1
|
Vicente‐Garcia C, Vona D, Flemma A, Cicco SR, Farinola GM. Diatoms in Focus: Chemically Doped Biosilica for Customized Nanomaterials. Chempluschem 2024; 89:e202400462. [PMID: 39422416 PMCID: PMC11639631 DOI: 10.1002/cplu.202400462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Indexed: 10/19/2024]
Abstract
Diatoms are photosynthetic microalgae widely diffused around the globe and well adapted to thrive in diverse environments. Their success is closely related to the nanostructured biosilica shell (frustule) that serves as exoskeleton. Said structures have attracted great attention, thanks to their hierarchically ordered network of micro- and nanopores. Frustules display high specific surface, mechanical resistance and photonic properties, useful for the design of functional and complex materials, with applications including sensing, biomedicine, optoelectronics and energy storage and conversion. Current technology allows to alter the chemical composition of extracted frustules with a diverse array of elements, via chemical and biochemical strategies, without compromising their valuable morphology. We started our research on diatoms from the viewpoint of material scientists, envisaging the possibilities of these nanostructured silica shells as a general platform to obtain functional materials for several applications via chemical functionalization. Our first paper in the field was published in ChemPlusChem ten years ago. Ten years later, in this Perspective, we gather the most recent and relevant functional materials derived from diatom biosilica to show the growth and diversification that this field is currently experiencing, and the key role it will play in the near future.
Collapse
Affiliation(s)
- Cesar Vicente‐Garcia
- Dipartimento di ChimicaUniversità Degli Studi di Bari “Aldo Moro”Via Orabona 470125BariItaly
| | - Danilo Vona
- Dipartimento di Scienze del SuoloDella Pianta e Degli AlimentiUniversità Degli Studi di Bari “Aldo Moro”Via Amendola, 165/a70126BariItaly
| | - Annarita Flemma
- Dipartimento di ChimicaUniversità Degli Studi di Bari “Aldo Moro”Via Orabona 470125BariItaly
| | - Stefania Roberta Cicco
- CNR Istituto di Chimica dei Composti OrganometalliciDipartimento di ChimicaUniversità Degli Studi di Bari “Aldo Moro”Via Orabona 470125Bari, Italy
| | - Gianluca Maria Farinola
- Dipartimento di ChimicaUniversità Degli Studi di Bari “Aldo Moro”Via Orabona 470125BariItaly
| |
Collapse
|
2
|
Abdul Rahman A, Mohd Isa IL, Tofail SAM, Bartlomiej L, Rodriguez BJ, Biggs MJ, Pandit A. Modification of Living Diatom, Thalassiosira weissflogii, with a Calcium Precursor through a Calcium Uptake Mechanism: A Next Generation Biomaterial for Advanced Delivery Systems. ACS APPLIED BIO MATERIALS 2024; 7:4102-4115. [PMID: 38758756 PMCID: PMC11190972 DOI: 10.1021/acsabm.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
The diatom's frustule, characterized by its rugged and porous exterior, exhibits a remarkable biomimetic morphology attributable to its highly ordered pores, extensive surface area, and unique architecture. Despite these advantages, the toxicity and nonbiodegradable nature of silica-based organisms pose a significant challenge when attempting to utilize these organisms as nanotopographically functionalized microparticles in the realm of biomedicine. In this study, we addressed this limitation by modulating the chemical composition of diatom microparticles by modulating the active silica metabolic uptake mechanism while maintaining their intricate three-dimensional architecture through calcium incorporation into living diatoms. Here, the diatom Thalassiosira weissflogii was chemically modified to replace its silica composition with a biodegradable calcium template, while simultaneously preserving the unique three-dimensional (3D) frustule structure with hierarchical patterns of pores and nanoscale architectural features, which was evident by the deposition of calcium as calcium carbonate. Calcium hydroxide is incorporated into the exoskeleton through the active mechanism of calcium uptake via a carbon-concentrating mechanism, without altering the microstructure. Our findings suggest that calcium-modified diatoms hold potential as a nature-inspired delivery system for immunotherapy through antibody-specific binding.
Collapse
Affiliation(s)
- Asrizal Abdul Rahman
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Isma Liza Mohd Isa
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Syed A. M. Tofail
- Materials
and Surface Science Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Lukasz Bartlomiej
- Conway
Institute of Biomolecular and Biomedical Research and School of Physics, University College Dublin, Dublin 4, Ireland
| | - Brian J. Rodriguez
- Conway
Institute of Biomolecular and Biomedical Research and School of Physics, University College Dublin, Dublin 4, Ireland
| | - Manus J. Biggs
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Abhay Pandit
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
3
|
Peng G, Cai J, Wang Z, Zhang W, Xu J, Zhang D, Gong D. Facile fabrication of diatomite biosilica-based nasal drug delivery vehicle for enhanced treatment of allergic rhinitis. Colloids Surf B Biointerfaces 2024; 234:113715. [PMID: 38134821 DOI: 10.1016/j.colsurfb.2023.113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Nanostructured silica-based materials have great potential as drug delivery vehicles for precise and personalized medical applications. As natural nanostructured silica, diatomite biosilica (DB) is recognized as a novel carrier to construct oral/parenteral smart drug delivery systems due to high surface area, biocompatibility, and applicability at low cost, yet the related studies on its use in local delivery routes are still scarce. Herein, we proposed a novel strategy to develop multifunctional nasal drug delivery vehicles based on DB, and demonstrated their versatile performance for enhanced treatment of allergic rhinitis (AR). As a proof of concept, the purified DB microparticles were loaded with budesonide as an anti-inflammatory model drug, and further processed via surface modification to graft polydopamine and carboxymethyl chitosan layers. The synthesized microcapsules exhibited remarkable mucin binding capacity and antibacterial activity against Staphylococcus aureus. Besides, toxicity evaluation with human skin fibroblast cells and hemolysis tests indicated their high biocompatibility. Moreover, in vitro drug release results demonstrated pH-responsive release performance of the microcapsules under simulated AR environment (pH 5.0, 35 °C). Hence, this study provides a facile and reliable approach to construct DB-based mucoadhesive nasal drug delivery vehicles, showing great potential for treatment of allergic airway inflammatory diseases.
Collapse
Affiliation(s)
- Guanya Peng
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Zhenhu Wang
- Beijing Institute of Radio Measurement, Beijing 100854, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Junjie Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Deyuan Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - De Gong
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China.
| |
Collapse
|
4
|
Zhang F, Li Z, Chen C, Luan H, Fang RH, Zhang L, Wang J. Biohybrid Microalgae Robots: Design, Fabrication, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303714. [PMID: 37471001 PMCID: PMC10799182 DOI: 10.1002/adma.202303714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
The integration of microorganisms and engineered artificial components has shown considerable promise for creating biohybrid microrobots. The unique features of microalgae make them attractive candidates as natural actuation materials for the design of biohybrid microrobotic systems. In this review, microalgae-based biohybrid microrobots are introduced for diverse biomedical and environmental applications. The distinct propulsion and phototaxis behaviors of green microalgae, as well as important properties from other photosynthetic microalga systems (blue-green algae and diatom) that are crucial to constructing powerful biohybrid microrobots, will be described first. Then the focus is on chemical and physical routes for functionalizing the algae surface with diverse reactive materials toward the fabrication of advanced biohybrid microalgae robots. Finally, representative applications of such algae-driven microrobots are presented, including drug delivery, imaging, and water decontamination, highlighting the distinct advantages of these active biohybrid robots, along with future prospects and challenges.
Collapse
Affiliation(s)
- Fangyu Zhang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Zhengxing Li
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Chuanrui Chen
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Hao Luan
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Khaligh SF, Asoodeh A. Recent advances in the bio-application of microalgae-derived biochemical metabolites and development trends of photobioreactor-based culture systems. 3 Biotech 2022; 12:260. [PMID: 36072963 PMCID: PMC9441132 DOI: 10.1007/s13205-022-03327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
Microalgae are microscopic algae in sizes ranging from a few micrometers to several hundred micrometers. On average, half of the oxygen in the atmosphere is produced by the photosynthetic process of microalgae, so the role of these microorganisms in the life cycle of the planet is very significant. Pharmaceutical products derived from microalgae and commercial developments of a variety of supplements extracted from them originate from a variety of their specific secondary metabolites. Many of these microalgae are a reservoir of unique biological compounds including carotenoids, antioxidants, fatty acids, polysaccharides, enzymes, polymers, peptides, pigments, toxins and sterols with antimicrobial, antiviral, antifungal, antiparasitic, anticoagulant, and anticancer properties. The present work begins with an introduction of the importance of microalgae in renewable fuels and biodiesel production, the development of healthy food industry, and the creation of optimal conditions for efficient biomass yield. This paper provides the latest research related to microalgae-derived substances in the field of improving drug delivery, immunomodulatory, and anticancer attributes. Also, the latest advances in algal biocompounds to combat the COVID-19 pandemic are presented. In the subject of cultivation and growth of microalgae, the characteristics of different types of photobioreactors, especially their latest forms, are fully discussed along with their advantages and obstacles. Finally, the potential of microalgae biomass in biotechnological applications, biofuel production, as well as various biomass harvesting methods are described.
Collapse
Affiliation(s)
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Cellular and Molecular Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
6
|
Antimicrobial Activity of Rhenium Di- and Tricarbonyl Diimine Complexes: Insights on Membrane-Bound S. aureus Protein Binding. Pharmaceuticals (Basel) 2022; 15:ph15091107. [PMID: 36145328 PMCID: PMC9501577 DOI: 10.3390/ph15091107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance is one of the major human health threats, with significant impacts on the global economy. Antibiotics are becoming increasingly ineffective as drug-resistance spreads, imposing an urgent need for new and innovative antimicrobial agents. Metal complexes are an untapped source of antimicrobial potential. Rhenium complexes, amongst others, are particularly attractive due to their low in vivo toxicity and high antimicrobial activity, but little is known about their targets and mechanism of action. In this study, a series of rhenium di- and tricarbonyl diimine complexes were prepared and evaluated for their antimicrobial potential against eight different microorganisms comprising Gram-negative and -positive bacteria. Our data showed that none of the Re dicarbonyl or neutral tricarbonyl species have either bactericidal or bacteriostatic potential. In order to identify possible targets of the molecules, and thus possibly understand the observed differences in the antimicrobial efficacy of the molecules, we computationally evaluated the binding affinity of active and inactive complexes against structurally characterized membrane-bound S. aureus proteins. The computational analysis indicates two possible major targets for this class of compounds, namely lipoteichoic acids flippase (LtaA) and lipoprotein signal peptidase II (LspA). Our results, consistent with the published in vitro studies, will be useful for the future design of rhenium tricarbonyl diimine-based antibiotics.
Collapse
|
7
|
Sovari SN, Golding TM, Mbaba M, Mohunlal R, Egan TJ, Smith GS, Zobi F. Rhenium(I) derivatives of aminoquinoline and imidazolopiperidine-based ligands: Synthesis, in vitro and in silico biological evaluation against Plasmodium falciparum. J Inorg Biochem 2022; 234:111905. [PMID: 35752063 DOI: 10.1016/j.jinorgbio.2022.111905] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/23/2022] [Accepted: 06/12/2022] [Indexed: 12/31/2022]
Abstract
A small library of aminoquinoline and imidazolopiperidine (IMP)-based ligands, containing the 1,2,3-triazole moiety, and their corresponding tricarbonyl rhenium complexes were synthesised and their inhibitory activities evaluated against the chloroquine-sensitive (CQS) and multidrug-resistant (MDR) strains (NF54 and K1, respectively) of P. falciparum. The quinoline-based compounds (L1, L2, ReL1, and ReL2) were at least six-fold more potent than their IMP-based counterparts (L3, L4, ReL3, and ReL4) against both strains of P. falciparum, with the most promising compound (L1) displaying activity comparable to chloroquine diphosphate (CQDP) in the MDR strain. Additionally, all of the synthesised compounds have resistance indices less than CQDP. To gain insight into a possible mechanism of action, in silico hemozoin docking simulations were performed. These studies proposed that the tested compounds may act via hemozoin inhibition, as the new aminoquinoline-derivatives, with the exception of complex ReL2 (binding affinity: -12.62 kcal/mol), showed higher binding affinities than the reference drug chloroquine (CQ, -13.56 kcal/mol). Furthermore, the ligands exhibited superior binding affinity relative to their corresponding Re(I) complexes, which is reflected in their antiplasmodial activity.
Collapse
Affiliation(s)
- Sara Nasiri Sovari
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Taryn M Golding
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Mziyanda Mbaba
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Roxanne Mohunlal
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa.
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
8
|
Cui H, Su Y, Wei W, Xu F, Gao J, Zhang W. How Microalgae is Effective in Oxygen Deficiency Aggravated Diseases? A Comprehensive Review of Literature. Int J Nanomedicine 2022; 17:3101-3122. [PMID: 35874112 PMCID: PMC9297331 DOI: 10.2147/ijn.s368763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Hypoxia can aggravate the conditions of many oxygen-deficiency-aggravated diseases (ODAD), such as cancer, ischemic heart disease, and chronic wounds. Photosynthetic microalgae can alleviate the hepatotoxicity of the local microenvironment by producing oxygen. In addition, microalgae extracts have antitumor, anti-inflammatory, antibacterial, and antioxidant effects. These properties make them attractive candidates for developing methods to treat ODAD. Although researchers have exploited the advantages of microalgae and developed a variety of microalgae-based biomaterials to treat ODAD, a comprehensive review of this topic has not been presented previously. Therefore, in this review, we summarize the development and progress made in the field of developing microalgae-based biomaterials toward the treatment of ODAD. The challenges and prospects of this field are also discussed.
Collapse
Affiliation(s)
- Hengqing Cui
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, 200003, People's Republic of China
| | - Yidan Su
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, 200003, People's Republic of China
| | - Wei Wei
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Fei Xu
- Department of Plastic Surgery, Naval Medical Center, Naval Medical University, Shanghai, 200052, People's Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Wenjun Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
9
|
Dawiec-Liśniewska A, Podstawczyk D, Bastrzyk A, Czuba K, Pacyna-Iwanicka K, Okoro OV, Shavandi A. aNew trends in biotechnological applications of photosynthetic microorganisms. Biotechnol Adv 2022; 59:107988. [DOI: 10.1016/j.biotechadv.2022.107988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
|
10
|
Zhuang D, He N, Khoo KS, Ng EP, Chew KW, Ling TC. Application progress of bioactive compounds in microalgae on pharmaceutical and cosmetics. CHEMOSPHERE 2022; 291:132932. [PMID: 34798100 DOI: 10.1016/j.chemosphere.2021.132932] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/31/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Microalgae is an autotrophic organism with fast growth, short reproduction cycle, and strong environmental adaptability. In recent years, microalgae and the bioactive ingredients extracted from microalgae are regarded as potential substitutes for raw materials in the pharmaceutical and the cosmetics industry. In this review, the characteristics and efficacy of the high-value components of microalgae are discussed in detail, along with the sources and extraction technologies of algae used to obtain high-value ingredients are reviewed. Moreover, the latest trends in biotherapy based on high-value algae extracts as materials are discussed. The excellent antioxidant properties of microalgae derivatives are regarded as an attractive replacement for safe and environmentally friendly cosmetics formulation and production. Through further studies, the mechanism of microalgae bioactive compounds can be understood better and reasonable clinical trials conducted can safely conclude the compliance of microalgae-derived drugs or cosmetics to be necessary standards to be marketed.
Collapse
Affiliation(s)
- Dingling Zhuang
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ning He
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University. No. 1, Jalan Menara Gading, UCSI Heights, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Eng-Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Kit Wayne Chew
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China; School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia.
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Schindler K, Zobi F. Anticancer and Antibiotic Rhenium Tri- and Dicarbonyl Complexes: Current Research and Future Perspectives. Molecules 2022; 27:539. [PMID: 35056856 PMCID: PMC8777860 DOI: 10.3390/molecules27020539] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
Organometallic compounds are increasingly recognized as promising anticancer and antibiotic drug candidates. Among the transition metal ions investigated for these purposes, rhenium occupies a special role. Its tri- and dicarbonyl complexes, in particular, attract continuous attention due to their relative ease of preparation, stability and unique photophysical and luminescent properties that allow the combination of diagnostic and therapeutic purposes, thereby permitting, e.g., molecules to be tracked within cells. In this review, we discuss the anticancer and antibiotic properties of rhenium tri- and dicarbonyl complexes described in the last seven years, mainly in terms of their structural variations and in vitro efficacy. Given the abundant literature available, the focus is initially directed on tricarbonyl complexes of rhenium. Dicarbonyl species of the metal ion, which are slowly gaining momentum, are discussed in the second part in terms of future perspective for the possible developments in the field.
Collapse
Affiliation(s)
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin du Musée 9, 1700 Fribourg, Switzerland;
| |
Collapse
|
12
|
Sovari SN, Radakovic N, Roch P, Crochet A, Pavic A, Zobi F. Combatting AMR: A molecular approach to the discovery of potent and non-toxic rhenium complexes active against C. albicans-MRSA co-infection. Eur J Med Chem 2021; 226:113858. [PMID: 34562853 DOI: 10.1016/j.ejmech.2021.113858] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
Antimicrobial resistance (AMR) is a major emerging threat to public health, causing serious issues in the successful prevention and treatment of persistent diseases. While the problem escalates, lack of financial incentive has lead major pharmaceutical companies to interrupt their antibiotic drug discovery programs. The World Health Organisation (WHO) has called for novel solutions outside the traditional development pathway, with emphasis on new classes of active compounds with non-classical mechanisms of action. Metal complexes are an untapped source of antibiotic potential owing to unique modes of action and a wider range of three-dimensional geometries as compared to purely organic compounds. In this study, we present the antimicrobial and antifungal efficacy of a family of rhenium tricarbonyl diimine complexes with varying ligands, charge and lipophilicity. Our study allowed the identification of potent and non-toxic complexes active in vivo against S. aureus infections at MIC doses as low as 300 ng/mL, as well as against C. albicans-MRSA mixed co-infection. The compounds are capable of suppressing the C. albicans morphogenetic yeast-to-hyphal transition, eradicating fungal-S. aureus co-infection, while showing no sign of cardio-, hepato-, hematotoxiciy or teratogenicity.
Collapse
Affiliation(s)
- Sara Nasiri Sovari
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Natasa Radakovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Paul Roch
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Aurélien Crochet
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia.
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland.
| |
Collapse
|
13
|
Nasiri Sovari S, Kolly I, Schindler K, Cortat Y, Liu SC, Crochet A, Pavic A, Zobi F. Efficient Direct Nitrosylation of α-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release. Molecules 2021; 26:5302. [PMID: 34500734 PMCID: PMC8434269 DOI: 10.3390/molecules26175302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022] Open
Abstract
The reaction of rhenium α-diimine (N-N) tricarbonyl complexes with nitrosonium tetrafluoroborate yields the corresponding dicarbonyl-nitrosyl [Re(CO)2(NO)(N-N)X]+ species (where X = halide). The complexes, accessible in a single step in good yield, are structurally nearly identical higher charge congeners of the tricarbonyl molecules. Substitution chemistry aimed at the realization of equivalent dicationic species (intended for applications as potential antimicrobial agents), revealed that the reactivity of metal ion in [Re(CO)2(NO)(N-N)X]+ is that of a hard Re acid, probably due to the stronger π-acceptor properties of NO+ as compared to those of CO. The metal ion thus shows great affinity for π-basic ligands, which are consequently difficult to replace by, e.g., σ-donor or weak π-acids like pyridine. Attempts of direct nitrosylation of α-diimine fac-[Re(CO)3]+ complexes bearing π-basic OR-type ligands gave the [Re(CO)2(NO)(N-N)(BF4)][BF4] salt as the only product in good yield, featuring a stable Re-FBF3 bond. The solid state crystal structure of nearly all molecules presented could be elucidated. A fundamental consequence of the chemistry of [Re(CO)2(NO)(N-N)X]+ complexes, it that the same can be photo-activated towards CO release and represent an entirely new class of photoCORMs.
Collapse
Affiliation(s)
- Sara Nasiri Sovari
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Isabelle Kolly
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Kevin Schindler
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Youri Cortat
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Shing-Chi Liu
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Aurelien Crochet
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| |
Collapse
|
14
|
Rabiee N, Khatami M, Jamalipour Soufi G, Fatahi Y, Iravani S, Varma RS. Diatoms with Invaluable Applications in Nanotechnology, Biotechnology, and Biomedicine: Recent Advances. ACS Biomater Sci Eng 2021; 7:3053-3068. [PMID: 34152742 DOI: 10.1021/acsbiomaterials.1c00475] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diatoms are unicellular microalga found in soil and almost every aquatic environment (marine and fresh water). Biogenic silica and diatoms are attractive for biotechnological and industrial applications, especially in the field of biomedicine, industrial/synthetic manufacturing processes, and biomedical/pharmaceutical sciences. Deposition of silica by diatoms allows them to create micro- or nanoscale structures which may be utilized in nanomedicine and especially in drug/gene delivery. Diatoms with their unique architectures, good thermal stability, suitable surface area, simple chemical functionalization/modification procedures, ease of genetic manipulations, optical/photonic characteristics, mechanical resistance, and eco-friendliness, can be utilized as smart delivery platforms. The micro- to nanoscale properties of the diatom frustules have garnered a great deal of attention for their application in diverse areas of nanotechnology and biotechnology, such as bioimaging/biosensing, biosensors, drug/gene delivery, photodynamic therapy, microfluidics, biophotonics, solar cells, and molecular filtrations. Additionally, the genetically engineered diatom microalgae-derived nanoporous biosilica have enabled the targeted anticancer drug delivery to neuroblastoma and B-lymphoma cells as well as the mouse xenograft model of neuroblastoma. In this perspective, current trends and recent advances related to the applications of diatoms for the synthesis of nanoparticles, gene/drug delivery, biosensing determinations, biofuel production, and remediation of heavy metals are deliberated, including the underlying significant challenges and future perspectives.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
15
|
Shi H, Lou J, Lin S, Wang Y, Hu Y, Zhang P, Liu Y, Zhang Q. Diatom-like silica-protein nanocomposites for sustained drug delivery of ruthenium polypyridyl complexes. J Inorg Biochem 2021; 221:111489. [PMID: 34000586 DOI: 10.1016/j.jinorgbio.2021.111489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/28/2021] [Accepted: 05/08/2021] [Indexed: 01/03/2023]
Abstract
Inspired by the unique glass cell wall of diatom, we design a new nanostructure of human serum albumin nanoparticle (HSANP) coated with silica (HSA/SiO2), which consists of a core-satellite assembly of small silica nanoparticles on a single HSANP. The HSA/SiO2 nanoparticles are used for delivering ruthenium polypyridyl complexes into cells. The silica coating increases the Ru loading efficiency, and prevents the burst release of Ru from HSA/SiO2. The Ru release rate can be controlled by adjusting the amount of coated silica on HSANP, affording a drug delivery system with controlled drug release rate. The Ru-HSA/SiO2 nanoparticles show high stability in physiological condition, and significantly increase the Ru uptake into cells, which proceeds via clathrin-mediated endocytosis into the lysosomes. The silica coating takes no effect on the fluorescence intensity and ROS generation of loaded Ru in HSA/SiO2. Furthermore, Ru4-HSA/SiO2 exhibit weak cytotoxicity in dark, however, the nanodrug can be activated by light irradiation and generate ROS to damage cells, thus achieving an excellent photodynamic therapy efficiency. Therefore, the diatom-like nanostructure can function as sustained drug delivery nanocarrier of ruthenium polypyridyl complex and can be used for bioimaging and photodynamic therapy.
Collapse
Affiliation(s)
- Hongdong Shi
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jingxue Lou
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Simin Lin
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yi Wang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yatao Hu
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Pingyu Zhang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Qianling Zhang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| |
Collapse
|
16
|
Schindler K, Crochet A, Zobi F. Aerobically stable and substitutionally labile α-diimine rhenium dicarbonyl complexes. RSC Adv 2021; 11:7511-7520. [PMID: 35423250 PMCID: PMC8694950 DOI: 10.1039/d1ra00514f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
New synthetic routes to aerobically stable and substitutionally labile α-diimine rhenium(i) dicarbonyl complexes are described. The molecules are prepared in high yield from the cis–cis–trans-[Re(CO)2(tBu2bpy)Br2]− anion (2, where tBu2bpy is 4,4′-di-tert-butyl-2,2′-bipyridine), which can be isolated from the one electron reduction of the corresponding 17-electron complex (1). Compound 2 is stable in the solid state, but in solution it is oxidized by molecular oxygen back to 1. Replacement of a single bromide of 2 by σ-donor monodentate ligands (Ls) yields stable neutral 18-electron cis–cis–trans-[Re(CO)2(tBu2bpy)Br(L)] species. In coordinating solvents like methanol the halide is replaced giving the corresponding solvated cations. [Re(CO)2(tBu2bpy)Br(L)] species can be further reacted with Ls to prepare stable cis–cis–trans-[Re(CO)2(tBu2bpy)(L)2]+ complexes in good yield. Ligand substitution of Re(i) complexes proceeds via pentacoordinate intermediates capable of Berry pseudorotation. In addition to the cis–cis–trans-complexes, cis–cis–cis- (all cis) isomers are also formed. In particular, cis–cis–trans-[Re(CO)2(tBu2bpy)(L)2]+ complexes establish an equilibrium with all cis isomers in solution. The solid state crystal structure of nearly all molecules presented could be elucidated. The molecules adopt a slightly distorted octahedral geometry. In comparison to similar fac-[Re(CO)3]+complexes, Re(i) diacarbonyl species are characterized by a bend (ca. 7°) of the axial ligands towards the α-diimine unit. [Re(CO)2(tBu2bpy)Br2]− and [Re(CO)2(tBu2bpy)Br(L)] complexes may be considered as synthons for the preparation of a variety of new stable diamagnetic dicarbonyl rhenium cis-[Re(CO)2]+ complexes, offering a convenient entry in the chemistry of the core. New synthetic routes to aerobically stable and substitutionally labile α-diimine rhenium(i) dicarbonyl complexes offer a convenient entry in the chemistry of the cis-[Re(CO)2]+ core.![]()
Collapse
Affiliation(s)
- Kevin Schindler
- Department of Chemistry, Fribourg University Chemin Du Musée 9 1700 Fribourg Switzerland
| | - Aurélien Crochet
- Department of Chemistry, Fribourg University Chemin Du Musée 9 1700 Fribourg Switzerland
| | - Fabio Zobi
- Department of Chemistry, Fribourg University Chemin Du Musée 9 1700 Fribourg Switzerland
| |
Collapse
|
17
|
Nanostructured Biosilica of Diatoms: From Water World to Biomedical Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196811] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diatoms—unicellular photosynthetic algae—are promising natural sources of nanostructured silica. These microorganisms produce in their membrane approximately a highly ordered porous cell wall called a frustule as protection from environmental stress. Diatom frustules consist of hydrated silica that show peculiar properties including biocompatibility, tailorable surface chemistry, chemical inertness, and thermal stability. Frustules harvested from aquatic ecosystems or diatomaceous fossil sediments represent an excellent cost-effective source of biosilica for a broad range of biomedical applications. The porous ultrastructure of the frustules displays a large surface area available for coating with various biomolecules through different functionalization methods. In this review article, we highlight the main features of diatom biosilica and present some of the most advantageous properties that support the employment of frustules in the field of drug delivery, biosensing, and regenerative medicine. In particular, it is offered an insight into the most common functionalization strategies through which diatom physicochemical properties can be modified and tailored according to the described field of application.
Collapse
|