1
|
Thareja A, Leigh T, Hakkarainen JJ, Hughes H, Alvarez-Lorenzo C, Fernandez-Trillo F, Blanch RJ, Ahmed Z. Improving corneal permeability of dexamethasone using penetration enhancing agents: First step towards achieving topical drug delivery to the retina. Int J Pharm 2024; 660:124305. [PMID: 38852749 DOI: 10.1016/j.ijpharm.2024.124305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
With an ever-increasing burden of vision loss caused by diseases of the posterior ocular segment, there is an unmet clinical need for non-invasive treatment strategies. Topical drug application using eye drops suffers from low to negligible bioavailability to the posterior segment as a result of static and dynamic defensive ocular barriers to penetration, while invasive delivery systems are expensive to administer and suffer potentially severe complications. As the cornea is the main anatomical barrier to uptake of topically applied drugs from the ocular surface, we present an approach to increase corneal permeability of a corticosteroid, dexamethasone sodium-phosphate (DSP), using a novel penetration enhancing agent (PEA). We synthesised a novel polyacetylene (pAc) polymer and compared its activity to two previously described cell penetrating peptide (CPP) based PEAs, TAT and penetratin, with respect to increasing transcorneal permeability of DSP in a rapid ex-vivo porcine corneal assay over 60 min. The transcorneal apparent permeability coefficients (Papp) for diffusion of pAc, and fluorescein isothiocyanate (FITC) conjugated TAT and penetratin were up to 5 times higher (p < 0.001), when compared to controls. When pAc was used in formulation with DSP, an almost 5-fold significant increase was observed in Papp of DSP across the cornea (p = 0.0130), a significant 6-fold increase with TAT (p = 0.0377), and almost 7-fold mean increase with penetratin (p = 0.9540). Furthermore, we investigated whether the PEAs caused any irreversible damage to the barrier integrity of the corneal epithelium by measuring transepithelial electrical resistance (TEER) and immunostaining of tight junction proteins using zonula occludens-1 (ZO-1) and occludin antibodies. There was no damage or structural toxicity, and the barrier integrity was preserved after PEA application. Finally, an in-vitro cytotoxicity assessment of all PEAs in human retinal pigment epithelium cells (ARPE-19) demonstrated that all PEAs were very well-tolerated, with IC50 values of 64.79 mM for pAc and 1335.45 µM and 87.26 µM for TAT and penetratin, respectively. Our results suggest that this drug delivery technology could potentially be used to achieve a significantly higher intraocular therapeutic bioavailability after topical eye drop administration, than currently afforded.
Collapse
Affiliation(s)
- Abhinav Thareja
- Neuroscience and Ophthalmology Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, United Kingdom.
| | - Thomas Leigh
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, United Kingdom; Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin 2, Ireland.
| | | | - Helen Hughes
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), School of Science & Computing, Department of Science, South East Technological University, Cork Road, Waterford City X91 K0EK, Ireland.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma, Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Francisco Fernandez-Trillo
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, United Kingdom; BioMedNano Group, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias Rúa As Carballeiras, Universidade da Coruna, 15008 A Coruña, Galicia, Spain.
| | - Richard J Blanch
- Neuroscience and Ophthalmology Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, United Kingdom; Academic Department of Military Surgery & Trauma, Royal Centre for Defence Medicine, United Kingdom; Department of Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, West Midlands, United Kingdom; Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, United Kingdom.
| | - Zubair Ahmed
- Neuroscience and Ophthalmology Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, United Kingdom; Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, United Kingdom.
| |
Collapse
|
2
|
Behzadipour Y, Hemmati S. Covalent conjugation and non-covalent complexation strategies for intracellular delivery of proteins using cell-penetrating peptides. Biomed Pharmacother 2024; 176:116910. [PMID: 38852512 DOI: 10.1016/j.biopha.2024.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Therapeutic proteins provided new opportunities for patients and high sales volumes. However, they are formulated for extracellular targets. The lipophilic barrier of the plasma membrane renders the vast array of intracellular targets out of reach. Peptide-based delivery systems, namely cell-penetrating peptides (CPPs), have few safety concerns, and low immunogenicity, with control over administered doses. This study investigates CPP-based protein delivery systems by classifying them into CPP-protein "covalent conjugation" and CPP: protein "non-covalent complexation" categories. Covalent conjugates ensure the proximity of the CPP to the cargo, which can improve cellular uptake and endosomal escape. We will discuss various aspects of covalent conjugates through non-cleavable (stable) or cleavable bonds. Non-cleavable CPP-protein conjugates are produced by recombinant DNA technology to express the complete fusion protein in a host cell or by chemical ligation of CPP and protein, which ensures stability during the delivery process. CPP-protein cleavable bonds are classified into pH-sensitive and redox-sensitive bonds, enzyme-cleavable bonds, and physical stimuli cleavable linkers (light radiation, ultrasonic waves, and thermo-responsive). We have highlighted the key characteristics of non-covalent complexes through electrostatic and hydrophobic interactions to preserve the conformational integrity of the CPP and cargo. CPP-mediated protein delivery by non-covalent complexation, such as zippers, CPP adaptor methods, and avidin-biotin technology, are featured. Conclusively, non-covalent complexation methods are appropriate when a high number of CPP or protein samples are to be screened. In contrast, when the high biological activity of the protein is critical in the intracellular compartment, conjugation protocols are preferred.
Collapse
Affiliation(s)
- Yasaman Behzadipour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran.
| |
Collapse
|
3
|
Miwa A, Kamiya K. Control of Enzyme Reaction Initiation inside Giant Unilamellar Vesicles by the Cell-Penetrating Peptide-Mediated Translocation of Cargo Proteins. ACS Synth Biol 2022; 11:3836-3846. [PMID: 36197293 DOI: 10.1021/acssynbio.2c00413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cell-penetrating peptides (CPPs) play important roles in directly delivering biomolecules, such as DNA, proteins, and peptides, into living cells. In artificial lipid membranes, such as planar lipid bilayers, the direct membrane translocation of β-galactosidase via Pep-1 (one of the CPPs) is dependent upon a voltage gradient between the inner and outer leaflets of the lipid membranes. Giant unilamellar vesicles (GUVs) with asymmetric lipid distributions, which are recently generated using microfluidic technologies, can be observed by optical microscopy. Therefore, interactions between CPPs and asymmetric lipid bilayers in different kinds of lipids and the translocation mechanism of proteins via CPPs into GUVs can be investigated at the level of a single asymmetric GUV. This CPP-based system for transporting proteins into GUVs will be applied to control the start of enzyme reactions in GUVs. This study aimed to explore efficient protein translocation into GUVs via CPP and demonstrate that enzymatic reactions start in GUVs using a CPP-mediated direct translocation. The interactions and the enzyme reactions between the CPP (Pep-1 or penetratin)-DNase I complexes and the asymmetric or symmetric GUV membranes containing the negatively or neutrally charged lipids were observed by confocal laser-scanning microscopy. The asymmetric GUVs containing phosphatidylserine (PS) in the inner leaflet showed efficient DNase I translocation into GUVs via penetratin. Finally, the formation of a cross-linked actin network was observed in asymmetric PS GUVs incubated with Pep-1-streptavidin complexes. The CPP-mediated direct translocation can contribute to developing artificial cell models with the capacity to control the initiation of enzymatic reactions.
Collapse
Affiliation(s)
- Akari Miwa
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Koki Kamiya
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|
4
|
Veal M, Dias G, Kersemans V, Sneddon D, Faulkner S, Cornelissen B. A Model System to Explore the Detection Limits of Antibody-Based Immuno-SPECT Imaging of Exclusively Intranuclear Epitopes. J Nucl Med 2021; 62:1537-1544. [PMID: 33789931 PMCID: PMC8612322 DOI: 10.2967/jnumed.120.251173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/01/2021] [Indexed: 11/30/2022] Open
Abstract
Imaging of intranuclear epitopes using antibodies tagged to cell-penetrating peptides has great potential given its versatility, specificity, and sensitivity. However, this process is technically challenging because of the location of the target. Previous research has demonstrated a variety of intranuclear epitopes that can be targeted with antibody-based radioimmunoconjugates. Here, we developed a controlled-expression model of nucleus-localized green fluorescent protein (GFP) to interrogate the technical limitations of intranuclear SPECT using radioimmunoconjugates, notably the lower target-abundance detection threshold. Methods: We stably transfected the lung adenocarcinoma cell line H1299 with an enhanced GFP (EGFP)-tagged histone 2B (H2B) and generated 4 cell lines expressing increasing levels of GFP. EGFP levels were quantified using Western blot, flow cytometry, and enzyme-linked immunosorbent assay. An anti-GFP antibody (GFP-G1) was modified using dibenzocyclooctyne-N3-based strain-promoted azide-alkyne cycloaddition with the cell-penetrating peptide TAT (GRKKRRQRRRPPQGYG), which also includes a nuclear localization sequence, and the metal ion chelator N3-Bn-diethylenetriamine pentaacetate (DTPA) to allow radiolabeling with 111In. Cell uptake of 111In-GFP-G1-TAT was evaluated across 5 cell clones expressing different levels of H2B-EGFP in vitro. Tumor uptake in xenograft-bearing mice was quantified to determine the smallest amount of target epitope that could be detected using 111In-GFP-G1-TAT. Results: We generated 4 H1299 cell clones expressing different levels of H2B-EGFP (0-1 million copies per cell, including wild-type H1299 cells). GFP-G1 monoclonal antibody was produced and purified in house, and selective binding to H2B-EGFP was confirmed. The affinity (dissociation constant) of GFP-G1 was determined as 9.1 ± 3.0 nM. GFP-G1 was conjugated to TAT and DTPA. 111In-GFP-G1-TAT uptake in H2B-EGFP-expressing cell clones correlated linearly with H2B-EGFP expression (P < 0.001). In vivo xenograft studies demonstrated that 111In-GFP-G1-TAT uptake in tumor tissue correlated linearly with expression of H2B-EGFP (P = 0.004) and suggested a lower target-abundance detection threshold of approximately 240,000 copies per cell. Conclusion: Here, we present a proof-of-concept demonstration that antibody-based imaging of intranuclear targets is capable both of detecting the presence of an epitope of interest with a copy number above 240,000 copies per cell and of determining differences in expression level above this threshold.
Collapse
Affiliation(s)
- Mathew Veal
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom; and
| | - Gemma Dias
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom; and
| | - Veerle Kersemans
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom; and
| | - Deborah Sneddon
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom; and
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Stephen Faulkner
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Bart Cornelissen
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom; and
| |
Collapse
|
5
|
de Mello LR, Porosk L, Lourenço TC, Garcia BBM, Costa CAR, Han SW, de Souza JS, Langel Ü, da Silva ER. Amyloid-like Self-Assembly of a Hydrophobic Cell-Penetrating Peptide and Its Use as a Carrier for Nucleic Acids. ACS APPLIED BIO MATERIALS 2021; 4:6404-6416. [PMID: 35006917 DOI: 10.1021/acsabm.1c00601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell-penetrating peptides (CPPs) are a topical subject potentially exploitable for creating nanotherapeutics for the delivery of bioactive loads. These compounds are often classified into three major categories according to their physicochemical characteristics: cationic, amphiphilic, and hydrophobic. Among them, the group of hydrophobic CPPs has received increasing attention in recent years due to toxicity concerns posed by highly cationic CPPs. The hexapeptide PFVYLI (P, proline; F, phenylalanine; V, valine; Y, tyrosine; L, leucine; and I, isoleucine), a fragment derived from the C-terminal portion of α1-antitrypsin, is a prototypal example of hydrophobic CPP. This sequence shows reduced cytotoxicity and a capacity of nuclear localization, and its small size readily hints at its suitability as a building block to construct nanostructured materials. In this study, we examine the self-assembling properties of PFVYLI and investigate its ability to form noncovalent complexes with nucleic acids. By using a combination of biophysical tools including synchrotron small-angle X-ray scattering and atomic force microscopy-based infrared spectroscopy, we discovered that this CPP self-assembles into discrete nanofibrils with remarkable amyloidogenic features. Over the course of days, these fibrils coalesce into rodlike crystals that easily reach the micrometer range. Despite lacking cationic residues in the composition, PFVYLI forms noncovalent complexes with nucleic acids that retain β-sheet pairing found in amyloid aggregates. In vitro vectorization experiments performed with double-stranded DNA fragments indicate that complexes promote the internalization of nucleic acids, revealing that tropism toward cell membranes is preserved upon complexation. On the other hand, transfection assays with splice-correction oligonucleotides (SCOs) for luciferase expression show limited bioactivity across a narrow concentration window, suggesting that the propensity to form amyloidogenic aggregates may trigger endosomal entrapment. We anticipate that the findings presented here open perspectives for using this archetypical hydrophobic CPP in the fabrication of nanostructured scaffolds, which potentially integrate properties of amyloids and translocation capabilities of CPPs.
Collapse
Affiliation(s)
- Lucas R de Mello
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Ly Porosk
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Thiago C Lourenço
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Bianca B M Garcia
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Carlos A R Costa
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-861, Brazil
| | - Sang W Han
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Juliana S de Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210580, Brazil
| | - Ülo Langel
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-10691, Sweden
| | - Emerson R da Silva
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| |
Collapse
|
6
|
Desale K, Kuche K, Jain S. Cell-penetrating peptides (CPPs): an overview of applications for improving the potential of nanotherapeutics. Biomater Sci 2021; 9:1153-1188. [PMID: 33355322 DOI: 10.1039/d0bm01755h] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the field of nanotherapeutics, gaining cellular entry into the cytoplasm of the target cell continues to be an ultimate challenge. There are many physicochemical factors such as charge, size and molecular weight of the molecules and delivery vehicles, which restrict their cellular entry. Hence, to dodge such situations, a class of short peptides called cell-penetrating peptides (CPPs) was brought into use. CPPs can effectively interact with the cell membrane and can assist in achieving the desired intracellular entry. Such strategy is majorly employed in the field of cancer therapy and diagnosis, but now it is also used for other purposes such as evaluation of atherosclerotic plaques, determination of thrombin levels and HIV therapy. Thus, the current review expounds on each of these mentioned aspects. Further, the review briefly summarizes the basic know-how of CPPs, their utility as therapeutic molecules, their use in cancer therapy, tumor imaging and their assistance to nanocarriers in improving their membrane penetrability. The review also discusses the challenges faced with CPPs pertaining to their stability and also mentions the strategies to overcome them. Thus, in a nutshell, this review will assist in understanding how CPPs can present novel possibilities for resolving the conventional issues faced with the present-day nanotherapeutics.
Collapse
Affiliation(s)
- Kalyani Desale
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| |
Collapse
|
7
|
Reissmann S, Filatova MP. New generation of cell‐penetrating peptides: Functionality and potential clinical application. J Pept Sci 2021; 27:e3300. [DOI: 10.1002/psc.3300] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Siegmund Reissmann
- Faculty of Biological Sciences, Institute of Biochemistry and Biophysics Friedrich Schiller University Dornburger Str. 25 Jena Thueringia 07743 Germany
| | - Margarita P. Filatova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
| |
Collapse
|
8
|
Qamar B, Solomon M, Marin A, Fuerst TR, Andrianov AK, Muro S. Intracellular Delivery of Active Proteins by Polyphosphazene Polymers. Pharmaceutics 2021; 13:249. [PMID: 33578893 PMCID: PMC7916676 DOI: 10.3390/pharmaceutics13020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Achieving intracellular delivery of protein therapeutics within cells remains a significant challenge. Although custom formulations are available for some protein therapeutics, the development of non-toxic delivery systems that can incorporate a variety of active protein cargo and maintain their stability, is a topic of great relevance. This study utilized ionic polyphosphazenes (PZ) that can assemble into supramolecular complexes through non-covalent interactions with different types of protein cargo. We tested a PEGylated graft copolymer (PZ-PEG) and a pyrrolidone containing linear derivative (PZ-PYR) for their ability to intracellularly deliver FITC-avidin, a model protein. In endothelial cells, PZ-PYR/protein exhibited both faster internalization and higher uptake levels than PZ-PEG/protein, while in cancer cells both polymers achieved similar uptake levels over time, although the internalization rate was slower for PZ-PYR/protein. Uptake was mediated by endocytosis through multiple mechanisms, PZ-PEG/avidin colocalized more profusely with endo-lysosomes, and PZ-PYR/avidin achieved greater cytosolic delivery. Consequently, a PZ-PYR-delivered anti-F-actin antibody was able to bind to cytosolic actin filaments without needing cell permeabilization. Similarly, a cell-impermeable Bax-BH3 peptide known to induce apoptosis, decreased cell viability when complexed with PZ-PYR, demonstrating endo-lysosomal escape. These biodegradable PZs were non-toxic to cells and represent a promising platform for drug delivery of protein therapeutics.
Collapse
Affiliation(s)
- Bareera Qamar
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD 20742, USA;
| | - Melani Solomon
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (M.S.); (A.M.); (T.R.F.)
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (M.S.); (A.M.); (T.R.F.)
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (M.S.); (A.M.); (T.R.F.)
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (M.S.); (A.M.); (T.R.F.)
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (M.S.); (A.M.); (T.R.F.)
- Institute of Catalonia for Research and Advanced Studies, 08010 Barcelona, Spain
- Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Hemmati S, Behzadipour Y, Haddad M. Decoding the proteome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for cell-penetrating peptides involved in pathogenesis or applicable as drug delivery vectors. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104474. [PMID: 32712315 PMCID: PMC7378008 DOI: 10.1016/j.meegid.2020.104474] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023]
Abstract
Synthetic or natural derived cell-penetrating peptides (CPPs) are vastly investigated as tools for the intracellular delivery of membrane-impermeable molecules. As viruses are intracellular obligate parasites, viral originated CPPs have been considered as suitable intracellular shuttling vectors for cargo transportation. A total of 310 CPPs were identified in the proteome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Screening the proteome of the cause of COVID-19 reveals that SARS-CoV-2 CPPs (SCV2-CPPs) span the regions involved in replication, protein-nucleotide and protein-protein interaction, protein-metal ion interaction, and stabilization of homo/hetero-oligomers. However, to find the most appropriate peptides as drug delivery vectors, one might face several hurdles. Computational analyses showed that 94.3% of the identified SCV2-CPPs are non-toxins, and 38% are neither antigenic nor allergenic. Interestingly, 36.70% of SCV2-CPPs were resistant to all four groups of protease families. Nearly 1/3 of SCV2-CPPs had sufficient inherent or induced helix and sheet conformation leading to increased uptake efficiency. Heliquest lipid-binding discrimination factor revealed that 44.30% of the helical SCV2-CPPs are lipid-binding helices. Although Cys-rich derived CPPs of helicase (NSP13) can potentially fold into a cyclic conformation in endosomes with a higher rate of endosomal release, the most optimal SCV2-CPP candidates as vectors for drug delivery were SCV2-CPP118, SCV2-CPP119, SCV2-CPP122, and SCV2-CPP129 of NSP12 (RdRp). Ten experimentally validated viral-derived CPPs were also used as the positive control to check the scalability and reliability of our protocol in SCV2-CPP retrieval. Some peptides with a cell-penetration ability known as bioactive peptides are adopted as biotherapeutics themselves. Therefore, 59.60%, 29.63%, and 32.32% of SCV2-CPPs were identified as potential antibacterial, antiviral, and antifungals, respectively. While 63.64% of SCV2-CPPs had immuno-modulatory properties, 21.89% were recognized as anti-cancers. Conclusively, the workflow of this study provides a platform for profound screening of viral proteomes as a rich source of biotherapeutics or drug delivery carriers.
Collapse
Affiliation(s)
- Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Yasaman Behzadipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Haddad
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Illa O, Olivares JA, Gaztelumendi N, Martínez-Castro L, Ospina J, Abengozar MÁ, Sciortino G, Maréchal JD, Nogués C, Royo M, Rivas L, Ortuño RM. Chiral Cyclobutane-Containing Cell-Penetrating Peptides as Selective Vectors for Anti- Leishmania Drug Delivery Systems. Int J Mol Sci 2020; 21:E7502. [PMID: 33053805 PMCID: PMC7590151 DOI: 10.3390/ijms21207502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/04/2023] Open
Abstract
Two series of new hybrid γ/γ-peptides, γ-CC and γ-CT, formed by (1S,2R)-3-amino-2,2,dimethylcyclobutane-1-carboxylic acid joined in alternation to a Nα-functionalized cis- or trans-γ-amino-l-proline derivative, respectively, have been synthesized and evaluated as cell penetrating peptides (CPP) and as selective vectors for anti-Leishmania drug delivery systems (DDS). They lacked cytotoxicity on the tumoral human cell line HeLa with a moderate cell-uptake on these cells. In contrast, both γ-CC and γ-CT tetradecamers were microbicidal on the protozoan parasite Leishmania beyond 25 μM, with significant intracellular accumulation. They were conjugated to fluorescent doxorubicin (Dox) as a standard drug showing toxicity beyond 1 μM, while free Dox was not toxic. Intracellular accumulation was 2.5 higher than with Dox-TAT conjugate (TAT = transactivator of transcription, taken as a standard CPP). The conformational structure of the conjugates was approached both by circular dichroism spectroscopy and molecular dynamics simulations. Altogether, computational calculations predict that the drug-γ-peptide conjugates adopt conformations that bury the Dox moiety into a cavity of the folded peptide, while the positively charged guanidinium groups face the solvent. The favorable charge/hydrophobicity balance in these CPP improves the solubility of Dox in aqueous media, as well as translocation across cell membranes, making them promising candidates for DDS.
Collapse
Affiliation(s)
- Ona Illa
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| | - José-Antonio Olivares
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| | - Nerea Gaztelumendi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
| | - Laura Martínez-Castro
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| | - Jimena Ospina
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| | - María-Ángeles Abengozar
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, c/Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| | - Carme Nogués
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
| | - Míriam Royo
- Institut de Química Avançada de Catalunya (IQAC-CSIC), c/Jordi Girona, 18–26, 08034 Barcelona, Spain;
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), c/Jordi Girona, 18–26, 08034 Barcelona, Spain
| | - Luis Rivas
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, c/Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| | - Rosa M. Ortuño
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| |
Collapse
|
11
|
Vaithiyanathan M, Hymel HC, Safa N, Sanchez OM, Pettigrew JH, Kirkpatrick CS, Gauthier TJ, Melvin AT. Kinetic analysis of cellular internalization and expulsion of unstructured D‐chirality cell penetrating peptides. AIChE J 2020. [DOI: 10.1002/aic.17087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | - Hannah C. Hymel
- Cain Department of Chemical Engineering Louisiana State University Louisiana USA
| | - Nora Safa
- Cain Department of Chemical Engineering Louisiana State University Louisiana USA
| | - Olivia M. Sanchez
- Cain Department of Chemical Engineering Louisiana State University Louisiana USA
| | - Jacob H. Pettigrew
- Cain Department of Chemical Engineering Louisiana State University Louisiana USA
| | - Cole S. Kirkpatrick
- Cain Department of Chemical Engineering Louisiana State University Louisiana USA
| | - Ted J. Gauthier
- LSU AgCenter Biotechnology Lab Louisiana State University Louisiana USA
| | - Adam T. Melvin
- Cain Department of Chemical Engineering Louisiana State University Louisiana USA
| |
Collapse
|
12
|
Namazi F, Bolhassani A, Sadat SM, Irani S. Delivery of HIV-1 Polyepitope Constructs Using Cationic and Amphipathic Cell Penetrating Peptides into Mammalian Cells. Curr HIV Res 2020; 17:408-428. [DOI: 10.2174/1570162x17666191121114522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
Background:
An effective vaccine against human immunodeficiency virus 1 (HIV-1) is
an important global health priority. Despite many efforts in the development of the HIV-1 vaccine,
no effective vaccine has been approved yet. Recently, polyepitope vaccines including several immunogenic
and conserved epitopes of HIV-1 proteins have received special attention.
Methods:
In this study, HIV-1 Nef, Tat, Gp160 and P24 proteins were considered for selection of
immunodominant and conserved epitopes due to their critical roles in the viral life cycle and pathogenesis.
At first, the Nef60-84-Nef126-144-Tat29-49-Gp16030-53-Gp160308-323-P248-151 DNA construct was
designed using in silico studies. Then, the DNA construct was subcloned in pEGFP-N1 and pET-
24a (+) expression vectors and the rNef-Tat-Gp160-P24 polyepitope peptide was generated in E.coli
expression system for in vitro delivery using novel cell-penetrating peptides (CPPs), LDP-NLS and
CyLoP-1, in a non-covalent manner. Also, the HR9 and MPG CPPs were used to transfer the DNA
construct.
Results:
Our results showed that the recombinant polyepitope peptide generated in Rosetta strain
migrated as a clear band of ~31 kDa in SDS-PAGE. The SEM data confirmed the formation of stable
nanoparticles with a size below 250 nm. MTT assay revealed that the complexes did not represent
any considerable cytotoxic effect compared to untreated cells. The results of fluorescence microscopy,
flow cytometry and western blotting indicated that these CPPs successfully delivered polyepitope
constructs into HEK-293T cell line.
Conclusion:
These data suggested that these CPPs can be used as a promising approach for the development
of the HIV-1 vaccine.
Collapse
Affiliation(s)
- Fatemeh Namazi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Shiva Irani
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Behzadipour Y, Hemmati S. Considerations on the Rational Design of Covalently Conjugated Cell-Penetrating Peptides (CPPs) for Intracellular Delivery of Proteins: A Guide to CPP Selection Using Glucarpidase as the Model Cargo Molecule. Molecules 2019; 24:E4318. [PMID: 31779220 PMCID: PMC6930620 DOI: 10.3390/molecules24234318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/26/2022] Open
Abstract
Access of proteins to their intracellular targets is limited by a hydrophobic barrier called the cellular membrane. Conjugation with cell-penetrating peptides (CPPs) has been shown to improve protein transduction into the cells. This conjugation can be either covalent or non-covalent, each with its unique pros and cons. The CPP-protein covalent conjugation may result in undesirable structural and functional alterations in the target protein. Therefore, we propose a systematic approach to evaluate different CPPs for covalent conjugations. This guide is presented using the carboxypeptidase G2 (CPG2) enzyme as the target protein. Seventy CPPs -out of 1155- with the highest probability of uptake efficiency were selected. These peptides were then conjugated to the N- or C-terminus of CPG2. Translational efficacy of the conjugates, robustness and thermodynamic properties of the chimera, aggregation possibility, folding rate, backbone flexibility, and aspects of in vivo administration such as protease susceptibility were predicted. The effect of the position of conjugation was evaluated using unpaired t-test (p < 0.05). It was concluded that N-terminal conjugation resulted in higher quality constructs. Seventeen CPP-CPG2/CPG2-CPP constructs were identified as the most promising. Based on this study, the bioinformatics workflow that is presented may be universally applied to any CPP-protein conjugate design.
Collapse
Affiliation(s)
- Yasaman Behzadipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran;
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran;
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| |
Collapse
|
14
|
Engineered amphiphilic peptides enable delivery of proteins and CRISPR-associated nucleases to airway epithelia. Nat Commun 2019; 10:4906. [PMID: 31659165 PMCID: PMC6817825 DOI: 10.1038/s41467-019-12922-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
The delivery of biologic cargoes to airway epithelial cells is challenging due to the formidable barriers imposed by its specialized and differentiated cells. Among cargoes, recombinant proteins offer therapeutic promise but the lack of effective delivery methods limits their development. Here, we achieve protein and SpCas9 or AsCas12a ribonucleoprotein (RNP) delivery to cultured human well-differentiated airway epithelial cells and mouse lungs with engineered amphiphilic peptides. These shuttle peptides, non-covalently combined with GFP protein or CRISPR-associated nuclease (Cas) RNP, allow rapid entry into cultured human ciliated and non-ciliated epithelial cells and mouse airway epithelia. Instillation of shuttle peptides combined with SpCas9 or AsCas12a RNP achieves editing of loxP sites in airway epithelia of ROSAmT/mG mice. We observe no evidence of short-term toxicity with a widespread distribution restricted to the respiratory tract. This peptide-based technology advances potential therapeutic avenues for protein and Cas RNP delivery to refractory airway epithelial cells. Delivering biological cargo to airway epithelial cells is very challenging. Here, the authors use engineered amphiphilic peptides to shuttle proteins and CRISPR RNPs into airway cells in vivo.
Collapse
|
15
|
Namazi F, Bolhassani A, Sadat SM, Irani S. In vitro Delivery of HIV-1 Nef Antigen by Histidine-rich nona-arginine and Latarcin 1 peptide. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2019. [DOI: 10.29252/jommid.7.4.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
16
|
Okamura E. Solution NMR to Quantify Mobility in Membranes: Diffusion, Protrusion, and Drug Transport Processes. Chem Pharm Bull (Tokyo) 2019; 67:308-315. [DOI: 10.1248/cpb.c18-00946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Emiko Okamura
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University
| |
Collapse
|
17
|
Jensen K, WuWong DJ, Wong S, Matsuyama M, Matsuyama S. Pharmacological inhibition of Bax-induced cell death: Bax-inhibiting peptides and small compounds inhibiting Bax. Exp Biol Med (Maywood) 2019; 244:621-629. [PMID: 30836793 DOI: 10.1177/1535370219833624] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Bax induces mitochondria-dependent programed cell death. While cytotoxic drugs activating Bax have been developed for cancer treatment, clinically effective therapeutics suppressing Bax-induced cell death rescuing essential cells have not been developed. This mini-review will summarize previously reported Bax inhibitors including peptides, small compounds, and antibodies. We will discuss potential applications and the future direction of these Bax inhibitors.
Collapse
Affiliation(s)
- Kelsey Jensen
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - David Jasen WuWong
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Sean Wong
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Mieko Matsuyama
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Shigemi Matsuyama
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Tansi FL, Filatova MP, Koroev DO, Volpina OM, Lange S, Schumann C, Teichgräber UK, Reissmann S, Hilger I. New generation CPPs show distinct selectivity for cancer and noncancer cells. J Cell Biochem 2018; 120:6528-6541. [DOI: 10.1002/jcb.27943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital Jena Germany
| | - Margarita P. Filatova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Moscow Russia
| | - Dmitri O. Koroev
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Moscow Russia
| | - Olga M. Volpina
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Moscow Russia
| | | | | | - Ulf K. Teichgräber
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital Jena Germany
| | - Siegmund Reissmann
- Jena Bioscience GmbH Jena Germany
- Centrum of Molecular Biomedicine, Institute of Biochemistry and Biophysics, Friedrich‐Schiller‐University Jena Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital Jena Germany
| |
Collapse
|
19
|
Carnevale KJF, Muroski ME, Vakil PN, Foley ME, Laufersky G, Kenworthy R, Zorio DAR, Morgan TJ, Levenson CW, Strouse GF. Selective Uptake Into Drug Resistant Mammalian Cancer by Cell Penetrating Peptide-Mediated Delivery. Bioconjug Chem 2018; 29:3273-3284. [DOI: 10.1021/acs.bioconjchem.8b00429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kate J. F. Carnevale
- Dept. of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32304, United States
| | - Megan E. Muroski
- Dept. of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32304, United States
| | - Parth N. Vakil
- Dept. of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32304, United States
| | - Megan E. Foley
- Dept. of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32304, United States
| | - Geoffry Laufersky
- Dept. of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32304, United States
| | - Rachael Kenworthy
- Dept. of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32304, United States
| | - Diego A. R. Zorio
- College of Medicine, Florida State University, Tallahassee, Florida 32304, United States
| | - Thomas J. Morgan
- College of Medicine, Florida State University, Tallahassee, Florida 32304, United States
| | - Cathy W. Levenson
- College of Medicine, Florida State University, Tallahassee, Florida 32304, United States
| | - Geoffrey F. Strouse
- Dept. of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32304, United States
| |
Collapse
|
20
|
Keller AA, Scheiding B, Breitling R, Licht A, Hemmerich P, Lorkowski S, Reissmann S. Transduction and transfection of difficult-to-transfect cells: Systematic attempts for the transfection of protozoa Leishmania. J Cell Biochem 2018; 120:14-27. [PMID: 30216507 DOI: 10.1002/jcb.27463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
Abstract
Cell-penetrating peptides (CPPs) are used to internalize different cargoes, including DNA, into live mammalian and plant cells. Despite many cells being easily transfected with this approach, other cells are rather "difficult" or "hard to transfect," including protist cells of the genus Leishmania. Based on our previous results in successfully internalizing proteins into Leishmania tarentolae cells, we used single CPPs and three different DNA-binding proteins to form protein-like complexes with plasmids covered with CPPs. We attempted magnetofection, electroporation, and transfection using a number of commercially available detergents. While complex formation with negatively charged DNA required substantially higher amounts of CPPs than those necessary for mostly neutral proteins, the cytotoxicity of the required amounts of CPPs and auxiliaries was thoroughly studied. We found that Leishmania cells were indeed susceptible to high concentrations of some CPPs and auxiliaries, although in a different manner compared with that for mammalian cells. The lack of successful transfections implies the necessity to accept certain general limitations regarding DNA internalization into difficult-to-transfect cells. Only electroporation allowed reproducible internalization of large and rigid plasmid DNA molecules through electrically disturbed extended membrane areas, known as permeable membrane macrodomains.
Collapse
Affiliation(s)
- Andrea-Anneliese Keller
- Friedrich Schiller University, Faculty of Biological Sciences, Institute of Nutritional Sciences and Abbe Centre of Photonics, Jena, Germany
| | - Berith Scheiding
- Friedrich Schiller University, Faculty of Biological Sciences, Institute of Nutritional Sciences and Abbe Centre of Photonics, Jena, Germany
| | | | | | - Peter Hemmerich
- Leibniz Institute for Aging Research, Fritz Lipmann Institute, Jena, Germany
| | - Stefan Lorkowski
- Friedrich Schiller University, Faculty of Biological Sciences, Institute of Nutritional Sciences and Abbe Centre of Photonics, Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Leipzig, Germany
| | - Siegmund Reissmann
- Friedrich Schiller University, Faculty of Biological Sciences, Institute of Biochemistry and Biophysics, Jena, Germany
| |
Collapse
|
21
|
Bolhassani A, Shahbazi S, Milani A, Nadji SA. Small Heat Shock Proteins B1 and B6: Which One is the Most Effective Adjuvant in Therapeutic HPV Vaccine? IUBMB Life 2018; 70:1002-1011. [DOI: 10.1002/iub.1892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Azam Bolhassani
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran Iran
| | - Sepideh Shahbazi
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran Iran
| | - Alireza Milani
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran Iran
| | - Seyed Alireza Nadji
- Virology Research Center (VRC); National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
22
|
Niu X, Gao Z, Qi S, Su L, Yang N, Luan X, Li J, Zhang Q, An Y, Zhang S. Macropinocytosis activated by oncogenic Dbl enables specific targeted delivery of Tat/pDNA nano-complexes into ovarian cancer cells. Int J Nanomedicine 2018; 13:4895-4911. [PMID: 30214196 PMCID: PMC6122892 DOI: 10.2147/ijn.s171361] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Successful implementation of gene therapy heavily relies on efficiently delivering genetic materials and specific targeting into cells. Oncogene-driven endocytosis stimulates nutrient uptake and also develops an endocytosis-mediated defense against therapeutic agents. Cell-penetrating peptides, typically HIV-Tat, are well known for efficient delivery of nucleic acid drugs but lack targeting specificity. Various passive targeting strategies were pursued to enhance the tumor targeting efficiency; however, they are still limited by complicated cellular endocytosis routes and the heterogeneity of cancer types. METHODS Tat/pDNA complexes were noncovalently compacted and their physiochemical properties were determined. The siRNA pool and pLV-RNAi-GFP lentivirus were used to knock down dbl oncogene (originally isolated from diffuse B-cell lymphoma) expression, and its overexpression was performed by plasmid transient transfection. The cellular uptake of fluorescent ligands was quantified by confocal imaging and flow cytometry analysis. The transgene efficiency was determined by the Luciferase expression assay. Rho GTPase activation was checked by the GST-Rho GTPase-binding domain pull-down assay. RESULTS pGL3 plasmid DNA was noncovalently compacted with the Tat peptide into nano-size complexes at high N/P ratios. Macropinocytosis, a clathrin- and caveolin-independent endocytosis process, was shown to contribute to the uptake of middle-sized (∼600 nm) Tat/pGL3 complexes. Cell-type-specific variation in macropinocytosis was essentially controlled by the action of the Dbl oncogene. Onco-Dbl presentation constantly induced a high level of macropinocytosis activity in ovarian cancer cells. Onco-Dbl overexpression hyperstimulated macropinocytosis enhancement in cells mainly through actin cytoskeleton reorganization mediated by the PH domain and Rac1 activation. The Dbl-driven Rho GTPase signaling collectively determined the cell-type-specific macropinocytosis phenotype. CONCLUSION Such an aspect can be exploited to selectively confer targeted delivery of Tat/pDNA nano-complexes into ovarian cancer cells. Our work provides a novel alternative for targeted delivery of cell-penetrating peptide-based nucleic acid drugs into certain tumor types if specific endocytosis pathways are used.
Collapse
Affiliation(s)
- Xiuran Niu
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Zhihui Gao
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Shanshan Qi
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Linjia Su
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Nan Yang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Xiuli Luan
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Jia Li
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Qing Zhang
- Department of Clinical Laboratory, Cancer Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, Nankai University, Tianjin, People's Republic of China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| |
Collapse
|
23
|
Posey ND, Hango CR, Minter LM, Tew GN. The Role of Cargo Binding Strength in Polymer-Mediated Intracellular Protein Delivery. Bioconjug Chem 2018; 29:2679-2690. [DOI: 10.1021/acs.bioconjchem.8b00363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Shahbazi S, Bolhassani A. Comparison of six cell penetrating peptides with different properties for in vitro and in vivo delivery of HPV16 E7 antigen in therapeutic vaccines. Int Immunopharmacol 2018; 62:170-180. [PMID: 30015237 DOI: 10.1016/j.intimp.2018.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022]
Abstract
The high risk human papillomavirus (HPV) types 16 and 18 are globally linked to >50% and 20% of all cervical cancers, respectively. The HPV E7 oncoprotein was determined as a therapeutic vaccine target due to its constitutive expression by HPV-infected cells. The findings demonstrated the efficiency of therapeutic HPV DNA- and protein-based vaccines in preclinical and clinical trials. However, there are limitations for penetration of DNA and protein constructs into the cells without a suitable delivery system. Recently, several cell penetrating peptides (CPPs) have been suggested for delivery of nucleic acids and proteins into cells through covalent or non-covalent fashion. In this study, we determined highly efficient CPPs for the controlled delivery of HPV16 E7 antigen, in vitro and in vivo. Our data indicated the effective delivery of E7 protein by Pep-1, Cady-2, P28 and hPP10, and E7 DNA by MPG and +36 GFP CPPs in HEK-293T cell line at certain ratios. Moreover, immunization with the heterologous MPG + E7 DNA prime/P28 + rE7 protein boost elicited a higher Th1 cellular immune response with a predominant IFN-γ profile and strong Granzyme B secretion than those induced by other groups in a murine tumor model. Indeed, the groups vaccinated with rE7+ P28/rE7+ P28, MPG+ E7 DNA/P28+ rE7, and E7 DNA+ MPG/E7 DNA+ MPG nanovaccines displayed complete protection and remained tumor-free >60 days after treatment. These data suggest P28 and MPG as promising protein and gene delivery systems for development of HPV therapeutic vaccines.
Collapse
Affiliation(s)
- Sepideh Shahbazi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
25
|
Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev 2018; 47:3574-3620. [PMID: 29479622 PMCID: PMC6386136 DOI: 10.1039/c7cs00877e] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Peptide- and protein-nanoparticle conjugates have emerged as powerful tools for biomedical applications, enabling the treatment, diagnosis, and prevention of disease. In this review, we focus on the key roles played by peptides and proteins in improving, controlling, and defining the performance of nanotechnologies. Within this framework, we provide a comprehensive overview of the key sequences and structures utilised to provide biological and physical stability to nano-constructs, direct particles to their target and influence their cellular and tissue distribution, induce and control biological responses, and form polypeptide self-assembled nanoparticles. In doing so, we highlight the great advances made by the field, as well as the challenges still faced in achieving the clinical translation of peptide- and protein-functionalised nano-drug delivery vehicles, imaging species, and active therapeutics.
Collapse
Affiliation(s)
- Christopher D Spicer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden.
| | | | | | | |
Collapse
|
26
|
Del’Guidice T, Lepetit-Stoffaes JP, Bordeleau LJ, Roberge J, Théberge V, Lauvaux C, Barbeau X, Trottier J, Dave V, Roy DC, Gaillet B, Garnier A, Guay D. Membrane permeabilizing amphiphilic peptide delivers recombinant transcription factor and CRISPR-Cas9/Cpf1 ribonucleoproteins in hard-to-modify cells. PLoS One 2018; 13:e0195558. [PMID: 29617431 PMCID: PMC5884575 DOI: 10.1371/journal.pone.0195558] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/23/2018] [Indexed: 12/15/2022] Open
Abstract
Delivery of recombinant proteins to therapeutic cells is limited by a lack of efficient methods. This hinders the use of transcription factors or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) ribonucleoproteins to develop cell therapies. Here, we report a soluble peptide designed for the direct delivery of proteins to mammalian cells including human stem cells, hard-to-modify primary natural killer (NK) cells, and cancer cell models. This peptide is composed of a 6x histidine-rich domain fused to the endosomolytic peptide CM18 and the cell penetrating peptide PTD4. A less than two-minute co-incubation of 6His-CM18-PTD4 peptide with spCas9 and/or asCpf1 CRISPR ribonucleoproteins achieves robust gene editing. The same procedure, co-incubating with the transcription factor HoxB4, achieves transcriptional regulation. The broad applicability and flexibility of this DNA- and chemical-free method across different cell types, particularly hard-to-transfect cells, opens the way for a direct use of proteins for biomedical research and cell therapy manufacturing.
Collapse
Affiliation(s)
| | - Jean-Pascal Lepetit-Stoffaes
- Feldan Therapeutics, Québec, Québec, Canada
- Université Laval, Département de Génie Chimique, Québec, Québec, Canada
| | | | | | | | | | - Xavier Barbeau
- Feldan Therapeutics, Québec, Québec, Canada
- Université Laval, Département de Génie Chimique, Québec, Québec, Canada
| | - Jessica Trottier
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Vibhuti Dave
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Denis-Claude Roy
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Bruno Gaillet
- Université Laval, Département de Génie Chimique, Québec, Québec, Canada
| | - Alain Garnier
- Université Laval, Département de Génie Chimique, Québec, Québec, Canada
| | - David Guay
- Feldan Therapeutics, Québec, Québec, Canada
| |
Collapse
|
27
|
Takechi-Haraya Y, Aki K, Tohyama Y, Harano Y, Kawakami T, Saito H, Okamura E. Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy. Pharmaceuticals (Basel) 2017; 10:ph10020042. [PMID: 28420127 PMCID: PMC5490399 DOI: 10.3390/ph10020042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Glycosaminoglycans (GAGs), which are covalently-linked membrane proteins at the cell surface have recently been suggested to involve in not only endocytic cellular uptake but also non-endocytic direct cell membrane translocation of arginine-rich cell-penetrating peptides (CPPs). However, in-situ comprehensive observation and the quantitative analysis of the direct membrane translocation processes are challenging, and the mechanism therefore remains still unresolved. In this work, real-time in-cell NMR spectroscopy was applied to investigate the direct membrane translocation of octaarginine (R8) into living cells. By introducing 4-trifluoromethyl-l-phenylalanine to the N terminus of R8, the non-endocytic membrane translocation of 19F-labeled R8 (19F-R8) into a human myeloid leukemia cell line was observed at 4 °C with a time resolution in the order of minutes. 19F NMR successfully detected real-time R8 translocation: the binding to anionic GAGs at the cell surface, followed by the penetration into the cell membrane, and the entry into cytosol across the membrane. The NMR concentration analysis enabled quantification of how much of R8 was staying in the respective translocation processes with time in situ. Taken together, our in-cell NMR results provide the physicochemical rationale for spontaneous penetration of CPPs in cell membranes.
Collapse
Affiliation(s)
- Yuki Takechi-Haraya
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Kenzo Aki
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Yumi Tohyama
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Yuichi Harano
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Toru Kawakami
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Emiko Okamura
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| |
Collapse
|
28
|
Upadhya A, Sangave PC. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery. J Pept Sci 2016; 22:647-659. [DOI: 10.1002/psc.2927] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/27/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Archana Upadhya
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management; SVKM's NMIMS University; V.L. Mehta Road, Vile Parle (West) Mumbai 400056 Maharashtra India
| | - Preeti C. Sangave
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management; SVKM's NMIMS University; V.L. Mehta Road, Vile Parle (West) Mumbai 400056 Maharashtra India
| |
Collapse
|
29
|
Tansi F, Kallweit E, Kaether C, Kappe K, Schumann C, Hilger I, Reissmann S. Internalization of Near-Infrared Fluorescently Labeled Activatable Cell-Penetrating Peptide and of Proteins into Human Fibrosarcoma Cell Line HT-1080. J Cell Biochem 2015; 116:1222-31. [DOI: 10.1002/jcb.25075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Felista Tansi
- Institute of Diagnostic and Interventional Radiology; Department of Experimental Radiology; Jena University Hospital; Friedrich-Schiller University; Erlanger Allee 101 Jena 07747 Germany
| | - Eric Kallweit
- Institute of Diagnostic and Interventional Radiology; Department of Experimental Radiology; Jena University Hospital; Friedrich-Schiller University; Erlanger Allee 101 Jena 07747 Germany
- Ernst-Abbe-University of Applied Sciences; Carl-Zeiss-Promenade 2 Jena 07745 Germany
| | - Christoph Kaether
- Leibniz Institute for Age Research; Fritz-Lipmann-Institute; Beutenbergstr. 11 Jena 07745 Germany
| | - Katarina Kappe
- Jena Bioscience GmbH; Loebstedter Str. 80 Jena 07749 Germany
| | - Christina Schumann
- Ernst-Abbe-University of Applied Sciences; Carl-Zeiss-Promenade 2 Jena 07745 Germany
| | - Ingrid Hilger
- Institute of Diagnostic and Interventional Radiology; Department of Experimental Radiology; Jena University Hospital; Friedrich-Schiller University; Erlanger Allee 101 Jena 07747 Germany
| | - Siegmund Reissmann
- Jena Bioscience GmbH; Loebstedter Str. 80 Jena 07749 Germany
- Centrum of Molecular Biomedicine; Institute of Biochemistry and Biophysics; Friedrich- Schiller-University; Dornburger Str. 25 Jena 07743 Germany
| |
Collapse
|
30
|
Durzyńska J, Przysiecka Ł, Nawrot R, Barylski J, Nowicki G, Warowicka A, Musidlak O, Goździcka-Józefiak A. Viral and Other Cell-Penetrating Peptides as Vectors of Therapeutic Agents in Medicine. J Pharmacol Exp Ther 2015; 354:32-42. [DOI: 10.1124/jpet.115.223305] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
|
31
|
Saleh T, Bolhassani A, Shojaosadati SA, Hosseinkhani S. Evaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line. IRANIAN JOURNAL OF BIOTECHNOLOGY 2015; 13:55-62. [PMID: 28959282 DOI: 10.15171/ijb.1115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The poor permeability of the plasma and nuclear membranes to DNA plasmids are two major barriers for the development of these therapeutic molecules. Therefore, success in gene therapy approaches depends on the development of efficient and safe non-viral delivery systems. OBJECTIVES The aim of this study was to investigate the in vitro delivery of plasmid DNA encoding HPV16 E7 gene using cell penetrating peptide delivery system to achieve the best conditions for cell transfection and protein expression. For this purpose, we have used a cationic peptide delivery system, MPG which forms stable non-covalent complexes with nucleic acids for delivery of pEGFP-E7 as a model antigen in vitro. MATERIALS AND METHODS DNA construct encoding HPV16 E7 (pEGFP-E7) was prepared in large scale with high purity. MPG peptide/ DNA complexes were prepared at different N/P (nitrogen/phosphate) ratios and physicochemical characterization and stability of nanoparticles were investigated. In vitro peptide-mediated E7-GFP DNA transfection, and its expression was evaluated in three cell types. To quantify the transfection efficiency of this delivery system, transfected cells were harvested and assessed for GFP-positive cells by flow cytometry. Furthermore, E7-GFP expression was confirmed by western blot analysis. RESULTS The cellular uptake of MPG based nanoparticles was shown to be comparable with standard reagent PEI. The COS-7 cells transfected by MPG-based nanoparticles at an N/P ratio of 15:1 showed the highest transfection efficiency and gene expression. CONCLUSIONS The results indicated that the efficient gene expression depends on both cell type and N/P ratio applied, in vitro. The efficient protein expression detected by western blotting and flow cytometry supports the potential of MPGbased nanoparticles as a potent gene delivery system.
Collapse
Affiliation(s)
- Tayebeh Saleh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDs, Pasteur Institute of Iran, Tehran, Iran
| | | | - Saman Hosseinkhani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
32
|
Tay MYF, Saw WG, Zhao Y, Chan KWK, Singh D, Chong Y, Forwood JK, Ooi EE, Grüber G, Lescar J, Luo D, Vasudevan SG. The C-terminal 50 amino acid residues of dengue NS3 protein are important for NS3-NS5 interaction and viral replication. J Biol Chem 2014; 290:2379-94. [PMID: 25488659 DOI: 10.1074/jbc.m114.607341] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dengue virus multifunctional proteins NS3 protease/helicase and NS5 methyltransferase/RNA-dependent RNA polymerase form part of the viral replication complex and are involved in viral RNA genome synthesis, methylation of the 5'-cap of viral genome, and polyprotein processing among other activities. Previous studies have shown that NS5 residue Lys-330 is required for interaction between NS3 and NS5. Here, we show by competitive NS3-NS5 interaction ELISA that the NS3 peptide spanning residues 566-585 disrupts NS3-NS5 interaction but not the null-peptide bearing the N570A mutation. Small angle x-ray scattering study on NS3(172-618) helicase and covalently linked NS3(172-618)-NS5(320-341) reveals a rigid and compact formation of the latter, indicating that peptide NS5(320-341) engages in specific and discrete interaction with NS3. Significantly, NS3:Asn-570 to alanine mutation introduced into an infectious DENV2 cDNA clone did not yield detectable virus by plaque assay even though intracellular double-stranded RNA was detected by immunofluorescence. Detection of increased negative-strand RNA synthesis by real time RT-PCR for the NS3:N570A mutant suggests that NS3-NS5 interaction plays an important role in the balanced synthesis of positive- and negative-strand RNA for robust viral replication. Dengue virus infection has become a global concern, and the lack of safe vaccines or antiviral treatments urgently needs to be addressed. NS3 and NS5 are highly conserved among the four serotypes, and the protein sequence around the pinpointed amino acids from the NS3 and NS5 regions are also conserved. The identification of the functionally essential interaction between the two proteins by biochemical and reverse genetics methods paves the way for rational drug design efforts to inhibit viral RNA synthesis.
Collapse
Affiliation(s)
- Moon Y F Tay
- From the Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wuan Geok Saw
- the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yongqian Zhao
- From the Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore, the NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Kitti W K Chan
- From the Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Daljit Singh
- From the Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yuwen Chong
- From the Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jade K Forwood
- the School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Eng Eong Ooi
- From the Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Gerhard Grüber
- the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Julien Lescar
- the Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 138673, Singapore, and
| | - Dahai Luo
- the Lee Kong Chian School of Medicine, Nanyang Technological University, 61 Biopolis Drive, Proteos Building, 07-03, Singapore 138673, Singapore
| | - Subhash G Vasudevan
- From the Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore, the NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore,
| |
Collapse
|
33
|
Reissmann S. Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci 2014; 20:760-84. [DOI: 10.1002/psc.2672] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Siegmund Reissmann
- Friedrich Schiller University, Biological and Pharmaceutical Faculty; Institute of Biochemistry and Biophysics; Dornburger Strasse 25 07743 Jena Germany
- Jena Bioscience GmbH; Loebstedter Strasse 80 07749 Jena Germany
| |
Collapse
|
34
|
Davoli E, Sclip A, Cecchi M, Cimini S, Carrà A, Salmona M, Borsello T. Determination of tissue levels of a neuroprotectant drug: the cell permeable JNK inhibitor peptide. J Pharmacol Toxicol Methods 2014; 70:55-61. [PMID: 24814549 DOI: 10.1016/j.vascn.2014.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/11/2014] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Cell permeable peptides (CPPs) represent a novel tool for the delivery of bioactive molecules into scarcely accessible organs, such as the brain. CPPs have been successfully used in pre-clinical studies for a variety of diseases, ranging from cancer to neurological disorders. However, the mechanisms by which CPPs cross biological membranes, as well as their pharmacokinetic properties, have been poorly explored due to the lack of specific and sensitive analytical methods. METHODS In this paper we describe a protocol to quantitatively determine the amount of CPPs in in vitro and in vivo experimental models. To this end we selected the peptide D-JNKI1 that was shown to prevent neurodegeneration in both acute and chronic degenerative disorders. This method allows an accurate quantitative analysis of D-JNKI1 in both neuronal lysates and tissue homogenates using mass spectrometry and stable isotope dilution approach. RESULTS We found that D-JNKI1 crosses cellular membranes with fast kinetics, through an active and passive mechanism. After acute intraperitoneal (ip) administration of D-JNKI1 in mice, the peptide was found in the main organs with particular regard to the liver and kidney. Interestingly, D-JNKI1 crosses the blood brain barrier (BBB) and reaches the brain, where it remains for one week. DISCUSSION The challenge lies in developing the clinical application of therapeutic cell permeable peptides. Discerning pharmacokinetic properties is a high priority to produce a powerful therapeutic strategy. Overall, our data shed light on the pharmacokinetic properties of D-JNKI1 and supports its powerful neuroprotective effect.
Collapse
Affiliation(s)
- Enrico Davoli
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milano, Italy
| | - Alessandra Sclip
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milano, Italy
| | - Matteo Cecchi
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milano, Italy
| | - Sara Cimini
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milano, Italy
| | - Andrea Carrà
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milano, Italy
| | - Mario Salmona
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milano, Italy
| | - Tiziana Borsello
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milano, Italy.
| |
Collapse
|
35
|
Keller AA, Breitling R, Hemmerich P, Kappe K, Braun M, Wittig B, Schaefer B, Lorkowski S, Reissmann S. Transduction of Proteins intoLeishmania Tarentolaeby Formation of Non-Covalent Complexes With Cell-Penetrating Peptides. J Cell Biochem 2013; 115:243-52. [DOI: 10.1002/jcb.24654] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/14/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Andrea-Anneliese Keller
- Friedrich Schiller University, Biological and Pharmaceutical Faculty; Institute of Nutrition and Abbe Centre of Photonics; Dornburger Str. 25 07743 Jena Germany
| | | | - Peter Hemmerich
- Leibniz Institute for Age Research - Fritz Lipmann Institute; Beutenbergstr. 11 07745 Jena Germany
| | - Katarina Kappe
- Jena Bioscience GmbH; Loebstedter Str. 80 07749 Jena Germany
| | - Maria Braun
- Friedrich Schiller University, Biological and Pharmaceutical Faculty; Institute of Nutrition and Abbe Centre of Photonics; Dornburger Str. 25 07743 Jena Germany
| | - Berith Wittig
- Friedrich Schiller University, Biological and Pharmaceutical Faculty; Institute of Nutrition and Abbe Centre of Photonics; Dornburger Str. 25 07743 Jena Germany
| | - Buerk Schaefer
- Jena Bioscience GmbH; Loebstedter Str. 80 07749 Jena Germany
| | - Stefan Lorkowski
- Friedrich Schiller University, Biological and Pharmaceutical Faculty; Institute of Nutrition and Abbe Centre of Photonics; Dornburger Str. 25 07743 Jena Germany
| | - Siegmund Reissmann
- Jena Bioscience GmbH; Loebstedter Str. 80 07749 Jena Germany
- Friedrich Schiller University, Biological and Pharmaceutical Faculty; Institute of Biochemistry and Biophysics; Dornburger Str. 25 07743 Jena Germany
| |
Collapse
|
36
|
Cellular Uptake Mechanism and Therapeutic Utility of a Novel Peptide in Targeted-Delivery of Proteins into Neuronal Cells. Pharm Res 2013; 30:2108-17. [DOI: 10.1007/s11095-013-1068-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/24/2013] [Indexed: 12/22/2022]
|