1
|
Anisimov MN, Boichenko MA, Shorokhov VV, Borzunova JN, Janibekova M, Mustyatsa VV, Lifshits IA, Plodukhin AY, Andreev IA, Ratmanova NK, Zhokhov SS, Tarasenko EA, Ipatova DA, Pisarev AR, Vorobjev IA, Trushkov IV, Ivanova OA, Gudimchuk NB. Synthesis and evaluation of tetrahydropyrrolo[1,2- a]quinolin-1(2 H)-ones as new tubulin polymerization inhibitors. RSC Med Chem 2024:d4md00541d. [PMID: 39464648 PMCID: PMC11499956 DOI: 10.1039/d4md00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Here we explored new 1,5-disubstituted pyrrolidin-2-ones 1, 2 and 5-aryl-3,3a,4,5-tetrahydropyrrolo[1,2-a]quinoline-1(2H)-ones 3 as inhibitors of tubulin polymerization. We evaluated their effects on microtubule dynamics in vitro and on the proliferation of A549 cells, using flow cytometry-based cell cycle analysis. The results were verified with phase-contrast microscopy in three cancer cell lines: A549, HeLa and MCF-7. Guided by molecular modeling of the interactions between tubulin and the most active of the identified compounds, we designed, synthesized, and tested the 3-hydroxyphenyl-substituted compound 3c. This compound was further shown to bind to the colchicine site of tubulin and reduce microtubule growth rates in vitro. Moreover, compound 3c arrested division of the A549 cells in the low micromolar range (IC50 = 5.9 μM) and exhibited cytotoxicity against four different cell lines in the MTT assay for cell proliferation. Our findings demonstrate that 5-aryltetrahydropyrrolo[1,2-a]quinoline-1(2H)-one is a promising scaffold for the development of novel tubulin polymerization inhibitors.
Collapse
Affiliation(s)
- Mikhail N Anisimov
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
- Center for theoretical problems of physicochemical pharmacology Moscow 109029 Russia
| | - Maksim A Boichenko
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Vitaly V Shorokhov
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Julia N Borzunova
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | | | - Vadim V Mustyatsa
- Center for theoretical problems of physicochemical pharmacology Moscow 109029 Russia
- National Laboratory Astana Astana 010000 Kazakhstan
| | - Ilya A Lifshits
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Andrey Yu Plodukhin
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Ivan A Andreev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow 117997 Russia
| | - Nina K Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow 117997 Russia
| | - Sergey S Zhokhov
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Elena A Tarasenko
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Daria A Ipatova
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Alexander R Pisarev
- Faculty of Biology and Biotechnologies, Higher School of Economics Moscow 117418 Russia
| | - Ivan A Vorobjev
- National Laboratory Astana Astana 010000 Kazakhstan
- Department of Biology, School of Sciences and Humanities, Nazarbayev University Astana 010000 Kazakhstan
- Department of Biology, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Igor V Trushkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Moscow 119991 Russia
| | - Olga A Ivanova
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Nikita B Gudimchuk
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
- Center for theoretical problems of physicochemical pharmacology Moscow 109029 Russia
| |
Collapse
|
2
|
Mneimneh AT, Hayar B, Al Hadeethi S, Darwiche N, Mehanna MM. Application of Box-Behnken design in the optimization and development of albendazole-loaded zein nanoparticles as a drug repurposing approach for colorectal cancer management. Int J Biol Macromol 2024; 281:136437. [PMID: 39414215 DOI: 10.1016/j.ijbiomac.2024.136437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Colorectal cancer (CRC) is the second cancer worldwide representing a major global health challenge. Numerous effective anticancer drugs have been developed in the last decade, yet the problem remains due to their low therapeutic index and nonspecificity. A new anticancer therapeutic paradigm is based on repurposing and nanoformulating drugs. Albendazole (ALB), a popular anthelmintic agent, was recently repurposed against CRC cells. In this study zein, an amphiphilic protein, was used to formulate nanoparticles (NPs) loaded with ALB. Box-Behnken design was selected to optimize the loaded NPs, the concentrations of polyvinyl alcohol, acetic acid, and the weight of zein were the independent variables. The dependent variables were the particle size, polydispersity index, and zeta potential. The optimized formula displayed a size of 84.3 ± 0.41 nm, PDI 0.13 ± 0.012, and a zeta potential of 42.5 ± 2.35 mV. ALB was successfully encapsulated into zein NPs and the release study revealed a desirable pH-responsive drug release behavior, that was negligible release during the first 2 h at pH 1.2 and progressive in the simulated colon environment reaching 71.1 ± 0.34 % at 6 h and 92.4 ± 1.11 % at 24 h. The anticancer effect of the loaded NPs on the human HCT116 cells showed favorable effects at 1 μM concentration with a significant decrease in the IC50 at days 2 and 3 upon loading albendazole into zein NPs. Zein nanoparticles proved to be prospective nanocarriers that could be used for the delivery of repurposed drugs in CRC treatment.
Collapse
Affiliation(s)
- Amina T Mneimneh
- Pharmaceutical Nanotechnology Research Lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.
| | - Berthe Hayar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Sadaf Al Hadeethi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon.
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
3
|
McLoughlin EC, Twamley B, O'Boyle NM. Candidaantarctica Lipase B mediated kinetic resolution: A sustainable method for chiral synthesis of antiproliferative β-lactams. Eur J Med Chem 2024; 276:116692. [PMID: 39068864 DOI: 10.1016/j.ejmech.2024.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Biocatalysis is a valuable industrial approach in active pharmaceutical ingredient (API) manufacturing for asymmetric induction and synthesis of chiral APIs. Herein, we investigated synthesis of a panel of microtubule-destabilising antiproliferative β-lactam enantiomers employing a commercially available immobilised Candida antarctica lipase B enzyme together with methanol and MTBE. The β-lactam ring remained intact during chiral kinetic resolution reactions, plausibly due to a bulky N-1 phenyl substituent on the β-lactam ring substrate. The predominant reaction mediated by CAL-B was methanol catalysed conversion of the β-lactam 3-acetoxy substituent to a 3-hydroxyl group, with preferential methanolysis of the 3S, 4S enantiomer. The unreacted substrate underwent progressive enantioenrichment to the 3R, 4R enantiomer. Substitution patterns on the B ring C3 meta position of the β-lactam scaffold greatly affected the rate of reaction. Halo substituents (fluoro-, chloro- and bromo-) reduced the rate of conversion compared to unsubstituted analogues, which in turn increased enantiomeric excess (ee). Ee values up to 86 % for the 3S, 4S 3-hydroxyl enantiomer were achieved. A double resolution approach for unreacted substrate yielded high ee values (>99 %) for the 3R, 4R 3-acetoxy enantiomer. CAL-B mediated methanolysis is a more sustainable method for resolution of racemic antiproliferative β-lactams compared to a previous technique of chiral diastereomeric resolution. Yields of β-lactams obtained using CAL-B are far superior than previously described, which will facilitate progression toward pre-clinical and clinical development. Biocatalysis is a useful tool in the toolbox of the medicinal chemist.
Collapse
Affiliation(s)
- Eavan C McLoughlin
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152 - 160 Pearse St, Dublin 2, D02 R590, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Niamh M O'Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152 - 160 Pearse St, Dublin 2, D02 R590, Ireland.
| |
Collapse
|
4
|
DePasquale JA. Visible light potentiates rapid cell destruction and death by curcumin in vitro. Photochem Photobiol Sci 2024; 23:1893-1914. [PMID: 39333349 DOI: 10.1007/s43630-024-00639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Curcumin, a small molecule derived from the plant Curcuma longa, is a pleiotropic agent with widely varying pharmacological activities attributed to it. In addition to its anti-cancer activity curcumin is also known to be cytotoxic upon photoactivation. Time-lapse DIC and correlative fluorescence microscopy were used to evaluate the effects of curcumin, combined with continuous exposure to visible light, on cellular components of RTG-2 cells. Curcumin combined with visible light resulted in rapid and dramatic destruction of cells. F-actin and microtubule cytoskeletons were drastically altered, both showing fragmentation and overall loss from cells. Nuclei exhibited granulated nucleoplasm, condensed DNA, and physical shrinkage. Mitochondria rapidly fragmented along their length and disappeared from cells. Plasma membrane was breached based on lipophilic dye staining and the entrance of otherwise impermeant small molecules into the cell. Grossly distorted morphology hallmarked by significant swelling and coarse granulation of the cytoplasm was consistently observed. All of these effects were dependent on visible light as the same cellular targets in curcumin-treated cells outside the illuminated area were always unperturbed. The combination of curcumin and continuous exposure to visible light enables rapid and irreversible cellular destruction which can be monitored in real-time. Real-time monitoring of this structural disintegration suggests a new approach to applying curcumin in photodynamic treatments, where the progression of cell and tissue destruction might be simultaneously evaluated through optical means.
Collapse
|
5
|
Gupta S, Dev J R A, Prakash Prasad C, Kumar A, Kumar Ghosh S. A potent Bioorganic azapodophyllotoxin derivative Suppresses tumor Progression in Triple negative breast Cancer: An Insight into its Inhibitory effect on tubulin polymerization and Disruptive effect on microtubule assembly. Bioorg Chem 2024; 153:107839. [PMID: 39326339 DOI: 10.1016/j.bioorg.2024.107839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Triple negative breast cancer (TNBC) has long been a challenging disease owing to its high aggressive behaviour, poor prognosis and its limited treatment options. The growing demand of new therapeutics against TNBC enables us to examine the therapeutic efficiency of an emerging class of anticancer compounds, azapodophyllotoxin derivative (HTDQ), a nitrogen analogue of podophyllotoxin, using different biochemical, spectroscopic and computational approaches. The anticancer activities of HTDQ are studied by performing MTT assay in a dose depended manner on Triple negative breast cancer cells using MDA-MB-468 and MDA-MB-231 cell lines with IC50 value 937 nM and 1.13 µM respectively while demonstrating minimal effect on normal epithelial cells. The efficacy of HTDQ was further tested in 3D tumour spheroids formed by the human TNBC cell line MDA-MB468 and also the murine MMTV positive TNBC cell line 4 T1. The shrinkage that observed in the tumor spheroid clearly indicates that HTDQ remarkably decreases the growth of tumor spheroid thereby affirming its cytotoxicity. The 2D cell viability assay shows significant morphological alteration that possibly caused by the cytoskeleton disturbances. Hence the binding interaction of HTDQ with cytoskeleton protein tubulin, its effect on tubulin polymerisation as well as depolymerisation of preformed microtubules along with the conformational alternation in the protein itself have been investigated in detail. Moreover, the apoptotic effects of HTDQ have been examined using a range of apoptotic markers. HTDQ-treated cancer cells showed increased expression of cleaved PARP-1 and pro-caspase-3, suggesting activation of the apoptosis process. HTDQ also upregulated pro-apoptotic Bax expression while inhibiting anti-apoptotic Bcl2 expression, supporting its ability to induce apoptosis in cancer cells. Hence the consolidated biochemical and spectroscopic research described herein may provide enormous information to use azapodophyllotoxin as promising anticancer therapeutics for TNBC cells.
Collapse
Affiliation(s)
- Smruti Gupta
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Arundhathi Dev J R
- Department of Medical Oncology (Laboratory), Dr. BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology (Laboratory), Dr. BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Ajay Kumar
- School of Science, Technology and Environment, Universidad Ana G. Mendez, Cupey Campus, PO Box 21150, San Juan, PR 00928-1150, United States
| | - Sujit Kumar Ghosh
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India.
| |
Collapse
|
6
|
Aljuhani A, Nafie MS, Albujuq NR, Hourani W, Albelwi FF, Darwish KM, Samir Ayed A, Reda Aouad M, Rezki N. Unveiling the anti-cancer potentiality of phthalimide-based Analogues targeting tubulin polymerization in MCF-7 cancerous Cells: Rational design, chemical Synthesis, and Biological-coupled Computational investigation. Bioorg Chem 2024; 153:107827. [PMID: 39321715 DOI: 10.1016/j.bioorg.2024.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
The present study deals with an anti-cancer investigation of an array of phthalimide-1,2,3-triazole molecular conjugates with various sulfonamide fragments against human breast MCF-7 and prostate PC3 cancer cell lines. The targeted 1,2,3-triazole derivatives 4a-l and 6a-c were synthesized from focused phthalimide-based alkyne precursors using a facile click synthesis approach and were thoroughly characterized using several spectroscopic techniques (IR, 1H, 13C NMR, and elemental analysis). The hybrid click adducts 4b, 4 h, and 6c displayed cytotoxic potency (IC50 values of 1.49, 1.07, and 0.56 μM, respectively) against MCF-7 cells. On the contrary, none of the synthesized compounds showed apparent cytotoxic efficacy for PC3 cells (IC50 ranging from 9.87- >100 μM). As a part of the mechanism analysis, compound 6c demonstrated a potent inhibitory effect (78.3 % inhibition) of tubulin polymerization in vitro with an IC50 value of 6.53 µM. In addition, biological assays showed that compound 6c could prompt apoptotic cell death and induce G2/M cell cycle arrest in MCF-7 cells. Accordingly, compound 6c can be further developed as an anti-breast cancer agent through apoptosis-induction.
Collapse
Affiliation(s)
- Ateyatallah Aljuhani
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah P.O. 27272, United Arab Emirates (UAE); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, P.O. 41522, Egypt.
| | - Nader R Albujuq
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan.
| | - Wafa Hourani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan.
| | - Fawzia F Albelwi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt.
| | - Aya Samir Ayed
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, P.O. 41522, Egypt.
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| |
Collapse
|
7
|
Fuentes-Martín R, Ayuda-Durán P, Hanes R, Gallego-Yerga L, Wolterinck L, Enserink JM, Álvarez R, Peláez R. Promising anti-proliferative indolic benzenesulfonamides alter mechanisms with sulfonamide nitrogen substituents. Eur J Med Chem 2024; 275:116617. [PMID: 38959729 DOI: 10.1016/j.ejmech.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Agents that cause apoptotic cell death by interfering with tubulin dynamics, such as vinblastine and paclitaxel, are an important class of chemotherapeutics. Unfortunately, these compounds are substrates for multidrug resistance (MDR) pumps, allowing cancer cells to gain resistance to these chemotherapeutics. The indolesulfonamide family of tubulin inhibitors are not excluded by MDR pumps and have a promising activity profile, although their high lipophilicity is a pharmacokinetic limitation for their clinical use. Here we present a new family of N-indolyl-3,4,5-trimethoxybenzenesulfonamide derivatives with modifications on the indole system at positions 1 and 3 and on the sulfonamide nitrogen. We synthesized and screened against HeLa cells 34 novel indolic benzenesulfonamides. The most potent derivatives (1.7-109 nM) were tested against a broad panel of cancer cell lines, which revealed that substituted benzenesulfonamides analogs had highest potency. Importantly, these compounds were only moderately toxic to non-tumorigenic cells, suggesting the presence of a therapeutic index. Consistent with known clinical anti-tubulin agents, these compounds arrested the cell cycle at G2/M phase. Mechanistically, they induced apoptosis via caspase 3/7 activation, which occurred during M arrest. The substituents on the sulfonamide nitrogen appeared to determine different mechanistic results and cell fates. These results suggest that the compounds act differently depending on the bridge substituents, thus making them very interesting as mechanistic probes as well as potential drugs for further development.
Collapse
Affiliation(s)
- Raúl Fuentes-Martín
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS). Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain
| | - Pilar Ayuda-Durán
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Robert Hanes
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS). Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain
| | - Lisanne Wolterinck
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; HAN University of Applied Sciences, Nijmegen, the Netherlands
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS). Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS). Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain.
| |
Collapse
|
8
|
Jia M, Pei Y, Li N, Zhang Y, Song J, Niu JB, Yang H, Zhang S, Sun M. Synthesis and biological evaluation of 4-phenyl-5-quinolinyl substituted isoxazole analogues as potent cytotoxic and tubulin polymerization inhibitors against ESCC. Eur J Med Chem 2024; 275:116611. [PMID: 38901104 DOI: 10.1016/j.ejmech.2024.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
The identification of chemically different inhibitors that target the colchicine site of tubulin is still of great value for cancer treatment. Combretastatin A-4(CA-4), a naturally occurring colchicine-site binder characterized by its structural simplicity and biological activity, has served as a structural blueprint for the development of novel analogues with improved safety and therapeutic efficacy. In this study, a library of forty-eight 4-phenyl-5-quinolinyl substituted triazole, pyrazole or isoxazole analouges of CA-4, were synthesized and evaluated for their cytotoxicity against Esophageal Squamous Cell Carcinoma (ESCC) cell lines. Compound C11, which features a 2-methyl substitution at the quinoline and carries an isoxazole ring, emerged as the most promising, with 48 h IC50s of less than 20 nmol/L against two ESCC cell lines. The findings from EBI competitive assay, CETA, and in vitro tubulin polymerization assay of C11 are consistent with those of the positive control colchicine, demonstrating the clear affinity of compound C11 to the colchicine binding site. The subsequent cellular-based mechanism studies revealed that C11 significantly inhibited ESCC cell proliferation, arrested cell cycle at the M phase, induced apoptosis, and impeded migration. Experiments conducted in vivo further confirmed that C11 effectively suppressed the growth of ESCC without showing any toxicity towards the selected animal species. Overall, our research suggests that the tubulin polymerization inhibitor incorporating quinoline and the isoxazole ring may deserve consideration for cancer therapy.
Collapse
Affiliation(s)
- Meiqi Jia
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yuanyuan Pei
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Na Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Jian Song
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Hua Yang
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Saiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Moran Sun
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
9
|
Zhao W, Shen R, Li HM, Zhong JJ, Tang YJ. Podophyllotoxin derivatives-tubulin complex reveals a potential binding site of tubulin polymerization inhibitors in α-tubulin adjacent to colchicine site. Int J Biol Macromol 2024; 276:133678. [PMID: 38971286 DOI: 10.1016/j.ijbiomac.2024.133678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The colchicine site of β-tubulin has been proven to be essential binding sites of microtubule polymerization inhibitors. Recent studies implied that GTP pocket of α-tubulin adjacent to colchicine sites is a potential binding site for developing tubulin polymerization inhibitors. However, the structural basis for which type of structural fragments was more beneficial for enhancing the affinity of α-tubulin is still unclear. Here, podophyllotoxin derivatives-tubulin complex crystals indicated that heterocyclic with the highly electronegative and small steric hindrance was conducive to change configuration and enhance the affinity of the residues in GTP pocket of α-tubulin. Triazole with lone-pairs electrons and small steric hindrance exhibited the strongest affinity for enhancing affinity of podophyllotoxin derivatives by forming two hydrogen bonds with αT5 Ser178. Pyrimidine with the secondary strong affinity could bind Asn101 to make the αH7 configuration deflection, which reduces the stability of tubulin result in its depolymerization. Conversely, 4β-quinoline-podophyllotoxin with the weakest affinity did not interact with α-tubulin. The molecular dynamics simulation and protein thermal shift results showed that 4β-triazole-podophyllotoxin-tubulin was the most stable mainly due to two hydrogen bonds and the higher van der Waals force. This work provided a structural basis of the potential binding sites for extending the α/β-tubulin dual-binding sites inhibitors design strategy.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Rong Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hong-Mei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
10
|
Hashem H, Hassan A, Abdelmagid WM, Habib AGK, Abdel-Aal MAA, Elshamsy AM, El Zawily A, Radwan IT, Bräse S, Abdel-Samea AS, Rabea SM. Synthesis of New Thiazole-Privileged Chalcones as Tubulin Polymerization Inhibitors with Potential Anticancer Activities. Pharmaceuticals (Basel) 2024; 17:1154. [PMID: 39338317 PMCID: PMC11435058 DOI: 10.3390/ph17091154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
A series of novel thiazole-based chalcones were evaluated for their anticancer activity as potential tubulin polymerization inhibitors. In vitro anticancer screening for the thiazole derivatives 2a-2p exhibited broad-spectrum antitumor activity against various cancer cell lines particularly Ovar-3 and MDA-MB-468 cells with a GI50 range from 1.55 to 2.95 μΜ, respectively. Compound 2e demonstrated significant inhibition of tubulin polymerization, with an IC50 value of 7.78 μM compared to Combretastatin-A4 (CA-4), with an IC50 value of 4.93 μM. Molecular docking studies of compounds 2e, 2g, and 2h into tubulin further supported these findings, revealing that they bind effectively to the colchicine binding site, mirroring key interactions exhibited by CA-4. Computational predictions suggested favorable oral bioavailability and drug-likeness for these compounds, highlighting their potential for further development as chemotherapeutic agents.
Collapse
Affiliation(s)
- Hamada Hashem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Abdelfattah Hassan
- Medicinal Chemistry Department, Faculty of Pharmacy, South Valley University, Qena 52242, Egypt
- Medicinal Chemistry Department, Clinical Pharmacy Program, South Valley National University, Qena 52242, Egypt
| | - Walid M Abdelmagid
- Medicinal Chemistry and Drug Discovery Research Centre, Swenam College, 210-6125 Sussex Avenue, Burnaby, BC V5H 4G1, Canada
| | - Ahmed G K Habib
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed A A Abdel-Aal
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Ali M Elshamsy
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Amr El Zawily
- Department of Plant and Microbiology, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
- Division of Pharmaceutics and Translation Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo 11835, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Ahmed S Abdel-Samea
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Safwat M Rabea
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Apogee Pharmaceuticals Inc., 4475 Wayburne Dr., Suite 105, Burnaby, BC V6V2H8, Canada
| |
Collapse
|
11
|
Lu L, Li K, Pu J, Wang S, Liang T, Wang J. Dual-target inhibitors of colchicine binding site for cancer treatment. Eur J Med Chem 2024; 274:116543. [PMID: 38823265 DOI: 10.1016/j.ejmech.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Colchicine binding site inhibitors (CBSIs) have attracted much attention due to their antitumor efficacies and the advantages of inhibiting angiogenesis and overcoming multidrug resistance. However, no CBSI has been currently approved for cancer treatment due to the insufficient efficacies, serious toxicities and poor pharmacokinetic properties. Design of dual-target inhibitors is becoming a potential strategy for cancer treatment to improve anticancer efficacy, decrease adverse events and overcome drug resistance. Therefore, we reviewed dual-target inhibitors of colchicine binding site (CBS), summarized the design strategies and the biological activities of these dual-target inhibitors, expecting to provide inspiration for developing novel dual inhibitors based on CBS.
Collapse
Affiliation(s)
- Lu Lu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan Province, 475004, China
| | - Keke Li
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan Province, 475004, China
| | - Jiaxin Pu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan Province, 475004, China
| | - Shaochi Wang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Tingting Liang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan Province, 475004, China; The Zhongzhou Laboratory for Integrative Biology, Henan University, Zhengzhou, Henan Province, 450000, China.
| | - Jianhong Wang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan Province, 475004, China.
| |
Collapse
|
12
|
Peng Y, Zhang Y, Fang R, Jiang H, Lan G, Xu Z, Liu Y, Nie Z, Ren L, Wang F, Zhang S, Ma Y, Yang P, Ge H, Zhang W, Luo C, Li A, He W. Target Identification and Mechanistic Characterization of Indole Terpenoid Mimics: Proper Spindle Microtubule Assembly Is Essential for Cdh1-Mediated Proteolysis of CENP-A. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305593. [PMID: 38873820 PMCID: PMC11304278 DOI: 10.1002/advs.202305593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/23/2024] [Indexed: 06/15/2024]
Abstract
Centromere protein A (CENP-A), a centromere-specific histone H3 variant, is crucial for kinetochore positioning and chromosome segregation. However, its regulatory mechanism in human cells remains incompletely understood. A structure-activity relationship (SAR) study of the cell-cycle-arresting indole terpenoid mimic JP18 leads to the discovery of two more potent analogs, (+)-6-Br-JP18 and (+)-6-Cl-JP18. Tubulin is identified as a potential cellular target of these halogenated analogs by using the drug affinity responsive target stability (DARTS) based method. X-ray crystallography analysis reveals that both molecules bind to the colchicine-binding site of β-tubulin. Treatment of human cells with microtubule-targeting agents (MTAs), including these two compounds, results in CENP-A accumulation by destabilizing Cdh1, a co-activator of the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. This study establishes a link between microtubule dynamics and CENP-A accumulation using small-molecule tools and highlights the role of Cdh1 in CENP-A proteolysis.
Collapse
Affiliation(s)
- Yan Peng
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Yumeng Zhang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Ruan Fang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Hao Jiang
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Gongcai Lan
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Zhou Xu
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Yajie Liu
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Zhaoyang Nie
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
- Henan Institute of Advanced Technology and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Lu Ren
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Fengcan Wang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Shou‐De Zhang
- State Key Laboratory of Plateau Ecology and AgricultureQinghai UniversityXining810016China
| | - Yuyong Ma
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Peng Yang
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
- Henan Institute of Advanced Technology and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Hong‐Hua Ge
- Institute of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Wei‐Dong Zhang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghai200433China
| | - Cheng Luo
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Ang Li
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
- Henan Institute of Advanced Technology and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Weiwei He
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
13
|
Vicari HP, Gomes RDC, Lima K, Rossini NDO, Rodrigues Junior MT, de Miranda LBL, Dias MVB, Costa-Lotufo LV, Coelho F, Machado-Neto JA. Cyclopenta[b]indoles as novel antimicrotubule agents with antileukemia activity. Toxicol In Vitro 2024; 99:105856. [PMID: 38821378 DOI: 10.1016/j.tiv.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Acute leukemias present therapeutic challenges despite advances in treatments. Microtubule inhibitors have played a pivotal role in cancer therapy, inspiring exploration into novel compounds like C2E1 from the cyclopenta[b]indole class. In the present study, we investigated C2E1's potential as a therapeutic agent for acute leukemia at molecular, cellular, and genetic levels. C2E1 demonstrated tubulin depolarization activity, significantly reducing leukemia cell viability. Its impact involved multifaceted mechanisms: inducing apoptosis, arrest of cell cycle progression, and inhibition of clonogenicity and migration in leukemia cells. At a molecular level, C2E1 triggered DNA damage, antiproliferative, and apoptosis markers and altered gene expression related to cytoskeletal regulation, disrupting essential cellular processes crucial for leukemia cell survival and proliferation. These findings highlight C2E1's promise as a potential candidate for novel anti-cancer therapies. Notably, its distinct mode of action from conventional microtubule-targeting drugs suggests the potential to bypass common resistance mechanisms encountered with existing treatments. In summary, C2E1 emerges as a compelling compound with diverse effects on leukemia cells, showcasing promising antineoplastic properties. Its ability to disrupt critical cellular functions selective to leukemia cells positions it as a candidate for future therapeutic development.
Collapse
Affiliation(s)
- Hugo Passos Vicari
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ralph da Costa Gomes
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas, São Paulo, Brazil
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernando Coelho
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas, São Paulo, Brazil.
| | | |
Collapse
|
14
|
Adeleye K, Li A, Xie Y, Pochampally S, Hamilton D, Garcia-Godoy F, Miller D, Li W. Novel Antimitotic Agent SP-1-39 Inhibits Head and Neck Squamous Cell Carcinoma. J Dent Res 2024; 103:926-936. [PMID: 39101715 PMCID: PMC11465348 DOI: 10.1177/00220345241261982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Effective management of head and neck cancer (HNC) poses a significant challenge in the field of oncology, due to its intricate pathophysiology and limited treatment options. The most common HNC malignancy is head and neck squamous cell carcinoma (HNSCC). HNSCC treatment includes a combination of surgery, radiation, and chemotherapy. While HNSCC is treatable if diagnosed early, this is often not the case and is considered incurable once in its late stages and metastatic disease has developed. Therapies are also limited once resistant disease has occurred. SP-1-39, a novel colchicine-binding site inhibitor (CBSI), has been recently reported for its potential efficacy in a variety of cancer cell lines including breast, melanoma, pancreatic, and prostate. SP-1-39 also shows abilities to overcome paclitaxel resistance in a paclitaxel-resistant prostate cancer xenograft model. To evaluate the potential of SP-1-39 as a new HNSCC treatment option, herein we systematically performed preclinical studies in HNSCC models using SP-1-39 and demonstrated that, in vitro, SP-1-39 inhibits the proliferation of 2 HNSCC cell lines with low nanomolar IC50 values (1.4 to 2.1 nM), induces HNSCC cell apoptosis in a dose-dependent manner, interferes with migration of HNSCC cells, and leads to HNSCC cell cycle arrest in the G2/M phase. In vivo, SP-1-39 suppresses the primary tumor growth of a Detroit 562 subcutaneous xenograft mouse model in 6- to 8-wk-old, male NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice, with no detectable cytotoxic effects at a low dose of 2.5 mg/kg. This efficacy of SP-1-39 is better when compared with the treatment using a reference chemotherapy drug, paclitaxel at 10 mg/kg. Collectively, these data demonstrate that SP-1-39 is a promising candidate for further development for more efficacious HNSCC treatment.
Collapse
Affiliation(s)
- K.L. Adeleye
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - A.R. Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Y. Xie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S. Pochampally
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - D. Hamilton
- Department of Comparative Medicine, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - F. Garcia-Godoy
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - D.D. Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - W. Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
15
|
Jiang F, Yu M, Liang Y, Ding K, Wang Y. Discovery of Novel Diaryl-Substituted Fused Heterocycles Targeting Katanin and Tubulin with Potent Antitumor and Antimultidrug Resistance Efficacy. J Med Chem 2024; 67:12118-12142. [PMID: 38996194 DOI: 10.1021/acs.jmedchem.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Disrupting microtubule dynamics has emerged as a promising strategy for cancer treatment. However, drug resistance remains a challenge hindering the development of microtubule-targeting agents. In this work, a novel class of diaryl substituted fused heterocycles were designed, synthesized, and evaluated, which were demonstrated as effective dual katanin and tubulin regulators with antitumor activity. Following three rounds of stepwise optimization, compound 21b, featuring a 3H-imidazo[4,5-b]pyridine core, displayed excellent targeting capabilities on katanin and tubulin, along with notable antiproliferative and antimetastatic effects. Mechanistic studies revealed that 21b disrupts the microtubule network in tumor cells, leading to G2/M cell cycle arrest and apoptosis induction. Importantly, 21b exhibited significant inhibition of tumor growth in MDA-MB-231 and A549/T xenograft tumor models without evident toxicity and side effects. In conclusion, compound 21b presents a novel mechanism for disrupting microtubule dynamics, warranting further investigation as a dual-targeted antitumor agent with potential antimultidrug resistance properties.
Collapse
Affiliation(s)
- Fuhao Jiang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Min Yu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuru Liang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
16
|
Singh N, Sharma S. Photo-activated microtubule targeting drugs: Advancing therapies for colorectal cancer. World J Gastroenterol 2024; 30:3257-3260. [PMID: 39086641 PMCID: PMC11287401 DOI: 10.3748/wjg.v30.i26.3257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024] Open
Abstract
Over the years immunotherapy has demonstrably improved the field of cancer treatment. However, achieving long-term survival for colorectal cancer (CRC) patients remains a significant unmet need. Combination immunotherapies incorporating targeted drugs like MEK or multi-kinase inhibitors have offered some palliative benefit. Nevertheless, substantial gaps remain in the current therapeutic armamentarium for CRC. In recent years, there has been a surge of interest in exploring novel treatment strategies, including the application of light-activated drugs in conjunction with optical devices. This approach holds promise for achieving localized and targeted delivery of cytotoxic agents, such as microtubule-targeting drugs, directly to cancerous cells within the colon.
Collapse
Affiliation(s)
- Naresh Singh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Samantha Sharma
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
17
|
Mariotto E, Canton M, Marchioro C, Brancale A, Hamel E, Varani K, Vincenzi F, De Ventura T, Padroni C, Viola G, Romagnoli R. Synthesis and Biological Evaluation of Novel 2-Aroyl Benzofuran-Based Hydroxamic Acids as Antimicrotubule Agents. Int J Mol Sci 2024; 25:7519. [PMID: 39062759 PMCID: PMC11277476 DOI: 10.3390/ijms25147519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Because of synergism between tubulin and HDAC inhibitors, we used the pharmacophore fusion strategy to generate potential tubulin-HDAC dual inhibitors. Drug design was based on the introduction of a N-hydroxyacrylamide or a N-hydroxypropiolamide at the 5-position of the 2-aroylbenzo[b]furan skeleton, to produce compounds 6a-i and 11a-h, respectively. Among the synthesized compounds, derivatives 6a, 6c, 6e, 6g, 11a, and 11c showed excellent antiproliferative activity, with IC50 values at single- or double-digit nanomolar levels, against the A549, HT-29, and MCF-7 cells resistant towards the control compound combretastatin A-4 (CA-4). Compounds 11a and 6g were also 10-fold more active than CA-4 against the Hela cell line. When comparing the inhibition of tubulin polymerization versus the HDAC6 inhibitory activity, we found that 6a-g, 6i, 11a, 11c, and 11e, although very potent as inhibitors of tubulin assembly, did not have significant inhibitory activity against HDAC6.
Collapse
Affiliation(s)
- Elena Mariotto
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, 35128 Padova, Italy; (E.M.); (M.C.); (C.M.); (G.V.)
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Martina Canton
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, 35128 Padova, Italy; (E.M.); (M.C.); (C.M.); (G.V.)
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Chiara Marchioro
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, 35128 Padova, Italy; (E.M.); (M.C.); (C.M.); (G.V.)
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Andrea Brancale
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, 166 28 Prague, Czech Republic;
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (K.V.); (F.V.)
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (K.V.); (F.V.)
| | - Tiziano De Ventura
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Chiara Padroni
- Medicinal Chemistry Department, Integrated Drug Discovery, Aptuit, an Evotec Company, 37135 Verona, Italy;
| | - Giampietro Viola
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, 35128 Padova, Italy; (E.M.); (M.C.); (C.M.); (G.V.)
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Romeo Romagnoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
18
|
Chiodi D, Ishihara Y. The role of the methoxy group in approved drugs. Eur J Med Chem 2024; 273:116364. [PMID: 38781921 DOI: 10.1016/j.ejmech.2024.116364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 05/25/2024]
Abstract
The methoxy substituent is prevalent in natural products and, consequently, is present in many natural product-derived drugs. It has also been installed in modern drug molecules with no remnant of natural product features because medicinal chemists have been taking advantage of the benefits that this small functional group can bestow on ligand-target binding, physicochemical properties, and ADME parameters. Herein, over 230 methoxy-containing small-molecule drugs, as well as several fluoromethoxy-containing drugs, are presented from the vantage point of the methoxy group. Biochemical mechanisms of action, medicinal chemistry SAR studies, and numerous X-ray cocrystal structures are analyzed to identify the precise role of the methoxy group for many of the drugs and drug classes. Although the methoxy substituent can be considered as the hybridization of a hydroxy and a methyl group, the combination of these functionalities often results in unique effects that can amount to more than the sum of the individual parts.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Yoshihiro Ishihara
- Department of Chemistry, Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
19
|
Zumaya ALV, Pavlíčková VS, Rimpelová S, Štějdířová M, Fulem M, Křížová I, Ulbrich P, Řezanka P, Hassouna F. PLGA-based nanocarriers for combined delivery of colchicine and purpurin 18 in cancer therapy: Multimodal approach employing cancer cell spheroids. Int J Pharm 2024; 657:124170. [PMID: 38679244 DOI: 10.1016/j.ijpharm.2024.124170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Improving the anticancer efficacy of chemotherapeutic drugs and photosensitizers requires innovative multifunctional nanoplatforms. This study introduces a chemo- and phototherapeutic drug delivery system (DDS) based on poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs), both PEGylated and non-PEGylated, with a mean size of 200 ± 75 nm. Colchicine (Colch) and purpurin18 (P18) were co-encapsulated into these NPs, and their in vitro drug release profiles were investigated. The anticancer potential of these systems was evaluated across various cell lines (i.e., CaCo-2, PC-3, MCF-7, and MRC-5 cells), demonstrating enhanced NP uptake by cancer cells compared to free drugs. Co-administration of Colch and P18 in 2D and 3D cell line models exhibited a synergistic effect, harnessing both chemotherapeutic and photodynamic effects, leading to higher cancer cell elimination efficacy. This newly developed multifunctional DDS presents a promising platform for combined chemo- and photodynamic therapy in cancer treatment.
Collapse
Affiliation(s)
- Alma Lucia Villela Zumaya
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Vladimíra Svobodová Pavlíčková
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Silvie Rimpelová
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic.
| | - Markéta Štějdířová
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Michal Fulem
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Ivana Křížová
- Faculty of Biotechnology, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Pavel Ulbrich
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Pavel Řezanka
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
20
|
Bouzriba C, Gagné-Boulet M, Chavez Alvarez AC, Ouellette V, Laverdière I, Fortin S. Design, synthesis and biological evaluation of new 2,6-difluorinated phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates as new antimicrotubule agents. Bioorg Chem 2024; 146:107299. [PMID: 38547722 DOI: 10.1016/j.bioorg.2024.107299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Abstract
We previously discovered a novel family of antimicrotubule agents designated as phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PIB-SOs). In this study, we evaluated the effect of the difluorination of the aromatic ring bearing the imidazolidin-2-one moiety (ring A) at positions 3, 5 and 2, 6 on their antiproliferative activity on four cancer cell lines, their ability to disrupt the microtubules and their toxicity toward chick embryos. We thus synthesized, characterized and biologically evaluated 24 new difluorinated PIB-SO derivatives designated as phenyl 3,5-difluoro-4-(2-oxoimidazolidin-1-yl)benzenesulfonates (3,5-PFB-SOs, 4-15) and phenyl 2,6-difluoro-4-(2-oxoimidazolidin-1-yl)benzenesulfonates (2,6-PFB-SOs, 16-27). The concentration of the drug required to inhibit cell growth by 50% (IC50) of 3,5-PFB-SOs is over 1000 nM while most of 2,6-PFB-SOs exhibit IC50 in the nanomolar range (23-900 nM). Furthermore, the most potent 2,6-PFB-SOs 19, 26 and 27 arrest the cell cycle progression in G2/M phase, induce cytoskeleton disruption and impair microtubule polymerization. Docking studies also show that the most potent 2,6-PFB-SOs 19, 21, 24, 26 and 27 have binding affinity toward the colchicine-binding site (C-BS). Moreover, their antiproliferative activity is not affected by antimicrotubule- and multidrug-resistant cell lines. Besides, they exhibit improved in vitro hepatic stability in the mouse, rat and human microsomes compared to their non-fluorinated counterparts. They also showed theoretical pharmacokinetic, physicochemical and drug-like properties suited for further in vivo assays. In addition, they exhibit low to no systemic toxicity toward chick embryos. Finally, our study evidences that PIB-SOs must be fluorinated in specific positions on ring A to maintain both their antiproliferative activity and their biological activity toward microtubules.
Collapse
Affiliation(s)
- Chahrazed Bouzriba
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec QC G1V 0A6, Canada; These authors contributed equally to this work.
| | - Mathieu Gagné-Boulet
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec QC G1V 0A6, Canada; These authors contributed equally to this work
| | - Atziri Corin Chavez Alvarez
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec QC G1V 0A6, Canada; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, 2725 chemin Ste-Foy, Québec QC G1V 4G5, Canada
| | - Vincent Ouellette
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec QC G1V 0A6, Canada
| | - Isabelle Laverdière
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec QC G1V 0A6, Canada
| | - Sébastien Fortin
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec QC G1V 0A6, Canada.
| |
Collapse
|
21
|
Izmest'ev AN, Svirshchevskaya EV, Akopov SB, Kravchenko AN, Gazieva GA. Recognition of arylmethylidene derivatives of imidazothiazolotriazinones as novel tubulin polymerization inhibitors. RSC Med Chem 2024; 15:1258-1273. [PMID: 38665841 PMCID: PMC11042243 DOI: 10.1039/d4md00027g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/25/2024] [Indexed: 04/28/2024] Open
Abstract
Two series of arylmethylidene derivatives of imidazothiazolotriazinone differing in the structure of the imidazothiazolotriazine fragment were synthesized and their antiproliferative activity and effect on tubulin polymerization were evaluated. Some of the synthesized derivatives showed a significant antiproliferative effect, among which (Z)-7-(2,4-dichlorobenzylidene)-1,3-diethyl-1,3a,4,9a-tetrahydroimidazo[4,5-e]thiazolo[2,3-c][1,2,4]triazine-2,8(3H,7H)-dione 2n exhibited the highest antiproliferative activity. The GI50 values of the compound against 56 of the 58 cell lines were 19.4-87.8 nM; against the remaining 2 cell lines, they were 0.544-1.29 μM. Moreover, further mechanism analysis demonstrated that 2n caused G2/M arrest, induced cell apoptosis in K562 cells and blocked tubulin polymerization in the same way as colchicine.
Collapse
Affiliation(s)
- Alexei N Izmest'ev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Moscow 119991 Russian Federation
| | - Elena V Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Moscow 117997 Russian Federation
| | - Sergey B Akopov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Moscow 117997 Russian Federation
| | - Angelina N Kravchenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Moscow 119991 Russian Federation
| | - Galina A Gazieva
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Moscow 119991 Russian Federation
| |
Collapse
|
22
|
Yeh JJ, Liw PX, Wong YS, Kao HM, Lee CH, Lin CL, Kao CH. The effect of colchicine on cancer risk in patients with immune-mediated inflammatory diseases: a time-dependent study based on the Taiwan's National Health Insurance Research Database. Eur J Med Res 2024; 29:245. [PMID: 38649928 PMCID: PMC11034118 DOI: 10.1186/s40001-024-01836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND To determine the effect of colchicine on cancer risk in patients with the immune-mediated inflammatory diseases (IMIDs)-related to colchicine use. METHODS This is a time-dependent propensity-matched general population study based on the National Health Insurance Research Database (NHIRD) of Taiwan. We identified the IMIDs patients (n = 111,644) newly diagnosed between 2000 and 2012 based on the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM)-274,712, 135, 136.1, 279.49, 518.3, 287.0, 696.0, 696.1, 696.8, 420, 429.4, 710.0, 710.1, 710.3, 710.4, 714.0, 720, 55.0, 55.1, 55.9, 556. INCLUSION CRITERIA aged ≧ 20 years, if a patient had at least these disease diagnosis requirements within 1 year of follow-up, and, these patients had at least two outpatient visits or an inpatient visit. After propensity-matched according to age, sex, comorbidities, medications and index date, the IMIDs patients enter into colchicine users (N = 16,026) and colchicine nonusers (N = 16,026). Furthermore, time-dependent Cox models were used to analyze cancer risk in propensity-matched colchicine users compared with the nonusers. The cumulative cancer incidence was analyzed using Cox proportional regression analysis. We calculated adjusted hazard ratios (aHRs) and their 95% confidence intervals (95% CIs) for cancer after adjusting for sex, age, comorbidities, and use of medicine including acetylcysteine, medication for smoking cessation such as nicotine replacement medicines (the nicotine patch) and pill medicines (varenicline), anti-inflammatory drugs and immunosuppressant drugs. RESULTS Comparing the colchicine nonusers, all cancer risk were mildly attenuated, the (aHR (95% CI)) of all cancer is (0.84 (0.55, 0.99)). Meanwhile, the colchicine users were associated with the lower incidence of the colorectal cancer, the (aHRs (95% CI)) is (0.22 (0.19, 0.89)). Those aged < 65 years and male/female having the colchicine users were associated with lower risk the colorectal cancer also. Moreover, the colchicine > 20 days use with the lower aHR for colorectal cancer. CONCLUSION Colchicine was associated with the lower aHR of the all cancer and colorectal cancer formation in patients with the IMIDs.
Collapse
Affiliation(s)
- Jun-Jun Yeh
- Department of Family Medicine, Chest Medicine, Geriatric Medicine and Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Xuan Liw
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Yi-Sin Wong
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Husan-Min Kao
- Department of Geriatric Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chia-Hsun Lee
- Department of Medical Education, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Cheng-Li Lin
- College of Medicine, China Medical University, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung, 404, Taiwan.
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
- Artificial Intelligence Center, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
23
|
Xie S, Leng J, Zhao S, Zhu L, Zhang M, Ning M, Zhao B, Kong L, Yin Y. Design and biological evaluation of dual tubulin/HDAC inhibitors based on millepachine for treatment of prostate cancer. Eur J Med Chem 2024; 268:116301. [PMID: 38452727 DOI: 10.1016/j.ejmech.2024.116301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
In this work, a novel of dual tubulin/HDAC inhibitors were designed and synthesized based on the structure of natural product millepachine, which has been identified as a tubulin polymerization inhibitor. Biological evaluation revealed that compound 9n exhibited an impressive potency against PC-3 cells with the IC50 value of 16 nM and effectively inhibited both microtubule polymerization and HDAC activity. Furthermore, compound 9n not only induced cell cycle arrest at G2/M phase, but also induced PC- 3 cells apoptosis. Further study revealed that the induction of cell apoptosis by 9n was accompanied by a decrease in mitochondrial membrane potential and an elevation in reactive oxygen species levels in PC-3 cells. Additionally, 9n exhibited inhibitory effects on tumor cell migration and angiogenesis. In PC-3 xenograft model, 9n achieved a remarkable tumor inhibition rate of 90.07%@20 mg/kg, significantly surpassing to that of CA-4 (55.62%@20 mg/kg). Meanwhile, 9n exhibited the favorable drug metabolism characteristics in vivo. All the results indicate that 9n is a promising dual tubulin/HDAC inhibitor for chemotherapy of prostate cancer, deserving the further investigation.
Collapse
Affiliation(s)
- Shanshan Xie
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Jiafu Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Shifang Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Liqiao Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Mengyu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Mengdan Ning
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Bo Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
24
|
Homer JA, Koelln RA, Barrow AS, Gialelis TL, Boiarska Z, Steinohrt NS, Lee EF, Yang WH, Johnson RM, Chung T, Habowski AN, Vishwakarma DS, Bhunia D, Avanzi C, Moorhouse AD, Jackson M, Tuveson DA, Lyons SK, Lukey MJ, Fairlie WD, Haider SM, Steinmetz MO, Prota AE, Moses JE. Modular synthesis of functional libraries by accelerated SuFEx click chemistry. Chem Sci 2024; 15:3879-3892. [PMID: 38487227 PMCID: PMC10935723 DOI: 10.1039/d3sc05729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Accelerated SuFEx Click Chemistry (ASCC) is a powerful method for coupling aryl and alkyl alcohols with SuFEx-compatible functional groups. With its hallmark favorable kinetics and exceptional product yields, ASCC streamlines the synthetic workflow, simplifies the purification process, and is ideally suited for discovering functional molecules. We showcase the versatility and practicality of the ASCC reaction as a tool for the late-stage derivatization of bioactive molecules and in the array synthesis of sulfonate-linked, high-potency, microtubule targeting agents (MTAs) that exhibit nanomolar anticancer activity against multidrug-resistant cancer cell lines. These findings underscore ASCC's promise as a robust platform for drug discovery.
Collapse
Affiliation(s)
- Joshua A Homer
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Rebecca A Koelln
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Andrew S Barrow
- La Trobe Institute for Molecular Science, La Trobe University Melbourne VIC 3086 Australia
| | - Timothy L Gialelis
- La Trobe Institute for Molecular Science, La Trobe University Melbourne VIC 3086 Australia
| | - Zlata Boiarska
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut Villigen PSI 5232 Switzerland
- Department of Chemistry, Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Nikita S Steinohrt
- Olivia Newton-John Cancer Research Institute Heidelberg Victoria 3084 Australia
- School of Cancer Medicine, La Trobe University Melbourne Victoria 3086 Australia
| | - Erinna F Lee
- Olivia Newton-John Cancer Research Institute Heidelberg Victoria 3084 Australia
- School of Cancer Medicine, La Trobe University Melbourne Victoria 3086 Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria 3086 Australia
| | - Wen-Hsuan Yang
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Robert M Johnson
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Taemoon Chung
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Amber N Habowski
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | | | - Debmalya Bhunia
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins CO 80523 USA
| | - Adam D Moorhouse
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins CO 80523 USA
| | - David A Tuveson
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Scott K Lyons
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Michael J Lukey
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - W Douglas Fairlie
- Olivia Newton-John Cancer Research Institute Heidelberg Victoria 3084 Australia
- School of Cancer Medicine, La Trobe University Melbourne Victoria 3086 Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria 3086 Australia
| | - Shozeb M Haider
- School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut Villigen PSI 5232 Switzerland
- Biozentrum, University of Basel 4056 Basel Switzerland
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut Villigen PSI 5232 Switzerland
| | - John E Moses
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| |
Collapse
|
25
|
Yakkala PA, Rahaman S, Soukya PSL, Begum SA, Kamal A. An update on the development on tubulin inhibitors for the treatment of solid tumors. Expert Opin Ther Targets 2024; 28:193-220. [PMID: 38618889 DOI: 10.1080/14728222.2024.2341630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Microtubules play a vital role in cancer therapeutics. They are implicated in tumorigenesis, thus inhibiting tubulin polymerization in cancer cells, and have now become a significant target for anticancer drug development. A plethora of drug molecules has been crafted to influence microtubule dynamics and presently, numerous tubulin inhibitors are being investigated. This review discusses the recently developed inhibitors including natural products, and also examines the preclinical and clinical data of some potential molecules. AREA COVERED The current review article summarizes the development of tubulin inhibitors while detailing their specific binding sites. It also discusses the newly designed inhibitors that may be useful in the treatment of solid tumors. EXPERT OPINION Microtubules play a crucial role in cellular processes, especially in cancer therapy where inhibiting tubulin polymerization holds promise. Ongoing trials signify a commitment to revolutionizing cancer treatment and exploring targeted therapies. Challenges in microtubule modulation, like resistance and off-target effects, demand focused efforts, emphasizing combination therapies and personalized treatments. Beyond microtubules, promising avenues in cancer research include immunotherapy, genomic medicine, CRISPR gene editing, liquid biopsies, AI diagnostics, and stem cell therapy, showcasing a holistic approach for future advancements.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shaik Rahaman
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - P S Lakshmi Soukya
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, India
| | - Sajeli Ahil Begum
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, India
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, India
- Department of Environment, Forests, Science & Technology, Telangana State Council of Science & Technology, Hyderabad, India
| |
Collapse
|
26
|
Lucena-Agell D, Guillén MJ, Matesanz R, Álvarez-Bernad B, Hortigüela R, Avilés P, Martínez-Díez M, Santamaría-Núñez G, Contreras J, Plaza-Menacho I, Giménez-Abián JF, Oliva MA, Cuevas C, Díaz JF. PM534, an Optimized Target-Protein Interaction Strategy through the Colchicine Site of Tubulin. J Med Chem 2024; 67:2619-2630. [PMID: 38294341 PMCID: PMC10895673 DOI: 10.1021/acs.jmedchem.3c01775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Targeting microtubules is the most effective wide-spectrum pharmacological strategy in antitumoral chemotherapy, and current research focuses on reducing main drawbacks: neurotoxicity and resistance. PM534 is a novel synthetic compound derived from the Structure-Activity-Relationship study on the natural molecule PM742, isolated from the sponge of the order Lithistida, family Theonellidae, genus Discodermia (du Bocage 1869). PM534 targets the entire colchicine binding domain of tubulin, covering four of the five centers of the pharmacophore model. Its nanomolar affinity and high retention time modulate a strikingly high antitumor activity that efficiently overrides two resistance mechanisms in cells (detoxification pumps and tubulin βIII isotype overexpression). Furthermore, PM534 induces significant inhibition of tumor growth in mouse xenograft models of human non-small cell lung cancer. Our results present PM534, a highly effective new compound in the preclinical evaluation that is currently in its first human Phase I clinical trial.
Collapse
Affiliation(s)
- Daniel Lucena-Agell
- Unidad
BICS. Centro de Investigaciones Biológicas Margarita Salas,
Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María José Guillén
- PharmaMar
S.A., Avda de los Reyes
1, Colmenar Viejo, 28770 Madrid, Spain
| | - Ruth Matesanz
- Unidad
BICS. Centro de Investigaciones Biológicas Margarita Salas,
Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Beatriz Álvarez-Bernad
- Unidad
BICS. Centro de Investigaciones Biológicas Margarita Salas,
Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Rafael Hortigüela
- Unidad
BICS. Centro de Investigaciones Biológicas Margarita Salas,
Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pablo Avilés
- PharmaMar
S.A., Avda de los Reyes
1, Colmenar Viejo, 28770 Madrid, Spain
| | | | | | - Julia Contreras
- Centro
Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro
3, 28029 Madrid, Spain
| | - Iván Plaza-Menacho
- Centro
Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro
3, 28029 Madrid, Spain
| | - Juan F. Giménez-Abián
- Unidad
BICS. Centro de Investigaciones Biológicas Margarita Salas,
Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María A. Oliva
- Unidad
BICS. Centro de Investigaciones Biológicas Margarita Salas,
Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carmen Cuevas
- PharmaMar
S.A., Avda de los Reyes
1, Colmenar Viejo, 28770 Madrid, Spain
| | - J. Fernando Díaz
- Unidad
BICS. Centro de Investigaciones Biológicas Margarita Salas,
Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
27
|
Perużyńska M, Birger R, Piotrowska K, Kwiecień H, Droździk M, Kurzawski M. Microtubule destabilising activity of selected 7-methoxy-2-phenylbenzo[b]furan derivative against primary and metastatic melanoma cells. Eur J Pharmacol 2024; 964:176308. [PMID: 38142850 DOI: 10.1016/j.ejphar.2023.176308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Herein, we report the results of anticancer screening of two 2-phenylbenzo[b]furan derivatives functionalised at the 3-position with 4-hydroxy-3,5-dimethoxybenzoyl (BF2) or 3,4,5-trimethoxybenzoyl (BF3) against 60 different cancer cell lines. The results confirmed the anticancer potential of the tested compounds against different cancer cell types, especially colon cancer, brain cancer and melanoma. BF3 was defined as the most potent (also as a tubulin polymerisation inhibitor). Its anticancer activity against melanoma cell lines that originated from different stages, i.e., primary skin-derived A375 and metastatic WM9/MDA-MB-435S, was evaluated (as the clinical success of melanoma therapy strictly depends on the disease stage). Moreover, to determine the BF3 mode of action and its effect on cell proliferation, intracellular microtubule networks, cell cycle phase distribution and apoptosis were evaluated. Our study revealed that BF3 inhibited cell proliferation in a dose-dependent manner, with IC50 yielding 0.09 ± 0.01 μM, 0.11 ± 0.01 μM and 0.18 ± 0.05 μM for A375, MDA-MB435S and WM9, respectively. The strong antiproliferative activity of compound BF3 correlated well with its inhibitory effect on tubulin polymerisation. Molecular docking proved that BF3 belongs to the colchicine binding site inhibitors (CBSIs), and experimental studies revealed that it disturbs cell cycle progression leading to G2/M arrest and apoptosis.
Collapse
Affiliation(s)
- Magdalena Perużyńska
- Department of Experimental & Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72, 70-111, Szczecin, Poland.
| | - Radosław Birger
- Department of Experimental & Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72, 70-111, Szczecin, Poland
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72, 70-111, Szczecin, Poland
| | - Halina Kwiecień
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave 42, 71-065, Szczecin, Poland
| | - Marek Droździk
- Department of Experimental & Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72, 70-111, Szczecin, Poland
| | - Mateusz Kurzawski
- Laboratory of Pharmacodynamics, Pomeranian Medical University in Szczecin, 71-899, Szczecin, Poland
| |
Collapse
|
28
|
Tian XY, Zhang WX, Chen XY, Jia MQ, Zhang SY, Chen YF, Yuan S, Song J, Li J. Discovery of novel coumarin-based derivatives as inhibitors of tubulin polymerization targeting the colchicine binding site with potent anti-gastric cancer activities. Eur J Med Chem 2024; 265:116079. [PMID: 38150962 DOI: 10.1016/j.ejmech.2023.116079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
In this work, a series of novel coumarin-based derivatives were designed and synthesized as tubulin polymerization inhibitors targeting the colchicine binding site, and their antiproliferative activities against MGC-803, HCT-116 and KYSE30 cells were evaluated. Among them, the compound I-3 (MY-1442) bearing a 6-methoxy-1,2,3,4-tetrahydroquinoline group exhibited most potent inhibitory activities on MGC-803 (IC50 = 0.034 μM), HCT-116 (IC50 = 0.081 μM) and KYSE30 cells (IC50 = 0.19 μM). Further mechanism studies demonstrated that compound I-3 (MY-1442) could directly bind to the colchicine binding site of β-tubulin to inhibit tubulin polymerization and microtubules at the cellular level. The results of molecular docking indicated there were well binding interactions between compound I-3 (MY-1442) and the colchicine binding site of β-tubulin. Compound I-3 (MY-1442) also exhibited effective anti-proliferation, pro-apoptosis, and anti-migration abilities against gastric cancer cells MGC-803. Additionally, compound I-3 (MY-1442) could regulate the expression of cell cycle- and apoptosis-related proteins. Importantly, compound I-3 (MY-1442) could significantly inhibit tumor growth in the MGC-803 xenograft tumor model with a TGI rate of 65.5 % at 30 mg/kg/day. Taken together, this work suggested that the coumarin skeleton exhibited great potential to be a key pharmacophore of tubulin polymerization inhibitors for the discovery of anticancer agents.
Collapse
Affiliation(s)
- Xin-Yi Tian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei-Xin Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao-Yu Chen
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Mei-Qi Jia
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yi-Fan Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuo Yuan
- Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jia Li
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
29
|
Iqbal S, Firdous F, Furqan M, Bilal A, Fozail S, Pohl SÖG, Doleschall NJ, Myant KB, Singh U, Emwas AH, Jaremko M, Faisal A, Saleem RSZ. Synthesis and characterization of bis-amide SSE1917 as a microtubule-stabilizing anticancer agent. Bioorg Chem 2024; 143:107094. [PMID: 38199139 DOI: 10.1016/j.bioorg.2023.107094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Microtubule dynamics are critical for spindle assembly and chromosome segregation during cell division. Pharmacological inhibition of microtubule dynamics in cells causes prolonged mitotic arrest, resulting in apoptosis, an approach extensively employed in treating different types of cancers. The present study reports the synthesis of thirty-two novel bis-amides (SSE1901-SSE1932) and the evaluation of their antiproliferative activities. N-(1-oxo-3-phenyl-1-(phenylamino)propan-2-yl)benzamide (SSE1917) exhibited the most potent activity with GI50 values of 0.331 ± 0.01 µM in HCT116 colorectal and 0.48 ± 0.27 µM in BT-549 breast cancer cells. SSE1917 stabilized microtubules in biochemical and cellular assays, bound to taxol site in docking studies, and caused aberrant mitosis and G2/M arrest in cells. Prolonged treatment of cells with the compound increased p53 expression and triggered apoptotic cell death. Furthermore, SSE1917 suppressed the growth of both mouse and patient-derived human colon cancer organoids, highlighting its potential therapeutic value as an anticancer agent.
Collapse
Affiliation(s)
- Sana Iqbal
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Farhat Firdous
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan; Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Muhammad Furqan
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Aishah Bilal
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Salman Fozail
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Sebastian Öther-Gee Pohl
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Nora Julia Doleschall
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Kevin B Myant
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Upendra Singh
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- KAUST Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Amir Faisal
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan.
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan.
| |
Collapse
|
30
|
Podolak M, Holota S, Deyak Y, Dziduch K, Dudchak R, Wujec M, Bielawski K, Lesyk R, Bielawska A. Tubulin inhibitors. Selected scaffolds and main trends in the design of novel anticancer and antiparasitic agents. Bioorg Chem 2024; 143:107076. [PMID: 38163424 DOI: 10.1016/j.bioorg.2023.107076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Design of tubulin inhibitors as anticancer drugs dynamically developed over the past 20 years. The modern arsenal of potential tubulin-targeting anticancer agents is represented by small molecules, monoclonal antibodies, and antibody-drug conjugates. Moreover, targeting tubulin has been a successful strategy in the development of antiparasitic drugs. In the present review, an overall picture of the research and development of potential tubulin-targeting agents using small molecules between 2018 and 2023 is provided. The data about some most often used and prospective chemotypes of small molecules (privileged heterocycles, moieties of natural molecules) and synthetic methodologies (analogue-based, fragment-based drug design, molecular hybridization) applied for the design of novel agents with an impact on the tubulin system are summarized. The design and prospects of multi-target agents with an impact on the tubulin system were also highlighted. Reported in the review data contribute to the "structure-activity" profile of tubulin-targeting small molecules as anticancer and antiparasitic agents and will be useful for the application by medicinal chemists in further exploration, design, improvement, and optimization of this class of molecules.
Collapse
Affiliation(s)
- Magdalena Podolak
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Yaroslava Deyak
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; Department of Pharmaceutical Disciplines, Uzhhorod National University, Narodna Square 3, 88000 Uzhhorod, Ukraine
| | - Katarzyna Dziduch
- Doctoral School, Medical University of Lublin, Chodzki 7, 20-093 Lublin, Poland
| | - Rostyslav Dudchak
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
31
|
Moreira J, Silva PMA, Castro E, Saraiva L, Pinto M, Bousbaa H, Cidade H. BP-M345 as a Basis for the Discovery of New Diarylpentanoids with Promising Antimitotic Activity. Int J Mol Sci 2024; 25:1691. [PMID: 38338967 PMCID: PMC10855865 DOI: 10.3390/ijms25031691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Recently, the diarylpentanoid BP-M345 (5) has been identified as a potent in vitro growth inhibitor of cancer cells, with a GI50 value between 0.17 and 0.45 µM, showing low toxicity in non-tumor cells. BP-M345 (5) promotes mitotic arrest by interfering with mitotic spindle assembly, leading to apoptotic cell death. Following on from our previous work, we designed and synthesized a library of BP-M345 (5) analogs and evaluated the cell growth inhibitory activity of three human cancer cell lines within this library in order to perform structure-activity relationship (SAR) studies and to obtain compounds with improved antimitotic effects. Four compounds (7, 9, 13, and 16) were active, and the growth inhibition effects of compounds 7, 13, and 16 were associated with a pronounced arrest in mitosis. These compounds exhibited a similar or even higher mitotic index than BP-M345 (5), with compound 13 displaying the highest antimitotic activity, associated with the interference with mitotic spindle dynamics, inducing spindle collapse and, consequently, prolonged mitotic arrest, culminating in massive cancer cell death by apoptosis.
Collapse
Affiliation(s)
- Joana Moreira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (J.M.); (M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra, Portugal; (P.M.A.S.); (E.C.)
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Eliseba Castro
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra, Portugal; (P.M.A.S.); (E.C.)
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (J.M.); (M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra, Portugal; (P.M.A.S.); (E.C.)
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (J.M.); (M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
32
|
Perkins AK, Rose AL, Grossart HP, Schulz KG, Neubauer D, Tonge MP, Rosentreter JA, Eyre BD, Rojas-Jimenez K, Deschaseaux E, Oakes JM. Fungi increases kelp (Ecklonia radiata) remineralisation and dissolved organic carbon, alkalinity, and dimethylsulfoniopropionate (DMSP) production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166957. [PMID: 37704140 DOI: 10.1016/j.scitotenv.2023.166957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Fungi are key players in terrestrial organic matter (OM) degradation, but little is known about their role in marine environments. Here we compared the degradation of kelp (Ecklonia radiata) in mesocosms with and without fungicides over 45 days. The aim was to improve our understanding of the vital role of fungal OM degradation and remineralisation and its relevance to marine biogeochemical cycles (e.g., carbon, nitrogen, sulfur, or volatile sulfur). In the presence of fungi, 68 % of the kelp detritus degraded over 45 days, resulting in the production of 0.6 mol of dissolved organic carbon (DOC), 0.16 mol of dissolved inorganic carbon (DIC), 0.23 mol of total alkalinity (TA), and 0.076 mol of CO2, which was subsequently emitted to the atmosphere. Conversely, when fungi were inhibited, the bacterial community diversity was reduced, and only 25 % of the kelp detritus degraded over 45 days. The application of fungicides resulted in the generation of an excess amount of 1.5 mol of DOC, but we observed only 0.02 mol of DIC, and 0.04 mol of TA per one mole of kelp detritus, accompanied by a CO2 emission of 0.081 mol. In contrast, without fungi, remineralisation of kelp detritus to DIC, TA, dimethyl sulfide (DMS), dimethylsulfoniopropionate (DMSP) and methanethiol (MeSH) was significantly reduced. Fungal kelp remineralisation led to a remarkable 100,000 % increase in DMSP production. The observed substantial changes in sediment chemistry when fungi are inhibited highlight the important biogeochemical role of fungal remineralisation, which likely plays a crucial role in defining coastal biogeochemical cycling, blue carbon sequestration, and thus climate regulation.
Collapse
Affiliation(s)
- Anita K Perkins
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, 2480, NSW, Australia; Southern Cross Geoscience, Faculty of Science and Engineering, Southern Cross University, Lismore, 2480, NSW, Australia.
| | - Andrew L Rose
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, 2480, NSW, Australia; Southern Cross Geoscience, Faculty of Science and Engineering, Southern Cross University, Lismore, 2480, NSW, Australia
| | - Hans-Peter Grossart
- Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Experimental Limnology, 16775 Neuglobsow, Germany; University of Potsdam, Institute of Biochemistry and Biology, Maulbeerallee 2, 14469 Potsdam, Germany
| | - Kai G Schulz
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, 2480, NSW, Australia
| | - Darshan Neubauer
- Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Experimental Limnology, 16775 Neuglobsow, Germany; University of Potsdam, Institute of Biochemistry and Biology, Maulbeerallee 2, 14469 Potsdam, Germany
| | - Matthew P Tonge
- Southern Cross Geoscience, Faculty of Science and Engineering, Southern Cross University, Lismore, 2480, NSW, Australia
| | - Judith A Rosentreter
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, 2480, NSW, Australia
| | - Bradley D Eyre
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, 2480, NSW, Australia
| | | | - Elisabeth Deschaseaux
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, 2480, NSW, Australia
| | - Joanne M Oakes
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, 2480, NSW, Australia
| |
Collapse
|
33
|
Tan Y, Hu H, Zhu W, Wang T, Gao T, Wang H, Chen J, Xu J, Xu S, Zhu H. Design, synthesis and biological evaluation of novel dihydroquinolin-4(1H)-one derivatives as novel tubulin polymerization inhibitors. Eur J Med Chem 2023; 262:115881. [PMID: 37883897 DOI: 10.1016/j.ejmech.2023.115881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
A series of novel dihydroquinolin-4(1H)-one derivatives targeting colchicine binding site on tubulin were designed, synthesized and evaluated as anticancer agents. The most potent compound 6t showed remarkable antiproliferative activities against four cancer cell lines with IC50 values among 0.003-0.024 μM and tubulin polymerization inhibitory activity (IC50 = 3.06 μM). Further mechanism studies revealed that compound 6t could induce K562 cells apoptosis and arrest at the G2/M phase. Meanwhile, 6t significantly inhibited migration and invasion of MDA-MB-231 cells, and disrupted the angiogenesis in human umbilical vein endothelial cells (HUVECs) in vitro. In addition, compound 6t inhibited tumor growth in H22 allograft tumor model with a tumor growth inhibition (TGI) rate of 63.3 % (i.v., 20 mg/kg per day) without obvious toxicity. Collectively, these results indicated that compound 6t was a novel tubulin polymerization inhibitor with potent anticancer properties in vitro and in vivo.
Collapse
Affiliation(s)
- Yuchen Tan
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Han Hu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Wenjian Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Tao Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Tian Gao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Hongqi Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Jian Chen
- Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou, Jiangsu, 215300, PR China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China; Shenzhen Research Institute of China Pharmaceutical University, Nanshan District, Shenzheng, 518052, PR China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China; Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou, Jiangsu, 215300, PR China; Shenzhen Research Institute of China Pharmaceutical University, Nanshan District, Shenzheng, 518052, PR China.
| | - Huajian Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China.
| |
Collapse
|
34
|
Zheng L, Zou Y, Xie T, Wu X, Tan Y, Mei S, Geng Y, Chen S, Xu S, Niu MM. Discovery of a Dual Tubulin and Neuropilin-1 (NRP1) Inhibitor with Potent In Vivo Anti-Tumor Activity via Pharmacophore-based Docking Screening, Structure Optimization, and Biological Evaluation. J Med Chem 2023; 66:16187-16200. [PMID: 38093696 DOI: 10.1021/acs.jmedchem.3c01572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Dual inhibition of tubulin and neuropilin-1 (NRP1) may become an effective method for cancer treatment by simultaneously killing tumor cells and inhibiting tumor angiogenesis. Herein, we identified dual tubulin/NRP1-targeting inhibitor TN-2, which exhibited good inhibitory activity against both tubulin polymerization (IC50 = 0.71 ± 0.03 μM) and NRP1 (IC50 = 0.85 ± 0.04 μM). Importantly, it significantly inhibited the viability of several human prostate tumor cell lines. Further mechanism studies indicated that TN-2 could inhibit tubulin polymerization and cause G2/M arrest, thereby inducing cell apoptosis. It could also suppress cell tube formation, migration, and invasion. Moreover, TN-2 showed obvious antitumor effects on the PC-3 cell-derived xenograft model with negligible side effects and good pharmacokinetic profiles. These data demonstrate that TN-2 could be a promising dual-target chemotherapeutic agent for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 211198, China
| | - Yunting Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 211198, China
| | - Tianyuan Xie
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 211198, China
| | - Xiuyuan Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yuchen Tan
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Shuang Mei
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 211198, China
| | - Yifei Geng
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 211198, China
| | - Shutong Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 211198, China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Miao-Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
35
|
McLoughlin EC, Twamley B, O'Brien JE, Hannon Barroeta P, Zisterer DM, Meegan MJ, O'Boyle NM. Synthesis by diastereomeric resolution, biochemical evaluation and molecular modelling of chiral 3-hydroxyl b-lactam microtubule-targeting agents for the treatment of triple negative breast and chemoresistant colorectal cancers. Bioorg Chem 2023; 141:106877. [PMID: 37804699 DOI: 10.1016/j.bioorg.2023.106877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
The synthesis and biochemical activity of a series of chiral trans 3-hydroxyl β-lactams targeting tubulin is described. Synthesis of the series of enantiopure β-lactams was achieved using chiral derivatising reagent N-Boc-l-proline. The absolute configuration was determined as 3S,4S for (+) enantiomer 4EN1 and 3R,4R for (-) enantiomer 4EN2. Antiproliferative studies identified chiral 3S,4S b-lactams with subnanomolar IC50 values across a range of cancer cell lines, improving potency with respect to the corresponding racemates. Fluoro-substituted (+)-(3S,4S)-4-(3-fluoro-4-methoxyphenyl)-3-hydroxy-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (27EN1) was determined as the lead eutomer with dual antiproliferative activity in triple negative breast cancer cells (TNBC), and combretastatin A-4 resistant HT-29 colorectal cancer cells. IC50 values were in the range of 0.26-0.7 nM across four cell lines. Tubulin polymerisation assays, confocal microscopy and molecular modelling studies indicated that 3S,4S eutomers are microtubule destabilisers, while 3R,4R distomers have lower potency as microtubule destabilisers. 27EN1 demonstrated anti-mitotic and pro-apoptotic activity in MDA-MB-231 and HT-29 cells in addition to selective toxicity toward MCF-7 breast cancer versus non-tumorigenic MCF-10-2A cells. The related 3S,4S β-lactam eutomer 4EN1 downregulated expression of key cell survival anti-apoptotic proteins Bcl-2 and Mcl-1 in MDA-MB-231 cells while 27EN1 downregulated Mcl-1 in HT-29 cells. Chiral β-lactam 27EN1 will be further developed for treatment of TNBC and CA-4 resistant colorectal cancers.
Collapse
Affiliation(s)
- Eavan C McLoughlin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Panoz Institute and Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - John E O'Brien
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Patricia Hannon Barroeta
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mary J Meegan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Panoz Institute and Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Niamh M O'Boyle
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Panoz Institute and Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
36
|
Zhang S, Mo M, Lv M, Xia W, Liu K, Yu G, Yu J, Xu G, Zeng X, Cheng S, Xu B, Luo H, Meng X. Design, synthesis and bioevaluation of novel trifluoromethylquinoline derivatives as tubulin polymerization inhibitors. Future Med Chem 2023; 15:1967-1986. [PMID: 37937524 DOI: 10.4155/fmc-2023-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Aim: A series of novel trifluoromethylquinoline derivatives were designed, synthesized and evaluated for antitumor activities. Methodology: All compounds were evaluated for antiproliferative activity against four human cancer cell lines. Results: Among them, 5a, 5m, 5o and 6b exhibited remarkable antiproliferative activities against all the tested cell lines at nanomolar concentrations. Mechanism of action studies demonstrated that 6b targeted the colchicine binding site, potentially inhibiting tubulin polymerization, and further studies indicated that 6b could arrest LNCaP cells in the G2/M phase and induce cell apoptosis. Molecular docking confirmed that 6b could bind to the colchicine binding site. Conclusion: Results suggested that 6b could serve as a promising lead compound for the development of novel tubulin polymerization inhibitors and cancer therapy.
Collapse
Affiliation(s)
- Sisi Zhang
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Min Mo
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Mengfan Lv
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Wen Xia
- Guizhou Bailing Enterprise Group Pharmaceutical Co. Ltd, Anshun Guizhou, 561000, China
| | - Kun Liu
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Gang Yu
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Jia Yu
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Guangcan Xu
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Xiaoping Zeng
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Bixue Xu
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Heng Luo
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Xueling Meng
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| |
Collapse
|
37
|
Peerzada MN, Dar MS, Verma S. Development of tubulin polymerization inhibitors as anticancer agents. Expert Opin Ther Pat 2023; 33:797-820. [PMID: 38054831 DOI: 10.1080/13543776.2023.2291390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION Microtubules are intracellular, filamentous, polymeric structures that extend throughout the cytoplasm, composed of α-tubulin and β-tubulin subunits. They regulate many cellular functions including cell polarity, cell shape, mitosis, intracellular transport, cell signaling, gene expression, cell integrity, and are associated with tumorigenesis. Inhibition of tubulin polymerization within tumor cells represents a crucial focus in the pursuit of developing anticancer treatments. AREAS COVERED This review focuses on the natural product and their synthetic congeners as tubulin inhibitors along with their site of interaction on tubulin. This review also covers the developed novel tubulin inhibitors and important patents focusing on the development of tubulin inhibition for cancer treatment reported from 2018 to 2023. The scientific and patent literature has been searched on PubMed, Espacenet, ScienceDirect, and Patent Guru from 2018-2023. EXPERT OPINION Tubulin is one of the promising targets explored extensively for drug discovery. Compounds binding in the colchicine site could be given importance because they can elude resistance mediated by the P-glycoprotein efflux pump and no colchicine site binding inhibitor is approved by FDA so far. The research on the development of antibody drug conjugates (ADCs) for tubluin polymerization inhibition could be significant strategy for cancer treatment.
Collapse
Affiliation(s)
- Mudasir Nabi Peerzada
- Tumor Biology Department, Drug Discovery Laboratory, National Institute of Pathology, Indian Council of Medical Research, Safdarjung Hospital Campus, New Delhi, India
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammad Sultan Dar
- Department of Neurosurgery, Sub-District Hospital Sopore, Jammu and Kashmir, India
| | - Saurabh Verma
- Tumor Biology Department, Drug Discovery Laboratory, National Institute of Pathology, Indian Council of Medical Research, Safdarjung Hospital Campus, New Delhi, India
| |
Collapse
|
38
|
Horgan MJ, Zell L, Siewert B, Stuppner H, Schuster D, Temml V. Identification of Novel β-Tubulin Inhibitors Using a Combined In Silico/ In Vitro Approach. J Chem Inf Model 2023; 63:6396-6411. [PMID: 37774242 PMCID: PMC10598795 DOI: 10.1021/acs.jcim.3c00939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 10/01/2023]
Abstract
Due to their potential as leads for various therapeutic applications, including as antimitotic and antiparasitic agents, the development of tubulin inhibitors offers promise for drug discovery. In this study, an in silico pharmacophore-based virtual screening approach targeting the colchicine binding site of β-tubulin was employed. Several structure- and ligand-based models for known tubulin inhibitors were generated. Compound databases were virtually screened against the models, and prioritized hits from the SPECS compound library were tested in an in vitro tubulin polymerization inhibition assay for their experimental validation. Out of the 41 SPECS compounds tested, 11 were active tubulin polymerization inhibitors, leading to a prospective true positive hit rate of 26.8%. Two novel inhibitors displayed IC50 values in the range of colchicine. The most potent of which was a novel acetamide-bridged benzodiazepine/benzimidazole derivative with an IC50 = 2.9 μM. The screening workflow led to the identification of diverse inhibitors active at the tubulin colchicine binding site. Thus, the pharmacophore models show promise as valuable tools for the discovery of compounds and as potential leads for the development of cancer therapeutic agents.
Collapse
Affiliation(s)
- Mark James Horgan
- Institute
of Pharmacy/Pharmacognosy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Lukas Zell
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Bianka Siewert
- Institute
of Pharmacy/Pharmacognosy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Hermann Stuppner
- Institute
of Pharmacy/Pharmacognosy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Daniela Schuster
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Veronika Temml
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| |
Collapse
|
39
|
Sedenkova KN, Leschukov DN, Grishin YK, Zefirov NA, Gracheva YA, Skvortsov DA, Hrytseniuk YS, Vasilyeva LA, Spirkova EA, Shevtsov PN, Shevtsova EF, Lukmanova AR, Spiridonov VV, Markova AA, Nguyen MT, Shtil AA, Zefirova ON, Yaroslavov AA, Milaeva ER, Averina EB. Verubulin (Azixa) Analogues with Increased Saturation: Synthesis, SAR and Encapsulation in Biocompatible Nanocontainers Based on Ca 2+ or Mg 2+ Cross-Linked Alginate. Pharmaceuticals (Basel) 2023; 16:1499. [PMID: 37895970 PMCID: PMC10610134 DOI: 10.3390/ph16101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Tubulin-targeting agents attract undiminished attention as promising compounds for the design of anti-cancer drugs. Verubulin is a potent tubulin polymerization inhibitor, binding to colchicine-binding sites. In the present work, a series of verubulin analogues containing a cyclohexane or cycloheptane ring 1,2-annulated with pyrimidine moiety and various substituents in positions 2 and 4 of pyrimidine were obtained and their cytotoxicity towards cancer and non-cancerous cell lines was estimated. The investigated compounds revealed activity against various cancer cell lines with IC50 down to 1-4 nM. According to fluorescent microscopy data, compounds that showed cytotoxicity in the MTT test disrupt the normal cytoskeleton of the cell in a pattern similar to that for combretastatin A-4. The hit compound (N-(4-methoxyphenyl)-N,2-dimethyl-5,6,7,8-tetrahydroquinazolin-4-amine) was encapsulated in biocompatible nanocontainers based on Ca2+ or Mg2+ cross-linked alginate and it was demonstrated that its cytotoxic activity was preserved after encapsulation.
Collapse
Affiliation(s)
- Kseniya N. Sedenkova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Denis N. Leschukov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Yuri K. Grishin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Nikolay A. Zefirov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Yulia A. Gracheva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Dmitry A. Skvortsov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Yanislav S. Hrytseniuk
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Lilja A. Vasilyeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Elena A. Spirkova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), 142432 Chernogolovka, Russia; (E.A.S.); (P.N.S.); (E.F.S.)
| | - Pavel N. Shevtsov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), 142432 Chernogolovka, Russia; (E.A.S.); (P.N.S.); (E.F.S.)
| | - Elena F. Shevtsova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), 142432 Chernogolovka, Russia; (E.A.S.); (P.N.S.); (E.F.S.)
| | - Alina R. Lukmanova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Vasily V. Spiridonov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Alina A. Markova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.M.); (M.T.N.)
| | - Minh T. Nguyen
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.M.); (M.T.N.)
| | - Alexander A. Shtil
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
- Institute of Cyber Intelligence Systems, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Olga N. Zefirova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Alexander A. Yaroslavov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Elena R. Milaeva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Elena B. Averina
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| |
Collapse
|
40
|
Lin JJ, Lin CL, Chen CC, Lin YH, Cho DY, Chen X, Chen DC, Chen HY. Unlocking Colchicine's Untapped Potential: A Paradigm Shift in Hepatocellular Carcinoma Prevention. Cancers (Basel) 2023; 15:5031. [PMID: 37894398 PMCID: PMC10605746 DOI: 10.3390/cancers15205031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Background: Liver cancer and notably hepatocellular carcinoma (HCC), results in significantly high mortality rates worldwide. Chronic hepatitis and fatty liver, recognized precursors, underscore the imperative need for effective preventive strategies. This study explores colchicine, traditionally acknowledged for its anti-inflammatory properties and investigates its potential in liver cancer prevention. Methods: Utilizing the iHi Data Platform of China Medical University Hospital, Taiwan, this study analyzed two decades of medical data, incorporating 10,353 patients each in the Colchicine and Non-Colchicine cohorts, to investigate the association between colchicine use and liver cancer risk. Results: The study identified that colchicine users exhibited a 19% reduction in liver cancer risk, with a multivariable-adjusted odds ratio of 0.81 after accounting for confounding variables. Additionally, the influence of gender and comorbidities like diabetes mellitus on liver cancer risk was identified, corroborating the existing literature. A notable finding was that the prolonged use of colchicine was associated with improved outcomes, indicating a potential dose-response relationship. Conclusions: This study proposes a potential new role for colchicine in liver cancer prevention, extending beyond its established anti-inflammatory applications. While the findings are promising, further research is essential to validate these results. This research may serve as a foundation for future studies, aiming to further explore colchicine's role via clinical trials and in-depth investigations, potentially impacting preventive strategies for liver cancer.
Collapse
Affiliation(s)
- Jung-Ju Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan;
| | - Chun-Chung Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 404, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung 404, Taiwan
| | - Yu-Hsiang Lin
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
| | - XianXiu Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
- Neuroscience and Brain Disease Center, China Medical University, Taichung 404, Taiwan
| | - Der-Cherng Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
| | - Hung-Yao Chen
- School of Medicine, China Medical University, Taichung 404, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
41
|
Dong H, Lu L, Song X, Li Y, Zhou J, Xu Y, Zhang Y, Qi J, Liang T, Wang J. Design, synthesis and biological evaluation of tetrahydroquinoxaline sulfonamide derivatives as colchicine binding site inhibitors. RSC Adv 2023; 13:30202-30216. [PMID: 37849704 PMCID: PMC10577396 DOI: 10.1039/d3ra05720h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
Colchicine binding site inhibitors (CBSIs) are potential microtubule targeting agents (MTAs), which can overcome multidrug resistance, improve aqueous solubility and reduce toxicity faced by most MTAs. Novel tetrahydroquinoxaline sulfonamide derivatives were designed, synthesized and evaluated for their antiproliferative activities. The MTT assay results demonstrated that some derivatives exhibited moderate to strong inhibitory activities against HT-29 cell line. Among them, compound I-7 was the most active compound. Moreover, I-7 inhibited tubulin polymerization, disturbed microtubule network, disrupted the formation of mitotic spindle and arrested cell cycle at G2/M phase. However, I-7 didn't induce cell apoptosis. Furthermore, the prediction of ADME demonstrated that I-7 showed favorable physiochemical and pharmacokinetic properties. And the detailed molecular docking confirmed I-7 targeted the site of colchicine through hydrogen and hydrophobic interactions.
Collapse
Affiliation(s)
- Haiyang Dong
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus Kaifeng 475004 Henan China
| | - Lu Lu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus Kaifeng 475004 Henan China
| | - Xueting Song
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus Kaifeng 475004 Henan China
| | - Youkang Li
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus Kaifeng 475004 Henan China
| | - Jinguang Zhou
- Huaihe Hospital of Henan University Kaifeng 475004 Henan China
| | - Yungen Xu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University Nanjing 211198 China
| | - Yahong Zhang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus Kaifeng 475004 Henan China
| | - Jianguo Qi
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus Kaifeng 475004 Henan China
| | - Tingting Liang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus Kaifeng 475004 Henan China
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus Kaifeng 475004 Henan China
| |
Collapse
|
42
|
Thammathong J, Chisam KB, Tessmer GE, Womack CB, Sidrak MM, Weissmiller AM, Banerjee S. Fused Imidazopyrazine-Based Tubulin Polymerization Inhibitors Inhibit Neuroblastoma Cell Function. ACS Med Chem Lett 2023; 14:1284-1294. [PMID: 37736192 PMCID: PMC10510670 DOI: 10.1021/acsmedchemlett.3c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Targeting the colchicine binding site on tubulin is a promising approach for cancer treatment to overcome the limitations of current tubulin polymerization inhibitors. New classes of colchicine binding site inhibitors (CBSIs) are continually being uncovered; however, balancing metabolic stability and cellular potency remains an issue that needs to be resolved. Therefore, we designed and synthesized a series of novel fused imidazopyridine and -pyrazine CBSIs and evaluated their cellular activity, metabolic stability, and tubulin-binding properties. Evidence shows that the imidazo[1,2-a]pyrazine series are effective against neuroblastoma cell lines marked by MYCN amplification. Further assessment shows that a combination of an imidazo[1,2-a]pyrazine core with a trimethoxyphenyl ring D results in the highest cellular activity and binding characteristics compared with a dichloromethoxyphenyl or difluoromethoxyphenyl ring D. However, the metabolic stability of compounds with a dichloromethoxyphenyl or difluoromethoxyphenyl ring D is significantly higher than that of those containing a trimethoxyphenyl ring D, suggesting that improved metabolic stability is achieved with a moderate impact on potency.
Collapse
Affiliation(s)
- Joshua Thammathong
- Department
of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Kaylee B. Chisam
- Department
of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Garrett E. Tessmer
- Department
of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Carl B. Womack
- Department
of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Mario M. Sidrak
- Department
of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - April M. Weissmiller
- Department
of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Souvik Banerjee
- Department
of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| |
Collapse
|
43
|
De Abreu IR, Barkdull A, Munoz JR, Smith RP, Craddock TJA. A molecular analysis of substituted phenylethylamines as potential microtubule targeting agents through in silico methods and in vitro microtubule-polymerization activity. Sci Rep 2023; 13:14406. [PMID: 37658096 PMCID: PMC10474033 DOI: 10.1038/s41598-023-41600-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023] Open
Abstract
Natural phenethylamines are trace amine neurotransmitters associated with dopamine transmission and related illnesses such Parkinson's disease, and addiction. Synthetic phenethylamines can have psychoactive and hallucinogenic effects due to their high affinity with the 5-HT2A receptor. Evidence indicates phenethylamines can directly alter the microtubule cytoskeleton being structurally similar to the microtubule destabilizing agent colchicine, however little work has been done on this interaction. As microtubules provide neuron structure, intracellular transport, and influence synaptic plasticity the interaction of phenethylamines with microtubules is important for understanding the potential harms, or potential pharmaceutical use of phenethylamines. We investigated 110 phenethylamines and their interaction with microtubules. Here we performed molecular docking of these compounds at the colchicine binding site and ranked them via binding energy. The top 10% of phenethylamines were further screened based on pharmacokinetic and physicochemical properties derived from SwissADME and LightBBB. Based on these properties 25B-NBF, 25C-NBF, and DMBMPP were tested in in vitro microtubule polymerization assays showing that they alter microtubule polymerization dynamics in a dose dependent manner. As these compounds can rapidly cross the blood brain barrier and directly affect cytoskeletal dynamics, they have the potential to modulate cytoskeletal based neural plasticity. Further investigations into these mechanisms are warranted.
Collapse
Affiliation(s)
- Isadora Rocha De Abreu
- Clinical Systems Biology Group, Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Allison Barkdull
- Clinical Systems Biology Group, Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - James R Munoz
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Robert P Smith
- Cell Therapy Institute, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Travis J A Craddock
- Clinical Systems Biology Group, Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA.
- Departments of Computer Science, and Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
44
|
Prasher P, Mall T, Sharma M. Synthesis and biological profile of benzoxazolone derivatives. Arch Pharm (Weinheim) 2023; 356:e2300245. [PMID: 37379239 DOI: 10.1002/ardp.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023]
Abstract
The benzoxazolone nucleus is an ideal scaffold for drug design, owing to its discrete physicochemical profile, bioisosteric preference over pharmacokinetically weaker moieties, weakly acidic behavior, presence of both lipophilic and hydrophilic fragments on a single framework, and a wider choice of chemical modification on the benzene and oxazolone rings. These properties apparently influence the interactions of benzoxazolone-based derivatives with their respective biological targets. Hence, the benzoxazolone ring is implicated in the synthesis and development of pharmaceuticals with a diverse biological profile ranging from anticancer, analgesics, insecticides, anti-inflammatory, and neuroprotective agents. This has further led to the commercialization of several benzoxazolone-based molecules and a few others under clinical trials. Nevertheless, the SAR exploration of benzoxazolone derivatives for the identification of potential "hits" followed by the screening of "leads" provides a plethora of opportunities for further exploration of the pharmacological profile of the benzoxazolone nucleus. In this review, we aim to present the biological profile of different derivatives based on the benzoxazolone framework.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, India
| | - Tanisqa Mall
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, India
| |
Collapse
|
45
|
Sargsyan A, Sahakyan H, Nazaryan K. Effect of Colchicine Binding Site Inhibitors on the Tubulin Intersubunit Interaction. ACS OMEGA 2023; 8:29448-29454. [PMID: 37599936 PMCID: PMC10433359 DOI: 10.1021/acsomega.3c02979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023]
Abstract
Microtubules are dynamic, non-covalent polymers consisting of α- and β-tubulin subunits that are involved in a wide range of intracellular processes. The polymerization and dynamics of microtubules are regulated by many factors, including small molecules that interact with different sites on the tubulin dimer. Colchicine binding site inhibitors (CBSIs) destabilize microtubules and inhibit tubulin polymerization, leading to cell cycle arrest. Because of their therapeutic potential, the molecular mechanism of CBSI function is an area of active research. Nevertheless, important details of this mechanism have yet to be resolved. In this study, we use atomistic molecular dynamics simulations to show that the binding of CBSIs to the tubulin heterodimer leads to the weakening of tubulin intersubunit interaction. Using atomistic molecular dynamics simulations and binding free energy calculations, we show that CBSIs act as protein-protein interaction inhibitors and destabilize interlinkage between α and β subunits, which is crucial for longitudinal contacts in the microtubule lattice. Our results offer new insight into the mechanisms of microtubule polymerization inhibition by colchicine and its analogs.
Collapse
Affiliation(s)
| | | | - Karen Nazaryan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia
| |
Collapse
|
46
|
Wang S, Malebari AM, Greene TF, Kandwal S, Fayne D, Nathwani SM, Zisterer DM, Twamley B, O'Boyle NM, Meegan MJ. Antiproliferative and Tubulin-Destabilising Effects of 3-(Prop-1-en-2-yl)azetidin-2-Ones and Related Compounds in MCF-7 and MDA-MB-231 Breast Cancer Cells. Pharmaceuticals (Basel) 2023; 16:1000. [PMID: 37513912 PMCID: PMC10385824 DOI: 10.3390/ph16071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
A series of novel 3-(prop-1-en-2-yl)azetidin-2-one, 3-allylazetidin-2-one and 3-(buta-1,3-dien-1-yl)azetidin-2-one analogues of combretastatin A-4 (CA-4) were designed and synthesised as colchicine-binding site inhibitors (CBSI) in which the ethylene bridge of CA-4 was replaced with a β-lactam (2-azetidinone) scaffold. These compounds, together with related prodrugs, were evaluated for their antiproliferative activity, cell cycle effects and ability to inhibit tubulin assembly. The compounds demonstrated significant in vitro antiproliferative activities in MCF-7 breast cancer cells, particularly for compounds 9h, 9q, 9r, 10p, 10r and 11h, with IC50 values in the range 10-33 nM. These compounds were also potent in the triple-negative breast cancer (TBNC) cell line MDA-MB-231, with IC50 values in the range 23-33 nM, and were comparable with the activity of CA-4. The compounds inhibited the polymerisation of tubulin in vitro, with significant reduction in tubulin polymerization, and were shown to interact at the colchicine-binding site on tubulin. Flow cytometry demonstrated that compound 9q arrested MCF-7 cells in the G2/M phase and resulted in cellular apoptosis. The antimitotic properties of 9q in MCF-7 human breast cancer cells were also evaluated, and the effect on the organization of microtubules in the cells after treatment with compound 9q was observed using confocal microscopy. The immunofluorescence results confirm that β-lactam 9q is targeting tubulin and resulted in mitotic catastrophe in MCF-7 cells. In silico molecular docking supports the hypothesis that the compounds interact with the colchicine-binding domain of tubulin. Compound 9q is a novel potent microtubule-destabilising agent with potential as a promising lead compound for the development of new antitumour agents.
Collapse
Affiliation(s)
- Shu Wang
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Azizah M Malebari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thomas F Greene
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Shubhangi Kandwal
- Molecular Design Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Darren Fayne
- Molecular Design Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Seema M Nathwani
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Niamh M O'Boyle
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Mary J Meegan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| |
Collapse
|
47
|
Kornicka A, Gzella K, Garbacz K, Jarosiewicz M, Gdaniec M, Fedorowicz J, Balewski Ł, Kokoszka J, Ordyszewska A. Indole-Acrylonitrile Derivatives as Potential Antitumor and Antimicrobial Agents-Synthesis, In Vitro and In Silico Studies. Pharmaceuticals (Basel) 2023; 16:918. [PMID: 37513830 PMCID: PMC10386429 DOI: 10.3390/ph16070918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
A series of 2-(1H-indol-2-yl)-3-acrylonitrile derivatives, 2a-x, 3, 4a-b, 5a-d, 6a-b, and 7, were synthesized as potential antitumor and antimicrobial agents. The structures of the prepared compounds were evaluated based on elemental analysis, IR, 1H- and 13NMR, as well as MS spectra. X-ray crystal analysis of the representative 2-(1H-indol-2-yl)-3-acrylonitrile 2l showed that the acrylonitrile double bond was Z-configured. All compounds were screened at the National Cancer Institute (USA) for their activities against a panel of approximately 60 human tumor cell lines and the relationship between structure and in vitro antitumor activity is discussed. Compounds of interest 2l and 5a-d showed significant growth inhibition potency against various tumor cell lines with the mean midpoint GI50 values of all tests in the range of 0.38-7.91 μM. The prominent compound with remarkable activity (GI50 = 0.0244-5.06 μM) and high potency (TGI = 0.0866-0.938 μM) against some cell lines of leukemia (HL-60(TB)), non-small cell lung cancer (NCI-H522), colon cancer (COLO 205), CNS cancer (SF-539, SNB-75), ovarian cancer ((OVCAR-3), renal cancer (A498, RXF 393), and breast cancer (MDA-MB-468) was 3-[4-(dimethylamino)phenyl]-2-(1-methyl-1H-indol-2-yl)acrylonitrile (5c). Moreover, the selected 2-(1H-indol-2-yl)-3-acrylonitriles 2a-c and 2e-x were evaluated for their antibacterial and antifungal activities against Gram-positive and Gram-negative pathogens as well as Candida albicans. Among them, 2-(1H-indol-2-yl)-3-(1H-pyrrol-2-yl)acrylonitrile (2x) showed the most potent antimicrobial activity and therefore it can be considered as a lead structure for further development of antimicrobial agents. Finally, molecular docking studies as well as drug-likeness and ADME profile prediction were carried out.
Collapse
Affiliation(s)
- Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Karol Gzella
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Katarzyna Garbacz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Małgorzata Jarosiewicz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Maria Gdaniec
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Joanna Fedorowicz
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Łukasz Balewski
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jakub Kokoszka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Anna Ordyszewska
- Department of Inorganic Chemistry, Faculty of Chemistry and Advanced Materials Centers, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
48
|
Zubaș A, Ghinet A, Farce A, Dubois J, Bîcu E. Phenothiazine- and Carbazole-Cyanochalcones as Dual Inhibitors of Tubulin Polymerization and Human Farnesyltransferase. Pharmaceuticals (Basel) 2023; 16:888. [PMID: 37375835 DOI: 10.3390/ph16060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
In the search for innovative approaches to cancer chemotherapy, a chemical library of 49 cyanochalcones, 1a-r, 2a-o, and 3a-p, was designed as dual inhibitors of human farnesyltransferase (FTIs) and tubulin polymerization (MTIs) (FTIs/MTIs), two important biological targets in oncology. This approach is innovative since the same molecule would be able to interfere with two different mitotic events of the cancer cells and prevent these cells from developing an emergency route and becoming resistant to anticancer agents. Compounds were synthesized by the Claisen-Schmidt condensation of aldehydes with N-3-oxo-propanenitriles under classical magnetic stirring and under sonication. Newly synthesized compounds were screened for their potential to inhibit human farnesyltransferase, tubulin polymerization, and cancer cell growth in vitro. This study allowed for the identification of 22 FTIs and 8 dual FTIs/MTIs inhibitors. The most effective molecule was carbazole-cyanochalcone 3a, bearing a 4-dimethylaminophenyl group (IC50 (h-FTase) = 0.12 µM; IC50 (tubulin) = 0.24 µM) with better antitubulin activity than the known inhibitors that were previously reported, phenstatin and (-)-desoxypodophyllotoxin. The docking of the dual inhibitors was realized in both the active site of FTase and in the colchicine binding site of tubulin. Such compounds with a dual inhibitory profile are excellent clinical candidates for the treatment of human cancers and offer new research perspectives in the search for new anti-cancer drugs.
Collapse
Affiliation(s)
- Andreea Zubaș
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bulevardul Carol I, nr. 11, 700506 Iasi, Romania
| | - Alina Ghinet
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bulevardul Carol I, nr. 11, 700506 Iasi, Romania
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, 59000 Lille, France
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University of Lille, 59000 Lille, France
| | - Amaury Farce
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, U1286-Infinite-Institute for Translational Research in Inflammation, University of Lille, 59000 Lille, France
| | - Joëlle Dubois
- Institut de Chimie des Substances Naturelles, UPR2301, CNRS, Centre de Recherche de Gif, 91190 Gif-sur-Yvette, France
| | - Elena Bîcu
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bulevardul Carol I, nr. 11, 700506 Iasi, Romania
| |
Collapse
|
49
|
Al Nasr IS, Corona A, Koko WS, Khan TA, Ben Said R, Daoud I, Rahali S, Tramontano E, Schobert R, Amdouni N, Biersack B. Versatile anti-infective properties of pyrido- and dihydropyrido[2,3-d]pyrimidine-based compounds. Bioorg Med Chem 2023; 90:117376. [PMID: 37336083 DOI: 10.1016/j.bmc.2023.117376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
A series of 1H-indeno[2',1':5,6]dihydropyrido[2,3-d]pyrimidine and 1H-indeno[2',1':5,6]pyrido[2,3-d]pyrimidine derivatives was prepared and screened for antiparasitic and viral RNase H inhibitory activity. Several compounds showed considerable activity against Toxoplasma gondii parasites and Leishmania major amastigotes, which warrants further investigation. Based on the structural similarities of certain derivatives with common viral RNase H inhibitors, a HIV-1 RNase H assay was used to study the RNase H inhibition by selected test compounds. Docking of active derivatives into the active site of the HIV-1 RNase H enzyme was carried out. The new compound 2a, inactive in the antiparasitic tests, showed distinct HIV-1 RNase H inhibition. Thus, ring substitution determines antiparasitic or HIV-1 RNase H inhibitory activity of this promising compound class.
Collapse
Affiliation(s)
- Ibrahim S Al Nasr
- Department of Biology, College of Science and Arts, Qassim University, Unaizah 51911, Saudi Arabia; Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Angela Corona
- Laboratorio di Virologia Molecolare, Dipartimento di Scienze della Vita e Dell'Ambiente, Universitá degli Studi di Cagliari, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Italy
| | - Waleed S Koko
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Tariq A Khan
- Department of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Ridha Ben Said
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia; Department of Chemistry, College of Science and Arts at Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Ismail Daoud
- University Mohamed Khider, Department of Matter Sciences, BP 145 RP, Biskra, Algeria; Laboratory of Natural and Bio-active Substances, Faculty of Science, Tlemcen University, P.O. Box 119, Tlemcen, Algeria
| | - Seyfeddine Rahali
- Department of Chemistry, College of Science and Arts at Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Enzo Tramontano
- Laboratorio di Virologia Molecolare, Dipartimento di Scienze della Vita e Dell'Ambiente, Universitá degli Studi di Cagliari, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Italy
| | - Rainer Schobert
- Organische Chemie I, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Noureddine Amdouni
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Bernhard Biersack
- Organische Chemie I, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany.
| |
Collapse
|
50
|
Gallego-Yerga L, Ceña V, Peláez R. Potent and Selective Benzothiazole-Based Antimitotics with Improved Water Solubility: Design, Synthesis, and Evaluation as Novel Anticancer Agents. Pharmaceutics 2023; 15:1698. [PMID: 37376146 DOI: 10.3390/pharmaceutics15061698] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The design of colchicine site ligands on tubulin has proven to be a successful strategy to develop potent antiproliferative drugs against cancer cells. However, the structural requirements of the binding site endow the ligands with low aqueous solubility. In this work, the benzothiazole scaffold is used to design, synthesize, and evaluate a new family of colchicine site ligands exhibiting high water solubility. The compounds exerted antiproliferative activity against several human cancer cell lines, due to tubulin polymerization inhibition, showing high selectivity toward cancer cells in comparison with non-tumoral HEK-293 cells, as evidenced by MTT and LDH assays. The most potent derivatives, containing a pyridine moiety and ethylurea or formamide functionalities, displayed IC50 values in the nanomolar range even in the difficult-to-treat glioblastoma cells. Flow cytometry experiments on HeLa, MCF7, and U87MG cells showed that they arrest the cell cycle at the G2/M phases at an early time point (24 h), followed by apoptotic cell death 72 h after the treatment. Tubulin binding was confirmed by microtubule network disruption observed via confocal microscopy. Docking studies support favorable interaction of the synthesized ligands at the colchicine binding site. These results validate the proposed strategy to develop potent anticancer colchicine ligands with improved water solubility.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Valentín Ceña
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|