1
|
Acharya B, Dey S, Sahu PK, Behera A, Chowdhury B, Behera S. Perspectives on chick embryo models in developmental and reproductive toxicity screening. Reprod Toxicol 2024; 126:108583. [PMID: 38561097 DOI: 10.1016/j.reprotox.2024.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Teratology, the study of congenital anomalies and their causative factors intersects with developmental and reproductive toxicology, employing innovative methodologies. Evaluating the potential impacts of teratogens on fetal development and assessing human risk is an essential prerequisite in preclinical research. The chicken embryo model has emerged as a powerful tool for understanding human embryonic development due to its remarkable resemblance to humans. This model offers a unique platform for investigating the effects of substances on developing embryos, employing techniques such as ex ovo and in ovo assays, chorioallantoic membrane assays, and embryonic culture techniques. The advantages of chicken embryonic models include their accessibility, cost-effectiveness, and biological relevance to vertebrate development, enabling efficient screening of developmental toxicity. However, these models have limitations, such as the absence of a placenta and maternal metabolism, impacting the study of nutrient exchange and hormone regulation. Despite these limitations, understanding and mitigating the challenges posed by the absence of a placenta and maternal metabolism are critical for maximizing the utility of the chick embryo model in developmental toxicity testing. Indeed, the insights gained from utilizing these assays and their constraints can significantly contribute to our understanding of the developmental impacts of various agents. This review underscores the utilization of chicken embryonic models in developmental toxicity testing, highlighting their advantages and disadvantages by addressing the challenges posed by their physiological differences from mammalian systems.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Sandip Dey
- Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Prafulla Kumar Sahu
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India.
| | - Amulyaratna Behera
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India.
| | - Bimalendu Chowdhury
- Roland Institute of Pharmaceutical Sciences, Khodasingi, Brahmapur, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Suchismeeta Behera
- Roland Institute of Pharmaceutical Sciences, Khodasingi, Brahmapur, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Kheraldine H, Hassan AF, Alhussain H, Al-Thawadi H, Vranic S, Al Moustafa AE. Effects of neratinib on angiogenesis and the early stage of the embryo using chicken embryo as a model. BIOMOLECULES & BIOMEDICINE 2024; 24:575-581. [PMID: 38158791 PMCID: PMC11088882 DOI: 10.17305/bb.2023.9869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Angiogenesis is the process of forming new blood capillaries from pre-existing vessels. Even though it is essential during normal development, it plays a major role in cancer progression. Neratinib is a pan-human epidermal growth factor receptor (HER) inhibitor that has recently been approved for the treatment of HER2-positive breast cancer. However, its effects on angiogenesis and embryogenesis remain unknown. This study examined the antiangiogenic effects of neratinib using the chorioallantoic membrane (CAM) of chicken embryos. We also evaluated neratinib's toxicity during the early stages of normal development using the chicken embryos, primary embryonic fibroblasts (EFBs), and human umbilical vein endothelial cells (HUVEC). Our findings revealed that neratinib significantly inhibited the CAM angiogenesis compared to controls by reducing vessel percentage area and the average vessel length. Furthermore, neratinib downregulated vascular endothelial growth factor (VEGF), a key mediator of angiogenesis. At lower concentrations, neratinib was well-tolerated during early stages of normal development. Additionally, EFBs treated with neratinib showed no morphological or viability changes when compared to controls. However, at the highest concentration tested, neratinib treatment reduced HUVEC cell viability. This effect may be associated with the dysregulation of key apoptotic genes, including caspase-3, caspase-8, caspase-9, and the B-cell lymphoma 2 (Bcl2) gene. Our findings indicate a novel potential application of neratinib as an antiangiogenic agent, exhibiting tolerable toxicity in the early stages of embryogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
- Oncology Department, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Senrung A, Tripathi T, Aggarwal N, Janjua D, Yadav J, Chaudhary A, Chhokar A, Joshi U, Bharti AC. Phytochemicals Showing Antiangiogenic Effect in Pre-clinical Models and their Potential as an Alternative to Existing Therapeutics. Curr Top Med Chem 2024; 24:259-300. [PMID: 37867279 DOI: 10.2174/0115680266264349231016094456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 10/24/2023]
Abstract
Angiogenesis, the formation of new blood vessels from a pre-existing vascular network, is an important hallmark of several pathological conditions, such as tumor growth and metastasis, proliferative retinopathies, including proliferative diabetic retinopathy and retinopathy of prematurity, age-related macular degeneration, rheumatoid arthritis, psoriasis, and endometriosis. Putting a halt to pathology-driven angiogenesis is considered an important therapeutic strategy to slow down or reduce the severity of pathological disorders. Considering the attrition rate of synthetic antiangiogenic compounds from the lab to reaching the market due to severe side effects, several compounds of natural origin are being explored for their antiangiogenic properties. Employing pre-clinical models for the evaluation of novel antiangiogenic compounds is a promising strategy for rapid screening of antiangiogenic compounds. These studies use a spectrum of angiogenic model systems that include HUVEC two-dimensional culture, nude mice, chick chorioallantoic membrane, transgenic zebrafish, and dorsal aorta from rats and chicks, depending upon available resources. The present article emphasizes the antiangiogenic activity of the phytochemicals shown to exhibit antiangiogenic behavior in these well-defined existing angiogenic models and highlights key molecular targets. Different models help to get a quick understanding of the efficacy and therapeutics mechanism of emerging lead molecules. The inherent variability in assays and corresponding different phytochemicals tested in each study prevent their immediate utilization in clinical studies. This review will discuss phytochemicals discovered using suitable preclinical antiangiogenic models, along with a special mention of leads that have entered clinical evaluation.
Collapse
Affiliation(s)
- Anna Senrung
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
- Neuropharmacology and Drug Delivery Laboratory, Daulat Ram College, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Nikita Aggarwal
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Divya Janjua
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Joni Yadav
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Apoorva Chaudhary
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
- Deshbandhu College, University of Delhi, Delhi, India
| | - Udit Joshi
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Alok Chandra Bharti
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| |
Collapse
|
4
|
Patel K, Bora V, Patel B. Sodium orthovanadate exhibits anti-angiogenic, antiapoptotic and blood glucose-lowering effect on colon cancer associated with diabetes. Cancer Chemother Pharmacol 2024; 93:55-70. [PMID: 37755518 DOI: 10.1007/s00280-023-04596-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND The presence of type 2 diabetes mellitus increases the risk of developing the colon cancer. The main objective of this study was to determine the role of sodium orthovanadate (SOV) in colon cancer associated with diabetes mellitus by targeting the competitive inhibition of PTP1B. METHODS For in vivo study, high fat diet with low dose streptozotocin model was used for inducing the diabetes mellitus. Colon cancer was induced by injecting 1,2-dimethylhydrazine (25 mg/kg, sc) twice a week. TNM staging and immunohistochemistry (IHC) was carried out for colon cancer tissues. In vitro studies like MTT assay, clonogenic assay, rhodamine-123 dye assay and annexin V-FITC assay using flow cytometry were performed on HCT-116 cell line. CAM assay was performed to examine the anti-angiogenic effect of the drug. RESULTS Sodium orthovanadate reduces the blood glucose level and tumor parameters in the animals. In vitro studies revealed that SOV decreased cell proliferation dose dependently. In addition, SOV induced apoptosis as depicted from rhodamine-123 dye assay and annexin V-FITC assay using flow cytometry as well as p53 IHC staining. SOV showed reduced angiogenesis effect on eggs which was depicted from CAM assay and also from CD34 and E-cadherin IHC staining. CONCLUSIONS Our data suggest that SOV exhibits protective role in colon cancer associated with diabetes mellitus. SOV exhibits anti-proliferative, anti-angiogenic and apoptotic inducing effects hence can be considered for therapeutic switching in diabetic colon cancer.
Collapse
Affiliation(s)
- Kruti Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Vivek Bora
- Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Bhoomika Patel
- National Forensic Sciences University, Sector 9, Gandhinagar, 382007, Gujarat, India.
| |
Collapse
|
5
|
Khan S, Nayak D, Vasudevan S. Photoacoustic Spectral Response using Ultrasound and Interferometric Sensors: A Correlation Study for a High Bandwidth Real-Time Blood Vasculature Monitoring Application in a Chick-Embryo Chorioallantoic Membrane (CAM) Model. APPLIED SPECTROSCOPY 2023; 77:1129-1137. [PMID: 37603568 DOI: 10.1177/00037028231194088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Photoacoustic (PA) spectral response technique has shown good promise in efficient preclinical tissue diagnosis by depicting mechano-biological properties due to high spatial resolution and penetration depth. The conventional PA-based system is a pump-probe technique that utilizes neodymium-doped yttrium aluminum garnet pulsed laser as a pump and an ultrasound sensor as a probe. For biomedical studies, high-speed PA signals need to be acquired, requiring higher bandwidth ultrasound sensors. While the bandwidth increases, they exhibit a very low signal-to-noise ratio that inhibits acquiring PA signals of biomedical samples. An interferometer-based probe has recently been investigated as a potential ultrasound probe for obtaining PA signals as an alternative. This optical PA detection technique offers high sensitivity by combining low acoustic impedance with high electromechanical coupling. However, there is a lack of exploration of the same for real-time biomedical studies. This work shows the development of a homodyne Mach-Zehnder interferometer-based PA spectral response (PASR) followed by a correlation study between the conventional ultrasound sensor and the interferometer-based sensor. Further, this study demonstrates the capability of continuous monitoring of vascular growth and the effect of an antidrug (Cisplatin) on the vasculature tested on a chick-embryo chorioallantoic membrane model. PASR was able to monitor growth changes within one day, which was not possible with conventional methods. This opens up potential possibilities for using this technique in biomedical applications.
Collapse
Affiliation(s)
- Suhel Khan
- Department of Electrical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Debasis Nayak
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Srivathsan Vasudevan
- Department of Electrical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
6
|
Chen L, Wang Z, Fu X, Wang S, Feng Y, Coudyzer W, Wu S, Zhang H, Chai Z, Li Y, Ni Y. Dynamic 3D morphology of chick embryos and allantois depicted nondestructively by 3.0T clinical magnetic resonance imaging. Poult Sci 2023; 102:102902. [PMID: 37429051 PMCID: PMC10466300 DOI: 10.1016/j.psj.2023.102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/12/2023] Open
Abstract
Driven by a global trend of applying replace-reduce-refine or 3Rs' guidance for experimental animals in life sciences, chick embryo and particularly allantois with its chorioallantoic membrane have been increasingly utilized to substitute laboratory animals, which call for more extensive and updated knowledge about this novel experimental setup. In this study, being noninvasive, nonionizing, and super-contrasting with high spatiotemporal resolutions, magnetic resonance imaging (MRI) was chosen as an imaging modality for in ovo monitoring morphologic evolution of the chick embryo, allantois, and chorioallantoic membrane longitudinally throughout embryonic day (ED) 1 until ED20. Cooled in 0°C ice bath for 60 min to reduce MRI motion artifacts, 3 chick embryos (n = 60 in total) on each ED were scanned by a clinical 3.0T MRI scanner to demonstrate 3D images of both T2- and T1-weighted imaging (T2WI, T1WI) sequences at axial, sagittal, and coronal slices. The volumes of both the entire chick embryo and allantois were semi-automatically segmented based on intensity-based thresholding and region-growing algorithms. The morphometries or quantified 3D structures were achieved by refined segmentation, and confirmed by histological analyses (one for each ED). After MRI, the rest of chick embryos (n = 40) continued for incubation. The images from ED2 to ED4 could demonstrate the structural changes of latebra, suggesting its transition into a nutrient supplying channel of yolk sac. The allantois could be recognized by MRI, and its relative volumes on each ED revealed an evolving profile peaked on ED12, with a statistically significant difference from those of earlier and later EDs (P < 0.01). The hypointensity of the yolk due to the susceptibility effect of its enriched iron content overshadowed the otherwise hyperintensity of its lipid components. The chick embryos survived prior cooling and MRI till hatching on ED21. The results could be further developed into a 3D MRI atlas of chick embryo. Clinical 3.0T MRI proved effective as a noninvasive approach to study in ovo 3D embryonic development across the full period (ED1-ED20), which can complement the present knowhow for poultry industry and biomedical science.
Collapse
Affiliation(s)
- Lei Chen
- KU Leuven, Campus Gasthuisberg, Leuven 3000, Belgium
| | | | - Xubin Fu
- Tianjin Ringpu Bio-Technology Co., Ltd., Tianjin, China
| | - Shuncong Wang
- KU Leuven, Campus Gasthuisberg, Leuven 3000, Belgium
| | - Yuanbo Feng
- KU Leuven, Campus Gasthuisberg, Leuven 3000, Belgium
| | | | - Shugeng Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haijun Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhihong Chai
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yicheng Ni
- Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Zarharan H, Bagherian M, Shah Rokhi A, Ramezani Bajgiran R, Yousefi E, Heravian P, Niazi Khazrabig M, Es-haghi A, Taghavizadeh Yazdi ME. The anti-angiogenesis and antioxidant activity of chitosan-mediated synthesized selenium-gold nanostructure. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
8
|
Ekowati J, Nofianti KA, Yunita MN, Hamid IS, Dwiningrum F, Ramadhan DR, Ananda GC. Synthesis, anti-angiogenic activity and prediction toxicity of (E)-3-(3-methoxyphenyl) propenoic acid. J Public Health Afr 2023. [DOI: 10.4081/jphia.2023.2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Background: Anti-angiogenic medications, one of cancer chemo preventive mechanism were permitted for different cancers. Nevertheless, major primary and secondary resistance obstruct efficacy in several tumor types. Moreover, the improvement of safe and effective NSAIDs for angiogenesis inhibition is complicated, because of their serious toxicity. So, we require improving clinically appropriate strategies to boost efficacy of anti-angiogenic drugs with low risk of toxicity.
Objectives: The present study aimed to synthesize the (E)-3- (3-methoxyphenyl)propenoic acid (3MPCA), to determine the anti-angiogenic activity and predict its toxicity.
Methods: 3MPCA was obtained by Knoevenagel reaction using microwave irradiation at 400 Watt. The anti-angiogenesis experimental was performed using chorioallantois membrane of embryonated chicken eggs induced by b-FGF. The potency of 3MPCA was verified at dosage 30 and 60 ng and compared with celecoxib 60 ng. Toxicity prediction of 3MPCA was performed by ProTox II online program.
Results: The results showed that 3MPCA was achieved in good yield (89%). Anti angogenic activity was showed by endothelial cells growth in neovascular capillaries of new blood vessel of chorioallantois membrane of embryonated chicken eggs. The endothelial cells growth decreased until 41.7-83%. The prediction LD50 was 1772mg/kg.
Conclusion: (E)-3-(3-methoxyphenyl)propenoic acid can be obtained through Knovenagel reaction using microwave irradiation and it has potential as anti-angiogenesis inhibitor with low toxicity.
Collapse
|
9
|
Abstract
The angiogenesis process was described in its basic concepts in the works of the Scottish surgeon John Hunter and terminologically assessed in the early twentieth century. An aberrant angiogenesis is a prerequisite for cancer cells in solid tumors to grow and metastasize. The sprouting of new blood vessels is one of the major characteristics of cancer and represents a gateway for tumor cells to enter both the blood and lymphatic circulation systems. In vivo, ex vivo, and in vitro models of angiogenesis have provided essential tools for cancer research and antiangiogenic drug screening. Several in vivo studies have been performed to investigate the various steps of tumor angiogenesis and in vitro experiments contributed to dissecting the molecular bases of this phenomenon. Moreover, coculture of cancer and endothelial cells in 2D and 3D matrices have contributed to improve the recapitulation of the complex process of tumor angiogenesis, including the peculiar conditions of tumor microenvironment.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, Pisa, Italy
- Museum of Human Anatomy "Filippo Civinini", School of Medicine, University of Pisa, Pisa, Italy
| | - Guido Bocci
- Department of Clinical and Experimental Medicine, School of Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
10
|
Chen L, Yuan M, Zhang X, Li Y, Feng Y, Yu J, Coudyzer W, Xie Y, Xu J, Li Y, Li Y, Ni Y. Exploration of Chick Embryo and Chorioallantoic Membrane on Imaging Navigated Platforms for Anticancer Pharmaceutical Evaluations. Technol Cancer Res Treat 2023; 22:15330338231206985. [PMID: 37844882 PMCID: PMC10585999 DOI: 10.1177/15330338231206985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
Conforming to the current replace-reduce-refine 3Rs' guidelines in animal experiments, a series of explorative efforts have been made to set up operable biomedical imaging-guided platforms for qualitative and quantitative evaluations on pharmacological effects of tumor vascular-disrupting agents (VDAs), based on the chick embryos (CEs) with its chorioallantoic membrane (CAM), in this overview. The techniques and platforms have been hierarchically elaborated, from macroscopic to microscopic and from overall to specific aspects. A protocol of LED lamplight associated with a new deep-learning algorithm was consolidated to screen out weak CEs by using the CAM vasculature imaging. 3D magnetic resonance imaging (MRI) and laser speckle contrast imaging (LSCI) to monitor the evolution of CE and vascular changes in CAM are introduced. A LSCI-CAM platform for studying the effects of VDAs on normal and cancerous vasculature of CAM and possible molecular mechanisms has been demonstrated. Finally, practical challenges and future perspectives are highlighted. The aim of this article is to help peers in biomedical research to familiarize with the CAM platform and to optimize imaging protocols for the evaluation of vasoactive pharmaceuticals, especially anticancer vascular targeted therapy.
Collapse
Affiliation(s)
- Lei Chen
- KU Leuven, Biomedical Group, Leuven, Belgium
| | - Mingyuan Yuan
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xinqi Zhang
- Airport Division, Tianjin Cancer Hospital, Tianjin, China
| | - Yongsheng Li
- Airport Division, Tianjin Cancer Hospital, Tianjin, China
| | - Yuanbo Feng
- KU Leuven, Biomedical Group, Leuven, Belgium
| | - Jie Yu
- KU Leuven, Biomedical Group, Leuven, Belgium
| | - Walter Coudyzer
- Department of Radiology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Yiyang Xie
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jiayue Xu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yuzhen Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yicheng Ni
- KU Leuven, Biomedical Group, Leuven, Belgium
- Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Fischer D, Fluegen G, Garcia P, Ghaffari-Tabrizi-Wizsy N, Gribaldo L, Huang RYJ, Rasche V, Ribatti D, Rousset X, Pinto MT, Viallet J, Wang Y, Schneider-Stock R. The CAM Model-Q&A with Experts. Cancers (Basel) 2022; 15:cancers15010191. [PMID: 36612187 PMCID: PMC9818221 DOI: 10.3390/cancers15010191] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
The chick chorioallantoic membrane (CAM), as an extraembryonic tissue layer generated by the fusion of the chorion with the vascularized allantoic membrane, is easily accessible for manipulation. Indeed, grafting tumor cells on the CAM lets xenografts/ovografts develop in a few days for further investigations. Thus, the CAM model represents an alternative test system that is a simple, fast, and low-cost tool to study tumor growth, drug response, or angiogenesis in vivo. Recently, a new era for the CAM model in immune-oncology-based drug discovery has been opened up. Although there are many advantages offering extraordinary and unique applications in cancer research, it has also disadvantages and limitations. This review will discuss the pros and cons with experts in the field.
Collapse
Affiliation(s)
- Dagmar Fischer
- Division of Pharmaceutical Technology, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Georg Fluegen
- Department of General, Visceral, Thoracic and Pediatric Surgery (A), Medical Faculty, Heinrich-Heine-University, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Paul Garcia
- Institute for Advanced Biosciences, Research Center Université Grenoble Alpes (UGA)/Inserm U 1209/CNRS 5309, 38700 La Tronche, France
- R&D Department, Inovotion, 38700 La Tronche, France
| | - Nassim Ghaffari-Tabrizi-Wizsy
- SFL Chicken CAM Lab, Department of Immunology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Laura Gribaldo
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Ruby Yun-Ju Huang
- School of Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Volker Rasche
- Department of Internal Medicine II, Ulm University Medical Center, 89073 Ulm, Germany
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neurosciences, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | | | - Marta Texeira Pinto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
| | - Jean Viallet
- R&D Department, Inovotion, 38700 La Tronche, France
| | - Yan Wang
- R&D Department, Inovotion, 38700 La Tronche, France
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, 94054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8526-069
| |
Collapse
|
12
|
Jabbar ZR, Sahib HB. The Effects of Abscisic Acid on Angiogenesis in Both ex vivo and in vivo Assays. Asian Pac J Cancer Prev 2022; 23:4193-4203. [PMID: 36580002 PMCID: PMC9971465 DOI: 10.31557/apjcp.2022.23.12.4193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Angiogenesis is a complex biological process wherein novel capillary blood vessels mature from pre-existing vasculature for delivering tissues with oxygen and nutrients. Natural molecules that have anti-angiogenic activity and toxicity can raise the focus on using plant sources as essential therapeutic agent. OBJECTIVE The current research was intended to estimate the probable anti-angiogenic activity of abscisic acid alone and in combination with prednisolone, a well-known angiostatic glucocorticoid. METHODS two months old albino rats were used in this study. ABA and prednisolone stock solutions were prepared and added after embedding aortic rings in growth media. The ex vivo rat aorta ring assay (RAR) was applied to explore the anti-angiogenic effect of ABA. The in vivo chorioallantoic membrane assay (CAM) was applied to quantify the blood vessels inhibition zone by ABA effect. That zone was calculated as the mean inhibition region on eggs in mm ± SD. RESULTS Abscisic acid screened byex vivo and in vivo assays, revealed a significant dose-dependent blood vessels inhibition in comparison to the negative control with IC50= 7.5µg/ml and a synergism effect when combined with prednisolone. CONCLUSION The synergism activity of ABA with prednisolone can significantly inhibit blood vessels growth in RAR and CAM assays. These results shed the light on the potential clinic values of ABA, and prednisolone combination in angiogenesis-dependent tumors.
Collapse
Affiliation(s)
| | - Hayder B Sahib
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq.
| |
Collapse
|
13
|
Kundeková B, Máčajová M, Meta M, Čavarga I, Huntošová V, Datta S, Miškovský P, Kronek J, Bilčík B. The Japanese quail chorioallantoic membrane as a model to study an amphiphilic gradient copoly(2-oxazoline)s- based drug delivery system for photodynamic diagnosis and therapy research. Photodiagnosis Photodyn Ther 2022; 40:103046. [PMID: 35917905 DOI: 10.1016/j.pdpdt.2022.103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
Amphiphilic gradient copoly(2-oxazoline)s are widely researched in the field of drug delivery. They could be used as a transport system for hydrophobic drugs such as hypericin (HYP). We prepared six gradient copolymers (EtOx)-grad-(ROPhOx) by living cationic ring-opening polymerization of a hydrophilic comonomer 2-ethyl-2-oxazoline (EtOx) and a hydrophobic comonomer 2-(4-alkyloxyphenyl)-2-oxazoline (ROPhOx), with different composition ratio (88:12 and 85:15) and three different alkyl chain lengths of alkyl (R) substituents. As an experimental model, Japanese quail chorioallantoic membrane (CAM) was used. The effect of nanoparticles loaded with HYP was evaluated by the changes of fluorescence intensity during photodynamic diagnosis (PDD) monitored under 405 nm LED light before administration, and 0,1,3 and 24 h after topical administration. The effectiveness of photodynamic therapy (PDT) (405 nm, 285 mW/cm2) applied 1h after the administration of HYP-loaded nanoparticles was evaluated using vascular damage score and histological sections. Molecular analysis was done by measuring angiogenesis-related gene expression by qPCR. The application of nanoparticles unloaded or loaded with HYP proved to be biocompatible, non-toxic, and undamaging to the CAM tissue, while they successfully altered the HYP fluorescence. We observed a possible anti-angiogenic potential of prepared nanoparticles, which could present an advantage for PDT used for tumour treatment.
Collapse
Affiliation(s)
- Barbora Kundeková
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84005, Slovakia
| | - Mariana Máčajová
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84005, Slovakia
| | - Majlinda Meta
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84005, Slovakia
| | - Ivan Čavarga
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84005, Slovakia
| | - Veronika Huntošová
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Safarik University in Kosice, Jesenná 5, Košice 04154, Slovakia
| | - Shubhashis Datta
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Safarik University in Kosice, Jesenná 5, Košice 04154, Slovakia
| | - Pavol Miškovský
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Safarik University in Kosice, Jesenná 5, Košice 04154, Slovakia; SAFTRA Photonics s r o., Moldavská cesta 51, Košice 04011, Slovakia
| | - Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84541, Slovakia
| | - Boris Bilčík
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84005, Slovakia.
| |
Collapse
|
14
|
Dourado LFN, Siqueira RC, Alves AP, de Paiva MRB, Agero U, Cunha Junior ADS. Antiangiogenic activity of photobiomodulation in experimental model using chorioallantoic embryonic membrane of chicken eggs. Arq Bras Oftalmol 2022; 87:0524. [PMID: 36169440 PMCID: PMC11587493 DOI: 10.5935/0004-2749.2021-0524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/14/2022] [Indexed: 12/18/2023] Open
Abstract
PURPOSE The purpose of this study was to investigate the vascular effects of photobiomodulation using a light-emitting diode on the chorioallantoic embryonic membrane of chicken eggs grouped into different times of exposure and to detect the morphological changes induced by the light on the vascular network architecture using quantitative metrics. METHODS We used a phototherapy device with light-emitting diode (670 nm wavelength) as the source of photobiomodulation. We applied the red light at a distance of 2.5 cm to the surface of the chorioallantoic embryonic membrane of chicken eggs in 2, 4, or 8 sessions for 90 s and analyzed the vascular network architecture using AngioTool software (National Cancer Institute, USA). We treated the negative control group with 50 μl phosphate-buffered-saline (pH 7.4) and the positive control group (Beva) with 50 μl bevacizumab solution (Avastin, Produtos Roche Químicos e Farmacêuticos, S.A., Brazil). RESULTS We found a decrease in total vessel length in the Beva group (24.96% ± 12.85%) and in all the groups that received 670 nm red light therapy (2× group, 34.66% ± 8.66%; 4× group, 42.42% ± 5.26%; 8× group, 38.48% ± 6.96%), compared with the negative control group. The fluence of 5.4 J/cm2 in 4 sessions (4×) showed more regular vessels. The number of junctions in the groups that received a higher incidence of 670 nm red light (4× and 8×) significantly decreased (p<0.0001). CONCLUSION Photo-biomodulation helps reduce vascularization in chorioallantoic embryonic membrane of chicken eggs and changes in the network architecture. Our results open the possibility of future clinical studies on using this therapy in patients with retinal diseases with neovascular components, especially age-related macular degeneration.
Collapse
Affiliation(s)
| | | | - Ana Paula Alves
- Institute of Exact Sciences, Physics Department, Universidade
Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Ubirajara Agero
- Institute of Exact Sciences, Physics Department, Universidade
Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
15
|
Joniová J, Wagnières G. The Chicken Embryo Chorioallantoic Membrane as an In Vivo Model for Photodynamic Therapy. Methods Mol Biol 2022; 2451:107-125. [PMID: 35505014 DOI: 10.1007/978-1-0716-2099-1_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For many decades the chicken embryo chorioallantoic membrane (CAM) has been used for research as an in vivo model in a large number of different fields, including toxicology, bioengineering, and cancer research. More specifically, the CAM is also a suitable and convenient model system in the field of photodynamic therapy (PDT), mainly due to the easy access of its membrane and the possibility of grafting or growing tumors on the membrane and, interestingly, to study the PDT effects on its dense vascular network. In addition, the CAM is simple to handle and cheap. Since the CAM is not innervated until later stages of the embryo development, its use in research is simplified compared to other in vivo models as far as ethical and regulatory issues are concerned. In this review different incubation and drug administration protocols of relevance for PDT are presented. Moreover, data regarding the propagation of light at different wavelengths and CAM development stages are provided. Finally, the effects induced by photobiomodulation on the CAM angiogenesis and its impact on PDT treatment outcome are discussed.
Collapse
Affiliation(s)
- Jaroslava Joniová
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| | - Georges Wagnières
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
16
|
Katsila T, Chasapi SA, Gomez Tamayo JC, Chalikiopoulou C, Siapi E, Moros G, Zoumpoulakis P, Spyroulias GA, Kardamakis D. Three-Dimensional Cell Metabolomics Deciphers the Anti-Angiogenic Properties of the Radioprotectant Amifostine. Cancers (Basel) 2021; 13:cancers13122877. [PMID: 34207535 PMCID: PMC8230228 DOI: 10.3390/cancers13122877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer and inflammation share aberrant angiogenesis as a hallmark, and, thus, anti-angiogenetic strategies remain of key interest. Amifostine, which is already a drug on the market, may be of further benefit to patients also in the context of drug repurposing. To shed light on the anti-angiogenic properties of amifostine during human adult angiogenesis and grasp the early events of angiogenesis, we employed 3D cell untargeted metabolomics by liquid chromatography–mass spectrometry and nuclear magnetic resonance spectroscopy in the presence of vascular endothelial growth factor-A or deferoxamine (pro-angiogenic factors that exhibit distinct angiogenesis induction profiles). Our findings reveal mechanism-specific inhibitory profiles of amifostine against VEGF-A- and deferoxamine-induced angiogenesis. Amifostine may serve as a dual radioprotective and anti-angiogenic agent in radiotherapy patients. Abstract Aberrant angiogenesis is a hallmark for cancer and inflammation, a key notion in drug repurposing efforts. To delineate the anti-angiogenic properties of amifostine in a human adult angiogenesis model via 3D cell metabolomics and upon a stimulant-specific manner, a 3D cellular angiogenesis assay that recapitulates cell physiology and drug action was coupled to untargeted metabolomics by liquid chromatography–mass spectrometry and nuclear magnetic resonance spectroscopy. The early events of angiogenesis upon its most prominent stimulants (vascular endothelial growth factor-A or deferoxamine) were addressed by cell sprouting measurements. Data analyses consisted of a series of supervised and unsupervised methods as well as univariate and multivariate approaches to shed light on mechanism-specific inhibitory profiles. The 3D untargeted cell metabolomes were found to grasp the early events of angiogenesis. Evident of an initial and sharp response, the metabolites identified primarily span amino acids, sphingolipids, and nucleotides. Profiles were pathway or stimulant specific. The amifostine inhibition profile was rather similar to that of sunitinib, yet distinct, considering that the latter is a kinase inhibitor. Amifostine inhibited both. The 3D cell metabolomics shed light on the anti-angiogenic effects of amifostine against VEGF-A- and deferoxamine-induced angiogenesis. Amifostine may serve as a dual radioprotective and anti-angiogenic agent in radiotherapy patients.
Collapse
Affiliation(s)
- Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (C.C.); (E.S.); (G.M.); (P.Z.)
- Department of Radiation Oncology, University of Patras Medical School, 26504 Patras, Greece;
- Correspondence: ; Tel.: +30-210-727-3752
| | - Styliani A. Chasapi
- Department of Pharmacy, University of Patras, 26504 Patras, Greece; (S.A.C.); (G.A.S.)
| | | | - Constantina Chalikiopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (C.C.); (E.S.); (G.M.); (P.Z.)
| | - Eleni Siapi
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (C.C.); (E.S.); (G.M.); (P.Z.)
| | - Giorgos Moros
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (C.C.); (E.S.); (G.M.); (P.Z.)
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (C.C.); (E.S.); (G.M.); (P.Z.)
| | | | - Dimitrios Kardamakis
- Department of Radiation Oncology, University of Patras Medical School, 26504 Patras, Greece;
| |
Collapse
|
17
|
Pu Z, Shimizu Y, Tsuzuki K, Suzuki J, Hayashida R, Kondo K, Fujikawa Y, Unno K, Ohashi K, Takefuji M, Bando YK, Ouchi N, Calvert JW, Shibata R, Murohara T. Important Role of Concomitant Lymphangiogenesis for Reparative Angiogenesis in Hindlimb Ischemia. Arterioscler Thromb Vasc Biol 2021; 41:2006-2018. [PMID: 33910373 DOI: 10.1161/atvbaha.121.316191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zhongyue Pu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (Z.P., Y.S., K.T., J.S., R.H., K.K., Y.F., K.U., K.O., M.T., Y.K.B., N.O., R.S., T.M.)
| | - Yuuki Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (Z.P., Y.S., K.T., J.S., R.H., K.K., Y.F., K.U., K.O., M.T., Y.K.B., N.O., R.S., T.M.)
| | - Kazuhito Tsuzuki
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (Z.P., Y.S., K.T., J.S., R.H., K.K., Y.F., K.U., K.O., M.T., Y.K.B., N.O., R.S., T.M.)
| | - Junya Suzuki
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (Z.P., Y.S., K.T., J.S., R.H., K.K., Y.F., K.U., K.O., M.T., Y.K.B., N.O., R.S., T.M.)
| | - Ryo Hayashida
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (Z.P., Y.S., K.T., J.S., R.H., K.K., Y.F., K.U., K.O., M.T., Y.K.B., N.O., R.S., T.M.)
| | - Kazuhisa Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (Z.P., Y.S., K.T., J.S., R.H., K.K., Y.F., K.U., K.O., M.T., Y.K.B., N.O., R.S., T.M.)
| | - Yusuke Fujikawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (Z.P., Y.S., K.T., J.S., R.H., K.K., Y.F., K.U., K.O., M.T., Y.K.B., N.O., R.S., T.M.)
| | - Kazumasa Unno
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (Z.P., Y.S., K.T., J.S., R.H., K.K., Y.F., K.U., K.O., M.T., Y.K.B., N.O., R.S., T.M.)
| | - Koji Ohashi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (Z.P., Y.S., K.T., J.S., R.H., K.K., Y.F., K.U., K.O., M.T., Y.K.B., N.O., R.S., T.M.)
| | - Mikito Takefuji
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (Z.P., Y.S., K.T., J.S., R.H., K.K., Y.F., K.U., K.O., M.T., Y.K.B., N.O., R.S., T.M.)
| | - Yasuko K Bando
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (Z.P., Y.S., K.T., J.S., R.H., K.K., Y.F., K.U., K.O., M.T., Y.K.B., N.O., R.S., T.M.)
| | - Noriyuki Ouchi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (Z.P., Y.S., K.T., J.S., R.H., K.K., Y.F., K.U., K.O., M.T., Y.K.B., N.O., R.S., T.M.)
| | - John W Calvert
- Division of Cardiothoracic Surgery, Department of Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA (J.W.C.)
| | - Rei Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (Z.P., Y.S., K.T., J.S., R.H., K.K., Y.F., K.U., K.O., M.T., Y.K.B., N.O., R.S., T.M.)
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (Z.P., Y.S., K.T., J.S., R.H., K.K., Y.F., K.U., K.O., M.T., Y.K.B., N.O., R.S., T.M.)
| |
Collapse
|
18
|
Kundeková B, Máčajová M, Meta M, Čavarga I, Bilčík B. Chorioallantoic Membrane Models of Various Avian Species: Differences and Applications. BIOLOGY 2021; 10:biology10040301. [PMID: 33917385 PMCID: PMC8067367 DOI: 10.3390/biology10040301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022]
Abstract
The chorioallantoic membrane model (CAM) of an avian embryo is used as an experimental model in various fields of research, including angiogenesis research and drug testing, xenografting and cancer research, and other scientific and commercial disciplines in microbiology, biochemistry, cosmetics, etc. It is a low-cost, low-maintenance, and well-available in vivo animal model that is non-sentient and can be used as an alternative for other mammal experimental models. It respects the principles of the "3R" rule (Replacement, Reduction, and Refinement)-conditions set out for scientific community providing an essential framework for conducting a more human animal research, which is also in line with constantly raising public awareness of welfare and the ethics related to the use of animal experimental models. In this review, we describe the chorioallantoic membrane of an avian embryo, focusing on its properties and development, its advantages and disadvantages as an experimental model, and the possibilities of its application in various fields of biological research. Since the most common chicken CAM model is already well known and described in many publications, we are particularly focusing on the advantages and application of less known avian species that are used for the CAM model-quail, turkey, and duck.
Collapse
Affiliation(s)
- Barbora Kundeková
- Institute of Animal Biochemistry and Genetics, CBs SAS, 840 05 Bratislava, Slovakia; (M.M.); (M.M.); (I.Č.); (B.B.)
- Correspondence:
| | - Mariana Máčajová
- Institute of Animal Biochemistry and Genetics, CBs SAS, 840 05 Bratislava, Slovakia; (M.M.); (M.M.); (I.Č.); (B.B.)
| | - Majlinda Meta
- Institute of Animal Biochemistry and Genetics, CBs SAS, 840 05 Bratislava, Slovakia; (M.M.); (M.M.); (I.Č.); (B.B.)
| | - Ivan Čavarga
- Institute of Animal Biochemistry and Genetics, CBs SAS, 840 05 Bratislava, Slovakia; (M.M.); (M.M.); (I.Č.); (B.B.)
- St. Elizabeth Cancer Institute, 812 50 Bratislava, Slovakia
| | - Boris Bilčík
- Institute of Animal Biochemistry and Genetics, CBs SAS, 840 05 Bratislava, Slovakia; (M.M.); (M.M.); (I.Č.); (B.B.)
| |
Collapse
|
19
|
Utilisation of Chick Embryo Chorioallantoic Membrane as a Model Platform for Imaging-Navigated Biomedical Research. Cells 2021; 10:cells10020463. [PMID: 33671534 PMCID: PMC7926796 DOI: 10.3390/cells10020463] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
The fertilised chick egg and particularly its chorioallantoic membrane (CAM) have drawn continuing interest in biomedicine and bioengineering fields, especially for research on vascular study, cancer, drug screening and development, cell factors, stem cells, etc. This literature review systemically introduces the CAM's structural evolution, functions, vascular features and the circulation system, and cell regulatory factors. It also presents the major and updated applications of the CAM in assays for pharmacokinetics and biodistribution, drug efficacy and toxicology testing/screening in preclinical pharmacological research. The time course of CAM applications for different assays and their advantages and limitations are summarised. Among these applications, two aspects are emphasised: (1) potential utility of the CAM for preclinical studies on vascular-disrupting agents (VDAs), promising for anti-cancer vascular-targeted therapy, and (2) modern imaging technologies, including modalities and their applications for real-time visualisation, monitoring and evaluation of the changes in CAM vasculature as well as the interactions occurring after introducing the tested medical, pharmaceutical and biological agents into the system. The aim of this article is to help those working in the biomedical field to familiarise themselves with the chick embryo CAM as an alternative platform and to utilise it to design and optimise experimental settings for their specific research topics.
Collapse
|
20
|
Baghani M, Es-haghi A. Characterization of silver nanoparticles biosynthesized using Amaranthus cruentus. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2020. [DOI: 10.1680/jbibn.18.00051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The use of plant extracts is a low-cost and green way to synthesize nanoparticles. In this research, the authors investigated the antibacterial, cytotoxic and antiangiogenic properties of silver nanoparticles (AgNPs) synthesized using Amaranthus cruentus extract. The fabricated nanoparticles were characterized by transmission electron microscopy (TEM), field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, dynamic light scattering and X-ray diffraction. The TEM results showed that the typical size of the AgNPs recorded was 15 nm. Biological tests indicated that the biosynthesized AgNPs had caused a decrease in cancerous cells (MCF-7) and had a high antibacterial activity against Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus. According to data analysis, the number and length of the blood vessels in different concentrations of AgNPs reduced significantly (depending on the dose). The chorioallantoic membrane assay revealed a large decrease in the number and length of angiogenic blood vessels in the presence of AgNPs. Real-time polymerase chain reaction and flow cytometry studies showed a dramatic increase in the gene expression of caspase-3 and caspase-8.
Collapse
Affiliation(s)
- Mohsen Baghani
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Ali Es-haghi
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| |
Collapse
|
21
|
Ekowati J, Hamid IS, Diyah NW, Siswandono S. Ferulic Acid Prevents Angiogenesis Through Cyclooxygenase-2 and Vascular Endothelial Growth Factor in the Chick Embryo Chorioallantoic Membrane Model. Turk J Pharm Sci 2020; 17:424-431. [PMID: 32939139 DOI: 10.4274/tjps.galenos.2019.44712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/04/2019] [Indexed: 12/28/2022]
Abstract
Objectives This study was designed to verify the antiangiogenic activity of ferulic acid (FA) and its potency to inhibit cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) expression in the chorioallantoic membrane (CAM) model. Moreover, we verified its mechanism of action by docking the molecule on COX-2, tyrosine kinase, and VEGF-2 proteins in silico. Materials and Methods An antiangiogenesis assay of FA at doses of 30, 60, and 90 μg was performed using the CAM of chicken eggs that were 9 days old and stimulated by 60 ng of basic fibroblast growth factor. Celecoxib (60 μg) was used as the reference drug. The inhibitory activity on VEGF and COX-2 expression was determined by immunohistochemistry assay. Molecular docking of FA was accomplished by Molegro Virtual Docker program ver. 5.5 on COX-2 enzyme (PDB ID 1CX2), tyrosine kinase receptor (PDB ID 1XKK), and VEGF-2 receptor (PDB ID 4ASD). Results FA at doses of 30, 60, and 90 μg significantly prevented angiogenesis in the CAM model, which was represented as inhibitory activity against endothelial cells of blood vessels (42.6-70.7%) and neovascularization (43.0-86.6%). The inhibitory activity of FA against VEGF expression was stronger than its action on COX-2 expression. Molecular docking on VEGF-2 receptor resulted in an RS value of FA of -73.844 kcal/mol and for celecoxib it was -94.557 kcal/mol. The RS value on tyrosine kinase of FA was -84.954 kcal/mol, while on celecoxib it was -93.163 kcal/mol. Docking on COX-2 receptor gave an RS value of FA of -73.416 kcal/mol, while for celecoxib it was -118.107 kcal/mol. Conclusion Reductions in VEGF-2 and COX-2 expression due to treatment with FA at the dose range 30-90 μg appeared to be related to angiogenesis inhibition, which was shown by two parameters, namely inhibition of neovascularization and endothelial cell growth in blood vessels. It was concluded that FA is a promising antiangiogenic therapeutic agent especially at the early stage, and this activity can arise from inhibitory action on COX-2 and VEGF-2 proteins.
Collapse
Affiliation(s)
- Juni Ekowati
- Airlangga University Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Surabaya, Indonesia
| | - Iwan Sahrial Hamid
- Airlangga University Faculty of Veterinary Medicine, Department of Basic Veterinary Medicine, Surabaya, Indonesia
| | - Nuzul Wahyuning Diyah
- Airlangga University Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Surabaya, Indonesia
| | - Siswandono Siswandono
- Airlangga University Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Surabaya, Indonesia
| |
Collapse
|
22
|
The use of the chick embryo CAM assay in the study of angiogenic activiy of biomaterials. Microvasc Res 2020; 131:104026. [PMID: 32505611 DOI: 10.1016/j.mvr.2020.104026] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/30/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023]
Abstract
The chick embryo chorioallantoic membrane (CAM) is a highly vascularized extraembryonic membrane, which carries out several functions during embryonic development, including exchange of respiratory gases, calcium transport from the eggshell, acid-base homeostasis in the embryo, and ion and water reabsorption from the allantoic fluid. Due to its easy accessibility, affordability and given that it constitutes an immunodeficient environment, CAM has been used as an experimental model for >50 years and in particular it has been broadly used to study angiogenesis and anti-angiogenesis. This review article describes the use of the CAM assay as a valuable assay to test angiogenic activity of biomaterials in vivo before they are further investigated in animal models. In this context, the use of CAM has become an integral part of the biocompatibility testing process for developing potential biomaterials.
Collapse
|
23
|
Kachooei SA, Rahmani R, Zareh N, Donyadideh F, Kachooei SA, Nabiuni M, Yazdansetad S. Down-regulation of TGF-β, VEGF, and bFGF in vascular endothelial cells of chicken induced by a brittle star ( Ophiocoma erinaceus) extract. Heliyon 2020; 6:e03199. [PMID: 31970303 PMCID: PMC6965705 DOI: 10.1016/j.heliyon.2020.e03199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/26/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
Great attention has been focused on the discovery of anti-angiogenic natural and synthetic compounds to be finally used as or at least a part of the treatment of tumors. The marine ecosystems provide diversity in natural chemicals with the potential of being exploited as medicines in the treatment of diseases. Several studies have investigated Ophiuroids as a source of anti-tumor and anti-metastatic organisms. Here, we described the inhibitory effects of an ethanolic crude extract of brittle star (Ophiocoma erinaceus) on angiogenesis and the expression level of TGF-β, VEGF, and bFGF in chicken chorioallantoic membrane (CAM) as an experimental model. To do this 45 embryonated eggs were randomly divided into six groups including the control group, sham, three experimental groups and positive. The number and the length of vessels were calculated using ImageJ® software. The relative mRNA levels of the genes in different groups were evaluated by qRT-PCR method. Our study was suggestive of an anti-angiogenesis effect of brittle star ethanolic crude extract in a CAM model. The extract also showed a pharmacological effect of down-regulation of mRNA related to VEGF, TGF-β, and bFGF genes on chicken vascular endothelial cells. It was also showed that the observed inhibitory effect is with a dose-dependent manner in which the highest inhibitory effect belonged to the highest used dose. We indicated the anti-angiogenesis properties of the Persian Gulf brittle star. Further studies are needed in other aspects of the brittle star extract in the treatment of angiogenesis, hyperplasia, and cancers.
Collapse
Affiliation(s)
- Saeed Ataei Kachooei
- Department of Poultry Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Roya Rahmani
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Karaj, Iran
| | - Nasrin Zareh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Karaj, Iran
| | - Fatemeh Donyadideh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Karaj, Iran
| | - Saba Ataei Kachooei
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Karaj, Iran
| | - Mohammad Nabiuni
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Karaj, Iran
| | - Sajjad Yazdansetad
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
24
|
Dünker N, Jendrossek V. Implementation of the Chick Chorioallantoic Membrane (CAM) Model in Radiation Biology and Experimental Radiation Oncology Research. Cancers (Basel) 2019; 11:cancers11101499. [PMID: 31591362 PMCID: PMC6826367 DOI: 10.3390/cancers11101499] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) is part of standard cancer treatment. Innovations in treatment planning and increased precision in dose delivery have significantly improved the therapeutic gain of radiotherapy but are reaching their limits due to biologic constraints. Thus, a better understanding of the complex local and systemic responses to RT and of the biological mechanisms causing treatment success or failure is required if we aim to define novel targets for biological therapy optimization. Moreover, optimal treatment schedules and prognostic biomarkers have to be defined for assigning patients to the best treatment option. The complexity of the tumor environment and of the radiation response requires extensive in vivo experiments for the validation of such treatments. So far in vivo investigations have mostly been performed in time- and cost-intensive murine models. Here we propose the implementation of the chick chorioallantoic membrane (CAM) model as a fast, cost-efficient model for semi high-throughput preclinical in vivo screening of the modulation of the radiation effects by molecularly targeted drugs. This review provides a comprehensive overview on the application spectrum, advantages and limitations of the CAM assay and summarizes current knowledge of its applicability for cancer research with special focus on research in radiation biology and experimental radiation oncology.
Collapse
Affiliation(s)
- Nicole Dünker
- Institute for Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, University Medicine Essen, 45122 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Medicine Essen, 45122 Essen, Germany.
| |
Collapse
|
25
|
Hobzova R, Hampejsova Z, Cerna T, Hrabeta J, Venclikova K, Jedelska J, Bakowsky U, Bosakova Z, Lhotka M, Vaculin S, Franek M, Steinhart M, Kovarova J, Michalek J, Sirc J. Poly(d,l-lactide)/polyethylene glycol micro/nanofiber mats as paclitaxel-eluting carriers: preparation and characterization of fibers, in vitro drug release, antiangiogenic activity and tumor recurrence prevention. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:982-993. [DOI: 10.1016/j.msec.2019.01.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 12/11/2018] [Accepted: 01/10/2019] [Indexed: 12/16/2022]
|
26
|
Evaluation of vasoactivity after haemotoxic snake venom administration. Toxicon 2018; 158:69-76. [PMID: 30529379 DOI: 10.1016/j.toxicon.2018.11.430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/28/2022]
Abstract
The chick chorioallantoic membrane (CAM) is a widely used model in medical research and fulfils the requirements laid out in the 3 R's. The CAM, contains a dense network of blood vessels, essential for embryo development but also makes the chick embryo an invaluable resource for the study of angiogenesis and the haemotoxicity of substances. Non-neurotoxic snake venom is responsible worldwide for numerous deaths but also has been found to have a vast range of medicinal benefit. This study combines evaluating the time of onset and intensity of effects of three whole viper venoms (Bitis aritans, Crotalus viridis, Agkistrodon contortrix) at varying concentrations. They were applied onto the CAM, using the Luepke grading system as one method of determining their rapid irritation potential. Regarding the principles of 3 R's, this method helps to evaluate the haemotoxic effect of venom as an alternative method to the rodent tests. The information provided from these results can be used as a rapid tool for both medical management of snakebite wounds and the potential use of snake venom in medical treatments. Then, Luepke grading system can help to evaluate the haemotoxic effect of venom in combination with other appropriate methods.
Collapse
|
27
|
DeBord LC, Pathak RR, Villaneuva M, Liu HC, Harrington DA, Yu W, Lewis MT, Sikora AG. The chick chorioallantoic membrane (CAM) as a versatile patient-derived xenograft (PDX) platform for precision medicine and preclinical research. Am J Cancer Res 2018; 8:1642-1660. [PMID: 30210932 PMCID: PMC6129484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023] Open
Abstract
Patient-derived xenografts (PDX) are an increasingly valuable tool in oncology, providing biologically faithful models of many different cancer types, and potential platforms for the development of precision oncology approaches. However, PDX have primarily been established in immunodeficient rodent models, with accompanying cost and efficiency constraints that pose barriers to more widespread adoption. The chicken egg chorioallantoic membrane (CAM) is an alternative in vivo PDX model. We provide here a comprehensive review of studies that grafted primary human tissue, as opposed to cell lines, onto the CAM. Twenty publications met our criteria of having inoculated patient-derived tumor tissue onto the CAM. Successful engraftment has been reported for over a dozen tumor subtypes, supporting the appropriateness of the CAM as a PDX platform. Resemblance of xenografts to the original patient tumor, increased vascularity of the CAM following engraftment, and micrometastasis into the chick mesenchyme were frequently reported. Application of standard or experimental cancer therapies to xenografts has also been undertaken, with the discovery of both synergistic drug effects and positive associations between the assay and clinical outcome. The CAM provides opportunities for RNA and DNA based sequencing of patient tumors, and the ability to efficiently (in 5-10 days) test multiple targeted therapies on fragments derived from the same tumor. While routine use of the CAM-based PDX model would benefit from a more-complete understanding of the stromal environment of CAM xenografts and interaction with the developing avian immune system, current literature supports the model's potential as an efficient, scalable precision medicine platform.
Collapse
Affiliation(s)
- Logan C DeBord
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of MedicineHouston, TX 77030, USA
| | - Ravi R Pathak
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of MedicineHouston, TX 77030, USA
| | - Mariana Villaneuva
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of MedicineHouston, TX 77030, USA
| | - Hsuan-Chen Liu
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of MedicineHouston, TX 77030, USA
| | - Daniel A Harrington
- The University of Texas Health Science Center at Houston, School of Dentistry, Department of Diagnostic and Biomedical SciencesHouston, TX 77054, USA
| | - Wendong Yu
- Department of Pathology, Baylor College of MedicineHouston, TX 77054, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Baylor College of MedicineHouston, TX 77054, USA
| | - Andrew G Sikora
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of MedicineHouston, TX 77030, USA
| |
Collapse
|
28
|
Moreno-Jiménez I, Kanczler JM, Hulsart-Billstrom G, Inglis S, Oreffo RO. The Chorioallantoic Membrane Assay for Biomaterial Testing in Tissue Engineering: A Short-TermIn VivoPreclinical Model. Tissue Eng Part C Methods 2017; 23:938-952. [DOI: 10.1089/ten.tec.2017.0186] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Inés Moreno-Jiménez
- Bone and Joint Research Group, Faculty of Medicine, Institute of Developmental Sciences, Center for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Janos M. Kanczler
- Bone and Joint Research Group, Faculty of Medicine, Institute of Developmental Sciences, Center for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Gry Hulsart-Billstrom
- Bone and Joint Research Group, Faculty of Medicine, Institute of Developmental Sciences, Center for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Stefanie Inglis
- Bone and Joint Research Group, Faculty of Medicine, Institute of Developmental Sciences, Center for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Richard O.C. Oreffo
- Bone and Joint Research Group, Faculty of Medicine, Institute of Developmental Sciences, Center for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
29
|
Kamili C, Kakataparthy RS, Vattikutti UM, Chidrawar V, Ammineni S. Anti-proliferative and anti-angiogenic activities of ion-channel modulators: In-ovo , in-vitro and in-vivo study. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
The Effect of Sodium Valproate on the Glioblastoma U87 Cell Line Tumor Development on the Chicken Embryo Chorioallantoic Membrane and on EZH2 and p53 Expression. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28642877 PMCID: PMC5469982 DOI: 10.1155/2017/6326053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Literature data support evidences that glioblastoma (GBM) patients experience prolonged survival due to sodium valproate (NaVP) treatment. The study assessed the human GBM cell U87 xenograft studied in the chicken embryo chorioallantoic membrane (CAM) model evaluating NaVP effect on tumor. Three groups of tumors (each n = 10) were studied: nontreated, treated with 4 mM, and treated with 8 mM of NaVP. The majority of tumors without NaVP treatment during tumor growth destroyed the chorionic epithelium, invaded the mesenchyme, and induced angiogenesis. Incidence of tumor formation on CAM without invasion into the mesenchyme was higher when U87 cells were treated with NaVP; the effect significantly increased with NaVP concentration. Treatment with 8 mM of NaVP did not show clear dynamics of tumor growth during 5 days; at the same time, the angiogenesis failed. With a strong staining of EZH2, p53 in tumors without NaVP treatment was found, and NaVP significantly decreased the expression of EZH2- and p53-positive cells; the effect was significantly higher at its 8 mM concentration. NaVP has a function in blocking the growth, invasion, and angiogenesis of tumor in the CAM model; tumor growth interferes with EZH2 and p53 molecular pathways, supporting the NaVP potential in GBM therapy.
Collapse
|
31
|
Abubakar AA, Noordin MM, Azmi TI, Kaka U, Loqman MY. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016; 5:610-618. [PMID: 27965220 PMCID: PMC5227059 DOI: 10.1302/2046-3758.512.bjr-2016-0102.r2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/06/2016] [Indexed: 01/09/2023] Open
Abstract
In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine.Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610-618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2.
Collapse
Affiliation(s)
- A A Abubakar
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - M M Noordin
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - T I Azmi
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - U Kaka
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - M Y Loqman
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| |
Collapse
|
32
|
Rodriguez EB, Vidallon MLP, Mendoza DJR, Reyes CT. Health-promoting bioactivities of betalains from red dragon fruit (Hylocereus polyrhizus (Weber) Britton and Rose) peels as affected by carbohydrate encapsulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4679-4689. [PMID: 26916683 DOI: 10.1002/jsfa.7681] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/10/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Betalains, which are red-purple and yellow pigments, are ideal alternatives to synthetic colorants as they possess strong coloring potential and excellent health-contributing properties. However, the instability of betalains toward normal storage and biological conditions, in addition to the limited number of betalain sources, impedes their food application and diminishes their bioactivities. This study aimed to evaluate the health-promoting bioactivities of betalains from red dragon fruit (Hylocereus polyrhizus (Weber) Britton and Rose) peels as affected by encapsulation in maltodextrin-gum Arabic and maltodextrin-pectin matrices. RESULTS Encapsulation in maltodextrin-gum Arabic and maltodextrin-pectin matrices afforded dry betalain powders after lyophilization. Optical microscopy imaging showed that the betalain powders consisted of matrix-type and shard-like microparticles. ABTS antioxidant assay revealed that maltodextrin-gum Arabic-betalain (MGB) and maltodextrin-pectin-betalain (MPB) microparticles possessed higher antioxidant capacities (195.39 ± 8.63 and 201.76 ± 4.06 µmol Trolox g-1 microparticles respectively) than the non-encapsulated betalain extract (151.07 ± 2.57 µmol Trolox g-1 extract). Duck embryo chorioallantoic membrane (CAM) vascular irritation assay showed that the anti-inflammatory activity of encapsulated betalains was five- to six-fold higher than that of non-encapsulated betalains (P ≤ 0.05). Antiangiogenic activity, as evaluated by duck embryo CAM assay, was enhanced two- to four-fold by carbohydrate encapsulation. Glutathione S-transferase (GST)-inducing activity of betalains was likewise improved four- to five-fold. CONCLUSION The study showed that the antioxidant, anti-inflammatory, antiangiogenic and GST-inducing activities of betalains from red dragon fruit peels were enhanced through carbohydrate encapsulation. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Evelyn B Rodriguez
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, College, Laguna 4031, Philippines.
| | - Mark Louis P Vidallon
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - David Joram R Mendoza
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Charisse T Reyes
- Faculty of Education, University of the Philippines Open University, Los Baños, Laguna 4031, Philippines
| |
Collapse
|
33
|
Wu XY, Xu H, Wu ZF, Chen C, Liu JY, Wu GN, Yao XQ, Liu FK, Li G, Shen L. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models. Oncotarget 2016; 6:44563-78. [PMID: 26575424 PMCID: PMC4792576 DOI: 10.18632/oncotarget.6310] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
Most anti-angiogenic therapies currently being evaluated in clinical trials target vascular endothelial growth factor (VEGF) pathway, however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified formononetin as a novel agent with potential anti-angiogenic and anti-cancer activities. Formononetin demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor 2 (FGF2). In ex vivo and in vivo angiogenesis assays, formononetin suppressed FGF2-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of formononetin on different molecular components in treated endothelial cell, and found that formononetin suppressed FGF2-triggered activation of FGFR2 and protein kinase B (Akt) signaling. Moreover, formononetin directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer, formononetin showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Moreover, formononetin enhanced the effect of VEGFR2 inhibitor sunitinib on tumor growth inhibition. Taken together, our results indicate that formononetin targets the FGFR2-mediated Akt signaling pathway, leading to the suppression of tumor growth and angiogenesis.
Collapse
Affiliation(s)
- Xiao Yu Wu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Hao Xu
- Division of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen Feng Wu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Che Chen
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Jia Yun Liu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Guan Nan Wu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Xue Quan Yao
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Fu Kun Liu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Shen
- Laboratory of Biotechnology and Biological Resource Utilization in Universities of Shandong, College of Life Science, Dezhou University, Dezhou, Shandong Province, China
| |
Collapse
|
34
|
Angiogenic Effects of Collagen/Mesoporous Nanoparticle Composite Scaffold Delivering VEGF 165. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9676934. [PMID: 27689093 PMCID: PMC5027316 DOI: 10.1155/2016/9676934] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/07/2016] [Indexed: 01/08/2023]
Abstract
Vascularization is a key issue for the success of tissue engineering to repair damaged tissue. In this study, we report a composite scaffold delivering angiogenic factor for this purpose. Vascular endothelial growth factor (VEGF) was loaded on mesoporous silica nanoparticle (MSN), which was then incorporated within a type I collagen sponge, to produce collagen/MSN/VEGF (CMV) scaffold. The CMV composite scaffold could release VEGF sustainably over the test period of 28 days. The release of VEGF improved the cell proliferation. Moreover, the in vivo angiogenesis of the scaffold, as studied by the chick chorioallantoic membrane (CAM) model, showed that the VEGF-releasing scaffold induced significantly increased number of blood vessel complexes when compared with VEGF-free scaffold. The composite scaffold showed good biocompatibility, as examined in rat subcutaneous tissue. These results demonstrate that the CMV scaffold with VEGF-releasing capacity can be potentially used to stimulate angiogenesis and tissue repair.
Collapse
|
35
|
Roma-Rodrigues C, Heuer-Jungemann A, Fernandes AR, Kanaras AG, Baptista PV. Peptide-coated gold nanoparticles for modulation of angiogenesis in vivo. Int J Nanomedicine 2016; 11:2633-9. [PMID: 27354794 PMCID: PMC4907718 DOI: 10.2147/ijn.s108661] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In this work, peptides designed to selectively interact with cellular receptors involved in the regulation of angiogenesis were anchored to oligo-ethylene glycol-capped gold nanoparticles (AuNPs) and used to evaluate the modulation of vascular development using an ex ovo chick chorioallantoic membrane assay. These nanoparticles alter the balance between naturally secreted pro- and antiangiogenic factors, under various biological conditions, without causing toxicity. Exposure of chorioallantoic membranes to AuNP–peptide activators of angiogenesis accelerated the formation of new arterioles when compared to scrambled peptide-coated nanoparticles. On the other hand, antiangiogenic AuNP–peptide conjugates were able to selectively inhibit angiogenesis in vivo. We demonstrated that AuNP vectorization is crucial for enhancing the effect of active peptides. Our data showed for the first time the effective control of activation or inhibition of blood vessel formation in chick embryo via AuNP-based formulations suitable for the selective modulation of angiogenesis, which is of paramount importance in applications where promotion of vascular growth is desirable (eg, wound healing) or ought to be contravened, as in cancer development.
Collapse
Affiliation(s)
- Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Amelie Heuer-Jungemann
- Institute for Life Sciences, Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Antonios G Kanaras
- Institute for Life Sciences, Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Pedro V Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
36
|
Krishnapati LS, Ghaskadbi S. Insulin induces the expression of FGF2 but does not synergize with it during angiogenesis. Microvasc Res 2016; 103:55-63. [DOI: 10.1016/j.mvr.2015.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
|
37
|
Fernandes EE, Pulwale AV, Patil GA, Moghe AS. Probing Regenerative Potential of Moringa oleifera Aqueous Extracts Using In vitro Cellular Assays. Pharmacognosy Res 2016; 8:231-237. [PMID: 27695260 PMCID: PMC5004511 DOI: 10.4103/0974-8490.188877] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Molecules stimulating regeneration and proliferation of cells are of significance in combating ailments caused due to tissue injury, inflammation, and degenerative disorders. Moringa oleifera is one of the most valued food plants having the profile of important nutrients and impressive range of medicinal uses. Objective: To evaluate the potential of M. oleifera aqueous leaf and flower extracts to promote the proliferation of cells and explore their effect on cancer cell lines for assessment of safety. Materials and Methods: Aqueous leaf and flower extracts of M. oleifera were investigated for effect on rat-derived primary fibroblast, mesenchymal stem cells (MSCs), and cancer cell lines using cell proliferation assay. They were also tested and compared for wound healing, angiogenesis, and hepatoprotective effect using in vitro assays. Results: Statistically significant increase in the proliferation of primary rat fibroblast, MSCs, and angiogenesis was observed after treatment with aqueous flower extract. The aqueous leaf extract determined a comparatively moderate increment in the proliferation of MSCs and angiogenesis. It however showed prominent cytotoxicity to cancer cell lines and a significant hepatoprotective effect. Conclusion: A very clear difference in response of the two extracts to different types of cells was detected in this study. The aqueous flower extract exhibited a higher potential to stimulate cell proliferation while not exerting the same effect on cancer cell lines. The leaf extract on the other hand, had a prominent antitumor and hepatoptotective effects. SUMMARY Moringa oleifera flower extract showed significant ability to promote proliferation of rat fibroblast and mesenchymal stem cells. The extract also had prominent angiogenic and hepatoprotective effects. The extract did not influence proliferation of cancer cell lines indicating its safety for human consumption and use in pharmaceuticals. The Moringa oleifera leaf extract showed relatively less potential to stimulate cells but had prominent cytotoxic effect on cancer cell lines.
Abbreviations Used: ALT: Alanine transaminase, AST: Asparatate amino transferase, ATCC: American type culture collection, BMMSC: Bone marrow mesenchymal stem cells (used in this paper), CAM: Chick chorioallantoic membrane, CCl4: Carbon tetra chloride, DMEM: Dulbecco's modified Eagle medium, DMSO: Dimethyl sulfoxide, EDTA: Ethylene diamine tetraacetic acid, HBL 100: Human breast epithelial cell line, Mcf-7: Human breast adenocarcinoma cell line, aMEM: Minimum Essential Medium Eagle alpha modification, MOF: Moringa oleifera aqueous flower extract (used in this paper), MOL: Moringa oleifera aqueos leaf extract (Used in this paper), OD: Optical density, PBS: Phosphate buffered saline
Collapse
Affiliation(s)
- Evangeline E Fernandes
- Department of Cell and Molecular Biology, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India
| | - Anubha V Pulwale
- Department of Cell and Molecular Biology, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India
| | - Gauri A Patil
- Department of Cell and Molecular Biology, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India
| | - Alpana S Moghe
- Department of Cell and Molecular Biology, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India
| |
Collapse
|
38
|
Effect of Laryngeal Squamous Cell Carcinoma Tissue Implantation on the Chick Embryo Chorioallantoic Membrane: Morphometric Measurements and Vascularity. BIOMED RESEARCH INTERNATIONAL 2015; 2015:629754. [PMID: 26539518 PMCID: PMC4619851 DOI: 10.1155/2015/629754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND The aim of this study was to develop chick embryo chorioallantoic membrane (CAM) model of laryngeal squamous cell carcinoma (LSCC) and to evaluate the morphological and morphometric characteristics and angiogenic features of it. METHODS Fresh LSCC tissue samples obtained from 6 patients were implanted onto 15 chick embryo CAMs. Morphological, morphometric, and angiogenic changes in the CAM and chorionic epithelium were evaluated up to 4 days after the tumor implantation. Immunohistochemical analysis (34βE12, CD31, and Ki67 staining) was performed to detect cytokeratins and tumor endothelial cells and to evaluate the proliferative capacity of the tumor before and after implantation on the CAM. RESULTS The implanted LSCC tissue samples survived on the CAM in all the experiments and retained the essential morphologic characteristics and proliferative capacity of the original tumor. Implants induced thickening of both the CAM (103-417%, p = 0.0001) and the chorionic epithelium (70-140%, p = 0.0001) and increase in number of blood vessels (75-148%, p = 0.0001) in the CAM. CONCLUSIONS This study clarifies that chick embryo CAM is a relevant assay for implanting LSCC tissue and provides the first morphological and morphometric characterization of the LSCC CAM model that opens new perspectives to study this disease.
Collapse
|
39
|
Gupta P, Arumugam M, Azad RV, Saxena R, Ghose S, Biswas NR, Velpandian T. Screening of antiangiogenic potential of twenty two marine invertebrate extracts of phylum Mollusca from South East Coast of India. Asian Pac J Trop Biomed 2014; 4:S129-38. [PMID: 25183067 DOI: 10.12980/apjtb.4.2014c701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE To evaluate the antiangiogenic potential of twenty two marine invertebrate species of Phylum Mollusca from south east coast of India. METHODS Live specimens of molluscan species were collected and their methanolic extracts were evaluated for preliminary antiangiogenic activity using the in ovo chick chorio-allantoic membrane assay. The extracts were further evaluated for in vivo antiangiogenic activity using chemical cautery induced corneal neovascularization assay in rats and oxygen induced retinopathy assay in rat pups. RESULTS In the chick chorio-allantoic membrane assay, four methanolic extracts of marine molluscan species viz. Meretrix meretrix, Meretrix casta, Telescopium telescopium and Bursa crumena methanolic extracts exhibited noticeable antiangiogenic activity at the tested concentration of 200 µg whereby they significantly inhibited the VEGF induced proliferation of new blood vessels. Among these four extracts, the methanolic extract of Meretrix casta exhibited relatively higher degree of antiangiogenic activity with an inhibitiory percentage (64.63%) of the VEGF induced neovascularization followed by the methanolic extracts of Telescopium telescopium (62.02%), Bursa crumena (60.48%) and Meretrix meretrix (47.01%). These four methanolic extracts were further evaluated for in vivo antiangiogenic activity whereby the methanolic extract of Telescopium telescopium exhibited most noticeable inhibition (42.58%) of the corneal neovascularization in rats in comparison to the sham treated group, and also exhibited most noticeable inhibition (31.31%) of the oxygen induced retinal neovascularization in rat pups in comparison to the hyperoxia group that was observed for considerable retinal neovascularization. CONCLUSIONS The significant antiangiogenic activity evinced by the extract of Telescopium telescopium merits further investigation for ocular neovascular diseases.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Muthuvel Arumugam
- Centre for Advanced Study in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu, India
| | - Raj Vardhan Azad
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Rohit Saxena
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Supriyo Ghose
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Nihar Ranjan Biswas
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
40
|
Baharara J, Namvar F, Mousavi M, Ramezani T, Mohamad R. Anti-angiogenesis effect of biogenic silver nanoparticles synthesized Using Saliva officinalis on chick chorioalantoic membrane (CAM). Molecules 2014; 19:13498-508. [PMID: 25255752 PMCID: PMC6271353 DOI: 10.3390/molecules190913498] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/18/2014] [Accepted: 07/26/2014] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis, which is required for physiological events, plays a crucial role in several pathological conditions, such as tumor growth and metastasis. The use of plant extracts is a cost effective and eco-friendly way to synthesize nanoparticles. In the present study, we investigated the anti-angiogenesis properties of silver nanoparticles synthesized using Saliva officinalis extract on chick chorioalantoic membrane. The production of nanoparticles was confirmed by the color change from yellow to brown observed after approximately 3 h at 37 °C. Then, the nanoparticles were characterized by UV-visible spectroscopy, FTIR, and TEM. The UV-visible spectroscopy results showed that the surface plasmon resonance band for AgNPs was around 430 nm. The intensity of the AgNP-specific absorption peak improved with an increase of 0.5 mL of extract into 10 mL of AgNO3 (2.5 mM). The FTIR results showed good interaction between the plant extracts and AgNPs. The TEM images of the samples revealed that the NPs varied in morphology and size from 1 to 40 nm; the average was recorded at 16.5 ± 1.2 nm. Forty Ross fertilized eggs were divided into four groups; the control and three experimental groups. On the 8th day, gelatin sponges containing albumin were placed on the chorioalantoic membrane and soaked with different concentrations of NPs. On the 12th day, all the cases were photographed using a photostereomicroscope. The number and the lengths of the vessels were measured using Image J software. The crown rump (CR) and weight of the embryo were also recorded. Then the hemoglobin content was measured using Drabkin’s reagent kit for quantification of the blood vessel formation. According to the data analysis, the number and length of the blood vessels, as well as the CR and weight of the embryos reduced significantly compared to the control (p < 0.05), dose dependently. The total hemoglobin was quantified as an indicator of the blood vessel formation. The hemoglobin content in the treated samples with AgNPs decreased, which showed its inhibitory effect on angiogenesis.
Collapse
Affiliation(s)
- Javad Baharara
- Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran.
| | - Farideh Namvar
- Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran.
| | - Marzieh Mousavi
- Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran.
| | - Tayebe Ramezani
- Faculty of Biological Sciences, Kharazmi University, Tehran 14911, Iran.
| | - Rosfarizan Mohamad
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
41
|
Cellular heterogeneity profiling by hyaluronan probes reveals an invasive but slow-growing breast tumor subset. Proc Natl Acad Sci U S A 2014; 111:E1731-9. [PMID: 24733940 DOI: 10.1073/pnas.1402383111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tumor heterogeneity confounds cancer diagnosis and the outcome of therapy, necessitating analysis of tumor cell subsets within the tumor mass. Elevated expression of hyaluronan (HA) and HA receptors, receptor for HA-mediated motility (RHAMM)/HA-mediated motility receptor and cluster designation 44 (CD44), in breast tumors correlates with poor outcome. We hypothesized that a probe for detecting HA-HA receptor interactions may reveal breast cancer (BCa) cell heterogeneity relevant to tumor progression. A fluorescent HA (F-HA) probe containing a mixture of polymer sizes typical of tumor microenvironments (10-480 kDa), multiplexed profiling, and flow cytometry were used to monitor HA binding to BCa cell lines of different molecular subtypes. Formulae were developed to quantify binding heterogeneity and to measure invasion in vivo. Two subsets exhibiting differential binding (HA(-/low) vs. HA(high)) were isolated and characterized for morphology, growth, and invasion in culture and as xenografts in vivo. F-HA-binding amounts and degree of heterogeneity varied with BCa subtype, were highest in the malignant basal-like cell lines, and decreased upon reversion to a nonmalignant phenotype. Binding amounts correlated with CD44 and RHAMM displayed but binding heterogeneity appeared to arise from a differential ability of HA receptor-positive subpopulations to interact with F-HA. HA(high) subpopulations exhibited significantly higher local invasion and lung micrometastases but, unexpectedly, lower proliferation than either unsorted parental cells or the HA(-/low) subpopulation. Querying F-HA binding to aggressive tumor cells reveals a previously undetected form of heterogeneity that predicts invasive/metastatic behavior and that may aid both early identification of cancer patients susceptible to metastasis, and detection/therapy of invasive BCa subpopulations.
Collapse
|
42
|
Dehelean CA, Feflea S, Molnár J, Zupko I, Soica C. Betulin as an Antitumor Agent Tested in vitro on A431, HeLa and MCF7, and as an Angiogenic Inhibitor in vivo in the CAM Assay. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700805] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Betulin, an important compound found in birch tree bark, can be converted to betulinic acid, an important pharmacological substance. Betulin has recently been reported as a cytotoxic agent for several tumor cell lines and as an apoptotic inductor. Angiogenesis is a key process involved in tumor metastasis and in developing tumor resistance to cytotoxic therapy. There are little data on betulin as an anti angiogenic agent. This preliminary study aimed to evaluate the cytotoxic effect of betulin on three cancer cell lines: HeLa (cervix adenocarcinoma), MCF7 (breast adenocarcinoma) and A431 (skin epidermoid carcinoma), and the apoptotic mechanism, as well as the implication in the capillary formation of the chicken embryo chorioallantoic membrane. The analysis consisted in the interpretation of the MTT assay and fluorescence double staining with Hoechst dye 33258 and propidium iodide, while the angiogenic effect was evaluated using morphological and immunohistochemical techniques. The antitumor activity is revealed by the double fluorescence staining, indicating that at higher concentrations, the cell membrane permeability is enhanced, while at lower concentrations there is evidence for nuclear fragmentation. In what concerns its effect on the process of blood vessel formation, betulin induced the reduction of newly formed capillaries, especially in the mesenchyme, possible through targeting the normal function of endothelial cells. In vitro results proved the superior specificity of betulin on cervical cancer cells, followed by skin cancer cells.
Collapse
Affiliation(s)
| | - Stefana Feflea
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timişoara, Romania 300041
| | - Judit Molnár
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary H-6720
| | - Istvan Zupko
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary H-6720
| | - Codruta Soica
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timişoara, Romania 300041
| |
Collapse
|
43
|
Pacini S, Morucci G, Punzi T, Gulisano M, Ruggiero M. Gc protein-derived macrophage-activating factor (GcMAF) stimulates cAMP formation in human mononuclear cells and inhibits angiogenesis in chick embryo chorionallantoic membrane assay. Cancer Immunol Immunother 2011; 60:479-85. [PMID: 21170647 PMCID: PMC11029590 DOI: 10.1007/s00262-010-0953-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 11/30/2010] [Indexed: 01/04/2023]
Abstract
The effects of Gc protein-derived macrophage-activating factor (GcMAF) have been studied in cancer and other conditions where angiogenesis is deregulated. In this study, we demonstrate for the first time that the mitogenic response of human peripheral blood mononuclear cells (PBMCs) to GcMAF was associated with 3'-5'-cyclic adenosine monophosphate (cAMP) formation. The effect was dose dependent, and maximal stimulation was achieved using 0.1 ng/ml. Heparin inhibited the stimulatory effect of GcMAF on PBMCs. In addition, we demonstrate that GcMAF (1 ng/ml) inhibited prostaglandin E(1)- and human breast cancer cell-stimulated angiogenesis in chick embryo chorionallantoic membrane (CAM) assay. Finally, we tested different GcMAF preparations on CAM, and the assay proved to be a reliable, reproducible and inexpensive method to determine the relative potencies of different preparations and their stability; we observed that storage at room temperature for 15 days decreased GcMAF potency by about 50%. These data could prove useful for upcoming clinical trials on GcMAF.
Collapse
Affiliation(s)
- Stefania Pacini
- Department of Anatomy, Histology and Forensic Medicine, University of Firenze, Florence, Italy
| | - Gabriele Morucci
- Department of Anatomy, Histology and Forensic Medicine, University of Firenze, Florence, Italy
| | - Tiziana Punzi
- Department of Anatomy, Histology and Forensic Medicine, University of Firenze, Florence, Italy
| | - Massimo Gulisano
- Department of Anatomy, Histology and Forensic Medicine, University of Firenze, Florence, Italy
| | - Marco Ruggiero
- Department of Experimental Pathology and Oncology, University of Firenze, Viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|