1
|
Zhang M, Wang C, Pan J, Wang M, Cui H, Zhao X. Preparation and evaluation of oral insulin nanocapsule delivery systems. Int J Biol Macromol 2024; 290:138727. [PMID: 39672446 DOI: 10.1016/j.ijbiomac.2024.138727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Insulin therapy is essential for regulating blood sugar levels. Conventional subcutaneous injection is prone to psychological stress, local tissue damage and severe blood glucose fluctuations, and thus the development of oral insulin technology has become an alternative therapy. However, oral insulin faces challenges such as difficult absorption, poor adhesion, low bioavailability, and short duration of action, due to the large molecular weight, low permeability, and easily degradable by enzymes and gastric acids. In this study, oral insulin nanocapsule delivery systems (Orl-Ins-NPs) were developed by using polylactic acid-co-glycolic acid (PLGA) as the encapsulation material for insulin loading. After preparation, optimization and characterization, the mean size of Orl-Ins-NPs was 140.08 nm, the encapsulation efficiency of the system was 54.3 %, and the loading capacity of insulin was 2.2 %. In addition, cationic modification with chitosan/ polyethyleneimine promoted adhesion and permeation of the intestinal mucus layer, and surface coating with pH-responsive methyl methacrylate trimethylamine ethyl chloride copolymer achieved 100 % gastric protection. The results of rat blood glucose test showed that, subcutaneous injection of the control group reduced blood glucose concentrations within 1 h and returned to initial levels within 4 h, while Orl-Ins-NPs slowly reduced blood glucose concentration to 51.3 % of the initial level and maintains stability within 10 h. Orl-Ins-NPs exhibited good physicochemical stabilities, sustained release property, improved in vitro acid resistance, as well as long-term in vivo hypoglycemic effect. This system demonstrates its potential clinical application in oral insulin and other protein drugs delivery.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junqian Pan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengjie Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Soe HMSH, Loftsson T, Jansook P. The application of cyclodextrins in drug solubilization and stabilization of nanoparticles for drug delivery and biomedical applications. Int J Pharm 2024; 666:124787. [PMID: 39362296 DOI: 10.1016/j.ijpharm.2024.124787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Nanoparticles (NPs) have gained significant attention in recent years due to their potential applications in pharmaceutical formulations, drug delivery systems, and various biomedical fields. The versatility of colloidal NPs, including their ability to be tailored with various components and synthesis methods, enables drug delivery systems to achieve controlled release patterns, improved solubility, and increased bioavailability. The review discusses various types of NPs, such as nanocrystals, lipid-based NPs, and inorganic NPs (i.e., gold, silver, magnetic NPs), each offering unique advantages for drug delivery. Despite the promising potential of NPs, challenges such as physical instability and the need for surface stabilization remain. Strategies to overcome these challenges include the use of surfactants, polymers, and cyclodextrins (CDs). This review highlights the role of CDs in stabilizing colloidal NPs and enhancing drug solubility. The combination of CDs with NPs presents a synergistic approach that enhances drug delivery and broadens the range of biomedical applications. Additionally, the potential of CDs to enhance the stability and therapeutic efficacy of colloidal NPs, making them promising candidates for advanced drug delivery systems, is comprehensively reviewed.
Collapse
Affiliation(s)
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
3
|
Yang X, Lin R, Feng C, Kang Q, Yu P, Deng Y, Jin Y. Research Progress on Peptide Drugs for Type 2 Diabetes and the Possibility of Oral Administration. Pharmaceutics 2024; 16:1353. [PMID: 39598478 PMCID: PMC11597531 DOI: 10.3390/pharmaceutics16111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Diabetes is a global disease that can lead to a range of complications. Currently, the treatment of type 2 diabetes focuses on oral hypoglycemic drugs and insulin analogues. Studies have shown that drugs such as oral metformin are useful in the treatment of diabetes but can limit the liver's ability to release sugar. The development of glucose-lowering peptides has provided new options for the treatment of type 2 diabetes. Peptide drugs have low oral utilization due to their easy degradation, short half-life, and difficulty passing through the intestinal mucosa. Therefore, improving the oral utilization of peptide drugs remains an urgent problem. This paper reviews the research progress of peptide drugs in the treatment of diabetes mellitus and proposes that different types of nano-formulation carriers, such as liposomes, self-emulsifying drug delivery systems, and polymer particles, should be combined with peptide drugs for oral administration to improve their absorption in the gastrointestinal tract.
Collapse
Affiliation(s)
- Xinxin Yang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (R.L.)
| | - Ruiting Lin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (R.L.)
| | - Changzhuo Feng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (C.F.); (Q.K.); (P.Y.)
| | - Qiyuan Kang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (C.F.); (Q.K.); (P.Y.)
| | - Peng Yu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (C.F.); (Q.K.); (P.Y.)
| | - Yongzhi Deng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (R.L.)
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (R.L.)
| |
Collapse
|
4
|
Yamin M, Ghouri ZK, Rohman N, Syed JA, Skelton A, Ahmed K. Unravelling pH/pKa influence on pH-responsive drug carriers: Insights from ibuprofen-silica interactions and comparative analysis with carbon nanotubes, sulfasalazine, and alendronate. J Mol Graph Model 2024; 128:108720. [PMID: 38324969 DOI: 10.1016/j.jmgm.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
This study employs density functional theory to explore the interaction between ibuprofen (IBU) and silica, emphasizing the influence of the trimethylsilyl (TMS) functional group for designing pH-responsive drug carriers. The surface (S) and drug (D) molecules' neutral (0) or deprotonated (-1) states were taken into consideration during the investigation. The likelihood of these states was determined based on the pKa values and the desired pH conditions. To calculate the pH-dependent interaction energy (EintpH), four different situations have been identified: S0D0, S0D-1, S-1D0, and S-1D-1.The electrostatic component of interaction energy aligns favorably with its theoretical value in both the Debye-Hückel and Grahame models. The investigation has gathered first-hand experimental data on the drug loading and release of pH-responsive mesoporous silica nanoparticles. Effective drug loading was observed in the acidic environment of the stomach (pH 2-5), followed by a release in the slightly basic to neutral pH of the small intestine (pH 7.4), These findings align with existing literature. The results revealed horizontal drug adherence on silica surfaces, improving binding capabilities. Comparisons were made with combinations involving carboxylated carbon nanotubes and ibuprofen, silica, and sulfasalazine, and silica and alendronate, exploring drug loading/release dynamics associated with positive/negative interaction energies. The investigation, supported by experimental data, contributes valuable insights into pH-responsive mesoporous silica nanoparticles, offering new design possibilities for drug carriers.
Collapse
Affiliation(s)
- Marriam Yamin
- Department of Biosciences, Salim Habib University, Karachi, Pakistan
| | - Zafar Khan Ghouri
- L. E. J. Nanotechnology Centre, H. E. J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Net Zero Industry Innovation Centre, Teesside University, Middlesbrough, Tees Valley TS1 3BX, UK
| | - Nashiour Rohman
- Department of Chemistry, College of Science, Sultan Qaboos University, P. O. Box 36, Al-khoudh, Muscat P. C. 123, Oman
| | - Junaid Ali Syed
- L. E. J. Nanotechnology Centre, H. E. J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Adam Skelton
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
| | - Khalid Ahmed
- L. E. J. Nanotechnology Centre, H. E. J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
5
|
Qi Q, Shen Q, Geng J, An W, Wu Q, Wang N, Zhang Y, Li X, Wang W, Yu C, Li L. Stimuli-responsive biodegradable silica nanoparticles: From native structure designs to biological applications. Adv Colloid Interface Sci 2024; 324:103087. [PMID: 38278083 DOI: 10.1016/j.cis.2024.103087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024]
Abstract
Due to their inherent advantages, silica nanoparticles (SiNPs) have greatly potential applications as bioactive materials in biosensors/biomedicine. However, the long-term and nonspecific accumulation in healthy tissues may give rise to toxicity, thereby impeding their widespread clinical application. Hence, it is imperative and noteworthy to develop biodegradable and clearable SiNPs for biomedical purposes. Recently, the design of multi-stimuli responsive SiNPs to improve degradation efficiency under specific pathological conditions has increased their clinical trial potential as theranostic nanoplatform. This review comprehensively summaries the rational design and recent progress of biodegradable SiNPs under various internal and external stimuli for rapid in vivo degradation and clearance. In addition, the factors that affect the biodegradation of SiNPs are also discussed. We believe that this systematic review will offer profound stimulus and timely guide for further research in the field of SiNP-based nanosensors/nanomedicine.
Collapse
Affiliation(s)
- Qianhui Qi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Jiaying Geng
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Weizhen An
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu Zhang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xue Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
6
|
Janjua TI, Cao Y, Kleitz F, Linden M, Yu C, Popat A. Silica nanoparticles: A review of their safety and current strategies to overcome biological barriers. Adv Drug Deliv Rev 2023; 203:115115. [PMID: 37844843 DOI: 10.1016/j.addr.2023.115115] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Silica nanoparticles (SNP) have gained tremendous attention in the recent decades. They have been used in many different biomedical fields including diagnosis, biosensing and drug delivery. Medical uses of SNP for anti-cancer, anti-microbial and theranostic applications are especially prominent due to their exceptional performance to deliver many different small molecules and recently biologics (mRNA, siRNA, antigens, antibodies, proteins, and peptides) at targeted sites. The physical and chemical properties of SNP such as large specific surface area, tuneable particle size and porosity, excellent biodegradability and biocompatibility make them an ideal drug delivery and diagnostic platform. Based on the available data and the pre-clinical performance of SNP, recent interest has driven these innovative materials towards clinical application with many of the formulations already in Phase I and Phase II trials. Herein, the progress of SNP in biomedical field is reviewed, and their safety aspects are analysed. Importantly, we critically evaluate the key structural characteristics of SNP to overcome different biological barriers including the blood-brain barrier (BBB), skin, tumour barrier and mucosal barrier. Future directions, potential pathways, and target areas towards rapid clinical translation of SNP are also recommended.
Collapse
Affiliation(s)
- Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Mika Linden
- Institute of Inorganic Chemistry II, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, QLD 4072, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria.
| |
Collapse
|
7
|
Schmid R, Volcic M, Fischer S, Qu Z, Barth H, Popat A, Kirchhoff F, Lindén M. Surface functionalization affects the retention and bio-distribution of orally administered mesoporous silica nanoparticles in a colitis mouse model. Sci Rep 2023; 13:20175. [PMID: 37978264 PMCID: PMC10656483 DOI: 10.1038/s41598-023-47445-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Besides the many advantages of oral drug administration, challenges like premature drug degradation and limited bioavailability in the gastro-intestinal tract (GIT) remain. A prolonged residence time in the GIT is beneficial for enhancing the therapeutic outcome when treating diseases associated with an increased intestinal clearance rate, like inflammatory bowel disease (IBD). In this study, we synthesized rod-shaped mesoporous silica nanoparticles (MSNs) functionalized with polyethylene glycol (PEG) or hyaluronic acid (HA) and investigated their bio-distribution upon oral administration in vivo. The negatively charged, non-toxic particles showed different accumulation behavior over time in healthy mice and in mice with dextran sulfate sodium (DSS)-induced intestinal inflammation. PEGylated particles were shown to accumulate in the lower intestinal tract of healthy animals, whereas inflammation promoted retention of HA-functionalized particles in this area. Overall systemic absorption was low. However, some particles were detected in organs of mice with DSS-induced colitis, especially in the case of MSN-PEG. The in vivo findings were connected to surface chemistry-related differences in particle adhesion on Caco-2/Raji and mucus-producing Caco-2/Raji/HT29 cell co-culture epithelial models in vitro. While the particle adhesion behavior in vivo was mirrored in the in vitro results, this was not the case for the resorption results, suggesting that the in vitro model does not fully reflect the erosion of the inflamed epithelial tissue. Overall, our study demonstrates the possibility to modulate accumulation and retention of MSNs in the GIT of mice with and without inflammation through surface functionalization, which has important implications for the formulation of nanoparticle-based delivery systems for oral delivery applications.
Collapse
Affiliation(s)
- Roman Schmid
- Inorganic Chemistry II, Ulm University, 89081, Ulm, Germany
| | - Meta Volcic
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Stephan Fischer
- Institute of Experimental and Clinical Pharmacology, and Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Zhi Qu
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, and Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Mika Lindén
- Inorganic Chemistry II, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
8
|
Sahandi Zangabad P, Abousalman Rezvani Z, Tong Z, Esser L, Vasani RB, Voelcker NH. Recent Advances in Formulations for Long-Acting Delivery of Therapeutic Peptides. ACS APPLIED BIO MATERIALS 2023; 6:3532-3554. [PMID: 37294445 DOI: 10.1021/acsabm.3c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent preclinical and clinical studies have focused on the active area of therapeutic peptides due to their high potency, selectivity, and specificity in treating a broad range of diseases. However, therapeutic peptides suffer from multiple disadvantages, such as limited oral bioavailability, short half-life, rapid clearance from the body, and susceptibility to physiological conditions (e.g., acidic pH and enzymolysis). Therefore, high peptide dosages and dose frequencies are required for effective patient treatment. Recent innovations in pharmaceutical formulations have substantially improved therapeutic peptide administration by providing the following advantages: long-acting delivery, precise dose administration, retention of biological activity, and improvement of patient compliance. This review discusses therapeutic peptides and challenges in their delivery and explores recent peptide delivery formulations, including micro/nanoparticles (based on lipids, polymers, porous silicon, silica, and stimuli-responsive materials), (stimuli-responsive) hydrogels, particle/hydrogel composites, and (natural or synthetic) scaffolds. This review further covers the applications of these formulations for prolonged delivery and sustained release of therapeutic peptides and their impact on peptide bioactivity, loading efficiency, and (in vitro/in vivo) release parameters.
Collapse
Affiliation(s)
- Parham Sahandi Zangabad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Zahra Abousalman Rezvani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria 3168, Australia
| | - Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Lars Esser
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria 3168, Australia
| | - Roshan B Vasani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
9
|
Silica-Based Nanomaterials for Diabetes Mellitus Treatment. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010040. [PMID: 36671612 PMCID: PMC9855068 DOI: 10.3390/bioengineering10010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus, a chronic metabolic disease with an alarming global prevalence, is associated with several serious health threats, including cardiovascular diseases. Current diabetes treatments have several limitations and disadvantages, creating the need for new effective formulations to combat this disease and its associated complications. This motivated the development of therapeutic strategies to overcome some of these limitations, such as low therapeutic drug bioavailability or poor compliance of patients with current therapeutic methodologies. Taking advantage of silica nanoparticle characteristics such as tuneable particle and pore size, surface chemistry and biocompatibility, silica-based nanocarriers have been developed with the potential to treat diabetes and regulate blood glucose concentration. This review discusses the main topics in the field, such as oral administration of insulin, glucose-responsive devices and innovative administration routes.
Collapse
|
10
|
Krueger L, Miles JA, Popat A. 3D printing hybrid materials using fused deposition modelling for solid oral dosage forms. J Control Release 2022; 351:444-455. [PMID: 36184971 DOI: 10.1016/j.jconrel.2022.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
3D printing in the pharmaceutical and healthcare settings is expanding rapidly, such as the rapid prototyping of orthotics, dental retainers, drug-loaded implants, and pharmaceutical solid oral dosage forms. Through 3D printing, we have the capability to precisely control dose, release kinetics, and several aesthetic features of dosage forms such as colour, shape, and texture. Additionally, polypills can be created with combinations of medications in one solid dosage form at completely customisable strengths that would be extremely difficult to obtain commercially. As the technology and formulations developed through 3D printing are expanding, the development of new hybrid materials to obtain superior formulations are also gaining momentum. In this review we collate data on the importance of developing hybrid formulations of polymers, drugs and excipients necessary to produce reliable and high-quality 3D printed dosage forms with a special emphasis on fused deposition modelling (FDM). FDM technology is one of the most widely used forms of 3D printing and has demonstrated compatibility with unique polymer-based hybrids to allow for enhanced drug delivery, protection of thermolabile drugs, modifiable release kinetics, and more. The data collated covers different categories of hybrids as well as the methods used to fabricate them, and their respective effects on the properties of 3D printed solid oral dosage forms. Therefore, this review will provide an overview of upcoming and emerging trends in pharmaceutical 3D printing formulation compositions.
Collapse
Affiliation(s)
- Liam Krueger
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Jared A Miles
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia.
| |
Collapse
|
11
|
Kumeria T, Wang J, Kim B, Park JH, Zuidema JM, Klempner M, Cavacini L, Wang Y, Sailor MJ. Enteric Polymer-Coated Porous Silicon Nanoparticles for Site-Specific Oral Delivery of IgA Antibody. ACS Biomater Sci Eng 2022; 8:4140-4152. [PMID: 36210772 PMCID: PMC10036216 DOI: 10.1021/acsbiomaterials.0c01313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Porous silicon (pSi) nanoparticles are loaded with Immunoglobulin A-2 (IgA2) antibodies, and the assembly is coated with pH-responsive polymers on the basis of the Eudragit family of enteric polymers (L100, S100, and L30-D55). The temporal release of the protein from the nanocomposite formulations is quantified following an in vitro protocol simulating oral delivery: incubation in simulated gastric fluid (SGF; at pH 1.2) for 2 h, followed by a fasting state simulated intestinal fluid (FasSIF; at pH 6.8) or phosphate buffer solution (PBS; at pH 7.4). The nanocomposite formulations display a negligible release in SGF, while more than 50% of the loaded IgA2 is released in solutions at a pH of 6.8 (FasSIF) or 7.4 (PBS). Between 21 and 44% of the released IgA2 retains its functional activity. A capsule-based system is also evaluated, where the IgA2-loaded particles are packed into a gelatin capsule and the capsule is coated with either EudragitL100 or EudragitS100 polymer for a targeted release in the small intestine or the colon, respectively. The capsule-based formulations outperform polymer-coated nanoparticles in vitro, preserving 45-54% of the activity of the released protein.
Collapse
Affiliation(s)
- Tushar Kumeria
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
- School of Materials Science and Engineering, University of New South Wales-Sydney, Sydney, NSW 2052, Australia
| | - Joanna Wang
- Materials Science and Engineering Program, University of California, San Diego, California 92093, United States
| | - Byungji Kim
- Materials Science and Engineering Program, University of California, San Diego, California 92093, United States
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
| | - Jonathan M Zuidema
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Mark Klempner
- MassBiologics of the University of Massachusetts Medical School, Boston, Massachusetts 02126, United States
| | - Lisa Cavacini
- MassBiologics of the University of Massachusetts Medical School, Boston, Massachusetts 02126, United States
| | - Yang Wang
- MassBiologics of the University of Massachusetts Medical School, Boston, Massachusetts 02126, United States
| | - Michael J Sailor
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| |
Collapse
|
12
|
Cheng D, Theivendran S, Tang J, Cai L, Zhang J, Song H, Yu C. Surface chemistry of spiky silica nanoparticles tailors polyethyleneimine binding and intracellular DNA delivery. J Colloid Interface Sci 2022; 628:297-305. [PMID: 35998455 DOI: 10.1016/j.jcis.2022.08.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Cellular delivery of DNA using silica nanoparticles has attracted great attention. Typically, polyethyleneimine (PEI) is used to form a silica/PEI composite vector. Understanding the interactions at the silica and PEI interface is important for successful DNA delivery and transfection, especially for silica with different surface functionality. Herein, we report that a higher content of hydrogen boning formed between PEI molecules and phosphonate modified silica nanoparticles could slow down the PEI dissolution from the freeze-dried solid composites into aqueous solution than the bare silica counterpart. The pronounced PEI retention ability through phosphonation of silica nanoparticles effectively improves the transfection efficiency due to the high DNA binding affinity extracellularly, effective lysosome escape and high nuclear entry of both PEI and DNA intracellularly. Our study provides a fundamental understanding on designing effective silica-PEI-based nano-vectors for DNA delivery applications.
Collapse
Affiliation(s)
- Dan Cheng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shevanuja Theivendran
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Larry Cai
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
13
|
Liu H, Zhang S, Zhou Z, Xing M, Gao Y. Two-Layer Sustained-Release Microneedles Encapsulating Exenatide for Type 2 Diabetes Treatment. Pharmaceutics 2022; 14:pharmaceutics14061255. [PMID: 35745827 PMCID: PMC9230706 DOI: 10.3390/pharmaceutics14061255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Daily administration of multiple injections can cause inconvenience and reduce compliance in diabetic patients; thus, microneedle (MN) administration is favored due to its various advantages. Accordingly, the two-layer sustained-release MNs (TS-MNs) were fabricated by encapsulating exenatide (EXT) in calcium alginate (CA) gel in this work. The TS-MNs were composed of a sodium alginate (SA) tip and a water-soluble matrix-containing calcium chloride (CaCl2). Subsequently, the calcium ion (Ca2+) contained in the matrix layer penetrated the tip layer for cross-linking, leaving the drug in the cross-linked network. The patches have adequate mechanical strength to pierce the skin; then, the matrix layer is dissolved, leaving the tip layer to achieve sustained release. Additionally, the TS-MNs encapsulating EXT retained high activity during long-term storage at room temperature. The pharmacokinetic results indicated that the plasma concentrations of EXT were sustained for 48 h in the EXT MN group, which agreed with the in vitro release test. Furthermore, they had high relative bioavailability (83.04%). Moreover, the hypoglycemic effect was observed to last for approximately 24 h after a single administration and remained effective after multiple administrations without drug resistance. These results suggest that the TS-MNs are a promising depot for the sustained delivery of encapsulated EXT.
Collapse
Affiliation(s)
- Han Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Zequan Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengzhen Xing
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
- Correspondence: ; Tel.: +86-10-82543581
| |
Collapse
|
14
|
Drug molecules bridge with small gatekeeper to co-block mesoporous silica nanoparticles for drug delivery. Colloids Surf B Biointerfaces 2022; 213:112350. [PMID: 35151045 DOI: 10.1016/j.colsurfb.2022.112350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 01/15/2023]
Abstract
In this study, a filter-like blocking system based on MSN with small gatekeeper 5- mercapto-2 nitrobenzoic acid (MNBA) has developed. The MNBA grafted nanoparticle MSN-SS-MNBA shows excellent blocking performance with negligible leakage when loaded with doxorubicin (DOX), and the release profiles illustrate stimuli-responsive property when triggered by GSH. Viability experiments indicate that MSN-SS-MNBA has obvious inhibition for both Hela cells and HCT116 cells, while showing good biocompatibility for L929 cells, which suggests that the modified MNBA has a synergistic effect on cancer cells-killing. Since the small grafted molecule MNBA cannot block the channels of MSN via self-assembly, a filter-like blocking model that the loaded drug bridged with modified MNBA to fulfill the blocking process is proposed. The novel blocking strategy provides a new possible way for pore blocking, and the small nanovalve can be used as synergistic molecule for cancer therapy.
Collapse
|
15
|
Gao Y, Zhang Y, Hong Y, Wu F, Shen L, Wang Y, Lin X. Multifunctional Role of Silica in Pharmaceutical Formulations. AAPS PharmSciTech 2022; 23:90. [PMID: 35296944 DOI: 10.1208/s12249-022-02237-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
Due to the high surface area, adjustable surface and pore structures, and excellent biocompatibility, nano- and micro-sized silica have certainly attracted the attention of many researchers in the medical fields. This review focuses on the multifunctional roles of silica in different pharmaceutical formulations including solid preparations, liquid drugs, and advanced drug delivery systems. For traditional solid preparations, it can improve compactibility and flowability, promote disintegration, adjust hygroscopicity, and prevent excessive adhesion. As for liquid drugs and preparations, like volatile oil, ethers, vitamins, and self-emulsifying drug delivery systems, silica with adjustable pore structures is a good adsorbent for solidification. Also, silica with various particle sizes, surface characteristics, pore structure, and surface modification controlled by different synthesis methods has gained wide attention owing to its unparalleled advantages for drug delivery and disease diagnosis. We also collate the latest pharmaceutical applications of silica sorted out by formulations. Finally, we point out the thorny issues for application and survey future trends pertaining to silica in an effort to provide a comprehensive overview of its future development in the medical fields. Graphical Abstract.
Collapse
|
16
|
Wang M, Liang Y, Chen K, Wang M, Long X, Liu H, Sun Y, He B. The management of diabetes mellitus by mangiferin: advances and prospects. NANOSCALE 2022; 14:2119-2135. [PMID: 35088781 DOI: 10.1039/d1nr06690k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diabetes mellitus has become one of the most challenging public health problems today. There are still various deficiencies that remain in existing therapeutic drugs. With increasing prevalence and mortality rates, more effective therapeutic agents are required for treatment clinically. As a kind of polyphenol and as a natural product, mangiferin has numerous pharmacological and excellent effects. In this review, the underlying mechanisms of mangiferin on diabetes mellitus and complications will be summarized. Moreover, mangiferin belongs to the BSC IV class and the clinical application and development of mangiferin are limited due to its poor aqueous solubility and fat solubility as well as low bioavailability. Our review also elaborated on improving the solubility of mangiferin by changing the dosage form and introduced the existing results, which hope to provide useful reference for mangiferin for further treating diabetes. In conclusion, mangiferin might be a potential adjuvant therapy for the treatment of diabetes mellitus and complications in the future.
Collapse
Affiliation(s)
- Mengdi Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Keqi Chen
- Department of Clinical laboratory, Qingdao special servicemen recuperation centre of PLA navy, Qingdao 266021, China
| | - Maolong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xuehua Long
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - HongLing Liu
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
17
|
Bendicho-Lavilla C, Seoane-Viaño I, Otero-Espinar FJ, Luzardo-Álvarez A. Fighting type 2 diabetes: Formulation strategies for peptide-based therapeutics. Acta Pharm Sin B 2022; 12:621-636. [PMID: 35256935 PMCID: PMC8897023 DOI: 10.1016/j.apsb.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a major health problem with increasing prevalence at a global level. The discovery of insulin in the early 1900s represented a major breakthrough in diabetes management, with further milestones being subsequently achieved with the identification of glucagon-like peptide-1 (GLP-1) and the introduction of GLP-1 receptor agonists (GLP-1 RAs) in clinical practice. Moreover, the subcutaneous delivery of biotherapeutics is a well-established route of administration generally preferred over the intravenous route due to better patient compliance and prolonged drug absorption. However, current subcutaneous formulations of GLP-1 RAs present pharmacokinetic problems that lead to adverse reactions and treatment discontinuation. In this review, we discuss the current challenges of subcutaneous administration of peptide-based therapeutics and provide an overview of the formulations available for the different routes of administration with improved bioavailability and reduced frequency of administration.
Collapse
Affiliation(s)
- Carlos Bendicho-Lavilla
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Iria Seoane-Viaño
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Francisco J. Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Asteria Luzardo-Álvarez
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, Lugo 27002, Spain
| |
Collapse
|
18
|
Xiaojie H, Fagang J, Jun J, Chunfang W, Chengquan L, Xinghua W. Bimatoprost-Loaded Silica Shell-Coated Nanoparticles-Laden Soft Contact Lenses to Manage Glaucoma: In Vitro and In Vivo Studies. AAPS PharmSciTech 2021; 23:33. [PMID: 34950994 DOI: 10.1208/s12249-021-02199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
Currently, glaucoma is managed by frequent instillation of bimatoprost eye drop therapy, which showed very poor ocular bioavailability. Contact lens is widely used as medical device to improve the drug retention on the ocular tissues. However, the traditional methods of drug loading in the contact lens matrix showed high burst release and changes the optophysical properties of the contact lens material. In this paper, a novel bimatoprost-loaded silica shell nanoparticles-laden soft contact lenses were developed to achieve sustain drug delivery without altering the optophysical properties of the contact lens. Silica-shell nanoparticles were prepared using octyltrimethoxysilane (OTMS) and microemulsion. Traditional soaking method (SM-BT), direct bimatoprost loading method (DL-BT), and microemulsion-laden contact lens (ME-BT) were developed for comparison. The silica shell-coated nanoparticles-laden soft contact lenses (SiS-BT) showed improved swelling, transmittance, oxygen permeability, and lysozyme adherence compared to SM-BT, DL-BT, and ME-BT lenses. The DL-BT and ME-BT batch showed high bimatoprost lost/leaching during extraction and sterilization steps, with low cumulative drug release. Also, SiS-BT lens showed sustain bimatoprost release for 96 h. In a rabbit tear fluid model, the SiS-BT lens showed high bimatoprost concentration for 72 h compared to ME-BT lens and eye drop therapy. Based on histopathological studies of cornea, the SiS-BT lens was found to be safe for human applications. The data demonstrated the novel application of silica shell nanoparticles to deliver bimatoprost from the contact lens for extended period of time without altering the optophysical properties of the contact lens.
Collapse
|
19
|
Elshaer D, Moniruzzaman M, Ong YT, Qu Z, Schreiber V, Begun J, Popat A. Facile synthesis of dendrimer like mesoporous silica nanoparticles to enhance targeted delivery of interleukin-22. Biomater Sci 2021; 9:7402-7411. [PMID: 34709241 DOI: 10.1039/d1bm01352a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interleukin (IL)-22 is a multifunctional cytokine with a very short half-life that activates STAT3 and can elicit strong anti-inflammatory effects in the intestine but can induce inflammation in other sites. Several long-circulating IL-22 fusion proteins have been manufactured to date; however, those were associated with adverse effects in other organs limiting their utility for treating intestinal inflammation. Targeted delivery of IL-22 to the intestine could utilize its anti-inflammatory properties and overcome systemic toxicity. Therefore, this study aimed to synthesise large pore mesoporous silica nanoparticles (LPMSN), load recombinant (r)IL-22 in the LPMSN and test its bioactivity in the STAT3 reporter LS174T, wild type LS174T, Caco-2 intestinal epithelial cells, and healthy human colonic organoids. Our data showed one hundred percent loading capacity (w/w) of the synthesised LPMSN, which prolonged IL-22 induced STAT3 luciferase activities in LS174T and p-STAT3 immunofluorescence in Caco-2 cells. LPMSN also stabilized and increased the permeability of rIL-22 across Caco-2 monolayers. Moreover, LPMSN-IL-22 retained the functionality of the cytokine in human colonic organoids. Taken together, these data demonstrate the protection and effective delivery of IL-22 using bio-nanomaterials (LPMSN) that could enable targeted oral delivery of this IL-22.
Collapse
Affiliation(s)
- Dana Elshaer
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Md Moniruzzaman
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yi Theng Ong
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Zhi Qu
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Veronika Schreiber
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Jakob Begun
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
20
|
Janjua TI, Ahmed-Cox A, Meka AK, Mansfeld FM, Forgham H, Ignacio RMC, Cao Y, McCarroll JA, Mazzieri R, Kavallaris M, Popat A. Facile synthesis of lactoferrin conjugated ultra small large pore silica nanoparticles for the treatment of glioblastoma. NANOSCALE 2021; 13:16909-16922. [PMID: 34533167 DOI: 10.1039/d1nr03553c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The blood brain barrier (BBB) and blood tumour barrier (BTB) remain a major roadblock for delivering therapies to treat brain cancer. Amongst brain cancers, glioblastoma (GBM) is notoriously difficult to treat due to the challenge of delivering chemotherapeutic drugs across the BBB and into the tumour microenvironment. Consequently, GBM has high rates of tumour recurrence. Currently, limited numbers of chemotherapies are available that can cross the BBB to treat GBM. Nanomedicine is an attractive solution for treating GBM as it can augment drug penetration across the BBB and into the heterogeneous tumour site. However, very few nanomedicines exist that can easily overcome both the BBB and BTB owing to difficulty in synthesizing nanoparticles that meet the small size and surface functionality restrictions. In this study, we have developed for the first-time, a room temperature protocol to synthesise ultra-small size with large pore silica nanoparticles (USLP, size ∼30 nm, pore size >7 nm) with the ability to load high concentrations of chemotherapeutic drugs and conjugate a targeting moiety to their surface. The nanoparticles were conjugated with lactoferrin (>80 kDa), whose receptors are overexpressed by both the BBB and GBM, to achieve additional active targeting. Lactoferrin conjugated USLP (USLP-Lf) were loaded with doxorubicin - a chemotherapy agent that is known to be highly effective against GBM in vitro but cannot permeate the BBB. USLP-Lf were able to selectively permeate the BBB in vitro, and were effectively taken up by glioblastoma U87 cells. When compared to the uncoated USLP-NPs, the coating with lactoferrin significantly improved penetration of USLP into U87 tumour spheroids (after 12 hours at 100 μm distance, RFU value 19.58 vs. 49.16 respectively). Moreover, this USLP-Lf based delivery platform improved the efficacy of doxorubicin-mediated apoptosis of GBM cells in both 2D and 3D models. Collectively, our new nano-platform has the potential to overcome both the BBB and BTB to treat GBM more effectively.
Collapse
Affiliation(s)
- Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
| | - Aria Ahmed-Cox
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, 2031, Australia.
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Anand Kumar Meka
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
| | - Friederike M Mansfeld
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, 2031, Australia.
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Helen Forgham
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, 2031, Australia.
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Rosa Mistica C Ignacio
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, 2031, Australia.
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
| | - Joshua A McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, 2031, Australia.
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Roberta Mazzieri
- Diamantina Institute, Translational Research Institute, The University of Queensland Brisbane QLD, 4102, Australia.
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, 2031, Australia.
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia
| |
Collapse
|
21
|
Measuring the oral bioavailability of protein hydrolysates derived from food sources: A critical review of current bioassays. Biomed Pharmacother 2021; 144:112275. [PMID: 34628165 DOI: 10.1016/j.biopha.2021.112275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Food proteins are a source of hydrolysates with potentially useful biological attributes. Bioactive peptides from food-derived proteins are released from hydrolysates using exogenous industrial processes or endogenous intestinal enzymes. Current in vitro permeability assays have limitations in predicting the oral bioavailability (BA) of bioactive peptides in humans. There are also difficulties in relating the low blood levels of food-derived bioactive peptides detected in preclinical in vivo models to pharmacodynamic read-outs relevant for humans. SCOPE AND APPROACH In this review, we describe in vitro assays of digestion, permeation, and metabolism as indirect predictors of the potential oral BA of hydrolysates and their constituent bioactive peptides. We discuss the relationship between industrial hydrolysis processes and the oral BA of hydrolysates and their peptide by-products. KEY FINDINGS Hydrolysates are challenging for analytical detection methods due to capacity for enzymatic generation of peptides with novel sequences and also new modifications of these peptides during digestion. Mass spectrometry and peptidomics can improve the capacity to detect individual peptides released from complex hydrolysates in biological milieu.
Collapse
|
22
|
Cao Y, Rewatkar P, Wang R, Hasnain SZ, Popat A, Kumeria T. Nanocarriers for oral delivery of biologics: small carriers for big payloads. Trends Pharmacol Sci 2021; 42:957-972. [PMID: 34593258 DOI: 10.1016/j.tips.2021.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
Macromolecular therapeutics of biological origin, also known as biologics, have become one of the fastest-growing classes of drugs for management of a range of chronic and acute conditions. The majority of approved biologics are administered via the parenteral route and are thus expensive, have low patient compliance, and have high systemic toxicity. Therefore, tremendous efforts have been devoted to the development of carriers for oral delivery of biologics. This review evaluates key chemical (e.g. pH and enzymes) and physiological challenges to oral biologics delivery. We review the conventional formulation strategies and their limitations, followed by a detailed account of the progress on the use of nanocarriers used for oral biologics delivery, covering organic and inorganic nanocarriers. Lastly, we discuss limitations and opportunities presented by these emerging nanomaterials in oral biologics delivery.
Collapse
Affiliation(s)
- Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Prarthana Rewatkar
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ran Wang
- Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Sumaira Z Hasnain
- Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
23
|
Qin T, Yan L, Wang X, Lin S, Zeng Q. Glucose-Responsive Polyelectrolyte Complexes Based on Dendritic Mesoporous Silica for Oral Insulin Delivery. AAPS PharmSciTech 2021; 22:226. [PMID: 34426942 DOI: 10.1208/s12249-021-02088-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
The postprandial glycemic regulation is essential for diabetic patients to reduce the risk of long-term microvascular and macrovascular complications. Herein, we designed a glucose-responsive oral insulin delivery system based on polyelectrolyte complexes (PECs) for controlling the increasing postprandial glucose concentrations. Briefly, alginate-g-3-aminophenylboronic acid (ALG-g-APBA) and chitosan-g-3-fluoro-4-carboxyphenylboronic acid (CS-g-FPBA) were wrapped on mesoporous silica (MSN) to form the negative charged ALG-g-APBA@MSN and the positive charged CS-g-FPBA@MSN nanoparticles, with an optimum insulin loading capacity of 124 mg/g and 295 mg/g, respectively. ALG-g-APBA@MSN was further cross-linked with CS-g-FPBA@MSN to form PECs through electrostatic interaction and borate esters. The dense polyelectrolyte network wrapped on MSN was capable of preventing insulin from diffusion and regulating its release. The in vitro insulin release of PECs demonstrated an obvious glucose response profile in different glucose concentrations (0 mg/mL, 2 mg/mL, 5 mg/mL) and presented a switch "on" and "off" release regulation at hyperglycemic or normal state. The CCK-8 assay showed that none of the MSN, ALG-g-APBA@MSN, CS-g-FPBA@MSN, and PECs possessed cytotoxicity to Caco-2 cells. For in vivo tests, the oral PECs exhibited a significant hypoglycemic effect and maintained in the euglycemic levels up to approximately 12 h on diabetic rats. Overall, the PECs directly triggered by postprandial glucose in the intestine have a good potential to be applied in intelligent insulin delivery by the oral route.
Collapse
|
24
|
Zhu Q, Chen Z, Paul PK, Lu Y, Wu W, Qi J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm Sin B 2021; 11:2416-2448. [PMID: 34522593 PMCID: PMC8424290 DOI: 10.1016/j.apsb.2021.04.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Proteins and peptides (PPs) have gradually become more attractive therapeutic molecules than small molecular drugs due to their high selectivity and efficacy, but fewer side effects. Owing to the poor stability and limited permeability through gastrointestinal (GI) tract and epithelia, the therapeutic PPs are usually administered by parenteral route. Given the big demand for oral administration in clinical use, a variety of researches focused on developing new technologies to overcome GI barriers of PPs, such as enteric coating, enzyme inhibitors, permeation enhancers, nanoparticles, as well as intestinal microdevices. Some new technologies have been developed under clinical trials and even on the market. This review summarizes the history, the physiological barriers and the overcoming approaches, current clinical and preclinical technologies, and future prospects of oral delivery of PPs.
Collapse
Key Words
- ASBT, apical sodium-dependent bile acid transporter
- BSA, bovine serum albumin
- CAGR, compound annual growth
- CD, Crohn's disease
- COPD, chronic obstructive pulmonary disease
- CPP, cell penetrating peptide
- CaP, calcium phosphate
- Clinical
- DCs, dendritic cells
- DDVAP, desmopressin acetate
- DTPA, diethylene triamine pentaacetic acid
- EDTA, ethylene diamine tetraacetic acid
- EPD, empirical phase diagrams
- EPR, electron paramagnetic resonance
- Enzyme inhibitor
- FA, folic acid
- FDA, U.S. Food and Drug Administration
- FcRn, Fc receptor
- GALT, gut-associated lymphoid tissue
- GI, gastrointestinal
- GIPET, gastrointestinal permeation enhancement technology
- GLP-1, glucagon-like peptide 1
- GRAS, generally recognized as safe
- HBsAg, hepatitis B surface antigen
- HPMCP, hydroxypropyl methylcellulose phthalate
- IBD, inflammatory bowel disease
- ILs, ionic liquids
- LBNs, lipid-based nanoparticles
- LMWP, low molecular weight protamine
- MCT-1, monocarborxylate transporter 1
- MSNs, mesoporous silica nanoparticles
- NAC, N-acetyl-l-cysteine
- NLCs, nanostructured lipid carriers
- Oral delivery
- PAA, polyacrylic acid
- PBPK, physiologically based pharmacokinetics
- PCA, principal component analysis
- PCL, polycarprolacton
- PGA, poly-γ-glutamic acid
- PLA, poly(latic acid)
- PLGA, poly(lactic-co-glycolic acid)
- PPs, proteins and peptides
- PVA, poly vinyl alcohol
- Peptides
- Permeation enhancer
- Proteins
- RGD, Arg-Gly-Asp
- RTILs, room temperature ionic liquids
- SAR, structure–activity relationship
- SDC, sodium deoxycholate
- SGC, sodium glycocholate
- SGF, simulated gastric fluids
- SIF, simulated intestinal fluids
- SLNs, solid lipid nanoparticles
- SNAC, sodium N-[8-(2-hydroxybenzoyl)amino]caprylate
- SNEDDS, self-nanoemulsifying drug delivery systems
- STC, sodium taurocholate
- Stability
- TAT, trans-activating transcriptional peptide
- TMC, N-trimethyl chitosan
- Tf, transferrin
- TfR, transferrin receptors
- UC, ulcerative colitis
- UEA1, ulex europaeus agglutinin 1
- VB12, vitamin B12
- WGA, wheat germ agglutinin
- pHPMA, N-(2-hydroxypropyl)methacrylamide
- pI, isoelectric point
- sCT, salmon calcitonin
- sc, subcutaneous
Collapse
Affiliation(s)
- Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Pijush Kumar Paul
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Department of Pharmacy, Gono Bishwabidyalay (University), Mirzanagar Savar, Dhaka 1344, Bangladesh
| | - Yi Lu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
25
|
Wang Y, Tan X, Fan X, Zhao L, Wang S, He H, Yin T, Zhang Y, Tang X, Jian L, Jin J, Gou J. Current strategies for oral delivery of BCS IV drug nanocrystals: challenges, solutions and future trends. Expert Opin Drug Deliv 2021; 18:1211-1228. [PMID: 33719798 DOI: 10.1080/17425247.2021.1903428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Oral absorption of BCS IV drug benefits little from improved dissolution. Therefore, the absorption of BCS IV drug nanocrystals 'as a whole' strategy is preferred, and structural modification of nanocrystals is required. Surface modification helps the nanocrystals maintain particle structure before drug dissolution is needed, thus enhancing the oral absorption of BCS IV drugs and promoting therapeutic effect. Here, the main challenges and solutions of oral BCS IV drug nanocrystals delivery are discussed. Moreover, strategies for nanocrystal surface modification that facilitates oral bioavailability of BCS IV drugs are highlighted, and provide insights for the innovation in oral drug delivery. AREAS COVERED Promising size, shape, and surface modification of nanocrystals have gained interests for application in oral BCS IV drugs. EXPERT OPINION Nanocrystal surface modification is a feasible method to maintain the structural integrity of nanocrystals, and the introduced materials can also be modified to integrate additional functions to further facilitate the absorption of nanocrystals. It is expected that the absorption 'as a whole' strategy of nanocrystals will provide different choices for the oral BCS IV drugs.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmaceutics, School of Pharmacy, Jilin University, Changchun, China
| | - Xinyi Tan
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinyu Fan
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Linxuan Zhao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmaceutics, School of Pharmacy, Jilin University, Changchun, China
| | - Shuhang Wang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmaceutics, School of Pharmacy, Jilin University, Changchun, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jian Jin
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
26
|
Poudwal S, Misra A, Shende P. Role of lipid nanocarriers for enhancing oral absorption and bioavailability of insulin and GLP-1 receptor agonists. J Drug Target 2021; 29:834-847. [PMID: 33620269 DOI: 10.1080/1061186x.2021.1894434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Growing demand for insulin and glucagon-like peptide-1 receptor agonists (GLP-1 RA) is observed, considering the progressive nature of diabetes and the potential therapeutic role of peptides in its treatment. However, chronic parenteral administration is responsible for pain and rashes at the site of injection. Oral delivery of insulin and GLP-1 RA promises better patient compliance owing to their ease of administration and reduction in chances of peripheral hypoglycaemia and weight gain. The review article discusses the potential of lipid carriers in combination with different strategies such as absorption enhancers, PEGylation, lipidisation, etc. The lipid nanocarriers improve the membrane permeability and oral bioavailability of high molecular weight peptides. Additionally, the clinical status of different nanocarriers for anti-diabetic peptides is discussed. Previous research on nanocarriers showed significant hypoglycaemic activity and safety in animal studies; however, extrapolation of the same in human subjects is not validated. With the rising global burden of diabetes, the lipid nanocarriers show the potential to revolutionise treatment with oral delivery of insulin and GLP-1 RA.
Collapse
Affiliation(s)
- Swapna Poudwal
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Ambikanandan Misra
- School of Pharmacy and Technology Management, SVKM'S NMIMS, Dhule, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| |
Collapse
|
27
|
Eissa NG, Elsabahy M, Allam A. Engineering of smart nanoconstructs for delivery of glucagon-like peptide-1 analogs. Int J Pharm 2021; 597:120317. [PMID: 33540005 DOI: 10.1016/j.ijpharm.2021.120317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are being increasingly exploited in clinical practice for management of type 2 diabetes mellitus due to their ability to lower blood glucose levels and reduce off-target effects of current therapeutics. Nanomaterials had viewed myriad breakthroughs in protecting peptides against degradation and carrying therapeutics to targeted sites for maximizing their pharmacological activity and overcoming limitations associated with their application. This review highlights the latest advances in designing smart multifunctional nanoconstructs and engineering targeted and stimuli-responsive nanoassemblies for delivery of GLP-1 receptor agonists. Furthermore, advanced nanoconstructs of sophisticated supramolecular assembly yet efficient delivery of GLP-1/GLP-1 analogs, nanodevices that mediate intrinsic GLP-1 secretion per se, and nanomaterials with capabilities to load additional moieties for synergistic antidiabetic effects, are demonstrated.
Collapse
Affiliation(s)
- Noura G Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Elsabahy
- Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Misr University for Science and Technology, 6th of October City 12566, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt.
| | - Ayat Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut 10, Egypt
| |
Collapse
|
28
|
Raza A, Sime FB, Cabot PJ, Roberts JA, Falconer JR, Kumeria T, Popat A. Liquid CO2 Formulated Mesoporous Silica Nanoparticles for pH-Responsive Oral Delivery of Meropenem. ACS Biomater Sci Eng 2021; 7:1836-1853. [DOI: 10.1021/acsbiomaterials.0c01284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Fekade Bruck Sime
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Peter J. Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jason A. Roberts
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
- Department of Pharmacy, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - James R. Falconer
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- School of Materials Science and Engineering, The University of New South Wales, Sydney NSW 2052, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Mater Research Institute, The University of Queensland Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
29
|
Zhao Q, Wang Y, Zhang W, Wang Y, Wang S. Succinylated casein functionalized mesoporous silica nanoplatforms to overcome multiple gastrointestinal barriers. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Raza A, Ngieng SC, Sime FB, Cabot PJ, Roberts JA, Popat A, Kumeria T, Falconer JR. Oral meropenem for superbugs: challenges and opportunities. Drug Discov Today 2020; 26:551-560. [PMID: 33197621 DOI: 10.1016/j.drudis.2020.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/10/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
Abstract
An increase in the number of multidrug-resistant microbial strains is the biggest threat to global health and is projected to cause >10 million deaths by 2055. The carbapenem family of antibacterial drugs are an important class of last-resort treatment of infections caused by drug-resistant bacteria and are only available as an injectable formulation. Given their instability within the gut and poor permeability across the gut wall, oral carbapenem formulations show poor bioavailability. Meropenem (MER), a carbapenem antibiotic, has broad-spectrum antibacterial activity, but suffers from the above-mentioned issues. In this review, we discuss strategies for improving the oral bioavailability of MER, such as inhibiting tubular secretion, prodrug formulations, and use of nanomedicine. We also highlight challenges and emerging approaches for the development of oral MER.
Collapse
Affiliation(s)
- Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Shih Chen Ngieng
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Fekade Bruck Sime
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Peter J Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jason A Roberts
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD 4102, Australia; Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD 4102, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - James R Falconer
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
31
|
Qu Z, Wong KY, Moniruzzaman M, Begun J, Santos HA, Hasnain SZ, Kumeria T, McGuckin MA, Popat A. One‐Pot Synthesis of pH‐Responsive Eudragit‐Mesoporous Silica Nanocomposites Enable Colonic Delivery of Glucocorticoids for the Treatment of Inflammatory Bowel Disease. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhi Qu
- School of Pharmacy The University of Queensland Brisbane QLD 4102 Australia
- Immunopathology Group Mater Research Institute –The University of Queensland Translational Research Institute Brisbane QLD 4102 Australia
| | - Kuan Yau Wong
- Immunopathology Group Mater Research Institute –The University of Queensland Translational Research Institute Brisbane QLD 4102 Australia
| | - Md. Moniruzzaman
- School of Pharmacy The University of Queensland Brisbane QLD 4102 Australia
- Inflammatory Bowel Disease Group, Mater Research Institute–The University of Queensland Translational Research Institute Brisbane QLD 4102 Australia
| | - Jakob Begun
- Inflammatory Bowel Disease Group, Mater Research Institute–The University of Queensland Translational Research Institute Brisbane QLD 4102 Australia
- Mater Hospital Brisbane Mater Health Services South Brisbane QLD 4102 Australia
| | - Hélder A Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki FI‐00014 Finland
| | - Sumaira Z. Hasnain
- School of Pharmacy The University of Queensland Brisbane QLD 4102 Australia
- Immunopathology Group Mater Research Institute –The University of Queensland Translational Research Institute Brisbane QLD 4102 Australia
| | - Tushar Kumeria
- School of Pharmacy The University of Queensland Brisbane QLD 4102 Australia
- Immunopathology Group Mater Research Institute –The University of Queensland Translational Research Institute Brisbane QLD 4102 Australia
| | - Michael A. McGuckin
- Faculty of Medicine Dentistry and Health Sciences the University of Melbourne Melbourne VIC 3010 Australia
| | - Amirali Popat
- School of Pharmacy The University of Queensland Brisbane QLD 4102 Australia
- Immunopathology Group Mater Research Institute –The University of Queensland Translational Research Institute Brisbane QLD 4102 Australia
| |
Collapse
|
32
|
Abeer MM, Rewatkar P, Qu Z, Talekar M, Kleitz F, Schmid R, Lindén M, Kumeria T, Popat A. Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules. J Control Release 2020; 326:544-555. [DOI: 10.1016/j.jconrel.2020.07.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
|
33
|
Tan X, Yin N, Liu Z, Sun R, Gou J, Yin T, Zhang Y, He H, Tang X. Hydrophilic and Electroneutral Nanoparticles to Overcome Mucus Trapping and Enhance Oral Delivery of Insulin. Mol Pharm 2020; 17:3177-3191. [DOI: 10.1021/acs.molpharmaceut.0c00223] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xinyi Tan
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang 110016, China
| | - Na Yin
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang 110016, China
| | - Zixu Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang 110016, China
| | - Rong Sun
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang 110016, China
| | - Tian Yin
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang 110016, China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang 110016, China
| |
Collapse
|
34
|
In Vitro Evaluation of a Peptide-Mesoporous Silica Nanoparticle Drug Release System against HIV-1. INORGANICS 2020. [DOI: 10.3390/inorganics8070042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It has been shown that the optimized VIR-576 derivative of the natural HIV-1 entry inhibitor targeting the viral gp41 fusion peptide is safe and effective in infected individuals. However, high doses of this peptide were required, and stability, as well as delivery, must be improved for clinical application. Here, we examined the loading and release of VIR-576 into/from mesoporous silica nanoparticles (MSNs) in vitro. We found that a moderately high peptide loading of 11.5 wt % could be achieved by adsorption from PBS buffer (pH 7.2), i.e., under mild, fully peptide-compatible conditions. The release rate of peptide into the same buffer was slow and the equilibrium concentration as indicated by the adsorption isotherm could not be reached even within 50 h at the particle concentrations studied. However, a faster release was observed at lower particle concentrations, indicating that partial particle dissolution had a positive influence on peptide release. To determine the antiviral activity of VIR-576-loaded MSNs, TZM-bl indicator cells were exposed to HIV-1 and the infection rates were followed as a function of time and VIR-576 concentration. The inhibitory activity observed for VIR-576 released from the MSNs was virtually identical to that of free VIR-576 at the 48 h time point, indicating that (a) VIR-576 was released in an active form from the MSNs, and (b) the release rate in the presence of serum proteins was clearly higher than that observed under protein-free conditions. These observations are discussed based on competitive peptide/protein adsorption, as well as potential influences of serum proteins on the dissolution-reprecipitation of silica under conditions where the total silica concentration is above the saturation level for dissolved silica. Our results highlight the need for studying drug release kinetics in the presence of serum proteins, in order to allow for a better extrapolation of in vitro data to in vivo conditions. Furthermore, due to the high peptide loadings that can be achieved using MSNs as carriers, such a formulation appears promising for local release applications. For systemic administration, however, peptides with a higher potency would be needed, due to their high molar masses limiting the drug loading in terms of moles per gram carrier.
Collapse
|
35
|
Kämpfer AAM, Busch M, Schins RPF. Advanced In Vitro Testing Strategies and Models of the Intestine for Nanosafety Research. Chem Res Toxicol 2020; 33:1163-1178. [PMID: 32383381 DOI: 10.1021/acs.chemrestox.0c00079] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is growing concern about the potential adverse effects of oral exposure to engineered nanomaterials (ENM). Recent years have witnessed major developments in and advancement of intestinal in vitro models for nanosafety evaluation. The present paper reviews the key factors that should be considered for inclusion in nonanimal alternative testing approaches to reliably reflect the in vivo dynamics of the physicochemical properties of ENM as well the intestinal physiology and morphology. Currently available models range from simple cell line-based monocultures to advanced 3D systems and organoids. In addition, in vitro approaches exist to replicate the mucous barrier, digestive processes, luminal flow, peristalsis, and interactions of ENM with the intestinal microbiota. However, while the inclusion of a multitude of individual factors/components of particle (pre)treatment, exposure approach, and cell model approximates in vivo-like conditions, such increasing complexity inevitably affects the system's robustness and reproducibility. The selection of the individual modules to build the in vitro testing strategy should be driven and justified by the specific purpose of the study and, not least, the intended or actual application of the investigated ENM. Studies that address health hazards of ingested ENM likely require different approaches than research efforts to unravel the fundamental interactions or toxicity mechanisms of ENM in the intestine. Advanced reliable and robust in vitro models of the intestine, especially when combined in an integrated testing approach, offer great potential to further improve the field of nanosafety research.
Collapse
Affiliation(s)
- Angela A M Kämpfer
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| | - Mathias Busch
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| | - Roel P F Schins
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| |
Collapse
|
36
|
Bao X, Qian K, Yao P. Oral delivery of exenatide-loaded hybrid zein nanoparticles for stable blood glucose control and β-cell repair of type 2 diabetes mice. J Nanobiotechnology 2020; 18:67. [PMID: 32345323 PMCID: PMC7189518 DOI: 10.1186/s12951-020-00619-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Exenatide is an insulinotropic peptide drug for type 2 diabetes treatment with low risk of hypoglycemia, and is administrated by subcutaneous injection. Oral administration is the most preferred route for lifelong treatment of diabetes, but oral delivery of peptide drug remains a significant challenge due to the absorption obstacles in gastrointestinal tract. We aimed to produce exenatide-loaded nanoparticles containing absorption enhancer, protectant and stabilizer using FDA approved inactive ingredients and easy to scale-up method, and to evaluate their long-term oral therapeutic effect in type 2 diabetes db/db mice. RESULTS Two types of nanoparticles, named COM NPs and DIS NPs, were fabricated using anti-solvent precipitation method. In COM NPs, the exenatide was complexed with cholic acid and phosphatidylcholine to increase the exenatide loading efficiency. In both nanoparticles, zein acted as the cement and the other ingredients were embedded in zein nanoparticles by hydrophobic interaction. Casein acted as the stabilizer. The nanoparticles had excellent lyophilization, storage and re-dispersion stability. Hypromellose phthalate protected the loaded exenatide from degradation in simulated gastric fluid. Cholic acid promoted the intestinal absorption of the loaded exenatide via bile acid transporters. The exenatide loading efficiencies of COM NPs and DIS NPs were 79.7% and 53.6%, respectively. The exenatide oral pharmacological availability of COM NPs was 18.6% and DIS NPs was 13.1%. COM NPs controlled the blood glucose level of the db/db mice well and the HbA1c concentration significantly decreased to 6.8% during and after 7 weeks of once daily oral administration consecutively. Both DIS NPs and COM NPs oral groups substantially increased the insulin secretion by more than 60% and promoted the β-cell proliferation by more than 120% after the 7-week administration. CONCLUSIONS Both COM NPs and DIS NPs are promising systems for oral delivery of exenatide, and COM NPs are better in blood glucose level control than DIS NPs. Using prolamin to produce multifunctional nanoparticles for oral delivery of peptide drug by hydrophobic interaction is a simple and effective strategy.
Collapse
Affiliation(s)
- Xiaoyan Bao
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Kang Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ping Yao
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
37
|
Juère E, Caillard R, Marko D, Del Favero G, Kleitz F. Smart Protein-Based Formulation of Dendritic Mesoporous Silica Nanoparticles: Toward Oral Delivery of Insulin. Chemistry 2020; 26:5195-5199. [PMID: 32057143 PMCID: PMC7217061 DOI: 10.1002/chem.202000773] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 02/02/2023]
Abstract
Oral insulin administration still represents a paramount quest that almost a century of continuous research attempts did not suffice to fulfill. Before pre-clinical development, oral insulin products have first to be optimized in terms of encapsulation efficiency, protection against proteolysis, and intestinal permeation ability. With the use of dendritic mesoporous silica nanoparticles (DMSNs) as an insulin host and together with a protein-based excipient, succinylated β-lactoglobulin (BL), pH-responsive tablets permitted the shielding of insulin from early release/degradation in the stomach and mediated insulin permeation across the intestinal cellular membrane. Following an original in vitro cellular assay based on insulin starvation, direct cellular fluorescent visualization has evidenced how DMSNs could ensure the intestinal cellular transport of insulin.
Collapse
Affiliation(s)
- Estelle Juère
- Department of Inorganic Chemistry—Functional MaterialsFaculty of ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Romain Caillard
- Aventus Innovations4820 rue de la Pascaline, Suite 230G6W 0L9Levis (QC)Canada
| | - Doris Marko
- Department of Food Chemistry and ToxicologyFaculty of ChemistryUniversity of ViennaWähringer Straße 38–401090ViennaAustria
| | - Giorgia Del Favero
- Department of Food Chemistry and ToxicologyFaculty of ChemistryUniversity of ViennaWähringer Straße 38–401090ViennaAustria
| | - Freddy Kleitz
- Department of Inorganic Chemistry—Functional MaterialsFaculty of ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| |
Collapse
|
38
|
Resveratrol-loaded PLGA nanoparticles functionalized with red blood cell membranes as a biomimetic delivery system for prolonged circulation time. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|