administration. Biofilm bacteria are held together by extracellular polymeric substances that can be degraded by dispersants. Currently, comparison of the strength of dispersants is not possible by lack of a suitable comparison parameter. Here, a biofilm dispersal parameter is proposed that accounts for differences in initial biofilm properties, dispersant concentration and exposure time by using PBS as a control and normalizing outcomes with respect to concentration and time. The parameter yielded near-identical values based on dispersant-induced reductions in biomass or biofilm colony-forming-units and appeared strain-dependent across pathogens. The parameter as proposed is largely independent of experimental methods and conditions and suitable for comparing different dispersants with respect to different causative strains in particular types of infection.
Collapse
Affiliation(s)
- Shuang Tian
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9700, RB, Groningen, the Netherlands
| | - Henny C. van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands
| | - Henk J. Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands
| |
Collapse
|
7
|
Top J, Zhang X, Hendrickx APA, Boeren S, van Schaik W, Huebner J, Willems RJL, Leavis HL, Paganelli FL. YajC, a predicted membrane protein, promotes Enterococcus faecium biofilm formation in vitro and in a rat endocarditis model. FEMS MICROBES 2024; 5:xtae017. [PMID: 38860142 PMCID: PMC11163983 DOI: 10.1093/femsmc/xtae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Biofilm formation is a critical step in the pathogenesis of difficult-to-treat Gram-positive bacterial infections. We identified that YajC, a conserved membrane protein in bacteria, plays a role in biofilm formation of the clinically relevant Enterococcus faecium strain E1162. Deletion of yajC conferred significantly impaired biofilm formation in vitro and was attenuated in a rat endocarditis model. Mass spectrometry analysis of supernatants of washed ΔyajC cells revealed increased amounts in cytoplasmic and cell-surface-located proteins, including biofilm-associated proteins, suggesting that proteins on the surface of the yajC mutant are only loosely attached. In Streptococcus mutans YajC has been identified in complex with proteins of two cotranslational membrane protein-insertion pathways; the signal recognition particle (SRP)-SecYEG-YajC-YidC1 and the SRP-YajC-YidC2 pathway, but its function is unknown. In S. mutans mutation of yidC1 and yidC2 resulted in impaired protein insertion in the cell membrane and secretion in the supernatant. The E. faecium genome contains all homologous genes encoding for the cotranslational membrane protein-insertion pathways. By combining the studies in S. mutans and E. faecium, we propose that YajC is involved in the stabilization of the SRP-SecYEG-YajC-YidC1 and SRP-YajC-Yid2 pathway or plays a role in retaining proteins for proper docking to the YidC insertases for translocation in and over the membrane.
Collapse
Affiliation(s)
- Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, PO box 85500, 3584 CX Utrecht, the Netherlands
| | - Xinglin Zhang
- College of Agriculture and Forestry, Linyi University, Building 60, Yujingwan, Linyi City, Shandong Province, 276000, China
| | - Antoni P A Hendrickx
- Centre for Infectious Disease Control (Clb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, PO box 8128, 6700 ET Wageningen, the Netherlands
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Johannes Huebner
- Division of Pediatric Infectious Diseases, Hauner Children's Hospital, Ludwig-Maximilian Universität München, Lindwurmstr. 4, 80337 Munich, Germany
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, PO box 85500, 3584 CX Utrecht, the Netherlands
| | - Helen L Leavis
- Department of Medical Microbiology, University Medical Center Utrecht, PO box 85500, 3584 CX Utrecht, the Netherlands
| | - Fernanda L Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht, PO box 85500, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
8
|
Saifi S, Ashraf A, Hasan GM, Shamsi A, Hassan MI. Insights into the preventive actions of natural compounds against Klebsiella pneumoniae infections and drug resistance. Fitoterapia 2024; 173:105811. [PMID: 38168570 DOI: 10.1016/j.fitote.2023.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Klebsiella pneumoniae is a type of Gram-negative bacteria that causes a variety of infections, including pneumonia, bloodstream infections, wound infections, and meningitis. The treatment of K. pneumoniae infection depends on the type of infection and the severity of the symptoms. Antibiotics are generally used to treat K. pneumoniae infections. However, some strains of K. pneumoniae have become resistant to antibiotics. This comprehensive review examines the potential of natural compounds as effective strategies against K. pneumonia infections. The alarming rise in antibiotic resistance underscores the urgent need for alternative therapies. This article represents current research on the effects of diverse natural compounds, highlighting their anti-microbial and antibiofilm properties against K. pneumonia. Notably, compounds such as andrographolide, artemisinin, baicalin, berberine, curcumin, epigallocatechin gallate, eugenol, mangiferin, piperine, quercetin, resveratrol, and thymol have been extensively investigated. These compounds exhibit multifaceted mechanisms, including disruption of bacterial biofilms, interference with virulence factors, and augmentation of antibiotic effectiveness. Mechanistic insights into their actions include membrane perturbation, oxidative stress induction, and altered gene expression. While promising, challenges such as limited bioavailability and varied efficacy across bacterial strains are addressed. This review further discusses the potential of natural compounds as better alternatives in combating K. pneumonia infection and emphasizes the need for continued research to harness their full therapeutic potential. As antibiotic resistance persists, these natural compounds offer a promising avenue in the fight against K. pneumonia and other multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Sana Saifi
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
9
|
Li L, Gao X, Li M, Liu Y, Ma J, Wang X, Yu Z, Cheng W, Zhang W, Sun H, Song X, Wang Z. Relationship between biofilm formation and antibiotic resistance of Klebsiella pneumoniae and updates on antibiofilm therapeutic strategies. Front Cell Infect Microbiol 2024; 14:1324895. [PMID: 38465230 PMCID: PMC10920351 DOI: 10.3389/fcimb.2024.1324895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium within the Enterobacteriaceae family that can cause multiple systemic infections, such as respiratory, blood, liver abscesses and urinary systems. Antibiotic resistance is a global health threat and K. pneumoniae warrants special attention due to its resistance to most modern day antibiotics. Biofilm formation is a critical obstruction that enhances the antibiotic resistance of K. pneumoniae. However, knowledge on the molecular mechanisms of biofilm formation and its relation with antibiotic resistance in K. pneumoniae is limited. Understanding the molecular mechanisms of biofilm formation and its correlation with antibiotic resistance is crucial for providing insight for the design of new drugs to control and treat biofilm-related infections. In this review, we summarize recent advances in genes contributing to the biofilm formation of K. pneumoniae, new progress on the relationship between biofilm formation and antibiotic resistance, and new therapeutic strategies targeting biofilms. Finally, we discuss future research directions that target biofilm formation and antibiotic resistance of this priority pathogen.
Collapse
Affiliation(s)
- Lifeng Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xueyan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mingchao Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Yuchun Liu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Jiayue Ma
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Zhidan Yu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Weyland Cheng
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Wancun Zhang
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Huiqing Sun
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xiaorui Song
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
10
|
El Naggar NM, Shawky RM, Serry FME, Emara M. Investigating the relationship between carbapenemase production and biofilm formation in Klebsiella pneumoniae clinical isolates. BMC Res Notes 2024; 17:49. [PMID: 38360658 PMCID: PMC10870607 DOI: 10.1186/s13104-024-06708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Carbapenemase production and biofilm formation in K. pneumoniae are crucial factors influencing the pathogenicity and antibiotic resistance of this bacterium. This study investigated the interplay between carbapenemase production and biofilm formation in K. pneumoniae clinical isolates. RESULTS The distribution of biofilm-forming ability significantly differed between carbapenemase-producing (CP-Kp) (n = 52) isolates and carbapenemase-nonproducing (CN-Kp) isolates (n = 37), suggesting a potential link between carbapenemase production and biofilm formation. All the blaNDM-1-harbouring isolates demonstrated biofilm formation, with varying levels classified as strong (33.33%), moderate (22.22%), or weak (44.45%). blaNDM-1 and blaKPC-coharbouring isolates did not exhibit strong or moderate biofilm formation. blaNDM-1 and blaOXA-48-coharbouring isolates were predominantly moderate (48.65%), followed by weak (32.43%), with none showing strong biofilm production. These findings suggest a correlation between the presence of carbapenemases and biofilm-forming ability; however, the heterogeneity in biofilm-forming abilities associated with different carbapenemase types and the absence of strong biofilm producers in the detected carbapenemase combinations prompt a closer look at the complex regulatory mechanisms governing biofilm formation in CP-Kp isolates.
Collapse
Affiliation(s)
- Nora M El Naggar
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, POX 11795, Ain Helwan, Cairo, Egypt
| | - Riham M Shawky
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, POX 11795, Ain Helwan, Cairo, Egypt
| | - Fathy M E Serry
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Zagazig University, Zagazig, Egypt
| | - Mohamed Emara
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, POX 11795, Ain Helwan, Cairo, Egypt.
| |
Collapse
|
11
|
Cox CA, Manavathu EK, Wakade S, Myntti M, Vazquez JA. Efficacy of biofilm disrupters against Candida auris and other Candida species in monomicrobial and polymicrobial biofilms. Mycoses 2024; 67:e13684. [PMID: 38214428 DOI: 10.1111/myc.13684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Candida species are now considered global threats by the CDC and WHO. Candida auris specifically is on the critical pathogen threat list along with Candida albicans. In addition, it is not uncommon to find Candida spp. in a mixed culture with bacterial organisms, especially Staphylococcus aureus producing polymicrobial infections. To eradicate these organisms from the environment and from patient surfaces, surface agents such as chlorhexidine (CHD) and Puracyn are used. Biofilm disrupters (BDs) are novel agents with a broad spectrum of antimicrobial activity and have been used in the management of chronic wounds and to sterilise environmental surfaces for the past several years. The goal of this study was to evaluate BDs (BlastX, Torrent, NSSD) and CHD against Candida spp. and S. aureus using zone of inhibition assays, biofilm and time-kill assays. All BDs and CHD inhibited C. auris growth effectively in a concentration-dependent manner. Additionally, CHD and the BDs showed excellent antimicrobial activity within polymicrobial biofilms. A comparative analysis of the BDs and CHD against C. auris and C. albicans using biofilm kill-curves showed at least 99.999% killing. All three BDs and CHD have excellent activity against different Candida species, including C. auris. However, one isolate of C. auris in a polymicrobial biofilm assay showed resistance/tolerance to CHD, but not to the BDs. The fungicidal activity of these novel agents will be valuable in eradicating surface colonisation of Candida spp, especially C. auris from colonised environmental surfaces and from wounds in colonised patients.
Collapse
Affiliation(s)
- Claudia A Cox
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Elias K Manavathu
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Sushama Wakade
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | | | - Jose A Vazquez
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
12
|
Li J, Mu G, Tuo Y. Phenotypic Traits and Probiotic Functions of Lactiplantibacillus plantarum Y42 in Planktonic and Biofilm Forms. Foods 2023; 12:foods12071516. [PMID: 37048337 PMCID: PMC10093976 DOI: 10.3390/foods12071516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Bacteria in planktonic and biofilm forms exhibit different phenotypic properties. In this study, the phenotypic traits and probiotic functions of Lactiplantibacillus plantarum Y42 in planktonic and biofilm forms were assessed. After 36 h of static culture, scanning electron microscopy and confocal laser scanning microscopy showed that the L. plantarum Y42 bacterial cells contained interconnected adhesive matter on the surface, forming a ~18 μm layer of dense biofilms. The surface properties of L. plantarum Y42 in biofilm form, including autoaggregation ability, hydrophobicity, acid-base charge, and adhesiveness, were all higher than those in the planktonic form. Biofilm L. plantarum Y42 showed a higher tolerance to adverse environmental conditions and a higher survival rate, enzymatic activity, and integrity after vacuum lyophilization. And biofilm L. plantarum Y42 had higher adhesion to human enterocyte HT-29 cell monolayers, inhibited the expressions of proinflammatory factors IL-6 and TNF-α, and promoted the expressions of the anti-inflammatory factor IL-10 and barrier proteins Claudin-1 and Occludin. In addition, L. plantarum Y42 in biofilm form can inhibit the adhesion and invasion of Listeria monocytogenes ATCC 19115 to HT-29 cell monolayers and is more effective in relieving the inflammatory reactions and injuries of HT-29 cells caused by L. monocytogenes ATCC 19115. In conclusion, L. plantarum Y42 in biofilm form exhibited better probiotic functions compared to that in planktonic form. This indicated that L. plantarum Y42 can form biofilms to enhance its probiotic functions, which provided a theoretical basis for better development and utilization of L. plantarum Y42.
Collapse
Affiliation(s)
- Jiayi Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
13
|
Sharma A, Rishi P, Singh R. In vitro and in vivo evaluation of DNase I in reinstating antibiotic efficacy against Klebsiella pneumoniae biofilms. Pathog Dis 2023; 81:6986254. [PMID: 36633541 DOI: 10.1093/femspd/ftad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen associated with biofilm-based infections, which are intrinsically antibiotic resistant. Extracellular DNA plays a crucial role in biofilm formation and self-defence, with nucleases being proposed as promising agents for biofilm disruption. This study evaluated the in vitro and in vivo efficacy of DNase I in improving the activity of cefotaxime, amikacin, and ciprofloxacin against K. pneumoniae biofilms. K. pneumoniae ATCC 700603 and a clinical isolate from catheter-related bloodstream infection were cultured for biofilm formation on microtiter plates, and the antibiofilm activity of the antibiotics (0.03-64 mg/L), with or without bovine pancreatic DNase I (1-32 mg/L) was determined by XTT dye reduction test and viable counting. The effect of ciprofloxacin (2 mg/L) and DNase I (16 mg/L) was further evaluated in vitro on 1-cm-long silicon catheter segments, and in a mouse model of subcutaneous catheter-associated infection. Combination with DNase I did not improve the biofilm-preventive capacity of the three antibiotics or the biofilm-eradicating capacity of cefotaxime and amikacin. The biofilm-eradicating capacity of ciprofloxacin was increased by 8-fold and 4-fold in K. pneumoniae ATCC 700603 and clinical isolate, respectively, with DNase I. The combination therapy caused 99% reduction in biofilm biomass in the mouse model.
Collapse
Affiliation(s)
- Anayata Sharma
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Rachna Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
14
|
Li Y, Kumar S, Zhang L, Wu H, Wu H. Characteristics of antibiotic resistance mechanisms and genes of Klebsiella pneumoniae. Open Med (Wars) 2023; 18:20230707. [PMID: 37197355 PMCID: PMC10183727 DOI: 10.1515/med-2023-0707] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Klebsiella pneumoniae is an important multidrug-resistant (MDR) pathogen that can cause a range of infections in hospitalized patients. With the growing use of antibiotics, MDR K. pneumoniae is more prevalent, posing additional difficulties and obstacles in clinical therapy. To provide a valuable reference to deeply understand K. pneumoniae, and also to provide the theoretical basis for clinical prevention of such bacteria infections, the antibiotic resistance and mechanism of K. pneumoniae are discussed in this article. We conducted a literature review on antibiotic resistance of K. pneumoniae. We ran a thorough literature search of PubMed, Web of Science, and Scopus, among other databases. We also thoroughly searched the literature listed in the papers. We searched all antibiotic resistance mechanisms and genes of seven important antibiotics used to treat K. pneumoniae infections. Antibiotics such as β-lactams, aminoglycosides, and quinolones are used in the treatment of K. pneumoniae infection. With both chromosomal and plasmid-encoded ARGs, this pathogen has diverse resistance genes. Carbapenem resistance genes, enlarged-spectrum β-lactamase genes, and AmpC genes are the most often β-lactamase resistance genes. K. pneumoniae is a major contributor to antibiotic resistance worldwide. Understanding K. pneumoniae antibiotic resistance mechanisms and molecular characteristics will be important for the design of targeted prevention and novel control strategies against this pathogen.
Collapse
Affiliation(s)
- Yanping Li
- Pharmacy Department, Jiangsu Vocational College of Medicine, 224005Yancheng, Jiangsu Province, China
- Post Graduate Centre, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, 40100, Selangor, Malaysia
| | - Suresh Kumar
- Department of Diagnostic and Allied Health Science, Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Malaysia
| | - Lihu Zhang
- Pharmacy Department, Jiangsu Vocational College of Medicine, 224005Yancheng, Jiangsu Province, China
| | - Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hongyan Wu
- Pharmacy Department, Jiangsu Vocational College of Medicine, 224005Yancheng, Jiangsu Province, China
| |
Collapse
|
15
|
Lethongkam S, Sunghan J, Wangdee C, Durongphongtorn S, Siri R, Wunnoo S, Paosen S, Voravuthikunchai SP, Dejyong K, Daengngam C. Biogenic nanosilver-fabricated endotracheal tube to prevent microbial colonization in a veterinary hospital. Appl Microbiol Biotechnol 2023; 107:623-638. [PMID: 36562803 PMCID: PMC9780629 DOI: 10.1007/s00253-022-12327-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
COVID-19 patients have often required prolonged endotracheal intubation, increasing the risk of developing ventilator-associated pneumonia (VAP). A preventive strategy is proposed based on an endotracheal tube (ETT) modified by the in situ deposition of eucalyptus-mediated synthesized silver nanoparticles (AgNPs). The surfaces of the modified ETT were embedded with AgNPs of approximately 28 nm and presented a nanoscale roughness. Energy dispersive X-ray spectroscopy confirmed the presence of silver on and inside the coated ETT, which exhibited excellent antimicrobial activity against Gram-positive and Gram-negative bacteria, and fungi, including multidrug-resistant clinical isolates. Inhibition of planktonic growth and microbial adhesion ranged from 99 to 99.999% without cytotoxic effects on mammalian cells. Kinetic studies showed that microbial adhesion to the coated surface was inhibited within 2 h. Cell viability in biofilms supplemented with human tracheal mucus was reduced by up to 95%. In a porcine VAP model, the AgNPs-coated ETT prevented adhesion of Pseudomonas aeruginosa and completely inhibited bacterial invasion of lung tissue. The potential antimicrobial efficacy and safety of the coated ETT were established in a randomized control trial involving 47 veterinary patients. The microbial burden was significantly lower on the surface of the AgNPs-coated ETT than on the uncoated ETT (p < 0.05). KEY POINTS: • Endotracheal tube surfaces were modified by coating with green-synthesized AgNPs • P. aeruginosa burden of endotracheal tube and lung was reduced in a porcine model • Effective antimicrobial activity and safety was demonstrated in a clinical trial.
Collapse
Affiliation(s)
- Sakkarin Lethongkam
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jutapoln Sunghan
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Chalika Wangdee
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, Henri-dunant, Bangkok, 10330, Thailand
| | - Sumit Durongphongtorn
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, Henri-dunant, Bangkok, 10330, Thailand
| | - Ratchaneewan Siri
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Suttiwan Wunnoo
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Supakit Paosen
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Supayang P Voravuthikunchai
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Krittee Dejyong
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| | - Chalongrat Daengngam
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
16
|
Easy and Affordable: A New Method for the Studying of Bacterial Biofilm Formation. Cells 2022; 11:cells11244119. [PMID: 36552883 PMCID: PMC9777215 DOI: 10.3390/cells11244119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Bacterial biofilm formation (BBF) proves itself to be in the spotlight of microbiology research due to the wide variety of infections that it can be associated with, the involvement in food spoilage, industrial biofouling and perhaps sewage treatment. However, BBF remains difficult to study due to the lack of standardization of the existing methods and the expensive equipment needed. We aim to describe a new inexpensive and easy to reproduce protocol for a 3D-printed microfluidic device that can be used to study BBF in a dynamic manner. METHODS We used the SolidWorks 3D CAD Software (EducationEdition 2019-2020, Dassault Systèmes, Vélizy-Villacoublay, France) to design the device and the Creality3D Ender 5 printer (Shenzhen Creality 3D Technology Co., Ltd., Shenzhen, China) for its manufacture. We cultivated strains of Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa. For the biofilm evaluation we used optical coherence tomography (OCT), scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and crystal violet staining technique. RESULTS Based on the analysis, Enterococcus faecalis seems to produce more biofilm in the first hours while Pseudomonas aeruginosa started to take the lead on biofilm production after 24 h. CONCLUSIONS With an estimated cost around €0.1285 for one microfluidic device, a relatively inexpensive and easy alternative for the study of BBF was developed.
Collapse
|
17
|
Wang Y, Fu M, Wu B, Huang M, Ma T, Zang H, Jiang H, Zhang Y, Li C. Insight into biofilm-forming patterns: biofilm-forming conditions and dynamic changes in extracellular polymer substances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89542-89556. [PMID: 35852740 DOI: 10.1007/s11356-022-21645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The microbial biofilm adheres to the surface of the carrier, which protects the pollutant-degrading bacteria and resists harsh environments; thus, research on biofilm-forming patterns will help promote the application of biofilms in wastewater treatment. Herein, univariate analysis and response surface methodology (RSM) confirmed that glucose and mannose at 3-5 g/L promoted biofilm formation. Notably, the microplate method demonstrated that compared to trivalent cations, divalent cations could more greatly enhance the activity (especially magnesium) of the biofilm matrix, and the period of biofilm formation in the three strains was divided into the following stages: initial attachment (0-10 h), microcolony (10-24 h), maturation (24-48 h), and dispersion (36-72 h). During maturation, large amounts of extracellular polysaccharides (EPs) and extracellular DNA (eDNA) were distributed in the extracellular and intracellular spaces, respectively, as observed by super-resolution structured illumination microscopy (SR-SIM). This study enhances the understanding of the characteristics and patterns of biofilm formation and can facilitate the application of biofilms in wastewater treatment.
Collapse
Affiliation(s)
- Yue Wang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Meng Fu
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Bowen Wu
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Mingyan Huang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Tian Ma
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Hailian Zang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Hanyi Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yuting Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
18
|
Zhang Y, Wang Y, Zhao X, Liu L, Xing R, Song X, Zou Y, Li L, Wan H, Jia R, Yin L, Liang X, He C, Wei Q, Yin Z. Study on the anti-biofilm mechanism of 1,8-cineole against Fusarium solani species complex. Front Pharmacol 2022; 13:1010593. [PMID: 36330094 PMCID: PMC9624185 DOI: 10.3389/fphar.2022.1010593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Fungal-infections are mostly due to fungi in an adhering, biofilm-mode of growth and not due to planktonically growing, suspended-fungi. 1, 8-cineole is a natural product, which has been shown to possess antifungal effect. However, the anti-biofilm effect and mechanism of 1,8-cineole against Fusarium solani species complex has not reported previously. In this study, we found that 1,8-cineole has a good antifungal activity against F. solani with an MIC value of 46.1 μg/ml. Notably, 1,8-cineole showed good anti-biofilm formation activity against F. solani via inhibiting cell adhesion, hypha formation and decreasing the secretion of extracellular matrix at the concentration of ≥5.76 μg/ml. In addition, transcriptome sequencing analysis results showed that F. solani species complex genes related to ECM, protein synthesis and energy metabolism were down-expressed in the biofilms formation process treated with 1,8-cineole. In conclusion, these results show that 1,8-cineole has good anti-biofilm formation activity against F. solani species complex, and it exerts its anti-biofilm formation activity by downregulating of ergosterol biosynthetic genes, inhibiting adhesion, hindering the synthesis of ECM and interfering mitochondrial activity. This study suggests that 1,8-cineole is a promising anti-biofilm agent against F. solani species complex.
Collapse
Affiliation(s)
- Yu Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiming Wang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinghong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lu Liu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Xing
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongping Wan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Wei
- Yibin university Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
- *Correspondence: Qin Wei, ; Zhongqiong Yin,
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Qin Wei, ; Zhongqiong Yin,
| |
Collapse
|
19
|
Ivanova KM, Grishko VV, Ivshina IB. Highly Efficient Biodegradation of Ecotoxic Dehydroabietic Acid by Resting Cells of Rhodococcus rhodochrous IEGM 107. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Pavan HK, Shreevatsa B, Dharmashekara C, Shruthi G, Prasad KS, S Patil S, Shivamallu C. Review of Known and Unknown Facts of Klebsiella Pneumoniae and its Relationship with Antibiotics. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2022; 15:643-650. [DOI: 10.13005/bpj/2403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Antibiotics are commonly used to treat bacterial respiratory infections, but they can exacerbate inflammation by releasing microbial components that overstimulate the immune system, leading to greater tissue damage. Klebsiella pneumoniae is a gram-negative, rod-shaped bacteria of the family Enterobacteriaceae. Knowing about Klebsiella pneumoniae is extremely important in the present situation, as it is one of the major causal organisms of pneumonia. Internal and external factors of K. pneumoniae are responsible for the entry and multiplication inside the host. Antibiotics against K. pneumoniae are a class of Penicillins, Cephalosporins, Monobactams, and Carbapenems which have the β-lactam ring in common with variable side chains. Combating the antibiotics by synthesizing the enzymes like beta-lactamases is the main reason for the survival of these organisms against newer generation antibiotics. In this review, we have tried to discuss about Klebsiella pneumoniae, antibiotics, and their mechanism of action.
Collapse
Affiliation(s)
- Heggadadevanakote Kendaganna Pavan
- 1Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Bhargav Shreevatsa
- 1Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Chandan Dharmashekara
- 1Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | | | - Kollur Shiva Prasad
- 3Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru – 570 026, Karnataka, India
| | - Sharanagouda S Patil
- 4ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India
| | - Chandan Shivamallu
- 1Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| |
Collapse
|
21
|
Guerra MES, Destro G, Vieira B, Lima AS, Ferraz LFC, Hakansson AP, Darrieux M, Converso TR. Klebsiella pneumoniae Biofilms and Their Role in Disease Pathogenesis. Front Cell Infect Microbiol 2022; 12:877995. [PMID: 35646720 PMCID: PMC9132050 DOI: 10.3389/fcimb.2022.877995] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 12/17/2022] Open
Abstract
The ability to form biofilms is a crucial virulence trait for several microorganisms, including Klebsiella pneumoniae – a Gram-negative encapsulated bacterium often associated with nosocomial infections. It is estimated that 65-80% of bacterial infections are biofilm related. Biofilms are complex bacterial communities composed of one or more species encased in an extracellular matrix made of proteins, carbohydrates and genetic material derived from the bacteria themselves as well as from the host. Bacteria in the biofilm are shielded from immune responses and antibiotics. The present review discusses the characteristics of K. pneumoniae biofilms, factors affecting biofilm development, and their contribution to infections. We also explore different model systems designed to study biofilm formation in this species. A great number of factors contribute to biofilm establishment and maintenance in K. pneumoniae, which highlights the importance of this mechanism for the bacterial fitness. Some of these molecules could be used in future vaccines against this bacterium. However, there is still a lack of in vivo models to evaluate the contribution of biofilm development to disease pathogenesis. With that in mind, the combination of different methodologies has great potential to provide a more detailed scenario that more accurately reflects the steps and progression of natural infection.
Collapse
Affiliation(s)
- Maria Eduarda Souza Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Giulia Destro
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Brenda Vieira
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Alice S. Lima
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucio Fabio Caldas Ferraz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Anders P. Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmo, Sweden
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
- *Correspondence: Thiago Rojas Converso,
| |
Collapse
|
22
|
Cervantes-Huamán B, Ripolles-Avila C, Mazaheri T, Rodríguez-Jerez J. Pathogenic mono-species biofilm formation on stainless steel surfaces: Quantitative, qualitative, and compositional study. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Yao S, Hao L, Zhou R, Jin Y, Huang J, Wu C. Formation of Biofilm by Tetragenococcus halophilus Benefited Stress Tolerance and Anti-biofilm Activity Against S. aureus and S. Typhimurium. Front Microbiol 2022; 13:819302. [PMID: 35300476 PMCID: PMC8921937 DOI: 10.3389/fmicb.2022.819302] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Tetragenococcus halophilus, a halophilic lactic acid bacterium (LAB), plays an important role in the production of high-salt fermented foods. Generally, formation of biofilm benefits the fitness of cells when faced with competitive and increasingly hostile fermented environments. In this work, the biofilm-forming capacity of T. halophilus was investigated. The results showed that the optimal conditions for biofilm formation by T. halophilus were at 3–9% salt content, 0–6% ethanol content, pH 7.0, 30°C, and on the surface of stainless steel. Confocal laser scanning microscopy (CLSM) analysis presented a dense and flat biofilm with a thickness of about 24 μm, and higher amounts of live cells were located near the surface of biofilm and more dead cells located at the bottom. Proteins, polysaccharides, extracellular-DNA (eDNA), and humic-like substances were all proved to take part in biofilm formation. Higher basic surface charge, greater hydrophilicity, and lower intracellular lactate dehydrogenase (LDH) activities were detected in T. halophilus grown in biofilms. Atomic force microscopy (AFM) imaging revealed that biofilm cultures of T. halophilus had stronger surface adhesion forces than planktonic cells. Cells in biofilm exhibited higher cell viability under acid stress, ethanol stress, heat stress, and oxidative stress. In addition, T. halophilus biofilms exhibited aggregation activity and anti-biofilm activity against Staphylococcus aureus and Salmonella Typhimurium. Results presented in the study may contribute to enhancing stress tolerance of T. halophilus and utilize their antagonistic activities against foodborne pathogens during the production of fermented foods.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Patel H, Gajjar D. Cell adhesion and twitching motility influence strong biofilm formation in Pseudomonas aeruginosa. BIOFOULING 2022; 38:235-249. [PMID: 35345952 DOI: 10.1080/08927014.2022.2054703] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
In the present study, biofilm formation was quantified in UTI isolates of Pseudomonas aeruginosa (n = 22) using the crystal violet assay and was categorized into; strong (n = 16), weak (n = 4), and moderate (n = 2) biofilm producers. Further experiments were done using strong (n = 4) and weak (n = 4) biofilm producers. Biofilm formation was greater in Luria broth followed by natural urine and artificial urine on silicone and silicone-coated latex. Cell adhesion and twitching motility were greater in strong biofilm producers. The presence of thick biofilm with an increased number of dead and total number of cells of strong biofilm producers was observed using CLSM. The concentrations of exopolymeric substances (eDNA, protein, and pel polysaccharide) were high in strong biofilm producers. FEG-SEM visualization of biofilm produced by strong biofilm producers showed more cells encased in thick biofilm matrix than weak ones. Overall results provide evidence for increased cell adhesion and twitching motility in strong biofilm producers.
Collapse
Affiliation(s)
- Hiral Patel
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Devarshi Gajjar
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
25
|
Wang B, Pan F, Han D, Zhao W, Shi Y, Sun Y, Wang C, Zhang T, Zhang H. Genetic Characteristics and Microbiological Profile of Hypermucoviscous Multidrug-Resistant Klebsiella variicola Coproducing IMP-4 and NDM-1 Carbapenemases. Microbiol Spectr 2022; 10:e0158121. [PMID: 35019673 PMCID: PMC8823660 DOI: 10.1128/spectrum.01581-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
We report here a hypermucoviscous, New Delhi metallo-β-lactamase 1 (NDM-1) and imipenemase 4 (IMP-4) carbapenemases-coproducing Klebsiella variicola isolate obtained from a pediatric patient. This strain was resistant to carbapenems and most other β-lactams. Although hypermucoviscous, this strain possessed attenuated virulence according to serum killing assay and Galleria mellonella infection model. Notably, two copies of blaNDM-1 were contained on two tandem ISCR1 elements and coexisted with blaIMP-4 in a novel hybrid multidrug resistance plasmid. This is the first description of the coexistence of blaNDM-1 and blaIMP-4 in a single plasmid of hypermucoviscous K. variicola. IMPORTANCE As an important member of the Klebsiella pneumoniae complex, Klebsiella variicola is poorly studied as an emerging human pathogen. We, for the first time, report a unique K. variicola isolated from a pediatric patient in China. This isolate exhibited hypermucoviscosity, a classic hypervirulence characteristic of K. pneumoniae, and contained multiple carbapenem-resistant genes, including blaIMP-1 and blaNDM-1. Interestingly, these antimicrobial resistance genes were located on a novel hybrid plasmid, and our results suggested that this plasmid might have been introduced from K. pneumoniae and undergone a series of integration and recombination evolutionary events. Overall, our study provides more insight into K. variicola and highlights its superior capability to acquire and maintain foreign resistance genes.
Collapse
Affiliation(s)
- Bingjie Wang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Fen Pan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wantong Zhao
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yingying Shi
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yan Sun
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Chun Wang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Tiandong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
26
|
Zhou Y, Yu F, Chen M, Zhang Y, Qu Q, Wei Y, Xie C, Wu T, Liu Y, Zhang Z, Chen X, Dong C, Che R, Li Y. Tylosin Inhibits Streptococcus suis Biofilm Formation by Interacting With the O-acetylserine (thiol)-lyase B CysM. Front Vet Sci 2022; 8:829899. [PMID: 35155655 PMCID: PMC8832016 DOI: 10.3389/fvets.2021.829899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 12/23/2022] Open
Abstract
Streptococcus suis (S. suis) can decrease its virulence or modify local conditions through biofilm formation, which promotes infection persistence in vivo. Biofilm formation is an important cause of chronic drug-resistant S. suis infection. The aim of this study was to evaluate whether tylosin effectively inhibits S. suis biofilm formation by interacting with O-acetylserine (thiol)-lyase B (CysM), a key enzymatic regulator of cysteine synthesis. Biofilm formation of the mutant (ΔcysM) strain was significantly lower compared to the wild-type ATCC 700794 strain. Tylosin inhibited cysM gene expression, decreased extracellular matrix contents, and reduced cysteine, homocysteine, and S-adenosylmethionine levels, indicating its potential value as an effective inhibitor of S. suis biofilm formation. Furthermore, using biolayer interferometry technology and fourier-transform infrared spectroscopy, we found that tylosin and CysM could be combined directly. Overall, these results provide evidence that tylosin inhibits S. suis biofilm formation by interacting with CysM.
Collapse
Affiliation(s)
- Yonghui Zhou
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Fei Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mo Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuefeng Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qianwei Qu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanru Wei
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunmei Xie
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tong Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanyan Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhiyun Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xueying Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunliu Dong
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruixiang Che
- College of Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Ruixiang Che
| | - Yanhua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Yanhua Li
| |
Collapse
|
27
|
Biofilm Formation and Associated Gene Expression in Multidrug-Resistant Klebsiella pneumoniae Isolated from Clinical Specimens. Curr Microbiol 2022; 79:73. [PMID: 35084583 DOI: 10.1007/s00284-022-02766-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/12/2022] [Indexed: 01/01/2023]
Abstract
Biofilms reduce the bacterial growth rate, inhibit antibiotic penetration, lead to the development of persister cells and facilitate genetic exchange. The biofilm-associated Klebsiella pneumoniae infections have not been well studied, and their implications in overcoming the effects of antimicrobial therapy are yet to be fully understood. Hence this study evaluated the antibiotic resistance pattern, antibiotic resistance determinants of extended-spectrum beta-lactamase (ESBL) family. Biofilm-forming ability of seventy multidrug-resistant clinical isolates of K. pneumoniae and the biofilm-associated genes of representative biofilm formers from a tertiary care hospital were also assessed. The K. pneumoniae isolated from urine exhibited resistance towards ceftazidime, nalidixic acid and meropenem. Isolates from blood were resistant to cefuroxime. Higher rates of resistance were observed towards cefuroxime, nalidixic acid, and meropenem for the isolates from the endotracheal aspirate. Extended spectrum beta-lactamase production by CLSI's disc diffusion-based confirmation test revealed all the K. pneumoniae to be as ESBL producers. Most of the isolates harboured the bla gene variants, blaSHV and blaTEM. Majority of the isolates were colistin sensitive. 97.1% of the K. pneumoniae produced biofilm. K. pneumoniae isolated from pus and blood produced fully established biofilms. Strong biofilm formers were sensitive to co-trimoxazole and ciprofloxacin. Moderate biofilm formers exhibited sensitivity towards meropenem and imipenem. Expression of the fimH gene was increased, while mrkD showed reduced expression among the strong biofilm formers. Moderate biofilm formers showed variable expression of the genes associated with the biofilm formation. The weak and non-biofilm formers showed reduced expression of both the fimbrial genes. Multidrug-resistant isolates produced ESBLs and formed well-established biofilms.
Collapse
|
28
|
In vitro virulence potential, surface attachment and transcriptional response of sublethally injured Listeria monocytogenes following exposure to peracetic acid. Appl Environ Microbiol 2021; 88:e0158221. [PMID: 34731051 DOI: 10.1128/aem.01582-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The disinfectant Peracetic acid (PAA) can cause high levels of sublethal injury to L. monocytogenes. This study aims to evaluate phenotypic and transcriptional characteristics concerning surface attachment and virulence potential of sublethally injured L. monocytogenes ScottA and EGDe after exposure to 0.75 ppm PAA for 90 min at 4°C and subsequent incubation in TSBY at 4°C. Results showed that injured L. monocytogenes cells (99% of total population) were able to attach (after 2 and 24h) on stainless steel coupons at 4°C and 20°C. In vitro virulence assays using human intestinal epithelial Caco-2 cells showed that injured L. monocytogenes could invade host cells but could not proliferate intracellularly. In vitro virulence response was strain-dependent; injured ScottA was more invasive than EGDe. Assessment of PAA-injury at the transcriptional level showed upregulation of genes (motB, flaA) involved in flagellum motility and surface attachment. The transcriptional response of L. monocytogenes EGDe and ScottA was different; only injured ScottA demonstrated upregulation of the virulence genes inlA and plcA. Downregulation of the stress-related genes fri and kat, and upregulation of lmo0669 was observed in injured ScottA. The obtained results indicate that sublethally-injured L. monocytogenes cells may retain part of their virulence properties as well as their ability to adhere on food processing surfaces. Transmission to food products and introduction of these cells in the food chain is therefore a plausible scenario that is worth taking into consideration in terms of risk assessment. Importance L. monocytogenes is the causative agent of listeriosis a serious food-borne illness. Antimicrobial practices, such as disinfectants used for the elimination of this pathogen in food industry can produce a sublethally injured population fraction. Injured cells of this pathogen, that may survive an antimicrobial treatment, may pose a food safety-risk. Nevertheless, knowledge regarding how sublethal injury may impact important cellular traits and phenotypic responses of this pathogen is limited. This work suggests that sublethally injured L. monocytogenes cells maintain the virulence and surface attachment potential and highlights the importance of the occurrence of sublethally injured cells regarding food safety.
Collapse
|
29
|
Zhang Y, Zhao J, Cheng H, Wang J, Yang L, Liang H. Development and Quantitation of Pseudomonas aeruginosa Biofilms after in vitro Cultivation in Flow-reactors. Bio Protoc 2021; 11:e4126. [PMID: 34541044 DOI: 10.21769/bioprotoc.4126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 11/02/2022] Open
Abstract
Characterization of biofilm formation and metabolic activities is critical to investigating biofilm interactions with environmental factors and illustrating biofilm regulatory mechanisms. An appropriate in vitro model that mimics biofilm in vivo habitats therefore demands accurate quantitation and investigation of biofilm-associated activities. Current methodologies commonly involve static biofilm setups (such as biofilm assays in microplates, bead biofilms, or biofilms on glass-slides) and fluidic flow biofilm systems (such as drip-flow biofilm reactors, 3-channel biofilm reactors, or tubing biofilm reactors). Continuous flow systems take into consideration the contribution of hydrodynamic shear forces, nutrient supply, and physical transport of dispersed cells, which define the habitat for biofilm development in most natural and engineered systems. This protocol describes the assembly of 3 flow-system setups to cultivate Pseudomonas aeruginosa PAO1 and Shewanella oneidensis MR-1 model biofilms, including the respective quantitation and observation approaches. The standardized flow systems promise productive and reproducible biofilm experimental results, which can be further modified according to specific research projects.
Collapse
Affiliation(s)
- Yingdan Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jingru Zhao
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
| | - Hang Cheng
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jing Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.,Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, China
| | - Haihua Liang
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
| |
Collapse
|
30
|
Roy R, You RI, Chang CH, Yang CY, Lin NT. Carboxy-Terminal Processing Protease Controls Production of Outer Membrane Vesicles and Biofilm in Acinetobacter baumannii. Microorganisms 2021; 9:microorganisms9061336. [PMID: 34203028 PMCID: PMC8234194 DOI: 10.3390/microorganisms9061336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Carboxy-terminal processing protease (Ctp) is a serine protease that controls multiple cellular processes through posttranslational modification of proteins. Acinetobacter baumannii ATCC 17978 ctp mutant, namely MR14, is known to cause cell wall defects and autolysis. The objective of this study was to investigate the role of ctp mutation-driven autolysis in regulating biofilms in A. baumannii and to evaluate the vesiculation caused by cell wall defects. We found that in A. baumannii, Ctp is localized in the cytoplasmic membrane, and loss of Ctp function enhances the biofilm-forming ability of A. baumannii. Quantification of the matrix components revealed that extracellular DNA (eDNA) and proteins were the chief constituents of MR14 biofilm, and the transmission electron microscopy further indicated the presence of numerous dead cells compared with ATCC 17978. The large number of MR14 dead cells is potentially the result of compromised outer membrane integrity, as demonstrated by its high sensitivity to sodium dodecyl sulfate (SDS) and ethylenediaminetetraacetic acid (EDTA). MR14 also exhibited the hypervesiculation phenotype, producing outer-membrane vesicles (OMVs) of large mean size. The MR14 OMVs were more cytotoxic toward A549 cells than ATCC 17978 OMVs. Our overall results indicate that A. baumanniictp negatively controls pathogenic traits through autolysis and OMV biogenesis.
Collapse
Affiliation(s)
- Rakesh Roy
- Institute of Medical Sciences, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
| | - Chan-Hua Chang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Chiou-Ying Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan;
- Correspondence: (C.-Y.Y.); (N.-T.L.); Tel.: +886-3-856 5301 (ext. 2080) (N.-T.L.); Fax: +886-3-8566724 (N.-T.L.)
| | - Nien-Tsung Lin
- Institute of Medical Sciences, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
- Department of Microbiology, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan
- Correspondence: (C.-Y.Y.); (N.-T.L.); Tel.: +886-3-856 5301 (ext. 2080) (N.-T.L.); Fax: +886-3-8566724 (N.-T.L.)
| |
Collapse
|
31
|
Dos-Santos CM, Nascimento WBA, do Nascimento BP, Schwab S, Baldani JI, Vidal MS. Temporal assessment of root and shoot colonization of elephant grass (Pennisetum purpureum Schum.) host seedlings by Gluconacetobacter diazotrophicus strain LP343. Microbiol Res 2020; 244:126651. [PMID: 33383369 DOI: 10.1016/j.micres.2020.126651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/09/2020] [Accepted: 11/13/2020] [Indexed: 11/18/2022]
Abstract
Gluconacetobacter diazotrophicus is a species of great agronomic potential due to its growth-promotion traits. Its colonization process in different plants has been reported. However, there have been no studies regarding its structural colonization in elephant grass. This is a fast-growing C4-Poaceae plant, and its application in Brazil is mainly aimed at feeding dairy cattle, due to its high nutritional value. Also, in the last decade, this grass has been applied in the production of biofuels. The present study aimed to monitor the colonization process of strain LP343 of G. diazotrophicus inoculated in elephant grass seedlings of PCEA genotype, by using a mCherry-tagged bacterium. Samples of roots and shoots collected at different periods were visualized by confocal laser-scanning microscopy. The colony-counting assay was used to compare the number of cells recovered in different niches and a qPCR was performed for the quantification of endophytic cells in root and shoot tissues. Results suggested that the strain LP343 quickly recognized the PCEA roots as host, attached to the elephant grass roots at 6 h, and 7 days after inoculation were able to colonize the xylem vessels of roots and shoots of elephant grass. This study advances our knowledge about the colonization process of G. diazotrophicus species in elephant grass, contributing to future studies involving the plant-bacteria interaction cultivated under gnotobiotic conditions.
Collapse
Affiliation(s)
- Carlos M Dos-Santos
- Embrapa Agrobiologia, Rodovia BR 465, km 7, CEP 23891-000, Seropédica, RJ, Brazil
| | - Wiglison B A Nascimento
- Embrapa Agrobiologia, Rodovia BR 465, km 7, CEP 23891-000, Seropédica, RJ, Brazil; Instituto de Agronomia, Departamento de Agronomia, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, km 7, CEP 23897-000, Seropédica, RJ, Brazil
| | - Bruna P do Nascimento
- Embrapa Agrobiologia, Rodovia BR 465, km 7, CEP 23891-000, Seropédica, RJ, Brazil; Instituto de Tecnologia, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, km 7, CEP 23897-000, Seropédica, RJ, Brazil
| | - Stefan Schwab
- Embrapa Agrobiologia, Rodovia BR 465, km 7, CEP 23891-000, Seropédica, RJ, Brazil
| | - José I Baldani
- Embrapa Agrobiologia, Rodovia BR 465, km 7, CEP 23891-000, Seropédica, RJ, Brazil
| | - Marcia S Vidal
- Embrapa Agrobiologia, Rodovia BR 465, km 7, CEP 23891-000, Seropédica, RJ, Brazil.
| |
Collapse
|
32
|
Quinn J, McFadden R, Chan CW, Carson L. Titanium for Orthopedic Applications: An Overview of Surface Modification to Improve Biocompatibility and Prevent Bacterial Biofilm Formation. iScience 2020; 23:101745. [PMID: 33235984 PMCID: PMC7670191 DOI: 10.1016/j.isci.2020.101745] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Titanium and its alloys have emerged as excellent candidates for use as orthopedic biomaterials. Nevertheless, there are often complications arising after implantation of orthopedic devices, most notably prosthetic joint infection and aseptic loosening. To ensure that implanted devices remain functional in situ, innovation in surface modification has attracted much attention in the effort to develop orthopedic materials with optimal characteristics at the biomaterial-tissue interface. This review will draw together metallurgy, surface engineering, biofilm microbiology, and biomaterial science. It will serve to appreciate why titanium and its alloys are frequently used orthopedic biomaterials and address some of the challenges facing these biomaterials currently, including the significant problem of device-associated infection. Finally, the authors shall consolidate and evaluate surface modification techniques employed to overcome some of these issues by offering a unique perspective as to the direction in which research is headed from a broad, interdisciplinary point of view.
Collapse
Affiliation(s)
- James Quinn
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan McFadden
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, UK
| | - Chi-Wai Chan
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, UK
| | - Louise Carson
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
33
|
Ignatova NI, Alexandrova NA, Zaslavskaya MI, Abramycheva DV. [Evaluation of the influence of culturing on the intensity of biofilm formation by Klebsiella pneumoniae strains.]. Klin Lab Diagn 2020; 65:512-515. [PMID: 32762195 DOI: 10.18821/0869-2084-2020-65-8-512-515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to the prevalence of biofilm infections caused by Klebsiella pneumoniae, in laboratory diagnostic practice it has a great importance to obtain a standard model of Klebsiella biofilm for evaluating the bactericidal effect and effectiveness of antimicrobial drugs. Describes the method of Klebsiella biofilms formation in vitro. The intensity of biofilm formation was evaluated by the ability of bacteria to bind the crystal violet. The degree of film formation was measured by optical density. The presence of an intercellular matrix was confirmed by staining of Congo-red solution followed by light microscopy. The effect of exogenous and endogenous factors on biofilm formation by K. pneumoniae strains was investigated. The influence of the nutrient composition, the age of the culture («daily», «weekly»), the presence of oxygen and the temperature conditions were studied. The nutrient composition of the medium significantly influenced on biofilm formation of K. pneumoniae: DMEM stimulated biofilm formation in most strains in vitro compared to TSB. The age of the culture (daily, weekly) did not significantly affect the biofilm formation of Klebsiella. At the same time, the temperature of culturing and the presence of oxygen can both stimulate and inhibit biofilm formation, depending on the strain under study. Most strains of Klebsiella better form a biofilm under aerobic conditions at 37º C.
Collapse
Affiliation(s)
- N I Ignatova
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian, 603005, Nizhny Novgorod, Russia
| | - N A Alexandrova
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian, 603005, Nizhny Novgorod, Russia
| | - M I Zaslavskaya
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian, 603005, Nizhny Novgorod, Russia
| | - D V Abramycheva
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian, 603005, Nizhny Novgorod, Russia
| |
Collapse
|