1
|
Filyushin MA, Dzhos EA, Shchennikova AV, Kochieva EZ. Metabolite concentrations and the expression profiles of the corresponding metabolic pathway genes in eggplant (Solanum melongena L.) fruits of contrasting colors. Vavilovskii Zhurnal Genet Selektsii 2024; 28:619-627. [PMID: 39440314 PMCID: PMC11491480 DOI: 10.18699/vjgb-24-69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 10/25/2024] Open
Abstract
Eggplant (Solanum melongena L.) ranks fifth in importance among vegetable crops of the Solanaceae family, in part due to the high antioxidant properties and polyphenol content of the fruit. Along with the popular purple-fruited varieties of S. melongena, there are cultivars, the fruits of which are rich in phenolic compounds, but are white-colored due to the lack of anthocyanin biosynthesis. Determination of the amount of anthocyanins and other phenolic compounds, as well as carotenoids and sugars, is included in the assessment of the quality of eggplant fruits of commercial (technical) ripeness. In addition to antioxidant and taste properties, these metabolites are associated with fruit resistance to various stress factors. In this study, a comparative analysis of the content of anthocyanins, carotenoids and soluble sugars (sucrose, glucose, fructose) in the peel and pulp of the fruit of both technical and biological ripeness was carried out in purple-fruited (cv. Vlas) and white-fruited (cv. Snezhny) eggplant accessions of domestic selection. The peel and pulp of biologically ripe fruits of the cvs Vlas and Snezhny were used for comparative transcriptomic analysis. The key genes of the flavonoid and carotenoid metabolism, sucrose hydrolysis, and soluble sugar transport were shown to be differentially expressed between fruit tissues, both within each cultivar and between them. It has been confirmed that the purple color of the peel of the cv. Vlas fruit is due to substantial amounts of anthocyanins. Flavonoid biosynthesis genes showed a significantly lower expression level in the ripe fruit of the cv. Vlas in comparison with the cv. Snezhny. However, in both cultivars, transcripts of anthocyanin biosynthesis genes (DFR, ANS, UFGT) were not detected. Additionally, the purple fruit of the cv. Vlas accumulated more carotenoids and sucrose and less glucose and fructose than the white fruit of the cv. Snezhny. Biochemical data corresponded to the differential expression pattern of the key genes encoding the structural proteins of metabolism and transport of the compounds analyzed.
Collapse
Affiliation(s)
- M A Filyushin
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - E A Dzhos
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia Federal Scientific Vegetable Center, VNIISSOK village, Moscow region, Russia
| | - A V Shchennikova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - E Z Kochieva
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Bayazid AB, Lim BO. Therapeutic Effects of Plant Anthocyanin against Alzheimer's Disease and Modulate Gut Health, Short-Chain Fatty Acids. Nutrients 2024; 16:1554. [PMID: 38892488 PMCID: PMC11173718 DOI: 10.3390/nu16111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and neurogenerative disease (NDD), and it is also one of the leading causes of death worldwide. The number of AD patients is over 55 million according to 2020 Alzheimer's Disease International (ADI), and the number is increasing drastically without any effective cure. In this review, we discuss and analyze the potential role of anthocyanins (ACNs) against AD while understanding the molecular mechanisms. ACNs have been reported as having neuroprotective effects by mitigating cognitive impairments, apoptotic markers, neuroinflammation, aberrant amyloidogenesis, and tauopathy. Taken together, ACNs could be an important therapeutic agent for combating or delaying the onset of AD.
Collapse
Affiliation(s)
- Al Borhan Bayazid
- Medicinal Biosciences, Department of Applied Biological Sciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Beong Ou Lim
- Medicinal Biosciences, Department of Applied Biological Sciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Human Bioscience Corporate R&D Center, Human Bioscience Corp., 268 Chungwondaero, Chungju 27478, Republic of Korea
| |
Collapse
|
3
|
Kósa A, Hideg É, Bóka K, Solti Á, Böddi B. Light dependent differentiation of outdoors developed purple eggplant (Solanum melongena L.) pericarp layers: Leaf chlorenchyma characteristics of the pericarp layers dissected in the dark. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108394. [PMID: 38295527 DOI: 10.1016/j.plaphy.2024.108394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 02/02/2024]
Abstract
To interpret the final steps of chlorophyll biosynthesis, detailed knowledge of etiolation symptoms is necessary. Most of our knowledge originates from studies on plant materials grown in complete darkness. Hardly any information is available about the plastid development in internal parenchyma cells of fleshy fruits in which the food supply is almost unlimited. In this work, etiolation symptoms were studied in pericarp layers of purple eggplant (Solanum melongena L.). Tissue layers of fruits developed under open-air conditions and of etiolated fruits were dissected in a dark room. Transmission and 77 K fluorescence spectroscopy and ultrastructural studies were performed. Photosynthetic activities were measured and pigment contents were determined in light-grown fruits. The purple exocarp and a 1-1.5 cm wide green mesocarp layer of large fruits fully shade the internal pericarp layers, thus protochloropyll (ide) accumulated, flash-photoactive 644 and 655 nm emitting protochlorophyllide complexes, and only small amounts of chlorophylls were found. Photosynthetic activity was detected only in the external, green layer, which had fully developed chloroplasts, and showed 77 K fluorescence emission spectra characteristic for green leaves. The innermost endocarp regions and the etiolated fruits contained mainly protochlorophyll (ide), proplastids, and etioplasts, i.e. they showed etiolation symptoms. These symptoms correspond to those of leaves of dark-grown seedlings but are stable for long periods due to the almost unlimited nourishment supply from storage parenchyma cells. These results prove that the laboratory works with artificially dark-developed plant materials are good models of natural chlorophyll biosynthesis and plastid development.
Collapse
Affiliation(s)
- Annamária Kósa
- Department of Plant Anatomy, ELTE Eötvös Loránd University Budapest, Pázmány P. S. 1/c, Budapest, H-1117, Hungary
| | - Éva Hideg
- Department of Plant Biology, University of Pécs, Ifjúság U. 6., Pécs, H-7624, Hungary
| | - Károly Bóka
- Department of Plant Anatomy, ELTE Eötvös Loránd University Budapest, Pázmány P. S. 1/c, Budapest, H-1117, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University Budapest, Pázmány P. S. 1/c, Budapest, H-1117, Hungary
| | - Béla Böddi
- Department of Plant Anatomy, ELTE Eötvös Loránd University Budapest, Pázmány P. S. 1/c, Budapest, H-1117, Hungary.
| |
Collapse
|
4
|
Gaccione L, Martina M, Barchi L, Portis E. A Compendium for Novel Marker-Based Breeding Strategies in Eggplant. PLANTS (BASEL, SWITZERLAND) 2023; 12:1016. [PMID: 36903876 PMCID: PMC10005326 DOI: 10.3390/plants12051016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The worldwide production of eggplant is estimated at about 58 Mt, with China, India and Egypt being the major producing countries. Breeding efforts in the species have mainly focused on increasing productivity, abiotic and biotic tolerance/resistance, shelf-life, the content of health-promoting metabolites in the fruit rather than decreasing the content of anti-nutritional compounds in the fruit. From the literature, we collected information on mapping quantitative trait loci (QTLs) affecting eggplant's traits following a biparental or multi-parent approach as well as genome-wide association (GWA) studies. The positions of QTLs were lifted according to the eggplant reference line (v4.1) and more than 700 QTLs were identified, here organized into 180 quantitative genomic regions (QGRs). Our findings thus provide a tool to: (i) determine the best donor genotypes for specific traits; (ii) narrow down QTL regions affecting a trait by combining information from different populations; (iii) pinpoint potential candidate genes.
Collapse
|
5
|
Liao J, Xue H, Li J. Extraction of phenolics and anthocyanins from purple eggplant peels by multi-frequency ultrasound: Effects of different extraction factors and optimization using uniform design. ULTRASONICS SONOCHEMISTRY 2022; 90:106174. [PMID: 36170772 PMCID: PMC9513698 DOI: 10.1016/j.ultsonch.2022.106174] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
In this work, multi-frequency ultrasound (working modes for the single-, dual- and tri-frequency in simultaneous ways) was applied to extract bioactive compounds from purple eggplant peels. The single-factor experiments were performed by varying six independent variables. A six-level-five-factor uniform design (UD) was further employed to evaluate the interaction effects between different factors. It was found that extraction temperature and extraction time significantly affected the total phenolic content (TPC), whereas the total monomeric anthocyanins (TMA) was mainly influenced by ethanol concentration, extraction temperature and solid-liquid ratio. Based on partial least-squares (PLS) regression analysis, the optimal conditions for TPC extraction were: 53.6 % ethanol concentration, 0.336 mm particle size, 44.5 °C extraction temperature, 35.2 min extraction time, 1:43 g/mL solid-liquid ratio, and similar optimal conditions were also obtained for TMA. Furthermore, the TPC and TMA extraction were investigated by ultrasound in different frequencies and power levels. Compared with single-frequency (40 kHz) and dual-frequency ultrasound (25 + 40 kHz), the extraction yield of TPC and TMA with tri-frequency ultrasound (25 + 40 + 70 kHz) increased by 23.65 % and 18.76 % respectively, which suggested the use of multi-frequency ultrasound, especially tri-frequency ultrasound, is an efficient strategy to improve the TPC and TMA extracts in purple eggplant peels.
Collapse
Affiliation(s)
- Jianqing Liao
- College of Physical Science and Engineering, Yichun University, 576 Xuefu Road, Yichun, Jiangxi 336000, China.
| | - Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| | - Junling Li
- College of Chemistry and Bioengineering, Yichun University, 576 Xuefu Road, Yichun, Jiangxi 336000, China
| |
Collapse
|
6
|
Shahabi Mohammadabadi S, Goli M, Naji Tabasi S. Optimization of Bioactive Compound Extraction from Eggplant Peel by Response Surface Methodology: Ultrasound-Assisted Solvent Qualitative and Quantitative Effect. Foods 2022; 11:3263. [PMID: 37431011 PMCID: PMC9601998 DOI: 10.3390/foods11203263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 09/12/2024] Open
Abstract
Anthocyanin pigments, which the peel of eggplant is rich in, contribute to food quality because of their function in color, appearance, and nutritional advantages. For the first time, this study aimed to optimize the composition of the extracting solvent as three factors: factor A (ratio of ethanol to methanol 0-100% v/v), factor B (ratio of water to alcohol 0-100% v/v), and factor C (citric acid in the final solvent 0-1% w/v) using response surface methodology (RSM), central composite design (CCD) with α 2, and two repeats in axial and factorial points and four central points, for maximum total phenolic content, total anthocyanin content, extraction yield, antioxidant activity in terms of DPPH radical scavenging activity and ferric reducing antioxidant power (FRAP) assay of the eggplant peel dry extract assisted by ultrasound (200 watts power, frequency of 28 kHz) in 60 °C for 45 min has been investigated. The best optimal formulas determined using RSM for the final solvent comprised optimal formula 1 (i.e., ethanol-to-methanol ratio 59% and water-to-alcohol ratio 0%, and citric acid in final solvent 0.47%), and optimal formula 2 (i.e., ethanol-to-methanol ratio 67% and water-to-alcohol ratio 0%, and citric acid in final solvent 0.56%). In general, an alcoholic-acidic extract of eggplant peel made with an ethanol-methanol solvent including citric acid can be used in the food industry as a natural source of antioxidants and pigment.
Collapse
Affiliation(s)
- Shiva Shahabi Mohammadabadi
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| | - Mohammad Goli
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| | - Sara Naji Tabasi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad 139-91735, Iran
| |
Collapse
|
7
|
Patel PK, Siddiqui SA, Kuča K, Sabhapondit S, Sarma R, Gogoi B, Singh SK, Bordoloi RK, Saikia JK, Gogoi RC, Bhardwaj K, Yang J, Tao Y, Manickam S, Das B. Physiological and biochemical evaluation of high anthocyanin pigmented tea ( Camellia sinensis L. O. Kuntze) germplasm for purple tea production. Front Nutr 2022; 9:990529. [PMID: 36118770 PMCID: PMC9471081 DOI: 10.3389/fnut.2022.990529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Finding promising purple tea germplasm that would target new tea products for diversification and value addition boost the tea industry's economic growth. Accordingly, 10 tea germplasm viz. TRA St. 817, TRA St. 293, TRA St. 400, TRA 177/3, TRA 376/2, TRA 376/3, TRA 427/7, TRA P7, TRA P8, and TV1 were evaluated in terms of gas exchange parameters, multiplication performance, and biochemical markers such as chlorophyll, carotenoids, and anthocyanin content, which are related to the purple tea quality. The investigated gas exchange and biochemical parameters revealed significant differences. Germplasm TRA St.817 was physiologically more efficient (24.7 μmol m-2 s-1), followed by TRA St. 293, exhibiting the highest net photosynthesis, water use efficiency (19.02 μmol mmol-1), carboxylation efficiency (0.73), chlorophyll fluorescence or photochemical efficiency of PSII (0.754) and mesophyll efficiency (ci/gs ratio: 2.54). Net photosynthesis was positively correlated with water use efficiency, carboxylation efficiency, mesophyll efficiency, and photochemical efficiency of PSII (r = 0.965**, 0.937**, 0.857**, 0.867**; P = 0.05), respectively, but negatively correlated with the transpiration ratio (r = -0.878**; P = 0.05) based on Pearson correlation analysis. The total anthocyanin content (4764.19 μg.g-1 fresh leaf weight) and carotenoid content (3.825 mg.g-1 fresh leaf weight) were highest in the TRA St.817 germplasm, followed by germplasm TRA St. 293 (2926.18 μg.g-1 FW). In contrast, total chlorophyll content was significantly low (1.779 mg.g-1 fresh weight), which is very suitable for manufacturing purple tea. The highest carotenoid concentration in TRA St. 817 was 3.825 mg.g-1 FW, followed by TRA P8 (3.475 mg.g-1 FW), favoring the formation of more volatile flavor constituents. The promising germplasm, TRA St 817, has a multiplication success rate of 91.4% through cleft grafting. The outcome reveals that TRA St.817 is a promising germplasm that can be used to make speciality teas, i.e., purple tea.
Collapse
Affiliation(s)
- Pradeep Kumar Patel
- Department of Plant Physiology and Breeding, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- German Institute of Food Technologies (DIL eV), Quakenbrück, Germany
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Santanu Sabhapondit
- Department of Biochemistry, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Rupak Sarma
- Department of Plant Physiology and Breeding, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Boby Gogoi
- Department of Plant Physiology and Breeding, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Shobhit Kumar Singh
- Department of Plant Physiology and Breeding, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Ranjeet Kumar Bordoloi
- Department of Plant Physiology and Breeding, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Jayanta Kumar Saikia
- Department of Plant Physiology and Breeding, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Romen Chandra Gogoi
- Tea Testing Laboratory, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Jie Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering Department, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| | - Buddhadeb Das
- North Bengal Regional R&D Centre, Tea Research Association, Nagrakata, India
| |
Collapse
|
8
|
Zhang J, Li B, Gao X, Pan X, Wu Y. Integrating Transcriptomic and Metabolomic Analyses to Explore the Effect of Color Under Fruit Calyx on That of Fruit Apex in Eggplant (Solanum melongena L.). Front Genet 2022; 13:889461. [PMID: 35812728 PMCID: PMC9259842 DOI: 10.3389/fgene.2022.889461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
Fruit color is an important commercial characteristic of eggplant (Solanum melongena L.), which affects both the profits of growers and consumer choice. Two eggplant inbred lines were discovered: “Z,” which is a light purple color under the fruit calyx, with purple on the fruit apex; and “L,” fruits of which are green under the calyx and at the apex. To determine the molecular mechanisms underlying the effect of fruit peel color under the calyx on that at the fruit apex, we conducted a combined transcriptomic and metabolomic analyses of the Z and L inbred eggplant lines. Transcriptome analysis of peel samples from three fruit regions (under the calyx, the apex, and the middle surface) of each line was conducted by RNA sequencing, and generated a total of 791,512,404 clean reads from 18 samples (three biological replicates). Differentially expressed genes (DEGs; n = 424) were identified in comparisons of peel samples from the three sites of L line fruits. Gene ontology analysis showed that “catalytic activity” was extremely significantly enriched. Further, DEGs (n = 8) were enriched in the Kyoto Encyclopedia of Genes and Genomes pathway “flavonoid biosynthesis.” Levels of CHI, LDOX, F3′5′H, and dihydroflavonol reductase were higher in the Z line than the L line. In addition, metabolome analysis showed that, 10 differentially accumulated metabolites were detected between peel samples from the apex of L and Z line fruit. The most significant DAM was delphinidin-3-O-rutinoside (Z line content, 34.89 μg/g vs. L line content 0.01 μg/g). Combined transcriptomic and metabolomic analyses indicated that DFR and F3′5′H were closely related to content of the metabolites, cyanidin and delphinidin, and that some downstream metabolites differed significantly between the L and Z lines. Content levels of delphinidin-3-O-rutinoside, delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, and cyanidin-3-O-rutinoside were markedly down-regulated in the L line. Altogether, increased CHI levels could up-regulate the downstream genes, LDOX, F3′5′H, and DFR, which further lead to increasing the content of delphindin. Thus, the uniform purple color was presented at the apex of fruits in Z plants. These findings not only identify key candidate genes, but will also improve understanding of the genetics and the efficiency of breeding for eggplant fruit color.
Collapse
|
9
|
Yang S, Mi L, Wu J, Liao X, Xu Z. Strategy for anthocyanins production: From efficient green extraction to novel microbial biosynthesis. Crit Rev Food Sci Nutr 2022; 63:9409-9424. [PMID: 35486571 DOI: 10.1080/10408398.2022.2067117] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins are widely distributed in nature and exhibit brilliant colors and multiple health-promoting effects; therefore, they are extensively incorporated into foods, pharmaceuticals, and cosmetic industries. Anthocyanins have been traditionally produced by plant extraction, which is characterized by high expenditure, low production rates, and rather complex processes, and hence cannot meet the increasing market demand. In addition, the emerging environmental issues resulting from traditional solvent extraction technologies necessitate a more efficient and eco-friendly alternative strategy for producing anthocyanins. This review summarizes the efficient approach for green extraction and introduces a novel strategy for microbial biosynthesis of anthocyanins, emphasizing the technological changes in production.
Collapse
Affiliation(s)
- Shini Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lu Mi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhenzhen Xu
- Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
10
|
Chen Y, Belwal T, Xu Y, Ma Q, Li D, Li L, Xiao H, Luo Z. Updated insights into anthocyanin stability behavior from bases to cases: Why and why not anthocyanins lose during food processing. Crit Rev Food Sci Nutr 2022; 63:8639-8671. [PMID: 35435782 DOI: 10.1080/10408398.2022.2063250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins have received considerable attention for the development of food products with attractive colors and potential health benefits. However, anthocyanin applications have been hindered by stability issues, especially in the context of complex food matrices and diverse processing methods. From the natural microenvironment of plants to complex processed food matrices and formulations, there may happen comprehensive changes to anthocyanins, leading to unpredictable stability behavior under various processing conditions. In particular, anthocyanin hydration, degradation, and oxidation during thermal operations in the presence of oxygen represent major challenges. First, this review aims to summarize our current understanding of key anthocyanin stability issues focusing on the chemical properties and their consequences in complex food systems. The subsequent efforts to examine plenty of cases attempt to unravel a universal pattern and provide thorough guidance for future food practice regarding anthocyanins. Additionally, we put forward a model with highlights on the role of the balance between anthocyanin release and degradation in stability evaluations. Our goal is to engender updated insights into anthocyanin stability behavior under food processing conditions and provide a robust foundation for the development of anthocyanin stabilization strategies, expecting to promote more and deeper progress in this field.
Collapse
Affiliation(s)
- Yanpei Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo, People's Republic of China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo, People's Republic of China
| | - Quan Ma
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Dong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
- Department of Food Science, College of Natural Sciences, University of Massachusetts Amherst, Massachusetts, The United States
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo, People's Republic of China
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, People's Republic of China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
11
|
Yang G, Li L, Wei M, Li J, Yang F. SmMYB113 Is a Key Transcription Factor Responsible for Compositional Variation of Anthocyanin and Color Diversity Among Eggplant Peels. FRONTIERS IN PLANT SCIENCE 2022; 13:843996. [PMID: 35356109 PMCID: PMC8959879 DOI: 10.3389/fpls.2022.843996] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/15/2022] [Indexed: 05/21/2023]
Abstract
To understand the color formation mechanism in eggplant (Solanum melongena L.) peel, a metabolomic analysis was performed in six cultivars with different peel colors. A total of 167 flavonoids, including 16 anthocyanins, were identified based on a UPLC-MS/MS approach. Further analysis revealed that the delphinidins/flavonoids ratio was consistent with the purple coloration of eggplant peels, and SmF3'5'H expression level was consistent with the delphinidin 3-O-glucoside and delphinidin 3-O-rutinoside contents, the main anthocyanins in the purple-peels eggplant cultivars identified in this study. SmMYB113 overexpression promoted anthocyanins accumulation in eggplant peels and pulps. Metabolomic analysis revealed that delphinidins were still the main anthocyanins class in the peels and pulps of SmMYB113-OE4, but most anthocyanins were glycosylated at the 5-position of the B-ring. Our results provide new insights into the anthocyanin composition of eggplant peels and demonstrate the importance of SmMYB113 in stimulating anthocyanin biosynthesis in eggplant fruits.
Collapse
Affiliation(s)
- Guobin Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
| | - Lujun Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
| | - Min Wei
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
- Scientific Observing and Experimental Station of Facility Agricultural Engineering (Huang-Huai-Hai Region), Ministry of Agriculture and Rural Affairs, Shandong, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Tai’an, China
| | - Jing Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Tai’an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture and Rural Affairs, Shandong, China
| | - Fengjuan Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Tai’an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture and Rural Affairs, Shandong, China
| |
Collapse
|
12
|
Whey Proteins Isolate-Based Biopolymeric Combinations to Microencapsulate Supercritical Fluid Extracted Oleoresins from Sea Buckthorn Pomace. Pharmaceuticals (Basel) 2021; 14:ph14121217. [PMID: 34959618 PMCID: PMC8707564 DOI: 10.3390/ph14121217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, high-value, carotenoid-rich oleoresin obtained by supercritical carbon dioxide (SFE-CO2) extraction was used to develop five variants of microencapsulated delivery system, based on whey proteins isolate (WPI), in combination with inulin (I), pectin (P) or lactose (L). The WPI:I and WPI:L variants were also obtained by conjugation via Maillard reaction. The microencapsulation of the SFE-CO2 sea buckthorn pomace oleoresin was performed by emulsion, complex coacervation and freeze-drying, which allowed for the obtaining of five powders, with different phytochemicals profile. The WPI:I conjugate showed the highest level of total carotenoids, whereas the counterpart WPI:L showed the highest content in linoleic acid (46 ± 1 mg/g) and palmitoleic acid (20.0 ± 0.5 mg/g). The β-tocopherol and β-sitosterol were identified in all variants, with the highest content in the conjugated WPI:L variant. Both WPI:L and WPI:I conjugate samples presented similar IC50 value for inhibitory activity against pancreatic lipase and α-amylase; the highest activity was observed for the conjugated WPI:I. The WPI:P combination allowed the highest release of carotenoids in the gastro-intestinal environment. All the powders exhibited poor flowing properties, whereas water activity (aw) ranged from 0.084 ± 0.03 to 0.241 ± 0.003, suggesting that all variants are stable during storage. In case of solubility, significant differences were noticed between non-heated and glycated samples, with the highest value for the WPI:I and the lowest for glycated WPI:I. The structural analysis revealed the presence of finer spherosomes in WPI:I and WPI:L, with a reduced clustering capacity, whereas the particles in the conjugated samples were more uniform and aggregated into a three-dimensional network.
Collapse
|
13
|
Fu X, Wu Q, Wang J, Chen Y, Zhu G, Zhu Z. Spectral Characteristic, Storage Stability and Antioxidant Properties of Anthocyanin Extracts from Flowers of Butterfly Pea ( Clitoria ternatea L.). Molecules 2021; 26:molecules26227000. [PMID: 34834097 PMCID: PMC8622631 DOI: 10.3390/molecules26227000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022] Open
Abstract
Anthocyanins from flowers of the butterfly pea (Clitoria ternatea L.) are promising edible blue food colorants. Food processing often faces extreme pHs and temperatures, which greatly affects the color and nutritional values of anthocyanins. This study explored the color, spectra, storage stability, and antioxidant properties of C. ternatea anthocyanin extract (CTAE) at different pHs. The color and absorption spectra of CTAEs at a pH of 0.5–13 were shown, with their underlying structures analyzed. Then, the storage stability of CTAEs were explored under a combination of pHs and temperatures. The stability of CTAE declines with the increase in temperature, and it can be stored stably for months at 4 °C. CTAEs also bear much resistance to acidic and alkaline conditions but exhibit higher thermal stability at pH 7 (blue) than at pH 0.5 (magenta) or pH 10 (blue-green), which is a great advantage in food making. Antioxidant abilities for flower extracts from the butterfly pea were high at pH 4–7, as assessed by DPPH free radical scavenging assays, and decreased sharply when the pH value exceeded 7. The above results provide a theoretical basis for the application of butterfly pea flowers and imply their great prospect in the food industry.
Collapse
Affiliation(s)
- Xueying Fu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (X.F.); (Q.W.); (Y.C.); (G.Z.)
| | - Qiang Wu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (X.F.); (Q.W.); (Y.C.); (G.Z.)
| | - Jian Wang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou 570228, China;
| | - Yanli Chen
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (X.F.); (Q.W.); (Y.C.); (G.Z.)
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (X.F.); (Q.W.); (Y.C.); (G.Z.)
| | - Zhixin Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (X.F.); (Q.W.); (Y.C.); (G.Z.)
- Correspondence:
| |
Collapse
|
14
|
Impact of Wall Materials on Physico-Chemical Properties and Stability of Eggplant Peels Anthocyanin Hydrogels. INVENTIONS 2021. [DOI: 10.3390/inventions6030047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, eggplant peel extract was used to obtain hydrogels. Two experimental variants were realized by varying the wall materials. Whey proteins isolate (WPI), citrus pectin (P), and sodium carboxymethylcellulose (CMCNa) were used as wall materials. The microcapsules were obtained by the gelation technique, followed by freeze-drying in order to obtain powders. Both experimental variants were analyzed in terms of phytochemical content, antioxidant activity, storage stability, and in vitro digestibility. Additionally, confocal microscopy was used to observe the encapsulation of the bioactive compounds from the eggplant peel extract into the selected matrices. The encapsulation efficiency of the powders varied from 64.67 ± 0.68% for variant 1 (V1) to 96.44 ± 3.43% for variant 2 (V2). Both powders presented high bioactive compound content with high antioxidant activity. V2 showed the highest stability within 28 days of storage, but also in the simulated digestive system.
Collapse
|
15
|
Arruda HS, Silva EK, Peixoto Araujo NM, Pereira GA, Pastore GM, Marostica Junior MR. Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems. Molecules 2021; 26:2632. [PMID: 33946376 PMCID: PMC8125576 DOI: 10.3390/molecules26092632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Anthocyanins are naturally occurring phytochemicals that have attracted growing interest from consumers and the food industry due to their multiple biological properties and technological applications. Nevertheless, conventional extraction techniques based on thermal technologies can compromise both the recovery and stability of anthocyanins, reducing their global yield and/or limiting their application in food systems. The current review provides an overview of the main innovative processes (e.g., pulsed electric field, microwave, and ultrasound) used to recover anthocyanins from agri-food waste/by-products and the mechanisms involved in anthocyanin extraction and their impacts on the stability of these compounds. Moreover, trends and perspectives of anthocyanins' applications in food systems, such as antioxidants, natural colorants, preservatives, and active and smart packaging components, are addressed. Challenges behind anthocyanin implementation in food systems are displayed and potential solutions to overcome these drawbacks are proposed.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Eric Keven Silva
- Department of Food Engineering, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| | - Nayara Macêdo Peixoto Araujo
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Gustavo Araujo Pereira
- School of Food Engineering, Institute of Technology, Federal University of Pará, Augusto Corrêa Street S/N, Belém 66075-110, Brazil;
| | - Glaucia Maria Pastore
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Mario Roberto Marostica Junior
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| |
Collapse
|