1
|
Imana ZN, Tseng JC, Yang JX, Liu YL, Lin PY, Huang MH, Chen L, Luo Y, Wang CC, Yu GY, Chuang TH. Cooperative tumor inhibition by CpG-oligodeoxynucleotide and cyclic dinucleotide in head and neck cancer involves T helper cytokine and macrophage phenotype reprogramming. Biomed Pharmacother 2024; 181:117692. [PMID: 39561589 DOI: 10.1016/j.biopha.2024.117692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
Head and neck cancer ranks as the sixth most common cancer worldwide, highlighting the critical need for the development of new therapies to enhance treatment efficacy. The activation of innate immune receptors given their potent immune stimulatory properties aid in the eradication of cancer cells. In this study, we investigated the immune mechanism and anti-tumor function of a Toll-like receptor 9 (TLR9) agonist, CpG-oligodeoxynucleotide-2722 (CpG-2722), in combination with cyclic dinucleotides, which are agonists of stimulator of interferon genes (STING). Our results revealed that CpG-2722 stimulation increased the expression of Th1 pro-inflammatory cytokines. Stimulation by STING agonists exhibited lower expression of Th1 cytokines but higher expression of Th2 cytokines compared to CpG-2722. However, the combination of these two agonists significantly enhanced Th1 cytokines while reducing Th2 cytokines. Moreover, in vivo experiment showed that both CpG-2722 and 2'3'-c-di-AMP suppressed head and neck tumor growth, with their combination proving more effective than the use of these agonists alone. The combined treatment cooperatively promoted the production of Th1 cytokines and type I interferons, while suppressing Th2 cytokines in the tumors as observed in vitro. Additionally, it led to the accumulation of M1 macrophages, dendritic cells, and T cells, shaping a favorable tumor microenvironment for T cell-mediated tumor killing. The anti-tumor activity of the CpG-2722 and 2'3'-c-di-AMP combination depends on the macrophage presence but does not directly activate M1 macrophage polarization, instead working through a reprogrammed cytokine profile. Furthermore, this combination shows a cooperative anti-tumor activity with anti-PD-1 in treating head and neck tumors. Overall, these findings highlight a Th response and macrophage phenotype reprograming involved functional mechanism underlying the cooperative activity of the combination of TLR9 and STING agonists in the immunotherapy of head and neck cancer.
Collapse
Affiliation(s)
- Zaida Nur Imana
- Department of Life Sciences, National Central University, Taoyuan, Taiwan; Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Jing-Xing Yang
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Ling Liu
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Yen Lin
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan; Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China.; Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.
| | - Tsung-Hsien Chuang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan; Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
2
|
Ikeda R, Kimura C, Nihashi Y, Umezawa K, Shimosato T, Takaya T. Osteogenic CpG Oligodeoxynucleotide, iSN40, Inhibits Osteoclastogenesis in a TLR9-Dependent Manner. Life (Basel) 2024; 14:1572. [PMID: 39768281 PMCID: PMC11679607 DOI: 10.3390/life14121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
A CpG oligodeoxynucleotide (CpG-ODN), iSN40, was originally identified as promoting the mineralization and differentiation of osteoblasts, independent of Toll-like receptor 9 (TLR9). Since CpG ODNs are often recognized by TLR9 and inhibit osteoclastogenesis, this study investigated the TLR9 dependence and anti-osteoclastogenic effect of iSN40 to validate its potential as an osteoporosis drug. The murine monocyte/macrophage cell line RAW264.7 was treated with the receptor activator of nuclear factor-κB ligand (RANKL) to induce osteoclast differentiation, then the effect of iSN40 on was quantified by tartrate-resistant acid phosphatase (TRAP) staining and real-time RT-PCR. iSN40 completely inhibited RANKL-induced differentiation into TRAP+ multinucleated osteoclasts by suppressing osteoclastogenic genes and inducing anti-/non-osteoclastogenic genes. Treatment with a TLR9 inhibitor, E6446, or a mutation in the CpG motif of iSN40 abolished the intracellular uptake and anti-osteoclastogenic effect of iSN40. These results demonstrate that iSN40 is subcellularly internalized and is recognized by TLR9 via its CpG motif, modulates RANKL-dependent osteoclastogenic gene expression, and ultimately inhibits osteoclastogenesis. Finally, iSN40 was confirmed to inhibit the osteoclastogenesis of RAW264.7 cells cocultured with the murine osteoblast cell line MC3T3-E1, presenting a model of bone remodeling. This study demonstrates that iSN40, which exerts both pro-osteogenic and anti-osteoclastogenic effects, may be a promising nucleic acid drug for osteoporosis.
Collapse
Affiliation(s)
- Rena Ikeda
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Chihaya Kimura
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Yuma Nihashi
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Koji Umezawa
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Takeshi Shimosato
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Institute for Aqua Regeneration, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| |
Collapse
|
3
|
Liu Z, Li S, Xiao Y, Liu X, Zhang B, Zeng Q, Ao Q, Zhang X. A Multi-Functional Nanoadjuvant Coupling Manganese with Toll-Like 9 Agonist Stimulates Potent Innate and Adaptive Anti-Tumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402678. [PMID: 39258810 PMCID: PMC11538688 DOI: 10.1002/advs.202402678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/20/2024] [Indexed: 09/12/2024]
Abstract
The effectiveness of Toll-like 9 agonists (CpG) as an adjuvant for tumor immunotherapy is restricted due to their insufficient ability to activate anti-tumor immunity. To address that, the common nutrient metal ions are explored (Mn2+, Cu2+, Ca2+, Mg2+, Zn2+, Fe3+, and Al3+), identifying Mn2+ as a key enhancer of CpG to mediate immune activation by augmenting the STING-NF-κB pathway. Mn2+ and CpG are then self-assembled with epigallocatechin gallate (EGCG) into a nanoadjuvant MPN/CpG. Local delivery of MPN/CpG effectively inhibits tumor growth in a B16 melanoma-bearing mouse model, reshaping the tumor microenvironment (TME) by repolarizing M2-type tumor-associated macrophages (TAMs) to an M1-type and boosting intra-tumoral infiltration of CD8+/CD4+ T lymphocytes and DCs. Furthermore, compared to free CpG, MPN/CpG exhibits heightened accumulation in lymph nodes, enhancing CpG uptake and DC activation, consequently inducing significant antigen-specific cytotoxic CD8+ T cell immune response and humoral immunity. In a prophylactic tumor-bearing mouse model, MPN/CpG vaccination with OVA antigen significantly delays B16-OVA melanoma growth and extends mouse survival. These findings underscore the potential of MPN/CpG as a multifunctional adjuvant platform to drive powerful innate and adaptive immunity and regulate TME against tumors.
Collapse
Affiliation(s)
- Zhongjie Liu
- College of Biomedical EngineeringSichuan UniversityChengdu610064China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuan610064China
| | - Shu Li
- College of Biomedical EngineeringSichuan UniversityChengdu610064China
| | - Yang Xiao
- College of Biomedical EngineeringSichuan UniversityChengdu610064China
| | - Xiaoyang Liu
- Orthopedic Research Institution, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengdu610041China
| | - Bin Zhang
- College of Biomedical EngineeringSichuan UniversityChengdu610064China
| | - Qin Zeng
- College of Biomedical EngineeringSichuan UniversityChengdu610064China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuan610064China
| | - Qiang Ao
- College of Biomedical EngineeringSichuan UniversityChengdu610064China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuan610064China
| | - Xingdong Zhang
- College of Biomedical EngineeringSichuan UniversityChengdu610064China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuan610064China
| |
Collapse
|
4
|
Gong H, Griffin JD, Groer CE, Wu S, Downes GM, Markum G, Abdelaziz MM, Alhakamy NA, Forrest ML, Berkland CJ. Glatiramer Acetate Complexes CpG Oligodeoxynucleotides into Nanoparticles and Boosts Their TLR9-Driven Immunity. Mol Pharm 2024. [PMID: 39484963 DOI: 10.1021/acs.molpharmaceut.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Unmethylated cytosine-guanine oligodeoxynucleotides (CpG ODNs) have a storied history as agonists for Toll-like receptor 9 (TLR9). CpG ODNs have shown promising antitumor effects in preclinical studies by inducing potent proinflammatory immune responses. However, clinical success has been hindered by inconsistent efficacy and immune-related toxicities caused by systemic exposure to CpG ODNs. We previously identified that glatiramer acetate (GA), an FDA-approved, lysine-rich polypeptide, could complex class B CpG into cationic nanoparticles which persist at the intratumoral injection site while mitigating the induction of systemic proinflammatory cytokines in mouse tumor models. To extend GA applications across subtypes of CpG ODN (class A, B, and C), we evaluated physiochemical properties and identified the immunological signaling of GA and its complexes with different classes of CpG ODNs. We compared the physiochemical characteristics of three types of GA-CpG nanoparticles, followed by assessments of cell uptake efficiency and endolysosomal trafficking. We then performed successive in vitro and in vivo assays to evaluate immunological discrepancies. Complexation with GA preserved the immunological activity of CpG ODN subtypes while encapsulating them into cationic spherical nanoparticles. GA improved the cellular uptake of CpG ODNs, generally increased retention in early endosomes, and amplified immunological responses. A subsequent in vivo experiment confirmed the achievement of potent tumor suppression while mitigating systemic immune-related toxicities. Together, these data help elucidate the noncanonical role of GA to serve as a nucleic acid delivery scaffold that can improve the efficacy and safety of CpG adjuvant for clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Huan Gong
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | | | - Chad E Groer
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Sa Wu
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Grant M Downes
- Bioengineering Graduate Program, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Grace Markum
- Department of Chemical and Petroleum Engineering, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Moustafa M Abdelaziz
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Nabil A Alhakamy
- Kinimmune Inc., Saint Louis, Missouri 63141, United States
- Department of Pharmaceutics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Cory J Berkland
- Kinimmune Inc., Saint Louis, Missouri 63141, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, Missouri 63105, United States
- Department of Chemistry, Washington University, Saint Louis, Missouri 63130, United States
| |
Collapse
|
5
|
Ludin A, Stirtz GL, Tal A, Nirmal AJ, Besson N, Jones SM, Pfaff KL, Manos M, Liu S, Barrera I, Gong Q, Rodrigues CP, Sahu A, Jerison E, Alessi JV, Ricciuti B, Richardson DS, Weiss JD, Moreau HM, Stanhope ME, Afeyan AB, Sefton J, McCall WD, Formato E, Yang S, Zhou Y, van Konijnenburg DPH, Cole HL, Cordova M, Deng L, Rajadhyaksha M, Quake SR, Awad MM, Chen F, Sorger PK, Hodi FS, Rodig SJ, Murphy GF, Zon LI. Craters on the melanoma surface facilitate tumor-immune interactions and demonstrate pathologic response to checkpoint blockade in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613595. [PMID: 39345527 PMCID: PMC11429731 DOI: 10.1101/2024.09.18.613595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Immunotherapy leads to cancer eradication despite the tumor's immunosuppressive environment. Here, we used extended long-term in-vivo imaging and high-resolution spatial transcriptomics of endogenous melanoma in zebrafish, and multiplex imaging of human melanoma, to identify domains that facilitate immune response during immunotherapy. We identified crater-shaped pockets at the margins of zebrafish and human melanoma, rich with beta-2 microglobulin (B2M) and antigen recognition molecules. The craters harbor the highest density of CD8+ T cells in the tumor. In zebrafish, CD8+ T cells formed prolonged interactions with melanoma cells within craters, characteristic of antigen recognition. Following immunostimulatory treatment, the craters enlarged and became the major site of activated CD8+ T cell accumulation and tumor killing that was B2M dependent. In humans, craters predicted immune response to ICB therapy, showing response better than high T cell infiltration. This marks craters as potential new diagnostic tool for immunotherapy success and targets to enhance ICB response.
Collapse
Affiliation(s)
- Aya Ludin
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
- These authors contributed equally
| | - Georgia L. Stirtz
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- These authors contributed equally
| | - Asaf Tal
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Ajit J. Nirmal
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard; Boston, MA, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Systems Biology, Harvard Medical School; Boston, MA, USA
| | - Naomi Besson
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephanie M. Jones
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathleen L. Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Manos
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sophia Liu
- Biophysics Program, Harvard University, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Irving Barrera
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Qiyu Gong
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cecilia Pessoa Rodrigues
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
| | - Aditi Sahu
- Dermatology Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA.|
| | - Elizabeth Jerison
- Department of Physics, University of Chicago, Chicago, IL 60637, USA, Institute for Biophysical Dynamics, and James Franck Institute
| | - Joao V. Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Douglas S. Richardson
- Harvard Center for Biological Imaging, Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA, USA
| | - Jodi D. Weiss
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Hadley M. Moreau
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Meredith E. Stanhope
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Alexander B. Afeyan
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - James Sefton
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Wyatt D. McCall
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Emily Formato
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
| | | | - Hannah L. Cole
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Miguel Cordova
- Dermatology Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA.|
| | - Liang Deng
- Dermatology Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA.|
| | - Milind Rajadhyaksha
- Dermatology Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA.|
| | - Stephen R. Quake
- Department of Bioengineering and Applied sciences, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Mark M. Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fei Chen
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Peter K. Sorger
- Ludwig Center at Harvard; Boston, MA, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Systems Biology, Harvard Medical School; Boston, MA, USA
| | - F. Stephen Hodi
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Parker Institute for Cancer Immunotherapy
| | - Scott J. Rodig
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I. Zon
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
- Howard Hughes Medical Institute, Harvard medical school; Boston MA, USA
| |
Collapse
|
6
|
Zhang WY, Zheng XL, Coghi PS, Chen JH, Dong BJ, Fan XX. Revolutionizing adjuvant development: harnessing AI for next-generation cancer vaccines. Front Immunol 2024; 15:1438030. [PMID: 39206192 PMCID: PMC11349682 DOI: 10.3389/fimmu.2024.1438030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
With the COVID-19 pandemic, the importance of vaccines has been widely recognized and has led to increased research and development efforts. Vaccines also play a crucial role in cancer treatment by activating the immune system to target and destroy cancer cells. However, enhancing the efficacy of cancer vaccines remains a challenge. Adjuvants, which enhance the immune response to antigens and improve vaccine effectiveness, have faced limitations in recent years, resulting in few novel adjuvants being identified. The advancement of artificial intelligence (AI) technology in drug development has provided a foundation for adjuvant screening and application, leading to a diversification of adjuvants. This article reviews the significant role of tumor vaccines in basic research and clinical treatment and explores the use of AI technology to screen novel adjuvants from databases. The findings of this review offer valuable insights for the development of new adjuvants for next-generation vaccines.
Collapse
Affiliation(s)
- Wan-Ying Zhang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Xiao-Li Zheng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Paolo Saul Coghi
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jun-Hui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bing-Jun Dong
- Gynecology Department, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Xing-Xing Fan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
7
|
Xu X, Hong Y, Fan H, Guo Z. Nucleic Acid Materials-Mediated Innate Immune Activation for Cancer Immunotherapy. ChemMedChem 2024; 19:e202400111. [PMID: 38622787 DOI: 10.1002/cmdc.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Abnormally localized nucleic acids (NAs) are considered as pathogen associated molecular patterns (PAMPs) in innate immunity. They are recognized by NAs-specific pattern recognition receptors (PRRs), leading to the activation of associated signaling pathways and subsequent production of type I interferons (IFNs) and pro-inflammatory cytokines, which further trigger the adaptive immunity. Notably, NAs-mediated innate immune activation is highly dependent on the conformation changes, especially the aggregation of PRRs. Evidence indicates that the characteristics of NAs including their length, concentration and even spatial structure play essential roles in inducing the aggregation of PRRs. Therefore, nucleic acid materials (NAMs) with high valency of NAs and high-order structures hold great potential for activating innate and adaptive immunity, making them promising candidates for cancer immunotherapy. In recent years, a variety of NAMs have been developed and have demonstrated significant efficacy in achieving satisfactory anti-tumor immunity in multiple mouse models, exhibiting huge potential for clinical application in cancer treatment. This review aims to discuss the mechanisms of NAMs-mediated innate immune response, and summarize their applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Xinyu Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yuxuan Hong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Huanhuan Fan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
8
|
Li X, Ebara M, Shirahata N, Yamazaki T, Hanagata N. Synergistic Effects of Metal-Organic Nanoplatform and Guanine Quadruplex-Based CpG Oligodeoxynucleotides in Therapeutic Cancer Vaccines with Different Tumor Antigens. Vaccines (Basel) 2024; 12:649. [PMID: 38932378 PMCID: PMC11209203 DOI: 10.3390/vaccines12060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Oligodeoxynucleotides (ODNs) containing unmethylated cytosine-phosphate-guanosine (CpG) motifs are readily recognized by Toll-like receptor 9 on immune cells, trigger an immunomodulatory cascade, induce a Th1 -biased immune milieu, and have great potential as an adjuvant in cancer vaccines. In this study, a green one-step synthesis process was adopted to prepare an amino-rich metal-organic nanoplatform (FN). The synthesized FN nanoplatform can simultaneously and effectively load model tumor antigens (OVA)/autologous tumor antigens (dLLC) and immunostimulatory CpG ODNs with an unmodified PD backbone and a guanine quadruplex structure to obtain various cancer vaccines. The FN nanoplatform and immunostimulatory CpG ODNs generate synergistic effects to enhance the immunogenicity of different antigens and inhibit the growth of established and distant tumors in both the murine E.G7-OVA lymphoma model and the murine Lewis lung carcinoma model. In the E.G7-OVA lymphoma model, vaccination efficiently increases the CD4+, CD8+, and tetramer+CD8+ T cell populations in the spleens. In the Lewis lung carcinoma model, vaccination efficiently increases the CD3+CD4+ and CD3+CD8+ T cell populations in the spleens and CD3+CD8+, CD3-CD8+, and CD11b+CD80+ cell populations in the tumors, suggesting the alteration of tumor microenvironments from cold to hot tumors.
Collapse
Affiliation(s)
- Xia Li
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Naoto Shirahata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Tomohiko Yamazaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Nobutaka Hanagata
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
9
|
Li H, Wang S, Yang Z, Meng X, Niu M. Nanomaterials modulate tumor-associated macrophages for the treatment of digestive system tumors. Bioact Mater 2024; 36:376-412. [PMID: 38544737 PMCID: PMC10965438 DOI: 10.1016/j.bioactmat.2024.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 11/25/2024] Open
Abstract
The treatment of digestive system tumors presents challenges, particularly in immunotherapy, owing to the advanced immune tolerance of the digestive system. Nanomaterials have emerged as a promising approach for addressing these challenges. They provide targeted drug delivery, enhanced permeability, high bioavailability, and low toxicity. Additionally, nanomaterials target immunosuppressive cells and reshape the tumor immune microenvironment (TIME). Among the various cells in the TIME, tumor-associated macrophages (TAMs) are the most abundant and play a crucial role in tumor progression. Therefore, investigating the modulation of TAMs by nanomaterials for the treatment of digestive system tumors is of great significance. Here, we present a comprehensive review of the utilization of nanomaterials to modulate TAMs for the treatment of gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer. We also investigated the underlying mechanisms by which nanomaterials modulate TAMs to treat tumors in the digestive system. Furthermore, this review summarizes the role of macrophage-derived nanomaterials in the treatment of digestive system tumors. Overall, this research offers valuable insights into the development of nanomaterials tailored for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Hao Li
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Niu
- China Medical University, Shenyang, China
| |
Collapse
|
10
|
Li Y, Xu Z, Li Y, Jiang T, Meng F, Fu J, Huang L, Wang F, Wang X, Wang F. Preclinical and phase I studies of an antisense oligonucleotide drug targeting IGF-1R in liver cancer. Future Oncol 2024; 20:2671-2684. [PMID: 38573183 PMCID: PMC11534120 DOI: 10.2217/fon-2023-0872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/14/2024] [Indexed: 04/05/2024] Open
Abstract
Aim: To evaluate a novel antisense oligonucleotide drug targeting human IGF-1R in preclinical and phase I studies of liver cancer.Materials & methods: The tolerability and safety of an investigational new drug were evaluated in a dose-escalation trial involving 17 patients with advanced liver cancer after preclinical assessment of pharmacokinetics and pharmacodynamics.Results: The drug exposure levels in the phase I trial were determined by the in vivo efficacy with pharmacokinetics evaluation in rats and rhesus monkeys. This clinical study showed that the maximum tolerated dose was 3.96 mg/kg, and the dose-limiting toxicity dose was 4.4 mg/kg.Conclusion: The drug was safe and tolerable in patients with advanced liver cancer.Clinical Trial Registration: ChiCTR2100044235 (www.chictr.org.cn).
Collapse
Affiliation(s)
- Yonggang Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhe Xu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yuanyuan Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Tianjun Jiang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Fanping Meng
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Junliang Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Lei Huang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Fengchao Wang
- Youcare Pharmaceutical Group Co Ltd, Beijing, 100176, China
| | - Xia Wang
- Youcare Pharmaceutical Group Co Ltd, Beijing, 100176, China
| | - Fusheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| |
Collapse
|
11
|
Tai Y, Chen M, Wang F, Fan Y, Zhang J, Cai B, Yan L, Luo Y, Li Y. The role of dendritic cells in cancer immunity and therapeutic strategies. Int Immunopharmacol 2024; 128:111548. [PMID: 38244518 DOI: 10.1016/j.intimp.2024.111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Dendritic cells (DCs) are asserted as the most potent antigen-presenting cells (APCs) that orchestrate both innate and adaptive immunity, being extremely effective in the induction of robust anti-cancer T cell responses. Hence, the modulation of DCs function represents an attractive target for improving cancer immunotherapy efficacy. A better understanding of the immunobiology of DCs, the interaction among DCs, immune effector cells and tumor cells in tumor microenvironment (TME) and the latest advances in biomedical engineering technology would be required for the design of optimal DC-based immunotherapy. In this review, we focus on elaborating the immunobiology of DCs in healthy and cancer environments, the recent advances in the development of enhancing endogenous DCs immunocompetence via immunomodulators as well as DC-based vaccines. The rapidly developing field of applying nanotechnology to improve DC-based immunotherapy is also highlighted.
Collapse
Affiliation(s)
- Yunze Tai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Man Chen
- Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Fang Wang
- Department of Medical Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Yu Fan
- Department of Urology, National Clinical Research Center for Geriatrics and Organ Transplantation Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Agarwal M, Kumar M, Pathak R, Bala K, Kumar A. Exploring TLR signaling pathways as promising targets in cervical cancer: The road less traveled. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:227-261. [PMID: 38663961 DOI: 10.1016/bs.ircmb.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Cervical cancer is the leading cause of cancer-related deaths for women globally. Despite notable advancements in prevention and treatment, the identification of novel therapeutic targets remains crucial for cervical cancer. Toll-like receptors (TLRs) play an essential role in innate immunity as pattern-recognition receptors. There are several types of pathogen-associated molecular patterns (PAMPs), including those present in cervical cancer cells, which have the ability to activate toll-like receptors (TLRs). Recent studies have revealed dysregulated toll-like receptor (TLR) signaling pathways in cervical cancer, leading to the production of inflammatory cytokines and chemokines that can facilitate tumor growth and metastasis. Consequently, TLRs hold significant promise as potential targets for innovative therapeutic agents against cervical cancer. This book chapter explores the role of TLR signaling pathways in cervical cancer, highlighting their potential for targeted therapy while addressing challenges such as tumor heterogeneity and off-target effects. Despite these obstacles, targeting TLR signaling pathways presents a promising approach for the development of novel and effective treatments for cervical cancer.
Collapse
Affiliation(s)
- Mohini Agarwal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manish Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Kumud Bala
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Anoop Kumar
- National Institute of Biologicals, Noida, Uttar Pradesh, India.
| |
Collapse
|
13
|
Su C, Kent CL, Pierpoint M, Floyd W, Luo L, Wiliams NT, Ma Y, Peng B, Lazarides AL, Subramanian A, Himes JE, Perez VM, Hernansaiz-Ballesteros RD, Roche KE, Modliszewski JL, Selitsky SR, Mari Shinohara, Wisdom AJ, Moding EJ, Mowery YM, Kirsch DG. Enhancing radiotherapy response via intratumoral injection of the TLR9 agonist CpG to stimulate CD8 T cells in an autochthonous mouse model of sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573968. [PMID: 38260522 PMCID: PMC10802286 DOI: 10.1101/2024.01.03.573968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Radiation therapy is frequently used to treat cancers including soft tissue sarcomas. Prior studies established that the toll-like receptor 9 (TLR9) agonist cytosine-phosphate-guanine oligodeoxynucleotide (CpG) enhances the response to radiation therapy (RT) in transplanted tumors, but the mechanism(s) remain unclear. Here, we used CRISPR/Cas9 and the chemical carcinogen 3-methylcholanthrene (MCA) to generate autochthonous soft tissue sarcomas with high tumor mutation burden. Treatment with a single fraction of 20 Gy RT and two doses of CpG significantly enhanced tumor response, which was abrogated by genetic or immunodepletion of CD8+ T cells. To characterize the immune response to RT + CpG, we performed bulk RNA-seq, single-cell RNA-seq, and mass cytometry. Sarcomas treated with 20 Gy and CpG demonstrated increased CD8 T cells expressing markers associated with activation and proliferation, such as Granzyme B, Ki-67, and interferon-γ. CpG + RT also upregulated antigen presentation pathways on myeloid cells. Furthermore, in sarcomas treated with CpG + RT, TCR clonality analysis suggests an increase in clonal T-cell dominance. Collectively, these findings demonstrate that RT + CpG significantly delays tumor growth in a CD8 T cell-dependent manner. These results provide a strong rationale for clinical trials evaluating CpG or other TLR9 agonists with RT in patients with soft tissue sarcoma.
Collapse
Affiliation(s)
- Chang Su
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Collin L. Kent
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Matthew Pierpoint
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Nerissa T. Wiliams
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Brian Peng
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | - Ajay Subramanian
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Jonathan E. Himes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | - Mari Shinohara
- Department of Immunology, Duke University, Durham, NC, USA
| | - Amy J. Wisdom
- Department of Radiation Oncology, Harvard University, Cambridge, MA, USA
| | - Everett J. Moding
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Yvonne M. Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
- MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David G. Kirsch
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
14
|
Miles MA, Luong R, To EE, Erlich JR, Liong S, Liong F, Logan JM, O’Leary J, Brooks DA, Selemidis S. TLR9 Monotherapy in Immune-Competent Mice Suppresses Orthotopic Prostate Tumor Development. Cells 2024; 13:97. [PMID: 38201300 PMCID: PMC10778079 DOI: 10.3390/cells13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancer is ranked second in the world for cancer-related deaths in men, highlighting the lack of effective therapies for advanced-stage disease. Toll-like receptors (TLRs) and immunity have a direct role in prostate cancer pathogenesis, but TLR9 has been reported to contribute to both the progression and inhibition of prostate tumorigenesis. To further understand this apparent disparity, we have investigated the effect of TLR9 stimulation on prostate cancer progression in an immune-competent, syngeneic orthotopic mouse model of prostate cancer. Here, we utilized the class B synthetic agonist CPG-1668 to provoke a TLR9-mediated systemic immune response and demonstrate a significant impairment of prostate tumorigenesis. Untreated tumors contained a high abundance of immune-cell infiltrates. However, pharmacological activation of TLR9 resulted in smaller tumors containing significantly fewer M1 macrophages and T cells. TLR9 stimulation of tumor cells in vitro had no effect on cell viability or its downstream transcriptional targets, whereas stimulation in macrophages suppressed cancer cell growth via type I IFN. This suggests that the antitumorigenic effects of CPG-1668 were predominantly mediated by an antitumor immune response. This study demonstrated that systemic TLR9 stimulation negatively regulates prostate cancer tumorigenesis and highlights TLR9 agonists as a useful therapeutic for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Mark A. Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Raymond Luong
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Eunice E. To
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Jonathan R. Erlich
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Stella Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Felicia Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Jessica M. Logan
- Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - John O’Leary
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, D8 Dublin, Ireland
- Sir Patrick Dun’s Laboratory, Central Pathology Laboratory, St James’s Hospital, D8 Dublin, Ireland
- Molecular Pathology Laboratory, Coombe Women and Infants’ University Hospital, D8 Dublin, Ireland
| | - Doug A. Brooks
- Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, D8 Dublin, Ireland
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
15
|
Wang Y. Bacterial therapy: a promising strategy for cancer immunotherapy. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0292. [PMID: 37964508 PMCID: PMC10690880 DOI: 10.20892/j.issn.2095-3941.2023.0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Yinsong Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
16
|
Bhat AA, Goyal A, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Singh M, Rohilla S, Saini TK, Kukreti N, Meenakshi DU, Fuloria NK, Sekar M, Gupta G. Uncovering the complex role of interferon-gamma in suppressing type 2 immunity to cancer. Cytokine 2023; 171:156376. [PMID: 37748333 DOI: 10.1016/j.cyto.2023.156376] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Cancer involves cells' abnormal growth and ability to invade or metastasize to different body parts. Cancerous cells can divide uncontrollably and spread to other areas through the lymphatic or circulatory systems. Tumors form when malignant cells clump together in an uncontrolled manner. In this context, the cytokine interferon-gamma (IFN-γ) is crucial in regulating immunological responses, particularly malignancy. While IFN-γ is well-known for its potent anti-tumor effects by activating type 1 immunity, recent research has revealed its ability to suppress type 2 immunity, associated with allergy and inflammatory responses. This review aims to elucidate the intricate function of IFN-γ in inhibiting type 2 immune responses to cancer. We explore how IFN-γ influences the development and function of immune cells involved in type 2 immunity, such as mast cells, eosinophils, and T-helper 2 (Th2) cells. Additionally, we investigate the impact of IFN-mediated reduction of type 2 immunity on tumor development, metastasis, and the response to immunotherapeutic interventions. To develop successful cancer immunotherapies, it is crucial to comprehend the complex interplay between type 2 and type 1 immune response and the regulatory role of IFN-γ. This understanding holds tremendous promise for the development of innovative treatment approaches that harness the abilities of both immune response types to combat cancer. However, unraveling the intricate interplay between IFN-γ and type 2 immunity in the tumor microenvironment will be essential for achieving this goal.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U. P., India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Mahaveer Singh
- Swami Keshvanand Institute of Pharmacy (SKIP), Raiser, Bikaner, 334022, India
| | - Suman Rohilla
- SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, 122505, India
| | - Tarun Kumar Saini
- Dept. Of Neurosurgery ICU, Lok Nayak Hospital, New Delhi (Govt. Of NCT Of Delhi), New Delhi, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | | | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Gaurav Gupta
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| |
Collapse
|
17
|
Tang C, Wang H, Guo L, Zou C, Hu J, Zhang H, Zhou W, Yang G. CpG-Conjugated Silver Nanoparticles as a Multifunctional Nanomedicine to Promote Macrophage Efferocytosis and Repolarization for Atherosclerosis Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37910772 DOI: 10.1021/acsami.3c11227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Atherosclerosis (AS) is a major contributor to cardiovascular diseases, necessitating the development of novel therapeutic strategies to alleviate plaque burden. Macrophage efferocytosis, the process by which macrophages clear apoptotic and foam cells, plays a crucial role in plaque regression. However, this process is impaired in AS lesions due to the overexpression of CD47, which produces a "do not eat me" signal. In this study, we investigated the potential of CpG, a toll-like receptor 9 agonist, to enhance macrophage efferocytosis for AS therapy. We demonstrated that CpG treatment promoted the engulfment of CD47-positive apoptotic cells and foam cells by macrophages. Mechanistically, CpG induced a metabolic shift in macrophages characterized by enhanced fatty acid oxidation and de novo lipid biosynthesis, contributing to its pro-efferocytic effect. To enable in vivo application, we conjugated CpG on silver nanoparticles (AgNPs) to form CpG-AgNPs, which could protect CpG from biological degradation, promote its cellular uptake, and release CpG in response to intracellular glutathione. Combining the intrinsic antioxidative and anti-inflammatory abilities of AgNPs, such nanomedicine displayed multifunctionalities to simultaneously promote macrophage efferocytosis and repolarization. In an ApoE-/- mouse model, intravenous administration of CpG-AgNPs effectively targeted atherosclerotic plaques and exhibited potent therapeutic efficacy with excellent biocompatibility. Our study provides valuable insights into CpG-induced macrophage efferocytosis and highlights the potential of CpG-AgNPs as a promising therapeutic strategy for AS.
Collapse
Affiliation(s)
- Cui Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Hui Wang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lina Guo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Chan Zou
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jianming Hu
- First Department of Pathology, Affiliated Hospital, Shihezi University, Shihezi City 832002, Xinjiang Uygur Autonomous Region, China
| | - Hanyong Zhang
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Academician Workstation, Changsha Medical University, Changsha 410219, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Affiliated Hospital, Shihezi University, Shihezi City, Xinjiang 832002, China
| | - Guoping Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- National-Local Joint Engineering Laboratory of Drug Clinical Evaluation Technology, Changsha, Hunan 410000, China
- Hunan Engineering Research Center for Optimization of Drug Formulation and Early Clinical Evaluation, Changsha, Hunan 410013, China
| |
Collapse
|
18
|
Zhang D, Zhang S, He Z, Chen Y. Cytosine-phosphate-guanine oligodeoxynucleotides alleviate radiation-induced kidney injury in cervical cancer by inhibiting DNA damage and oxidative stress through blockade of PARP1/XRCC1 axis. J Transl Med 2023; 21:679. [PMID: 37773127 PMCID: PMC10541701 DOI: 10.1186/s12967-023-04548-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Radiotherapy can cause kidney injury in patients with cervical cancer. This study aims to investigate the possible molecular mechanisms by which CpG-ODNs (Cytosine phosphate guanine-oligodeoxynucleotides) regulate the PARP1 (poly (ADP-ribose) polymerase 1)/XRCC1 (X-ray repair cross-complementing 1) signaling axis and its impact on radiation kidney injury (RKI) in cervical cancer radiotherapy. METHODS The GSE90627 dataset related to cervical cancer RKI was obtained from the Gene Expression Omnibus (GEO) database. Bioinformatics databases and R software packages were used to analyze the target genes regulated by CpG-ODNs. A mouse model of RKI was established by subjecting C57BL/6JNifdc mice to X-ray irradiation. Serum blood urea nitrogen (BUN) and creatinine levels were measured using an automated biochemical analyzer. Renal tissue morphology was observed through HE staining, while TUNEL staining was performed to detect apoptosis in renal tubular cells. ELISA was conducted to measure levels of oxidative stress-related factors in mouse serum and cell supernatant. An in vitro cell model of RKI was established using X-ray irradiation on HK-2 cells for mechanism validation. RT-qPCR was performed to determine the relative expression of PARP1 mRNA. Cell proliferation activity was assessed using the CCK-8 assay, and Caspase 3 activity was measured in HK-2 cells. Immunofluorescence was used to determine γH2AX expression. RESULTS Bioinformatics analysis revealed that the downstream targets regulated by CpG-ODNs in cervical cancer RKI were primarily PARP1 and XRCC1. CpG-ODNs may alleviate RKI by inhibiting DNA damage and oxidative stress levels. This resulted in significantly decreased levels of BUN and creatinine in RKI mice, as well as reduced renal tubular and glomerular damage, lower apoptosis rate, decreased DNA damage index (8-OHdG), and increased levels of antioxidant factors associated with oxidative stress (SOD, CAT, GSH, GPx). Among the CpG-ODNs, CpG-ODN2006 had a more pronounced effect. CpG-ODNs mediated the inhibition of PARP1, thereby suppressing DNA damage and oxidative stress response in vitro in HK-2 cells. Additionally, PARP1 promoted the formation of the PARP1 and XRCC1 complex by recruiting XRCC1, which in turn facilitated DNA damage and oxidative stress response in renal tubular cells. Overexpression of either PARP1 or XRCC1 reversed the inhibitory effects of CpG-ODN2006 on DNA damage and oxidative stress in the HK-2 cell model and RKI mouse model. CONCLUSION CpG-ODNs may mitigate cervical cancer RKI by blocking the activation of the PARP1/XRCC1 signaling axis, inhibiting DNA damage and oxidative stress response in renal tubule epithelial cells.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, 110004, China
| | - Shitai Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, 110004, China
| | - Zheng He
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, 110004, China
| | - Ying Chen
- Department of Nephrology, The First Hospital of China Medical University, No. 155 Nanjing Bei Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
19
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
20
|
Tseng JC, Yang JX, Lee CY, Lo CF, Liu YL, Zhang MM, Huang LR, Liu KJ, Wang CC, Huang CYF, Hong YR, Tsou LK, Chuang TH. Induction of Immune Responses and Phosphatidylserine Exposure by TLR9 Activation Results in a Cooperative Antitumor Effect with a Phosphatidylserine-targeting Prodrug. Int J Biol Sci 2023; 19:2648-2662. [PMID: 37324949 PMCID: PMC10266080 DOI: 10.7150/ijbs.81683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
Head and neck cancer is a major cancer type, with high motility rates that reduce the quality of life of patients. Herein, we investigated the effectiveness and mechanism of a combination therapy involving TLR9 activator (CpG-2722) and phosphatidylserine (PS)-targeting prodrug of SN38 (BPRDP056) in a syngeneic orthotopic head and neck cancer animal model. The results showed a cooperative antitumor effect of CpG-2722 and BPRDP056 owing to their distinct and complementary antitumor functions. CpG-2722 induced antitumor immune responses, including dendritic cell maturation, cytokine production, and immune cell accumulation in tumors, whereas BPRDP056 directly exerted cytotoxicity toward cancer cells. We also discovered a novel function and mechanism of TLR9 activation, which increased PS exposure on cancer cells, thereby attracting more BPRDP056 to the tumor site for cancer cell killing. Killed cells expose more PS in tumor for BPRDP056 targeting. Tumor antigens released from the dead cells were taken up by antigen-presenting cells, which enhanced the CpG-272-promoted T cell-mediated tumor-killing effect. These form a positive feed-forward antitumor effect between the actions of CpG-2722 and BPRDP056. Thus, the study findings suggest a novel strategy of utilizing the PS-inducing function of TLR9 agonists to develop combinational cancer treatments using PS-targeting drugs.
Collapse
Affiliation(s)
- Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Jing-Xing Yang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Chia-Yin Lee
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Chen-Fu Lo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yi-Ling Liu
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Mingzi M. Zhang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan City 32001, Taiwan
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Lun K. Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan City 32001, Taiwan
| |
Collapse
|
21
|
Chen X, Wu Y, Qiu Y, Li P, Cao Z, Zhou Y, Sun Y. CpG ODN 2102 promotes antibacterial immune responses and enhances vaccine-induced protection in golden pompano (Trachinotusovatus). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108783. [PMID: 37137380 DOI: 10.1016/j.fsi.2023.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/05/2023]
Abstract
CpG oligodeoxynucleotides (ODNs) are oligodeoxynucleotides containing CpG motifs and can be recognized by toll-like receptor 9 (TLR9), activating the host's immune responses. In this study, ten different CpG ODNs were designed and synthesized to study the antibacterial immune responses of CpG ODNs in golden pompano (Trachinotus ovatus). Results showed that CpG ODN 2102 significantly improved the immunity of golden pompano against bacteria. Besides, CpG ODN 2102 promoted the proliferation of head kidney lymphocytes and activated the head kidney macrophages. When TLR9-specific small interfering RNA (siRNA) was used to interfere with TLR9 expression, the immune responses were decreased. Moreover, the expression levels of myeloid differentiation primary response 88 (Myd88), p65, tumor necrosis factor receptor-associated factor 6 (TRAF6), and tumor necrosis factor-alpha (TNF-α) in the TLR9-knockdown golden pompano kidney (GPK) cells were significantly reduced. The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) promoter activity of the TLR9-knockdown GPK cells was also significantly reduced. In vivo, the antibacterial immune effects induced by CpG ODN 2102 in golden pompano were mostly abolished when TLR9 expression was knocked down. These results suggested that TLR9 was involved in the immune responses induced by CpG ODN 2102. CpG ODN 2102 also enhanced the protective effect of the Vibrio harveyi vaccine pCTssJ, where the survival rate of golden pompano was significantly improved by 20%. In addition, CpG ODN 2102 enhanced the messenger RNA (mRNA) expression levels of TLR9, Myxovirus resistance (Mx), interferon γ (IFN-γ), TNF-α, interleukin (IL)-1β, IL-8, major histocompatibility complex class (MHC) Iα, MHC IIα, Immunoglobulin D (IgD), and IgM. Therefore, TLR9 was involved in the antibacterial immune responses induced by CpG ODN 2102 and CpG ODN 2102 possessed adjuvant immune effects. These results enlarged our knowledge of the antibacterial immunity of fish TLRs signaling pathway and had important implications for exploring natural antibacterial molecules in fish and developing new vaccine adjuvants.
Collapse
Affiliation(s)
- Xiaojuan Chen
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Ying Wu
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Yulin Qiu
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Pengshuo Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Zhenjie Cao
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Yongcan Zhou
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China.
| | - Yun Sun
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China.
| |
Collapse
|
22
|
Bradshaw JL, Cushen SC, Ricci CA, Tucker SM, Gardner JJ, Little JT, Osikoya O, Goulopoulou S. Gestational exposure to unmethylated CpG oligonucleotides dysregulates placental molecular clock network and fetoplacental growth dynamics, and disrupts maternal blood pressure circadian rhythms in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532649. [PMID: 36993698 PMCID: PMC10055100 DOI: 10.1101/2023.03.14.532649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Bacterial infections and impaired mitochondrial DNA dynamics are associated with adverse pregnancy outcomes. Unmethylated cytosine-guanine dinucleotide (CpG) motifs are common in bacterial and mitochondrial DNA and act as potent immunostimulators. Here, we tested the hypothesis that exposure to CpG oligonucleotides (ODN) during pregnancy would disrupt blood pressure circadian rhythms and the placental molecular clock machinery, mediating aberrant fetoplacental growth dynamics. Rats were repeatedly treated with CpG ODN in the 3 rd trimester (gestational day, GD, 14, 16, 18) and euthanized on GD20 (near term) or with a single dose of CpG ODN and euthanized 4 hours after treatment on GD14. Hemodynamic circadian rhythms were analyzed via Lomb-Scargle periodogram analysis on 24-h raw data collected continuously via radiotelemetry. A p -value ≥ 0.05 indicates the absence of a circadian rhythm. Following the first treatment with CpG ODN, maternal systolic and diastolic blood pressure circadian rhythms were lost ( p ≥ 0.05). Blood pressure circadian rhythm was restored by GD16 and remained unaffected after the second treatment with CpG ODN ( p < 0.0001). Diastolic blood pressure circadian rhythm was again lost after the last treatment on GD18 ( p ≥ 0.05). CpG ODN increased placental expression of Per2 and Per3 and Tnfα ( p ≤ 0.05) and affected fetoplacental growth dynamics, such as reduced fetal and placental weights were disproportionately associated with increases in the number of resorptions in ODN-treated dams compared to controls. In conclusion, gestational exposure to unmethylated CpG DNA dysregulates placental molecular clock network and fetoplacental growth dynamics and disrupts blood pressure circadian rhythms.
Collapse
|
23
|
Chrysostomou D, Roberts LA, Marchesi JR, Kinross JM. Gut Microbiota Modulation of Efficacy and Toxicity of Cancer Chemotherapy and Immunotherapy. Gastroenterology 2023; 164:198-213. [PMID: 36309208 DOI: 10.1053/j.gastro.2022.10.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/02/2022] [Accepted: 10/16/2022] [Indexed: 01/31/2023]
Abstract
Accumulating evidence supports not only the functional role of the gut microbiome in cancer development and progression but also its role in defining the efficacy and toxicity of chemotherapeutic agents (5-fluorouracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine, methotrexate) and immunotherapeutic compounds (anti-programmed death-ligand 1/anti-programmed cell death protein 1 and anti-cytotoxic T-lymphocyte-associated antigen 4). This evidence is supported in numerous in vitro, animal, and clinical studies that highlight the importance of microbial mechanisms in defining therapeutic responses. The microbiome therefore shapes oncologic outcomes and is now being leveraged for the development of novel personalized therapeutic approaches in cancer treatment. However, if the microbiome is to be successfully translated into next-generation oncologic treatments, a new multimodal model of the oncomicrobiome must be conceptualized that incorporates gut microbial cometabolism of pharmacologic agents into cancer care. The objective of this review is therefore to outline the current knowledge of oncologic pharmacomicrobiomics and to describe how the multiparametric functions of the gut microbiome influence treatment response across cancer types. The secondary objective is to propose innovative approaches for modulating the gut microbiome in clinical environments that improve therapy efficacy and diminish toxic effects derived from antineoplastic agents for patient benefit.
Collapse
Affiliation(s)
- Despoina Chrysostomou
- Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Lauren A Roberts
- Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Julian R Marchesi
- Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - James M Kinross
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| |
Collapse
|
24
|
Tian N, Duan H, Cao T, Dai G, Sheng G, Chu H, Sun Z. Macrophage-targeted nanoparticles mediate synergistic photodynamic therapy and immunotherapy of tuberculosis. RSC Adv 2023; 13:1727-1737. [PMID: 36712647 PMCID: PMC9832440 DOI: 10.1039/d2ra06334d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that poses a serious global public health threat. Due to the high incidence of adverse reactions associated with conventional treatment regimens, there is an urgent need for better alternative therapies. CpG oligodeoxynucleotides (CpG ODNs) are synthetic oligodeoxyribonucleotide sequences. They can induce a Th1-type immune response by stimulating Toll-like receptors (TLRs) in mammalian immune cells, thus killing Mtb. However, due to the negative charge and easy degradation of CpG ODNs, it is necessary to deliver them into cells using nanomaterials. PCN-224 (hereinafter referred to as PCN), as a metal-organic framework based on zirconium ions and porphyrin ligands, not only has the advantage of high drug loading capacity, but also the porphyrin molecule in it is a type of photosensitizer, which allows these nanocomposites to play a role in photodynamic therapy (PDT) while delivering CpG ODNs. In addition, since Mtb mainly exists in macrophages, targeting anti-TB agents to macrophages is helpful to improve the anti-TB effect. Phosphatidylserine (PS) is a biological membrane phospholipid that is normally found on the inner side of cell membranes in, for example, plant and mammalian cells. When apoptosis occurs, PS can flip from the inner side of the cell membrane to the surface of the cell membrane, displaying a specific "eat-me" signal that can be recognized by specific receptors on macrophages. Therefore, we can use this macrophage-targeting property of PS to construct bio-inspired targeted drug delivery systems. In this study, we constructed PCN-CpG@PS nanocomposites. PCN-CpG@PS, combining PDT and immunotherapy, is designed to target macrophages at the site of a lesion and kill latent Mtb. We physically characterized the nanocomposites and validated their bactericidal ability in vitro and their ability to stimulate the immune system in vivo. The results demonstrated that the targeted nanocomposites have certain in vitro antituberculosis efficacy with good safety.
Collapse
Affiliation(s)
- Na Tian
- Beijing Chest Hospital, Capital Medical University Beijing 101149 China
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute Beijing 101149 China
| | - Huijuan Duan
- Beijing Chest Hospital, Capital Medical University Beijing 101149 China
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute Beijing 101149 China
| | - Tingming Cao
- Beijing Chest Hospital, Capital Medical University Beijing 101149 China
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute Beijing 101149 China
| | - Guangming Dai
- Beijing Chest Hospital, Capital Medical University Beijing 101149 China
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute Beijing 101149 China
| | - Gang Sheng
- Beijing Chest Hospital, Capital Medical University Beijing 101149 China
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute Beijing 101149 China
| | - Hongqian Chu
- Beijing Chest Hospital, Capital Medical University Beijing 101149 China
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute Beijing 101149 China
| | - Zhaogang Sun
- Beijing Chest Hospital, Capital Medical University Beijing 101149 China
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute Beijing 101149 China
| |
Collapse
|
25
|
Famta P, Shah S, Jain N, Srinivasarao DA, Murthy A, Ahmed T, Vambhurkar G, Shahrukh S, Singh SB, Srivastava S. Albumin-hitchhiking: Fostering the pharmacokinetics and anticancer therapeutics. J Control Release 2023; 353:166-185. [PMID: 36423870 DOI: 10.1016/j.jconrel.2022.11.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Nanotherapeutics demonstrate poor accumulation in the tumor microenvironment due to poor extravasation and penetration into the tumor. Therapeutics such as oligonucleotides, peptides and other biologicals suffer from low systemic half-life and rapid degradation. Albumin-hitchhiking has emerged as an effective strategy to enhance tumor-specific accumulation of various therapeutics. Hitchhiking on serum albumin (SA) have shown to improve biological half-life of various therapeutics including nanocarriers (NCs), biologics, oligonucleotides, vaccines, etc. In addition, passive and active accumulation of SA-riding therapeutics in the tumor, site-specific drug release, and SA-mediated endosomal escape have improved the potential of various anticancer modalities such as chemo-, immune-, vaccine, and gene therapies. In this review, we have discussed the advantages of employing SA-hitchhiking in anticancer therapies. In addition, vaccine strategies employing inherent lymph-nodes accumulating property of albumin have been discussed. We have presented a clinical overview of SA-hitchhiked formulations along with possible bottlenecks for improved clinical outcomes. We have also discussed the role of physiologically based pharmacokinetics (PBPK) modelling for efficient characterization of anti-cancer nanotherapeutics.
Collapse
Affiliation(s)
- Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Aditya Murthy
- Department of Biopharmaceutics and Bioequivalence, Dr. Reddy's Laboratories Ltd., Global Clinical Management Group, IPDO, Hyderabad, India
| | - Tausif Ahmed
- Department of Biopharmaceutics and Bioequivalence, Dr. Reddy's Laboratories Ltd., Global Clinical Management Group, IPDO, Hyderabad, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
26
|
Exosome transportation-mediated immunosuppression relief through cascade amplification for enhanced apoptotic body vaccination. Acta Biomater 2022; 153:529-539. [PMID: 36113726 DOI: 10.1016/j.actbio.2022.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/09/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022]
Abstract
Cancer vaccines represent the most promising strategies in the battle against cancers. Eliciting a robust therapeutic effect with vaccines, however, remains a challenge owing to the weak immunogenicity of autologous tumor antigens and highly immunosuppressive microenvironment. In the present study, we constructed CpG oligodeoxyribonucleotide (CpG ODN)-loaded cancer cell apoptotic bodies (Abs) as cancer vaccines for enhanced immunotherapy through cascade amplification-mediated immunosuppression relief. Abs that contain an abundant source of tumor-specific neoantigens and other tumor-associated antigens (TAAs) can be regarded as vaccines with higher immunogenicity. The de novo synthesized Abs-CpG could target and polarize macrophages to improve the immunosuppressive microenvironment. More importantly, we found that the effect of immunosuppression relief was cascade amplified, which was mediated by M1 macrophage-derived exosome transportation. Our results showed that CpG ODN polarized macrophages to M1 type and produced a large amount of TNF-α, which then activated cell division control protein 42 (Cdc42). Interestingly, we found that exosomes from M1 macrophages delivered Cdc42 and CpG to adjacent macrophages and further enhanced the phagocytosis of adjacent macrophages by positive feedback. Through cascade amplification induced by Abs-CpG with macrophage exosomes, the immunogenicity and immunosuppressive microenvironment were greatly improved, which then enhanced the performance of cancer vaccine therapy. Thus, we propose that a strategy of combining the Abs-based vaccine platform with the immunomodulatory approach represents the next generation of cancer immunotherapy. STATEMENT OF SIGNIFICANCE: 1. We discovered a relieving strategy for tumor immunosuppressive microenvironment: Abs-CpG polarized macrophages to M1 type, and M1 macrophage-derived exosomes delivered Cdc42 and CpG to adjacent macrophages, which then further enhanced the phagocytosis of adjacent macrophages by positive feedback. Through cascade amplification induced by the transfer of macrophage exosomes, the immunogenicity and immunosuppressive microenvironment were greatly improved. 2. As a vaccine, Abs contained both tumor-specific neoantigens and other tumor-associated antigens with higher immunogenicity and high clinical transformability.
Collapse
|
27
|
Zhang Z, Yao S, Hu Y, Zhao X, Lee RJ. Application of lipid-based nanoparticles in cancer immunotherapy. Front Immunol 2022; 13:967505. [PMID: 36003395 PMCID: PMC9393708 DOI: 10.3389/fimmu.2022.967505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy is revolutionizing the clinical management of patients with different cancer types by sensitizing autologous or allogenic immune cells to the tumor microenvironment which eventually leads to tumor cell lysis without rapidly killing normal cells. Although immunotherapy has been widely demonstrated to be superior to chemotherapies, only a few populations of patients with specific cancer types respond to such treatment due to the failure of systemic immune activation. In addition, severe immune-related adverse events are rapidly observed when patients with very few responses are given higher doses of such therapies. Recent advances of lipid-based nanoparticles (NPs) development have made it possible to deliver not only small molecules but also mRNAs to achieve systemic anticancer immunity through cytotoxic immune cell activation, checkpoint blockade, and chimeric antigen receptor cell therapies, etc. This review summarized recent development and applications of LNPs in anticancer immunotherapy. The diversity of lipid-based NPs would encapsulate payloads with different structures and molecular weights to achieve optimal antitumor immunity through multiple mechanisms of action. The discussion about the components of lipid-based NPs and their immunologic payloads in this review hopefully shed more light on the future direction of anticancer immunotherapy.
Collapse
Affiliation(s)
- Zhongkun Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Siyu Yao
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Yingwen Hu
- The Whiteoak Group, Inc., Rockville, MD, United States
| | - Xiaobin Zhao
- The Whiteoak Group, Inc., Rockville, MD, United States
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
28
|
Lee W, Suresh M. Vaccine adjuvants to engage the cross-presentation pathway. Front Immunol 2022; 13:940047. [PMID: 35979365 PMCID: PMC9376467 DOI: 10.3389/fimmu.2022.940047] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Adjuvants are indispensable components of vaccines for stimulating optimal immune responses to non-replicating, inactivated and subunit antigens. Eliciting balanced humoral and T cell-mediated immunity is paramount to defend against diseases caused by complex intracellular pathogens, such as tuberculosis, malaria, and AIDS. However, currently used vaccines elicit strong antibody responses, but poorly stimulate CD8 cytotoxic T lymphocyte (CTL) responses. To elicit potent CTL memory, vaccines need to engage the cross-presentation pathway, and this requirement has been a crucial bottleneck in the development of subunit vaccines that engender effective T cell immunity. In this review, we focus on recent insights into DC cross-presentation and the extent to which clinically relevant vaccine adjuvants, such as aluminum-based nanoparticles, water-in oil emulsion (MF59) adjuvants, saponin-based adjuvants, and Toll-like receptor (TLR) ligands modulate DC cross-presentation efficiency. Further, we discuss the feasibility of using carbomer-based adjuvants as next generation of adjuvant platforms to elicit balanced antibody- and T-cell based immunity. Understanding of the molecular mechanism of DC cross-presentation and the mode of action of adjuvants will pave the way for rational design of vaccines for infectious diseases and cancer that require balanced antibody- and T cell-based immunity.
Collapse
|
29
|
Andón FT, Leon S, Ummarino A, Redin E, Allavena P, Serrano D, Anfray C, Calvo A. Innate and Adaptive Responses of Intratumoral Immunotherapy with Endosomal Toll-Like Receptor Agonists. Biomedicines 2022; 10:1590. [PMID: 35884895 PMCID: PMC9313389 DOI: 10.3390/biomedicines10071590] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Toll-like receptors (TLRs) are natural initial triggers of innate and adaptive immune responses. With the advent of cancer immunotherapy, nucleic acids engineered as ligands of endosomal TLRs have been investigated for the treatment of solid tumors. Despite promising results, their systemic administration, similarly to other immunotherapies, raises safety issues. To overcome these problems, recent studies have applied the direct injection of endosomal TLR agonists in the tumor and/or draining lymph nodes, achieving high local drug exposure and strong antitumor response. Importantly, intratumoral delivery of TLR agonists showed powerful effects not only against the injected tumors but also often against uninjected lesions (abscopal effects), resulting in some cases in cure and antitumoral immunological memory. Herein, we describe the structure and function of TLRs and their role in the tumor microenvironment. Then, we provide our vision on the potential of intratumor versus systemic delivery or vaccination approaches using TLR agonists, also considering the use of nanoparticles to improve their targeting properties. Finally, we collect the preclinical and clinical studies applying intratumoral injection of TLR agonists as monotherapies or in combination with: (a) other TLR or STING agonists; (b) other immunotherapies; (c) radiotherapy or chemotherapy; (d) targeted therapies.
Collapse
Affiliation(s)
- Fernando Torres Andón
- Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Sergio Leon
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), Department of Pathology and Histology, University of Navarra, 31008 Pamplona, Spain; (S.L.); (E.R.); (D.S.)
| | - Aldo Ummarino
- Laboratory of Cellular Immunology, Humanitas University, 20089 Pieve Emanuele, Italy; (A.U.); (C.A.)
| | - Esther Redin
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), Department of Pathology and Histology, University of Navarra, 31008 Pamplona, Spain; (S.L.); (E.R.); (D.S.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Paola Allavena
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
- Laboratory of Cellular Immunology, Humanitas University, 20089 Pieve Emanuele, Italy; (A.U.); (C.A.)
| | - Diego Serrano
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), Department of Pathology and Histology, University of Navarra, 31008 Pamplona, Spain; (S.L.); (E.R.); (D.S.)
- Navarra Institute for Health Research (IdiSNA), C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Clément Anfray
- Laboratory of Cellular Immunology, Humanitas University, 20089 Pieve Emanuele, Italy; (A.U.); (C.A.)
| | - Alfonso Calvo
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), Department of Pathology and Histology, University of Navarra, 31008 Pamplona, Spain; (S.L.); (E.R.); (D.S.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), C/Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|