1
|
Eriksen JB, Milsmann J, Brandl M, Bauer-Brandl A. The impact of volume of dissolution medium for biopredictive dissolution/permeation studies of enabling formulations: A comparison of two brands of telmisartan / amlodipine tablets. J Pharm Sci 2024:S0022-3549(24)00612-9. [PMID: 39694273 DOI: 10.1016/j.xphs.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
For compendial dissolution testing of solid dosage forms, media volumes of 500 to 900 mL are used in apparatus I and II to ensure sink conditions. However, these volumes are considerably larger than those in the gastrointestinal tract. Thus, the experiments are not biomimetic and possibly not suitable for biopredictive dissolution testing. The present study investigates the influence of volumes of dissolution media in non-compendial dissolution/permeation settings. Dissolution/permeation studies of two commercial bilayer tablets (Twynsta® and Arrow) containing the active pharmaceutical ingredients telmisartan (40 mg) and amlodipine (10 mg) were evaluated using the MacroFlux tool with various biomimetic media mimicking fasted and fed states as well as biological variability ("biorelevant"). Particularly, the two-stage dissolution process of telmisartan from the tablets is interesting because the compound has a pH-dependent solubility, and 2-stage dissolution leads to supersaturation and precipitation upon pH shift. For telmisartan, lower dissolution volumes significantly induced precipitation, leading to lower permeation, while no precipitation was observed in the larger volume. The permeation of telmisartan was overly sensitive to both pH and micelle concentrations in the biomimetic media. Amlodipine showed complete dissolution under any conditions, which correlates with its known complete absorption in vivo. In conclusion, volumes of dissolution media (and their compositions) are key parameters and play a significant role for designing relevant biomimetic experiments used to predict the bioavailability of supersaturating systems.
Collapse
Affiliation(s)
- Jonas Borregaard Eriksen
- Department of Physics Chemistry and Pharmacy, University of Southern Denmark, SDU, FKF, Campusvej 52, Odense, 5230, Denmark; Analytical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach an der Riss, 88400, Germany
| | - Johanna Milsmann
- Analytical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach an der Riss, 88400, Germany
| | - Martin Brandl
- Department of Physics Chemistry and Pharmacy, University of Southern Denmark, SDU, FKF, Campusvej 52, Odense, 5230, Denmark
| | - Annette Bauer-Brandl
- Department of Physics Chemistry and Pharmacy, University of Southern Denmark, SDU, FKF, Campusvej 52, Odense, 5230, Denmark.
| |
Collapse
|
2
|
Czajkowski M, Słaba A, Milanowski B, Bauer-Brandl A, Brandl M, Skupin-Mrugalska P. Melt-extruded formulations of fenofibrate with various grades of hydrogenated phospholipid exhibit promising in-vitro biopharmaceutical behavior. Eur J Pharm Sci 2024; 203:106936. [PMID: 39414171 DOI: 10.1016/j.ejps.2024.106936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/30/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
In the current study, it was demonstrated that three commercially available grades of hydrogenated phospholipids (HPL) differing in their content of phosphatidylcholine may be used as components for hot melt-extruded binary (HPL as sole excipient) or ternary (in combination with copovidone) solid dispersions of fenofibrate (FEN) at mass fractions between 0.5 and 20% (ternary) or 80% (binary). X-ray powder diffraction indicated complete conversion of crystalline fenofibrate into the amorphous state by hot melt extrusion for all ternary blends. In contrast, both the binary blends (HPL- and copovidone-based) contained minor remaining crystallites. Irrespectively, all solid dispersions induced during dissolution studies a supersaturated state of FEN, where the ternary ASDs showed enhanced and more complete release of FEN as compared to the binary blends and, even more pronounced, in comparison to the marketed micronized and nano-milled formulations. In terms of the cumulated amount permeated, there were marginal differences between the various formulations when combined dissolution/permeation was done using FeSSIF as donor medium; with FaSSIF as donor medium, the binary HPL-ASD containing the grade with the highest phosphatidylcholine fraction performed best in terms of permeation, even significantly better than the marketed nano-crystal formulation. Otherwise, no significant differences were seen between the various grades of HPL when FEN dissolution and permeation were analyzed for ternary solid dispersions. In conclusion, the in-vitro biopharmaceutical behaviour of hydrogenated phospholipid-containing blends manufactured by hot melt extrusion appears promising. They can be a viable formulation option for poorly water-soluble and lipophilic drug compounds like FEN.
Collapse
Affiliation(s)
- Mikołaj Czajkowski
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Rokietnicka 3, Poznan 60-806, Poland; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Aleksandra Słaba
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Rokietnicka 3, Poznan 60-806, Poland; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Bartłomiej Milanowski
- Chair and Department of Pharmaceutical Technology, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Rokietnicka 3, Poznan 60-806, Poland; GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., Na Kepie 3, Zbaszyn 64-360, Poland
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Martin Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| | - Paulina Skupin-Mrugalska
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Rokietnicka 3, Poznan 60-806, Poland
| |
Collapse
|
3
|
Tzanova MM, Larsen BS, Birolo R, Cignolini S, Tho I, Chierotti MR, Perissutti B, Scaglione S, Stein PC, Hiorth M, Di Cagno MP. Shifting the Focus from Dissolution to Permeation: Introducing the Meso-fluidic Chip for Permeability Assessment (MCPA). J Pharm Sci 2024; 113:1319-1329. [PMID: 38104888 DOI: 10.1016/j.xphs.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
In response to the growing ethical and environmental concerns associated with animal testing, numerous in vitro tools of varying complexity and biorelevance have been developed and adopted in pharmaceutical research and development. In this work, we present one of these tools, i.e., the Meso-fluidic Chip for Permeability Assessment (MCPA), for the first time. The MCPA combines an artificial barrier (PermeaPad®) with an organ-on-chip device (MIVO®) and real-time automated concentration measurements, to yield a sustainable, yet effortless method for permeation testing. The system offers three major physiological aspects, i.e., a biomimetic membrane, an optimal membrane interfacial area-to-donor-volume-ratio (A/V) and a physiological flow on the acceptor/basolateral side, which makes the MPCA an ideal candidate for mechanistic studies and excellent in vivo bioavailability predictions. We validated the method with a handful of assorted drug compounds in unstirred and stirred donor conditions, before exploring its applicability as a tool for dissolution/permeation testing on a BCS class III/I drug (pyrazinamide) crystalline adducts and BCS class II/IV (hydrocortisone) amorphous solid dispersions. The results were highly reproducible and clearly displayed the method's potential for evaluating the performance of enabling formulations, and possibly even predicting in vivo performance. We believe that, upon further development, the MCPA will serve as a useful in vitro tool that could push sustainability into pharmaceutics by refining, reducing and replacing animal testing in early-stage drug development.
Collapse
Affiliation(s)
- Martina M Tzanova
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway
| | - Bjarke Strøm Larsen
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway
| | - Rebecca Birolo
- Department of Chemistry and NIS centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Sara Cignolini
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Alfonso Valerio, 6/1, 34127 Trieste, Italy
| | - Ingunn Tho
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway
| | - Michele R Chierotti
- Department of Chemistry and NIS centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Alfonso Valerio, 6/1, 34127 Trieste, Italy
| | - Silvia Scaglione
- National Research Council (CNR) and React4life S.p.A., Genoa, Italy
| | - Paul C Stein
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Marianne Hiorth
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway
| | - Massimiliano Pio Di Cagno
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway.
| |
Collapse
|
4
|
Raines K, Agarwal P, Augustijns P, Alayoubi A, Attia L, Bauer-Brandl A, Brandl M, Chatterjee P, Chen H, Yu YC, Coutant C, Coutinho AL, Curran D, Dressman J, Ericksen B, Falade L, Gao Y, Gao Z, Ghosh D, Ghosh T, Govada A, Gray E, Guo R, Hammell D, Hermans A, Jaini R, Li H, Mandula H, Men S, Milsmann J, Moldthan H, Moody R, Moseson DE, Müllertz A, Patel R, Paudel K, Reppas C, Savkur R, Schaefer K, Serajuddin A, Taylor LS, Valapil R, Wei K, Weitschies W, Yamashita S, Polli JE. Drug Dissolution in Oral Drug Absorption: Workshop Report. AAPS J 2023; 25:103. [PMID: 37936002 DOI: 10.1208/s12248-023-00865-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
The in-person workshop "Drug Dissolution in Oral Drug Absorption" was held on May 23-24, 2023, in Baltimore, MD, USA. The workshop was organized into lectures and breakout sessions. Three common topics that were re-visited by various lecturers were amorphous solid dispersions (ASDs), dissolution/permeation interplay, and in vitro methods to predict in vivo biopharmaceutics performance and risk. Topics that repeatedly surfaced across breakout sessions were the following: (1) meaning and assessment of "dissolved drug," particularly of poorly water soluble drug in colloidal environments (e.g., fed conditions, ASDs); (2) potential limitations of a test that employs sink conditions for a poorly water soluble drug; (3) non-compendial methods (e.g., two-stage or multi-stage method, dissolution/permeation methods); (4) non-compendial conditions (e.g., apex vessels, non-sink conditions); and (5) potential benefit of having both a quality control method for batch release and a biopredictive/biorelevant method for biowaiver or bridging scenarios. An identified obstacle to non-compendial methods is the uncertainty of global regulatory acceptance of such methods.
Collapse
Affiliation(s)
- Kimberly Raines
- Food and Drug Administration, Center for Drug Evaluation and Research, White Oak, Maryland, USA
| | - Payal Agarwal
- Food and Drug Administration, Center for Drug Evaluation and Research, White Oak, Maryland, USA
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, ON2 Herestraat 49-Box 921, 3000, Leuven, Belgium
| | - Alaadin Alayoubi
- Food and Drug Administration, Center for Drug Evaluation and Research, White Oak, Maryland, USA
| | - Lucas Attia
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts, 02139, USA
| | | | - Martin Brandl
- University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Parnali Chatterjee
- Food and Drug Administration, Center for Drug Evaluation and Research, White Oak, Maryland, USA
| | - Hansong Chen
- Food and Drug Administration, Center for Drug Evaluation and Research, White Oak, Maryland, USA
| | - Yuly Chiang Yu
- University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Carrie Coutant
- Eli Lilly and Company, 893 Delaware St, Indianapolis, Indiana, 46225, USA
| | | | - David Curran
- GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania, 19046, USA
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Pharmacology and Medicine, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Bryan Ericksen
- Food and Drug Administration, Center for Drug Evaluation and Research, White Oak, Maryland, USA
| | - Leah Falade
- Food and Drug Administration, Center for Drug Evaluation and Research, White Oak, Maryland, USA
| | - Yi Gao
- AbbVie Inc, 1 North Waukegan Road, North Chicago, Illinois, 60064, USA
| | - Zongming Gao
- Food and Drug Administration, Center for Drug Evaluation and Research, St. Louis, Missouri, USA
| | - Debasis Ghosh
- Food and Drug Administration, Center for Drug Evaluation and Research, White Oak, Maryland, USA
| | - Tapash Ghosh
- Food and Drug Administration, Center for Drug Evaluation and Research, White Oak, Maryland, USA
| | - Anitha Govada
- Food and Drug Administration, Center for Drug Evaluation and Research, White Oak, Maryland, USA
| | - Elizabeth Gray
- Food and Drug Administration, Center for Drug Evaluation and Research, White Oak, Maryland, USA
| | - Ruiqiong Guo
- Takeda Pharmaceuticals, 650 E Kendall St, Cambridge, Massachusetts, 02142, USA
| | - Dana Hammell
- University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Andre Hermans
- Merck & Co. Inc., 2025 E Scott Ave, Rahway, New Jersey, 07065, USA
| | - Rohit Jaini
- Pfizer Inc., 1 Portland St, Cambridge, Massachusetts, 02139, USA
| | - Hanlin Li
- Vertex Pharmaceuticals, 50 Northern Ave, Boston, Massachusetts, 02210, USA
| | - Haritha Mandula
- Food and Drug Administration, Center for Drug Evaluation and Research, White Oak, Maryland, USA
| | - Shuaiqian Men
- University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Johanna Milsmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400, Biberach an der Riss, Germany
| | - Huong Moldthan
- Food and Drug Administration, Center for Drug Evaluation and Research, White Oak, Maryland, USA
| | - Rebecca Moody
- Food and Drug Administration, Center for Drug Evaluation and Research, White Oak, Maryland, USA
| | - Dana E Moseson
- Pfizer Inc., 558 Eastern Point Rd., Groton, Connecticut, 06340, USA
| | - Anette Müllertz
- University of Copenhagen, Nørregade 10, 1165, København, Denmark
| | - Roshni Patel
- University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Kalpana Paudel
- Food and Drug Administration, Center for Drug Evaluation and Research, White Oak, Maryland, USA
| | - Christos Reppas
- National and Kapodistrian University of Athens, 157 72, Athens, Greece
| | - Rajesh Savkur
- Food and Drug Administration, Center for Drug Evaluation and Research, White Oak, Maryland, USA
| | - Kerstin Schaefer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400, Biberach an der Riss, Germany
| | - Abu Serajuddin
- Department of Pharmaceutical Sciences, St John's University, 8000 Utopia Parkway, Queens, New York, USA
| | - Lynne S Taylor
- Purdue University, 610 Purdue Mall, West Lafayette, Indiana, 47907, USA
| | - Rutu Valapil
- University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Kevin Wei
- Food and Drug Administration, Center for Drug Evaluation and Research, White Oak, Maryland, USA
| | | | - Shinji Yamashita
- Ritsumeikan University, 56-1 Tojiin Kitamachi, Kita Ward, Kyoto, 603-8577, Japan
| | - James E Polli
- University of Maryland School of Pharmacy, Baltimore, Maryland, USA.
| |
Collapse
|
5
|
Tzanova MM, Nguyen L, Moretti F, Grassi M, Magnano GC, Voinovich D, Stein PC, Hiorth M, di Cagno MP. Interpreting permeability as a function of free drug fraction: The case studies of cyclodextrins and liposomes. Eur J Pharm Sci 2023; 189:106559. [PMID: 37544334 DOI: 10.1016/j.ejps.2023.106559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
In order to solubilize poorly soluble active pharmaceutical ingredients, various strategies have been implemented over the years, including the use of nanocarriers, such as cyclodextrins and liposomes. However, improving a drug's apparent solubility does not always translate to enhanced bioavailability. This work aimed to investigate to which extent complexation with cyclodextrins and incorporation into liposomes influence drug in vitro permeability and to find a mechanistic description of the permeation process. For this purpose, we investigated hydroxypropyl-β-cyclodextrin (HP-β-CD) and phosphatidylcholine liposomes formulations of three chemically diverse compounds (atenolol, ketoprofen and hydrocortisone). We studied drug diffusion of the formulations by UV-localized spectroscopy and advanced data fitting to extract parameters such as diffusivity and bound-/free drug fractions. We then correlated this information with in vitro drug permeability obtained with the novel PermeaPadⓇ barrier. The results showed that increased concentration of HP-β-CD leads to increased solubilization of the poorly soluble unionized ketoprofen, as well as hydrocortisone. However, this net increment of apparent solubility was not proportional to the increased flux measured. On the other hand, normalising the flux over the empirical free drug concentration, i.e., the free fraction, gave a meaningful absolute permeability coefficient. The results achieved for the liposomal formulation were consistent with the finding on cyclodextrins. In conclusion, we proved the adequacy and usefulness of our method for calculating free drug fractions in the examined enabling formulations, supporting the validity of the established drug diffusion/permeation theory that the unbounded drug fraction is the main driver for drug permeation across a membrane.
Collapse
Affiliation(s)
- Martina M Tzanova
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway
| | - Lisa Nguyen
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway
| | - Federica Moretti
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/1, 34127 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/1, 34127 Trieste, Italy
| | - Greta Camilla Magnano
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Alfonso Valerio, 6/1, 34127 Trieste, Italy
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Alfonso Valerio, 6/1, 34127 Trieste, Italy
| | - Paul C Stein
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Marianne Hiorth
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway
| | - Massimiliano Pio di Cagno
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway.
| |
Collapse
|
6
|
Reppas C, Kuentz M, Bauer-Brandl A, Carlert S, Dallmann A, Dietrich S, Dressman J, Ejskjaer L, Frechen S, Guidetti M, Holm R, Holzem FL, Karlsson Ε, Kostewicz E, Panbachi S, Paulus F, Senniksen MB, Stillhart C, Turner DB, Vertzoni M, Vrenken P, Zöller L, Griffin BT, O'Dwyer PJ. Leveraging the use of in vitro and computational methods to support the development of enabling oral drug products: An InPharma commentary. Eur J Pharm Sci 2023; 188:106505. [PMID: 37343604 DOI: 10.1016/j.ejps.2023.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
Due to the strong tendency towards poorly soluble drugs in modern development pipelines, enabling drug formulations such as amorphous solid dispersions, cyclodextrins, co-crystals and lipid-based formulations are frequently applied to solubilize or generate supersaturation in gastrointestinal fluids, thus enhancing oral drug absorption. Although many innovative in vitro and in silico tools have been introduced in recent years to aid development of enabling formulations, significant knowledge gaps still exist with respect to how best to implement them. As a result, the development strategy for enabling formulations varies considerably within the industry and many elements of empiricism remain. The InPharma network aims to advance a mechanistic, animal-free approach to the assessment of drug developability. This commentary focuses current status and next steps that will be taken in InPharma to identify and fully utilize 'best practice' in vitro and in silico tools for use in physiologically based biopharmaceutic models.
Collapse
Affiliation(s)
- Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Martin Kuentz
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz CH 4132, Switzerland
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | | | - André Dallmann
- Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Shirin Dietrich
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Lotte Ejskjaer
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Sebastian Frechen
- Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Matteo Guidetti
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark; Solvias AG, Department for Solid-State Development, Römerpark 2, 4303 Kaiseraugst, Switzerland
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Florentin Lukas Holzem
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark; Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | | | - Edmund Kostewicz
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Shaida Panbachi
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz CH 4132, Switzerland
| | - Felix Paulus
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Malte Bøgh Senniksen
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany; Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Cordula Stillhart
- Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | | | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Paul Vrenken
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece; Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Laurin Zöller
- AstraZeneca R&D, Gothenburg, Sweden; Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | | | | |
Collapse
|
7
|
Jacobsen AC, Visentin S, Butnarasu C, Stein PC, di Cagno MP. Commercially Available Cell-Free Permeability Tests for Industrial Drug Development: Increased Sustainability through Reduction of In Vivo Studies. Pharmaceutics 2023; 15:pharmaceutics15020592. [PMID: 36839914 PMCID: PMC9964961 DOI: 10.3390/pharmaceutics15020592] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Replacing in vivo with in vitro studies can increase sustainability in the development of medicines. This principle has already been applied in the biowaiver approach based on the biopharmaceutical classification system, BCS. A biowaiver is a regulatory process in which a drug is approved based on evidence of in vitro equivalence, i.e., a dissolution test, rather than on in vivo bioequivalence. Currently biowaivers can only be granted for highly water-soluble drugs, i.e., BCS class I/III drugs. When evaluating poorly soluble drugs, i.e., BCS class II/IV drugs, in vitro dissolution testing has proved to be inadequate for predicting in vivo drug performance due to the lack of permeability interpretation. The aim of this review was to provide solid proofs that at least two commercially available cell-free in vitro assays, namely, the parallel artificial membrane permeability assay, PAMPA, and the PermeaPad® assay, PermeaPad, in different formats and set-ups, have the potential to reduce and replace in vivo testing to some extent, thus increasing sustainability in drug development. Based on the literature review presented here, we suggest that these assays should be implemented as alternatives to (1) more energy-intense in vitro methods, e.g., refining/replacing cell-based permeability assays, and (2) in vivo studies, e.g., reducing the number of pharmacokinetic studies conducted on animals and humans. For this to happen, a new and modern legislative framework for drug approval is required.
Collapse
Affiliation(s)
- Ann-Christin Jacobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy
| | - Cosmin Butnarasu
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy
| | - Paul C. Stein
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Massimiliano Pio di Cagno
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Sælands Vei 3, 0371 Oslo, Norway
- Correspondence:
| |
Collapse
|
8
|
Eriksen JB, Jacobsen AC, Christensen KT, Bauer-Brandl A, Brandl M. 'Stirred not Shaken!' Comparing Agitation Methods for Permeability Studies Using a Novel Type of 96-Well Sandwich-Plates. J Pharm Sci 2022; 111:32-40. [PMID: 34102204 DOI: 10.1016/j.xphs.2021.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
In order to achieve a high sample throughput, permeation experiments are often carried out using 96-well sandwich plates. Even though agitation is regarded as important, permeation studies in 96-well format are often carried out without agitation since orbital shaking, the most common agitation method for 96-well plates, has been reported to create difficulties (e.g., well-to-well cross-talk), and high cost and low availability limits the use of other agitation techniques (e.g., magnetic stirring). This study investigates how orbital shaking and magnetic stirring affect the apparent permeability of model compounds with different water-solubilities (methylene blue, carbamazepine, and albendazole) using a novel 96-well sandwich plate comprising a cellulose-hydrate membrane (PermeaPlain® plate). Orbital shaking was found less efficient than magnetic stirring in terms of homogeneously distributing a small volume of dye within the donor compartment. Furthermore, in terms of achieving maximum trans-barrier flux, magnetic stirring was found a more effective agitation method than orbital shaking. Obviously, with orbital shaking the medium in the bottom compartment of the sandwich plates never was mixed in-phase. The impact of insufficient mixing on permeation was found strongest with the most lipophilic compound, which correlates with literature reports that the contribution of the unstirred water layer towards the overall resistance of the barrier is most expressed in case of lipophilic drugs. Finally, it was tested how different liquid volumes in the bottom compartment of the plates affect the well-to-well cross-talk during permeation experiments under orbital shaking. This study revealed that 250-300 µL should be used in the bottom compartment of the sandwich plates to reduce well-to-well cross-talk when using orbital shaking for agitation.
Collapse
Affiliation(s)
| | - Ann-Christin Jacobsen
- Department of Physics Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | | | - Annette Bauer-Brandl
- Department of Physics Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Martin Brandl
- Department of Physics Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
9
|
Best practices in current models mimicking drug permeability in the gastrointestinal tract - an UNGAP review. Eur J Pharm Sci 2021; 170:106098. [PMID: 34954051 DOI: 10.1016/j.ejps.2021.106098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
The absorption of orally administered drug products is a complex, dynamic process, dependent on a range of biopharmaceutical properties; notably the aqueous solubility of a molecule, stability within the gastrointestinal tract (GIT) and permeability. From a regulatory perspective, the concept of high intestinal permeability is intrinsically linked to the fraction of the oral dose absorbed. The relationship between permeability and the extent of absorption means that experimental models of permeability have regularly been used as a surrogate measure to estimate the fraction absorbed. Accurate assessment of a molecule's intestinal permeability is of critical importance during the pharmaceutical development process of oral drug products, and the current review provides a critique of in vivo, in vitro and ex vivo approaches. The usefulness of in silico models to predict drug permeability is also discussed and an overview of solvent systems used in permeability assessments is provided. Studies of drug absorption in humans are an indirect indicator of intestinal permeability, but in vitro and ex vivo tools provide initial screening approaches are important tools for direct assessment of permeability in drug development. Continued refinement of the accuracy of in silico approaches and their validation with human in vivo data will facilitate more efficient characterisation of permeability earlier in the drug development process and will provide useful inputs for integrated, end-to-end absorption modelling.
Collapse
|
10
|
Ramachandran G, Sudheesh MS. Role of Permeability on the Biopredictive Dissolution of Amorphous Solid Dispersions. AAPS PharmSciTech 2021; 22:243. [PMID: 34595565 DOI: 10.1208/s12249-021-02125-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
An ideal dissolution test for amorphous solid dispersions (ASDs) should reflect physicochemical, physiological, and hydrodynamic conditions which accurately represent in vivo dissolution. However, this is confounded by the evolution of different molecular and colloidal species during dissolution, generating a supersaturated state of the drug. The supersaturated state of a drug is thermodynamically unstable which drives the process of precipitation resulting in a loss of solubility advantage. Maintaining a supersaturated state of the drug with the help of precipitation inhibiting excipients is a key component in the design of ASDs. Therefore, a biopredictive dissolution test is critical for proper risk assessment during the development of an optimal ASD formulation. One of the overlooked components of biopredictive dissolution is the role of drug permeability. The kinetic changes in the phase behavior of a drug during dissolution of ASDs are influenced by drug permeability across a membrane. Conventionally, drug dissolution and permeation are analyzed separately although they occur simultaneously in vivo. The kinetic phase changes occurring during dissolution of ASDs can influence the thermodynamic activity and membrane flux of a drug. The present review evaluates the feasibility, predictability, and practicability of permeability/dissolution for the optimal development and risk assessment of ASD formulations.
Collapse
|
11
|
Palmelund H, Eriksen JB, Bauer-Brandl A, Rantanen J, Löbmann K. Enabling formulations of aprepitant: in vitro and in vivo comparison of nanocrystalline, amorphous and deep eutectic solvent based formulations. Int J Pharm X 2021; 3:100083. [PMID: 34151250 PMCID: PMC8193149 DOI: 10.1016/j.ijpx.2021.100083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/14/2022] Open
Abstract
A deep eutectic solvent (DES) is a eutectic system consisting of hydrogen bond donor and acceptor has been suggested as a promising formulation strategy for poorly soluble drugs. A DES consisting of choline chloride and levulinic acid in a 1:2 molar ratio was used to formulate a liquid solution of the model drug aprepitant. This formulation was tested in vitro (drug release and permeability) and in vivo (rat model) and compared with the performance of amorphous aprepitant and the commercial aprepitant nanocrystalline formulation. In this study a DES formulation is compared for the first time directly to other established enabling formulations. The in vitro drug release study demonstrated that the DES formulation and the amorphous form both were able to induce an apparent supersaturation followed by subsequent drug precipitation. To mitigate the risk of precipitation, HPMC was predissolved in the dissolution medium, which successfully reduced the degree of precipitation. In line with the results from the release study, an in vitro permeation study showed superior permeation of the drug from the DES formulation and from the amorphous form compared to the nanocrystalline formulation. However, the promising in vitro findings could not be directly translated into an increased in vivo performance in rats compared to the nanocrystalline formulation. Whilst the DES formulation (34 ± 4%) showed a higher oral bioavailability compared to amorphous aprepitant (20 ± 4%), it was on par with the oral bioavailability obtained from the nanocrystalline formulation (36 ± 2%).
Collapse
Affiliation(s)
- Henrik Palmelund
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jonas B Eriksen
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy Campusvej 55, 5230 Odense, Denmark
| | - Annette Bauer-Brandl
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy Campusvej 55, 5230 Odense, Denmark
| | - Jukka Rantanen
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Korbinian Löbmann
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
12
|
Exploring precipitation inhibitors to improve in vivo absorption of cinnarizine from supersaturated lipid-based drug delivery systems. Eur J Pharm Sci 2021; 159:105691. [PMID: 33359616 DOI: 10.1016/j.ejps.2020.105691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Supersaturated lipid-based drug delivery systems are increasingly being explored as a bio-enabling formulation approach, particularly in preclinical evaluation of poorlywater-soluble drugs. While increasing the drug load through thermally-induced supersaturation resulted in enhanced in vivo exposure for some drugs, for others, such as cinnarizine, supersaturated lipid-based systems have not been found beneficial to increase the in vivo bioavailability. We hypothesized that incorporation of precipitation inhibitors to reduce drug precipitation may address this limitation. Therefore, pharmacokinetic profiles of cinnarizine supersaturated lipid-based drug delivery systems with or without precipitation inhibitors were compared. Five precipitation inhibitors were selected for investigation based on a high throughput screening of twenty-one excipients. In vivo results showed that addition of 5% precipitation inhibitors to long chain monoglyceride (LCM) or medium chain monoglyceride (MCM) formulations showed a general trend of increases in cinnarizine bioavailability, albeit only statistically significantly increased for Poloxamer 407 + LCM system (i.e. 2.7-fold increase in AUC0-24h compared to LCM without precipitation inhibitors). It appeared that precipitation inhibitors mitigated the risk of in vivo precipitation of cinnarizine from sLBDDS and overall, bioavailability was comparable to that previously reported for cinnarizine after dosing of non-supersaturated lipid systems. In summary, for drugs which are prone to precipitation from supersaturated lipid-based drug delivery systems, such as cinnarizine, inclusion of precipitation inhibitors mitigates this risk and provides the opportunity to maximize exposure which is ideally suited in early efficacy and toxicology evaluation.
Collapse
|
13
|
Co-Amorphous Formulations of Furosemide with Arginine and P-Glycoprotein Inhibitor Drugs. Pharmaceutics 2021; 13:pharmaceutics13020171. [PMID: 33514009 PMCID: PMC7912042 DOI: 10.3390/pharmaceutics13020171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, the amino acid arginine (ARG) and P-glycoprotein (P-gp) inhibitors verapamil hydrochloride (VER), piperine (PIP) and quercetin (QRT) were used as co-formers for co-amorphous mixtures of a Biopharmaceutics classification system (BCS) class IV drug, furosemide (FUR). FUR mixtures with VER, PIP and QRT were prepared by solvent evaporation, and mixtures with ARG were prepared by spray drying in 1:1 and 1:2 molar ratios. The solid-state properties of the mixtures were characterized with X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) in stability studies under different storage conditions. Simultaneous dissolution/permeation studies were conducted in side-by-side diffusion cells with a PAMPA (parallel artificial membrane permeability assay) membrane as a permeation barrier. It was observed with XRPD that ARG, VER and PIP formed co-amorphous mixtures with FUR at both molar ratios. DSC and FTIR revealed single glass transition values for the mixtures (except for FUR:VER 1:2), with the formation of intermolecular interactions between the components, especially salt formation between FUR and ARG. The co-amorphous mixtures were found to be stable for at least two months under an elevated temperature/humidity, except FUR:ARG 1:2, which was sensitive to humidity. The dissolution/permeation studies showed that only the co-amorphous FUR:ARG mixtures were able to enhance both the dissolution and permeation of FUR. Thus, it is concluded that formulating co-amorphous salts with ARG may be a promising option for poorly soluble/permeable FUR.
Collapse
|
14
|
Chung EP, Wells AR, Kiamco MM, Leung KP. Dual Asymmetric Centrifugation Efficiently Produces a Poloxamer-Based Nanoemulsion Gel for Topical Delivery of Pirfenidone. AAPS PharmSciTech 2020; 21:265. [PMID: 33006045 PMCID: PMC7529632 DOI: 10.1208/s12249-020-01798-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
This study used dual asymmetric centrifugation (DAC) to produce a topical vehicle for Pirfenidone (Pf; 5-methyl-1-phenyl-2[1H]-pyridone)—a Food and Drug Administration-approved antifibrotic drug indicated for idiopathic fibrosis treatment. Pf was loaded (8 wt%) in a poloxamer nanoemulsion gel (PNG) formulation consisting of water (47.8 wt%), triacetin (27.6 wt%), poloxamer 407 (P407, 13.8 wt%), polysorbate 80 (1.8 wt%), and benzyl alcohol (0.9 wt%). To our knowledge, poloxamer gels are typically processed with either high-shear methods or temperature regulation and have not been emulsified using DAC. Using a single-step emulsification process, 2 min mixed at 2500 RPM resulted in the lowest Pf loading variability with a relative standard deviation (RSD) of 0.96% for a 1.5 g batch size. Batch sizes of 15 g and 100 g yield higher RSD of 4.18% and 3.05%, respectively, but still in compliance with USP guidelines. Ex vivo permeation in full thickness porcine skin after 24 h showed total Pf permeation of 404.90 ± 67.07 μg/cm2. Tested in vitro on human dermal fibroblasts stimulated with transforming growth factor-beta 1 (TGF-β1), Pf-PNG resulted in a > 2 fold decrease in α-SMA expression over vehicle control demonstrating that formulated Pf retained its biological activity. One-month stability testing at 25°C/60% relative humidity (RH) and 40°C/75% RH showed that % drug content, release kinetics, and biological activity were largely unchanged for both conditions; however, pH decreased from 6.7 to 5.5 (25°C/60% RH) and 4.5 (40°C/75% RH) after 1 month. Overall, these data demonstrate the utility of DAC to rapidly and reproducibly prepare lab-scale batches of emulsified gels for pharmaceutical formulation development.
Collapse
|
15
|
The tangential flow absorption model (TFAM) – A novel dissolution method for evaluating the performance of amorphous solid dispersions of poorly water-soluble actives. Eur J Pharm Biopharm 2020; 154:74-88. [DOI: 10.1016/j.ejpb.2020.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/01/2020] [Accepted: 06/19/2020] [Indexed: 11/19/2022]
|
16
|
Jacobsen AC, Ejskjær L, Brandl M, Holm R, Bauer-Brandl A. Do Phospholipids Boost or Attenuate Drug Absorption? In Vitro and In Vivo Evaluation of Mono- and Diacyl Phospholipid-Based Solid Dispersions of Celecoxib. J Pharm Sci 2020; 110:198-207. [PMID: 32827494 DOI: 10.1016/j.xphs.2020.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Phospholipids are amphiphilic lipids with versatile properties making them promising excipients for enabling formulations for oral drug delivery. Unfortunately, systematic studies on how phospholipid type and content affect oral absorption are rare. Often, only one phospholipid type is used for the formulation development and only one formulation, optimized according to in vitro parameters, is included in oral bioavailability studies. Using this approach, it is unclear if a certain in vitro parameter is predictive for the in vivo performance. In this study, a labor-saving in vitro permeation screening method was combined with a pharmacokinetic study in rats to for the first time systematically compare two types of phospholipid-based solid dispersions. The dispersions contained the drug celecoxib and monoacyl or diacyl phosphatidylcholine at different drug-to-phospholipid ratios. The in vitro screening revealed: 1) none of the formulations with high phospholipid content increased permeation, 2) phospholipid content was negatively correlated with permeation, and 3) mono and diacyl-phosphatidylcholine formulations performed equally. The pharmacokinetic study revealed: 1) At low phospholipid content absorption was enhanced, 2) phospholipid content was negatively correlated with absorption, and 3) monoacyl and diacyl phosphatidylcholine formulations performed equally. Apart from the reference (suspension), the in vitro permeation screening thus predicted the formulations in vivo performance.
Collapse
Affiliation(s)
- Ann-Christin Jacobsen
- Drug Transport & Delivery Group, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - Lotte Ejskjær
- Drug Transport & Delivery Group, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - Martin Brandl
- Drug Transport & Delivery Group, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium; Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Annette Bauer-Brandl
- Drug Transport & Delivery Group, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark, Odense 5230, Denmark.
| |
Collapse
|
17
|
Castillo-Henríquez L, Vargas-Zúñiga R, Pacheco-Molina J, Vega-Baudrit J. Electrospun nanofibers: A nanotechnological approach for drug delivery and dissolution optimization in poorly water-soluble drugs. ADMET AND DMPK 2020; 8:325-353. [PMID: 35300196 PMCID: PMC8915594 DOI: 10.5599/admet.844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/02/2020] [Indexed: 01/02/2023] Open
Abstract
Electrospinning is a novel and sophisticated technique for the production of nanofibers with high surface area, extreme porous structure, small pore size, and surface morphologies that make them suitable for biomedical and bioengineering applications, which can provide solutions to current drug delivery issues of poorly water-soluble drugs. Electrospun nanofibers can be obtained through different methods asides from the conventional one, such as coaxial, multi-jet, side by side, emulsion, and melt electrospinning. In general, the application of an electric potential to a polymer solution causes a charged liquid jet that moves downfield to an oppositely charged collector, where the nanofibers are deposited. Plenty of polymers that differ in their origin, degradation character and water affinity are used during the process. Physicochemical properties of the drug, polymer(s), and solvent systems need to be addressed to guarantee successful manufacturing. Therefore, this review summarizes the recent progress in electrospun nanofibers for their use as a nanotechnological tool for dissolution optimization and drug delivery systems for poorly water-soluble drugs.
Collapse
Affiliation(s)
- Luis Castillo-Henríquez
- Physical Chemistry Laboratory, Faculty of Pharmacy, University of Costa Rica, 11501-2060, San José, Costa Rica
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), 1174-1200, San José, Costa Rica
| | - Rolando Vargas-Zúñiga
- Physical Chemistry Laboratory, Faculty of Pharmacy, University of Costa Rica, 11501-2060, San José, Costa Rica
| | - Jorge Pacheco-Molina
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Costa Rica, 11501-2060, San José, Costa Rica
| | - Jose Vega-Baudrit
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), 1174-1200, San José, Costa Rica
- Laboratory of Polymers (POLIUNA), Chemistry School, National University of Costa Rica, 86-3000, Heredia, Costa Rica
| |
Collapse
|