1
|
Rather BA, Masood A, Qiao F, Jiang X, Zafar MM, Cong H, Khan NA. The role of nitric oxide and nitrogen in mediating copper stress in Brassica juncea L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112414. [PMID: 39909288 DOI: 10.1016/j.plantsci.2025.112414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Copper (Cu) holds a significant importance in plant metabolism as it serves as an essential micronutrient but becomes toxic at higher concentrations. Nitric oxide (NO), a key signaling molecule, and nitrogen (N) play essential roles in combating toxicity of some metals. This study explores the potential of interactive effects of NO as 100 µM SNP (sodium nitroprusside, NO source) and N (80 mg N kg-1 soil) in mitigating Cu (100 mg Cu kg-1 soil) stress in mustard (Brassica juncea L.) plants. The impaired physio-biochemical changes, photosynthetic efficiency, and the expression level of genes associated with photosynthesis, and N assimilation under Cu stress were ameliorated with the exogenous application of NO and N. The combined treatment of NO and N conspicuously lowered reactive oxygen species (ROS) and its related impacts. It also enhanced the activity and relative expression of antioxidant enzymes, including ascorbate peroxidase (APX), glutathione reductase (GR), and superoxide dismutase (SOD) as well as N assimilation enzymes, such as nitrate reductase (NR) and nitrite reductase (NiR). The supplementation of NO and N also triggered the expression of rbcL (large subunit of Rubisco), photosystem (photosystem II D1 protein; psbA and photosystem II protein B; psbB) and markedly improved photosynthetic capacity under Cu stress. The study highlights the significance of NO and N as a potential strategy to counteract Cu-induced stress in crops. It suggests a synergistic or interactive effect between the two substances as a phytoremediation strategy for enhancing crop growth and productivity in Cu-contaminated soils. Understanding the mechanisms behind NO and N mediated stress alleviation could facilitate the development of targeted approaches to enhance plant resilience against heavy metal stress.
Collapse
Affiliation(s)
- Bilal A Rather
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; Sanya Institute of Breeding and Multiplication/School of Tropical Agriculture and Forestry, Hainan University, Sanya 572024, China
| | - Asim Masood
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| | - Fei Qiao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xuefei Jiang
- Sanya Institute of Breeding and Multiplication/School of Tropical Agriculture and Forestry, Hainan University, Sanya 572024, China.
| | - Muhammad Mubashar Zafar
- Sanya Institute of Breeding and Multiplication/School of Tropical Agriculture and Forestry, Hainan University, Sanya 572024, China
| | - Hanqing Cong
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
2
|
Pandey A, Singh G, Pandey S, Singh VK, Prasad SM. 24-Epibrassinolide effectively alleviates UV-B stress-induced damage in the cyanobacterium Anabaena sp. PCC 7120 by employing nitric oxide: Improved PS II photochemistry, antioxidant system, and growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109667. [PMID: 39987622 DOI: 10.1016/j.plaphy.2025.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/19/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
The alleviation of UV-B stress-induced damage by 24-epibrassinolide (EBL) in the cyanobacterium Anabaena sp. PCC 7120 and the role of nitric oxide (NO) signaling were investigated in this study. UV-B exposure caused a significant (P < 0.05) decline by 31% in the growth of test organism by negatively impacting photosynthetic pigments, whole cell O2 evolution, and PS II photochemistry [decrease in the values of Fv/F0, PIABS, and quantum efficiencies (Phi_Po, Phi_Eo, and Psi_0) and increase in specific energy fluxes (ABS, TR0, DI0, and ET0) per active RCs]. Stress enhanced the levels of oxidative stress biomarkers (superoxide radicals, hydrogen peroxide, and malondialdehyde equivalents contents), as evidenced by in-vivo and in-vitro analyses, and increased respiratory O2 consumption. The supplementation of EBL (0.5 nM) alone, NO (sodium nitroprusside as NO donor; 10 μM), and EBL + NO significantly (P < 0.05) alleviated the decline in growth with a reduction remaining 19%, 14%, and 8%, respectively, under UV-B stress. The exogenous supplementation of EBL and NO boosted the enzymatic antioxidant system (superoxide dismutase, peroxidase, catalase, and glutathione-S-transferase activity). However, the addition of NO scavenger (PTIO; 20 μM)] and its biosynthetic inhibitor (L-NAME; 100 μM) reversed the effect, thereby suggesting that EBL alleviates UV-B toxicity by involving NO in the N2-fixing cyanobacterium Anabaena sp. PCC 7120.
Collapse
Affiliation(s)
- Aparna Pandey
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India.
| | - Garima Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India.
| | - Sakshi Pandey
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India.
| | - Varunendra Kumar Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
3
|
Tan U. Application of indole-3-butyric acid (IBA) enhances agronomic, physiological and antioxidant traits of Salvia fruticosa under saline conditions: a practical approach. PeerJ 2025; 13:e18846. [PMID: 39807155 PMCID: PMC11727656 DOI: 10.7717/peerj.18846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Background Salinity stress is a significant challenge in agriculture, particularly in regions where soil salinity is increasing due to factors such as irrigation practices and climate change. This stress adversely affects plant growth, development, and yield, posing a threat to the cultivation of economically important plants like Salvia fruticosa. This study aims to evaluate the effectiveness by proactively applying indole-3-butyric acid (IBA) to Salvia fruticosa cuttings as a practical and efficient method for mitigating the adverse effects of salinity stress. Methods The factors were arranged as three different IBA doses (0, 1, and 2 g/L) and four different salinity concentrations (0, 6, 12, and 18 dS/m) in controlled greenhouse conditions. Plant height (PH), flower spike length (FSL), fresh shoot length (FRL), root length (RL), fresh root weight (FRW), fresh shoot weight (FSW), dried root weight (DRW), dried shoot weight (DSW), root/shoot index, drog (g/plant), relative water content (RWC), relative membrane permeability (RMP), chlorophyll content (SPAD), extraction yield (%), DPPH (2,2-Diphenyl-1-picrylhydrazyl), phenol content, flavonoid content, and ABTS (2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) values were measured. Results The results show that as salinity doses increased, all parameters showed a decline. However, with a one-time IBA application to the plant cuttings before the rooting stage, particularly at a concentration of 2 g/L, was effective for mitigating the negative effects of salinity stress. Across all measured parameters, IBA significantly reduced the adverse impacts of salinity on Salvia fruticosa.
Collapse
Affiliation(s)
- Uğur Tan
- Department of Field Crops, Aydin Adnan Menderes University, Aydin, Türkiye
| |
Collapse
|
4
|
Wu J, Wang T, Huang Y, Xiao S, Luo X, Deng Y, Yang X, Kong Q, Tang F. Genotypic difference in response to copper stress in upland cotton as revealed by physiological and molecular expression analyses. BMC PLANT BIOLOGY 2025; 25:21. [PMID: 39757180 DOI: 10.1186/s12870-024-06025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Cotton is a non-edible fiber crop with considerable potential for the remediation of copper-polluted soil. However, the Cu toxicity tolerance mechanism in cotton remains largely obscure. To address the issue, we first identified two cotton lines contrasting in response to Cu toxicity by examining 12 morphological and physiological attributes of 43 origin scattered cotton genotypes under Cu excess. Then both lines were subjected to a comprehensive comparative study, aiming to unravel the cotton Cu tolerance mechanism through integrated morphological, physio-biochemical, Cu uptake and distribution, and related molecular expression analyses. RESULTS Based on the phenotypic values and corresponding tolerance indexes of 12 parameters, A2304 and A1415 were identified as Cu-tolerant and -sensitive, respectively. Compared to A1415, A2304 exhibited significantly higher antioxidant enzyme activities and non-enzymatic antioxidant levels, producing fewer amounts of reactive oxygen species and a lower level of malonyldialdehyde. On Cu excess, A2304 accumulated lower concentrations of Cu ions in various plant parts and subcellular components, and fewer Cu ions were presented in active chemical forms. However, the total Cu uptake amount per plant did not differ between both lines due to larger plant biomass with A2304. In contrast to A1415, Cu stress activated or increased the expressions of Cu homeostasis regulator (GhSPL7) and genes responsible for Cu delivery (GhCCS, GhCOX17), chelation (GhMT2), and compartmentation into vacuoles (GhHMA5), while inactivating or decreasing the expressions of genes accounting for Cu uptake (GhCOPT1) and Cu exporting from vacuoles (GhCOPT5) in the root cell with A2304. Additionally, A2304 may impede the root cell wall from binding Cu ions by enhancing the pectin methylesterification degree by up-regulating GhPMEI3 and GhPMEI9 encoding pectin methylesterase inhibitor and stabilizing the cell wall organization by down-regulating GhPLY8 and GhPLY20 encoding pectate lyases. CONCLUSIONS To cope with Cu toxicity, the Cu-tolerant genotype activates its antioxidative defense system, immobilizing chemically active Cu ions, and lowering the Cu uptake, bioavailability and immigration within cells by regulating the expressions of genes related to Cu uptake, transport, delivery and cell wall metabolism. This comprehensive comparison study provides insights into breeding Cu-tolerant cotton cultivars that can be utilized for the phytoremediation of Cu-contaminated soils.
Collapse
Affiliation(s)
- Jianfei Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Tao Wang
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Cash Crops Research Institute of Jiangxi Province, Nanchang, 330000, China
| | - Yin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuiping Xiao
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Cash Crops Research Institute of Jiangxi Province, Nanchang, 330000, China.
| | - Xiaoxia Luo
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yanfeng Deng
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Cash Crops Research Institute of Jiangxi Province, Nanchang, 330000, China
| | - Xiu Yang
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Cash Crops Research Institute of Jiangxi Province, Nanchang, 330000, China
| | - Qingquan Kong
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Cash Crops Research Institute of Jiangxi Province, Nanchang, 330000, China
| | - Feiyu Tang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
5
|
Kumari R, Khan MN, Parrey ZA, Kapoor P, Mir BA, Taziun T, Parihar P, Rakhra G. Synergistic effects of hydrogen sulfide and nitric oxide in enhancing salt stress tolerance in cucumber seedlings. PHYSIOLOGIA PLANTARUM 2025; 177:e70109. [PMID: 39973152 DOI: 10.1111/ppl.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 02/21/2025]
Abstract
Salinity stress poses a significant threat to plant growth and agricultural productivity, affecting millions of hectares of land worldwide. The adverse effects of salt toxicity, primarily caused by high levels of sodium chloride in soil and water, disrupt essential physiological processes in plants, leading to reduced yields and degraded soil quality. The present study thoroughly investigated the potential involvement of hydrogen sulphide (H2S) and nitric oxide (NO) in facilitating salt stress tolerance in cucumbers. In this investigation, NaHS (sodium hydrogen sulfide), which is the donor of H2S, and SNP (sodium nitroprusside), which is the donor of NO, were used as treatments for cucumber seedlings exposed to salt stress. Additionally, L-NAME (N-nitro-L-arginine: 100 μM) and cPTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide), which are inhibitors and scavengers of NO respectively, were used to verify the involvement of NO in the presence of salinity. NaHS and SNP supplementation significantly boosted fresh weight, dry weight, plant height, and chlorophyll content, promoting growth under salt stress. These treatments raised endogenous H2S and NO levels, upregulating antioxidative enzymes like SOD, CAT, APX, GR, GPX, and GSTs. This response reduced oxidative damages by lowering reactive oxygen species (ROS) and lipid peroxidation. The combined application of NaHS and SNP under salt stress offers a promising and cost-effective strategy to improve plant resilience to salinity, reduce oxidative stress, and ultimately enhance crop productivity. These findings provide important insights into the potential use of H2S and NO donors for sustaining agricultural production in saline environments, addressing a critical global challenge for food security.
Collapse
Affiliation(s)
- Ritu Kumari
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - M Nasir Khan
- Renewable Energy and Environmental Technology Centre, University of Tabuk, Tabuk, Saudi Arabia
- Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk, Saudi Arabia
| | - Zubair Ahmad Parrey
- Department of Botany, Plant Physiology and Biochemistry Section, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Preedhi Kapoor
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Bilal Ahmad Mir
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tuba Taziun
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Parul Parihar
- Department of Biosciences and Biotechnology, Banasthali Vidyapith, Rajasthan
| | - Gurmeen Rakhra
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
6
|
Gupta R, Kumar V, Verma N, Tewari RK. Nitric oxide-mediated regulation of macronutrients in plants. Nitric Oxide 2024; 153:13-25. [PMID: 39389288 DOI: 10.1016/j.niox.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/08/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
In plant physiology, nitric oxide (NO) is a widely used signaling molecule. It is a free radical and an important component of the N-cycle. NO is produced endogenously inside plant cells, where it participates in multiple functions and provides protection against several abiotic and biotic stresses. NO and its interplay with macronutrients had remarkable effects on plant growth and development, the signaling pathway, and defense mechanisms. Its chemical properties, synthetic pathways, physiological effects, antioxidant action, signal transduction, and regulation of transporter genes and proteins have been studied. NO emerges as a key regulator under macronutrient deficiency. In plants, NO also affects reactive oxygen species (ROS), reactive nitrogen species (RNS), and post-translational modifications (PTMs). The function of NO and its significant control in the functions and adjustments of macronutrients under macronutrient deficit were summed up in this review. NO regulate functions of macronutrients and associated signaling events involved with macronutrient transporters in different plants.
Collapse
Affiliation(s)
- Roshani Gupta
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Vijay Kumar
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Nikita Verma
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | | |
Collapse
|
7
|
Abdelaal K, Alaskar A, Hafez Y. Effect of arbuscular mycorrhizal fungi on physiological, bio-chemical and yield characters of wheat plants (Triticum aestivum L.) under drought stress conditions. BMC PLANT BIOLOGY 2024; 24:1119. [PMID: 39581979 PMCID: PMC11587776 DOI: 10.1186/s12870-024-05824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
This experiment was conducted to study the effect of inoculation with arbuscular mycorrhizal fungi (AMF) as an ecofriendly strategy on physiological, biochemical and yield characters of wheat plants. Our results showed a significant decrease in chlorophyll a and b as well as the maximum quantum efficiency of PSII (Fv/Fm) in wheat plants under drought conditions compared to control in the two seasons. Drought stress significantly reduced relative water content (RWC%) in the stressed plants compared with the control. Additionally, 1000 grain weight (g) and biological yield (t h- 1) were reduced significantly under drought stress. Furthermore, hydrogen peroxide (H2O2), Superoxide (O2-), electrolyte leakage (EL%), lipid peroxidation (MDA) and total phenolic compounds were increased significantly in the stressed plants under drought conditions. However, wheat plants treated with AMF displayed a significant increase in chlorophyll concentrations and the maximum quantum efficiency of PSII as well as RWC% in the stressed wheat plants when compared with the stressed untreated plants. Our findings also indicated that application of AMF led to regulate the antioxidant enzymes activity, proline content and decrease hydrogen peroxide (H2O2), Superoxide (O2-), electrolyte leakage (EL%) and lipid peroxidation (MDA) levels in the drought stressed wheat plants. Eventually, application of AMF as ecofriendly approach can improve wheat growth and grain yield of wheat plants by mitigating the adverse effects of drought stress. These results provide evidence for the important role of AMF in agricultural production and maximizing wheat grain yield.
Collapse
Affiliation(s)
- Khaled Abdelaal
- EPCRS Excellence Center, Plant Pathology and Biotechnology Laboratory, Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh, 33516, Egypt.
| | - Abdulaziz Alaskar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Yaser Hafez
- Department of Pathophysiology, Plant Protection Institute, Central for Agricultural Research, Budapest, Hungary
| |
Collapse
|
8
|
Vijayanand M, Guru A, Shaik MR, Hussain SA, Issac PK. Assessing the therapeutic potential of KK14 peptide derived from Cyprinus Carpio in reducing intercellular ROS levels in oxidative Stress-Induced In vivo zebrafish larvae model: An integrated bioinformatics, antioxidant, and neuroprotective analysis. J Biochem Mol Toxicol 2024; 38:e70027. [PMID: 39467211 DOI: 10.1002/jbt.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
H2O2 is a significant reactive oxygen species (ROS) that hinders redox-mediated processes and contributes to oxidative stress and neurodegenerative disorders. Oxidative stress causes impairment of cell macromolecules, which results in cell dysfunction and neurodegeneration. Alzheimer's disease and other neurodegenerative diseases are serious conditions linked to oxidative stress. Antioxidant treatment approaches are a novel and successful strategy for decreasing neurodegeneration and reducing oxidative stress. This study explored the antioxidant and neuroprotective characteristics of KK14 peptide synthesized from LEAP 2B (liver-expressed antimicrobial peptide-2B) derived from Cyprinus carpio L. Molecular docking studies were used to assess the antioxidant properties of KK14. The peptide at concentrations 5-45 μM was examined by using in vitro and in vivo assessment. Analysis was done on the developmental and neuroprotective potential of KK14 peptide treatment in H2O2-exposed zebrafish larvae which showed Nonlethal deformities. KK14 improves antioxidant enzyme activity like catalase and superoxide dismutase. Furthermore, it reduces neuronal damage by lowering lipid peroxidation and nitric oxide generation while increasing acetylcholinesterase activity. It improved the changes in swimming behavior and the cognitive damage produced by exposure to H2O2. To further substantiate the neuroprotective potential of KK14, intracellular ROS levels in zebrafish larvae were assessed. This led to a reduction in ROS levels and diminished lipid peroxidation. The KK14 has upregulated the antioxidant genes against oxidative stress. Overall, this study proved the strong antioxidant activity of KK14, suggesting its potential as a strong therapeutic option for neurological disorders caused by oxidative stress.
Collapse
Affiliation(s)
- Madhumitha Vijayanand
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Praveen Kumar Issac
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Liu R, Wang T, Wang J, Yan D, Lian Y, Lu Z, Hong Y, Yuan X, Wang Y, Li R. The Physiological Mechanism of Exogenous Melatonin on Improving Seed Germination and the Seedling Growth of Red Clover ( Trifolium pretense L.) under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2527. [PMID: 39274011 PMCID: PMC11397702 DOI: 10.3390/plants13172527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Salt stress can affect various physiological processes in plants, ultimately hindering their growth and development. Melatonin (MT) can effectively resist multiple abiotic stresses, improving plant stress resistance. To analyze the mechanism of exogenous MT to enhance salt tolerance in red clover, we conducted a comprehensive study to examine the influence of exogenous MT on various parameters, including seed germination indices, seedling morphological traits, and physiological and photosynthetic indicators, using four distinct red clover varieties (H1, H2, H3, and H4). This investigation was performed under various salt stress conditions with differing pH values, specifically utilizing NaCl, Na2SO4, NaHCO3, and Na2CO3 as the salt stressors. The results showed that MT solution immersion significantly improved the germination indicators of red clover seeds under salt stress. The foliar spraying of 50 μM and 25 μM MT solution significantly increased SOD activity (21-127%), POD activity, soluble sugar content, proline content (22-117%), chlorophyll content (2-66%), and the net photosynthetic rate. It reduced the MDA content (14-55%) and intercellular CO2 concentration of red clover seedlings under salt stress. Gray correlation analysis and the Mantel test further verified that MT is a key factor in enhancing seed germination and seedling growth of red clover under salt stress; the most significant improvement was observed for NaHCO3 stress. MT is demonstrated to improve the salt tolerance of red clover through a variety of mechanisms, including an increase in antioxidant enzyme activity, osmoregulation ability, and cell membrane stability. Additionally, it improves photosynthetic efficiency and plant architecture, promoting energy production, growth, and optimal resource allocation. These mechanisms function synergistically, enabling red clover to sustain normal growth and development under salt stress.
Collapse
Affiliation(s)
- Rui Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ting Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jiajie Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Di Yan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yijia Lian
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhengzong Lu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yue Hong
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xue Yuan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ye Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Runzhi Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| |
Collapse
|
10
|
Kumari R, Kapoor P, Mir BA, Singh M, Parrey ZA, Rakhra G, Parihar P, Khan MN, Rakhra G. Unlocking the versatility of nitric oxide in plants and insights into its molecular interplays under biotic and abiotic stress. Nitric Oxide 2024; 150:1-17. [PMID: 38972538 DOI: 10.1016/j.niox.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
In plants, nitric oxide (NO) has become a versatile signaling molecule essential for mediating a wide range of physiological processes under various biotic and abiotic stress conditions. The fundamental function of NO under various stress scenarios has led to a paradigm shift in which NO is now seen as both a free radical liberated from the toxic product of oxidative metabolism and an agent that aids in plant sustenance. Numerous studies on NO biology have shown that NO is an important signal for germination, leaf senescence, photosynthesis, plant growth, pollen growth, and other processes. It is implicated in defense responses against pathogensas well as adaptation of plants in response to environmental cues like salinity, drought, and temperature extremes which demonstrates its multifaceted role. NO can carry out its biological action in a variety of ways, including interaction with protein kinases, modifying gene expression, and releasing secondary messengers. In addition to these signaling events, NO may also be in charge of the chromatin modifications, nitration, and S-nitrosylation-induced posttranslational modifications (PTM) of target proteins. Deciphering the molecular mechanism behind its essential function is essential to unravel the regulatory networks controlling the responses of plants to various environmental stimuli. Taking into consideration the versatile role of NO, an effort has been made to interpret its mode of action based on the post-translational modifications and to cover shreds of evidence for increased growth parameters along with an altered gene expression.
Collapse
Affiliation(s)
- Ritu Kumari
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Preedhi Kapoor
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Bilal Ahmad Mir
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Maninder Singh
- Department of Biotechnology and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zubair Ahmad Parrey
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Gurseen Rakhra
- Department of Nutrition & Dietetics, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, 121004, India
| | - Parul Parihar
- Department of Biosciences and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 47913, Saudi Arabia
| | - Gurmeen Rakhra
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
11
|
Wang J, Yan D, Liu R, Wang T, Lian Y, Lu Z, Hong Y, Wang Y, Li R. The Physiological and Molecular Mechanisms of Exogenous Melatonin Promote the Seed Germination of Maize ( Zea mays L.) under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2142. [PMID: 39124260 PMCID: PMC11313997 DOI: 10.3390/plants13152142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Salt stress caused by high concentrations of Na+ and Cl- in soil is one of the most important abiotic stresses in agricultural production, which seriously affects grain yield. The alleviation of salt stress through the application of exogenous substances is important for grain production. Melatonin (MT, N-acetyl-5-methoxytryptamine) is an indole-like small molecule that can effectively alleviate the damage caused by adversity stress on crops. Current studies have mainly focused on the effects of MT on the physiology and biochemistry of crops at the seedling stage, with fewer studies on the gene regulatory mechanisms of crops at the germination stage. The aim of this study was to explain the mechanism of MT-induced salt tolerance at physiological, biochemical, and molecular levels and to provide a theoretical basis for the resolution of MT-mediated regulatory mechanisms of plant adaptation to salt stress. In this study, we investigated the germination, physiology, and transcript levels of maize seeds, analyzed the relevant differentially expressed genes (DEGs), and examined salt tolerance-related pathways. The results showed that MT could increase the seed germination rate by 14.28-19.04%, improve seed antioxidant enzyme activities (average increase of 11.61%), and reduce reactive oxygen species accumulation and membrane oxidative damage. In addition, MT was involved in regulating the changes of endogenous hormones during the germination of maize seeds under salt stress. Transcriptome results showed that MT affected the activity of antioxidant enzymes, response to stress, and seed germination-related genes in maize seeds under salt stress and regulated the expression of genes related to starch and sucrose metabolism and phytohormone signal transduction pathways. Taken together, the results indicate that exogenous MT can affect the expression of stress response-related genes in salt-stressed maize seeds, enhance the antioxidant capacity of the seeds, reduce the damage induced by salt stress, and thus promote the germination of maize seeds under salt stress. The results provide a theoretical basis for the MT-mediated regulatory mechanism of plant adaptation to salt stress and screen potential candidate genes for molecular breeding of salt-tolerant maize.
Collapse
Affiliation(s)
- Jiajie Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Di Yan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Rui Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Ting Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Yijia Lian
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Zhenzong Lu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Yue Hong
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Ye Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Runzhi Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| |
Collapse
|
12
|
Alshammari WB, Alshammery K, Lotfi S, Altamimi H, Alshammari A, Al-Harbi NA, Jakovljević D, Alharbi MH, Moustapha ME, Abd El-Moneim D, Abdelaal K. Improvement of morphophysiological and anatomical attributes of plants under abiotic stress conditions using plant growth-promoting bacteria and safety treatments. PeerJ 2024; 12:e17286. [PMID: 38708356 PMCID: PMC11067897 DOI: 10.7717/peerj.17286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
Drought and salinity are the major abiotic stress factors negatively affecting the morphophysiological, biochemical, and anatomical characteristics of numerous plant species worldwide. The detrimental effects of these environmental factors can be seen in leaf and stem anatomical structures including the decrease in thickness of cell walls, palisade and spongy tissue, phloem and xylem tissue. Also, the disintegration of grana staking, and an increase in the size of mitochondria were observed under salinity and drought conditions. Drought and salt stresses can significantly decrease plant height, number of leaves and branches, leaf area, fresh and dry weight, or plant relative water content (RWC%) and concentration of photosynthetic pigments. On the other hand, stress-induced lipid peroxidation and malondialdehyde (MDA) production, electrolyte leakage (EL%), and production of reactive oxygen species (ROS) can increase under salinity and drought conditions. Antioxidant defense systems such as catalase, peroxidase, glutathione reductase, ascorbic acid, and gamma-aminobutyric acid are essential components under drought and salt stresses to protect the plant organelles from oxidative damage caused by ROS. The application of safe and eco-friendly treatments is a very important strategy to overcome the adverse effects of drought and salinity on the growth characteristics and yield of plants. It is shown that treatments with plant growth-promoting bacteria (PGPB) can improve morphoanatomical characteristics under salinity and drought stress. It is also shown that yeast extract, mannitol, proline, melatonin, silicon, chitosan, α-Tocopherols (vitamin E), and biochar alleviate the negative effects of drought and salinity stresses through the ROS scavenging resulting in the improvement of plant attributes and yield of the stressed plants. This review discusses the role of safety and eco-friendly treatments in alleviating the harmful effects of salinity and drought associated with the improvement of the anatomical, morphophysiological, and biochemical features in plants.
Collapse
Affiliation(s)
| | - Kholoud Alshammery
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Salwa Lotfi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Haya Altamimi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abeer Alshammari
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, Tabuk, Saudi Arabia
| | - Dragana Jakovljević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragu-jevac, Serbia
| | - Mona Hajed Alharbi
- Department of Biology, College of Scince and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Moustapha Eid Moustapha
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Khaled Abdelaal
- EPCRS Excellence Center, Plant Pathology and Biotechnology Lab, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
13
|
Mian NH, Azeem M, Ali Q, Mahmood S, Akram MS. Alpha lipoic acid mitigates adverse impacts of drought stress on growth and yield of mungbean: photosynthetic pigments, and antioxidative defense mechanism. PeerJ 2024; 12:e17191. [PMID: 38699184 PMCID: PMC11064871 DOI: 10.7717/peerj.17191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/13/2024] [Indexed: 05/05/2024] Open
Abstract
Context Exogenous use of potential organic compounds through different modes is a promising strategy for the induction of water stress tolerance in crop plants for better yield. Aims The present study aimed to explore the potential role of alpha-lipoic acid (ALA) in inducing water stress tolerance in mungbean lines when applied exogenously through various modes. Methods The experiment was conducted in a field with a split-plot arrangement, having three replicates for each treatment. Two irrigation regimes, including normal and reduced irrigation, were applied. The plants allocated to reduced irrigation were watered only at the reproductive stage. Three levels of ALA (0, 0.1, 0.15 mM) were applied through different modes (seed priming, foliar or priming+foliar). Key results ALA treatment through different modes manifested higher growth under reduced irrigation (water stress) and normal irrigation. Compared to the other two modes, the application of ALA as seed priming was found more effective in ameliorating the adverse impacts of water stress on growth and yield associated with their better content of leaf photosynthetic pigments, maintenance of plant water relations, levels of non-enzymatic antioxidants, improved activities of enzymatic antioxidants, and decreased lipid peroxidation and H2O2 levels. The maximum increase in shoot fresh weight (29% and 28%), shoot dry weight (27% and 24%), 100-grain weight (24% and 23%) and total grain yield (20% and 21%) in water-stressed mungbean plants of line 16003 and 16004, respectively, was recorded due to ALA seed priming than other modes of applications. Conclusions Conclusively, 0.1 and 0.15 mM levels of ALA as seed priming were found to reduce the adverse impact of water stress on mungbean yield that was associated with improved physio-biochemical mechanisms. Implications The findings of the study will be helpful for the agriculturalists working in arid and semi-arid regions to obtain a better yield of mungbean that will be helpful to fulfill the food demand in those areas to some extent.
Collapse
Affiliation(s)
| | - Muhammad Azeem
- Government College University, Faisalabad, Faisalabad, Pakistan
| | - Qasim Ali
- Government College University, Faisalabad, Faisalabad, Pakistan
| | - Saqib Mahmood
- Government College University, Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
14
|
Alafari HA, Hafez Y, Omara R, Murad R, Abdelaal K, Attia K, Khedr A. Physio-Biochemical, Anatomical, and Molecular Analysis of Resistant and Susceptible Wheat Cultivars Infected with TTKSK, TTKST, and TTTSK Novel Puccinia graminis Races. PLANTS (BASEL, SWITZERLAND) 2024; 13:1045. [PMID: 38611573 PMCID: PMC11013933 DOI: 10.3390/plants13071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Stem rust, caused by Puccinia graminis f.sp. tritici, is one of the most dangerous rust diseases on wheat. Through physiological, biochemical, and molecular analysis, the relationship between the change in resistance of 15 wheat cultivars to stem rust disease and the response of 41 stem rust resistance genes (Sr,s) as well as TTKSK, TTKST, and TTTSK races was explained. Some cultivars and Sr genes, such as Gemmeiza-9, Gemmeiza-11, Sids-13, Sakha-94, Misr-1, Misr-2, Sr31, and Sr38, became susceptible to infection. Other new cultivars include Mir-3 and Sakha-95, and Sr genes 13, 37, 40, GT, and FR*2/SRTT3-SRTT3-SR10 remain resistant. Some resistance genes have been identified in these resistant cultivars: Sr2, Sr13, Sr24, Sr36, and Sr40. Sr31 was not detected in any cultivars. Reactive oxygen species such as hydrogen peroxide and superoxide, enzymes activities (catalase, peroxidase, and polyphenoloxidase), and electrolyte leakage were increased in the highly susceptible cultivars, while they decreased in the resistant ones. Anatomical characteristics such as the thickness of the epidermis, ground tissue, phloem tissue and vascular bundle diameter in the midrib were decreased in susceptible cultivars compared with resistant cultivars. Our results indicated that some races (TTKSK, TTKST, and TTTSK) appeared for the first time in Egypt and many other countries, which broke the resistant cultivars. The wheat rust breeding program must rely on land races and pyramiding genes in order to develop new resistance genes that will survive for a very long time.
Collapse
Affiliation(s)
- Hayat Ali Alafari
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Yaser Hafez
- EPCRS Excellence Center, Plant Pathology and Biotechnology Laboratory, Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt (R.M.)
| | - Reda Omara
- Wheat Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Rasha Murad
- EPCRS Excellence Center, Plant Pathology and Biotechnology Laboratory, Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt (R.M.)
| | - Khaled Abdelaal
- EPCRS Excellence Center, Plant Pathology and Biotechnology Laboratory, Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt (R.M.)
| | - Kotb Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Amr Khedr
- EPCRS Excellence Center, Plant Pathology and Biotechnology Laboratory, Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt (R.M.)
| |
Collapse
|
15
|
Tian Z, Zhao M, Wang J, Yang Q, Ma Y, Yang X, Ma L, Qi Y, Li J, Quinet M, Shi B, Meng Y. Exogenous melatonin improves germination rate in buckwheat under high temperature stress by regulating seed physiological and biochemical characteristics. PeerJ 2024; 12:e17136. [PMID: 38590707 PMCID: PMC11000643 DOI: 10.7717/peerj.17136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
The germinations of three common buckwheat (Fagopyrum esculentum) varieties and two Tartary buckwheat (Fagopyrum tataricum) varieties seeds are known to be affected by high temperature. However, little is known about the physiological mechanism affecting germination and the effect of melatonin (MT) on buckwheat seed germination under high temperature. This work studied the effects of exogenous MT on buckwheat seed germination under high temperature. MT was sprayed. The parameters, including growth, and physiological factors, were examined. The results showed that exogenous MT significantly increased the germination rate (GR), germination potential (GP), radicle length (RL), and fresh weight (FW) of these buckwheat seeds under high-temperature stress and enhanced the content of osmotic adjustment substances and enzyme activity. Comprehensive analysis revealed that under high-temperature stress during germination, antioxidant enzymes play a predominant role, while osmotic adjustment substances work synergistically to reduce the extent of damage to the membrane structure, serving as the primary key indicators for studying high-temperature resistance. Consequently, our results showed that MT had a positive protective effect on buckwheat seeds exposed to high temperature stress, providing a theoretical basis for improving the ability to adapt to high temperature environments.
Collapse
Affiliation(s)
- Zemiao Tian
- Hebei Agricultrual University, Baoding, China
- Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing, China
| | - Mengyu Zhao
- Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing, China
| | - Junzhen Wang
- Liangshan Yi Autonomous Prefecture Academy of Agricultural Sciences, Xichang, China
| | - Qian Yang
- Hebei Agricultrual University, Baoding, China
| | - Yini Ma
- Hebei Agricultrual University, Baoding, China
| | - Xinlei Yang
- Hebei Agricultrual University, Baoding, China
| | - Luping Ma
- Hebei Agricultrual University, Baoding, China
| | - Yongzhi Qi
- Hebei Agricultrual University, Baoding, China
| | - Jinbo Li
- Luoyang Normal University, Luoyang, China
| | - Muriel Quinet
- Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Yu Meng
- Hebei Agricultrual University, Baoding, China
| |
Collapse
|
16
|
Sharma G, Sharma N, Ohri P. Harmonizing hydrogen sulfide and nitric oxide: A duo defending plants against salinity stress. Nitric Oxide 2024; 144:1-10. [PMID: 38185242 DOI: 10.1016/j.niox.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 01/09/2024]
Abstract
In the face of escalating salinity stress challenges in agricultural systems, this review article delves into the harmonious partnership between hydrogen sulfide (H2S) and nitric oxide (NO) as they collectively act as formidable defenders of plants. Once considered as harmful pollutants, H2S and NO have emerged as pivotal gaseous signal molecules that profoundly influence various facets of plant life. Their roles span from enhancing seed germination to promoting overall growth and development. Moreover, these molecules play a crucial role in bolstering stress tolerance mechanisms and maintaining essential plant homeostasis. This review navigates through the intricate signaling pathways associated with H2S and NO, elucidating their synergistic effects in combating salinity stress. We explore their potential to enhance crop productivity, thereby ensuring food security in saline-affected regions. In an era marked by pressing environmental challenges, the manipulation of H2S and NO presents promising avenues for sustainable agriculture, offering a beacon of hope for the future of global food production.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
17
|
Ahmad B, Mukarram M, Choudhary S, Petrík P, Dar TA, Khan MMA. Adaptive responses of nitric oxide (NO) and its intricate dialogue with phytohormones during salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108504. [PMID: 38507841 DOI: 10.1016/j.plaphy.2024.108504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/23/2024] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
Nitric oxide (NO) is a gaseous free radical that acts as a messenger for various plant phenomena corresponding to photomorphogenesis, fertilisation, flowering, germination, growth, and productivity. Recent developments have suggested the critical role of NO in inducing adaptive responses in plants during salinity. NO minimises salinity-induced photosynthetic damage and improves plant-water relation, nutrient uptake, stomatal conductance, electron transport, and ROS and antioxidant metabolism. NO contributes active participation in ABA-mediated stomatal regulation. Similar crosstalk of NO with other phytohormones such as auxins (IAAs), gibberellins (GAs), cytokinins (CKs), ethylene (ET), salicylic acid (SA), strigolactones (SLs), and brassinosteroids (BRs) were also observed. Additionally, we discuss NO interaction with other gaseous signalling molecules such as reactive oxygen species (ROS) and reactive sulphur species (RSS). Conclusively, the present review traces critical events in NO-induced morpho-physiological adjustments under salt stress and discusses how such modulations upgrade plant resilience.
Collapse
Affiliation(s)
- Bilal Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India; Department of Botany, Govt Degree College for Women, Pulwama, University of Kashmir, 192301, India
| | - Mohammad Mukarram
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001, Zvolen, Slovakia; Food and Plant Biology Group, Department of Plant Biology, School of Agriculture, Universidad de la República, Montevideo, Uruguay.
| | - Sadaf Choudhary
- Department of Botany, Govt Degree College for Women, Pulwama, University of Kashmir, 192301, India
| | - Peter Petrík
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstraße 19, 82467, Garmisch-Partenkirchen, Germany
| | - Tariq Ahmad Dar
- Sri Pratap College, Cluster University Srinagar, 190001, India
| | - M Masroor A Khan
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
18
|
Kaya C, Uğurlar F, Ashraf M, Alyemeni MN, Dewil R, Ahmad P. Mitigating salt toxicity and overcoming phosphate deficiency alone and in combination in pepper (Capsicum annuum L.) plants through supplementation of hydrogen sulfide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119759. [PMID: 38091729 DOI: 10.1016/j.jenvman.2023.119759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/14/2024]
Abstract
While it is widely recognized that hydrogen sulfide (H2S) promotes plant stress tolerance, the precise processes through which H2S modulates this process remains unclear. The processes by which H2S promotes phosphorus deficiency (PD) and salinity stress (SS) tolerance, simulated individually or together, were examined in this study. The adverse impacts on plant biomass, total chlorophyll and chlorophyll fluorescence were more pronounced with joint occurrence of PD and SS than with individual application. Malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL) levels in plant leaves were higher in plants exposed to joint stresses than in plants grown under an individual stress. When plants were exposed to a single stress as opposed to both stressors, sodium hydrosulfide (NaHS) treatment more efficiently decreased EL, MDA, and H2O2 concentrations. Superoxide dismutase, peroxidase, glutathione reductase and ascorbate peroxidase activities were increased by SS alone or in conjunction with PD, whereas catalase activity decreased significantly. The favorable impact of NaHS on all the evaluated attributes was reversed by supplementation with 0.2 mM hypotaurine (HT), a H2S scavenger. Overall, the unfavorable effects caused to NaHS-supplied plants by a single stress were less severe compared with those caused by the combined administration of both stressors.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey.
| | - Ferhat Uğurlar
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Raf Dewil
- Department of Chemical Engineering, KU Leuven, Belgium; Department of Engineering Science, University of Oxford, United Kingdom
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
19
|
Eldakkak E, El-Shourbagy M. Effect of polyamine precursors and antioxidants on growth and metabolism of salt-stressed barley. F1000Res 2024; 12:262. [PMID: 39479231 PMCID: PMC11522708 DOI: 10.12688/f1000research.130979.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 11/02/2024] Open
Abstract
Background Salt stress, a significant environmental problem was studied in barley cultivars Giza 124 and Giza 119 at various stages (seedling, pre-flowering, and yield). This study aimed to investigate the impact of salt stress on these cultivars, examine the effects of polyamine precursors (arginine, methionine, and ornithine) on their response to salt stress, and assess the efficacy of antioxidants (glutathione and ascorbic acid) in alleviating the harmful effects of salt stress on barley plants. Methods Barley grains were germinated and subjected to salinity stress, with subsequent treatment using glutathione, ascorbic acid, or an amino acid mixture. Growth criteria, photosynthetic pigments, metabolites, antioxidant enzymes, mineral content, and polyamines were analyzed. Results The impact of 100Mm NaCl, with or without glutathione, ascorbic acid, or amino acid mixtures, on various physiological parameters in G124 and G119 were investigated. The levels of chlorophyll a, chlorophyll b, and carotenoids significantly varied under different treatments. For instance, chlorophyll a in G 124 exhibited a 23% reduction under salt stress compared to the control, while the addition of glutathione mitigated this effect, resulting in a 17% increase compared to the NaCl treatment. Similar trends were observed for chlorophyll b and carotenoids. At the yield stage, both cultivars demonstrated a significant decrease in the the weight of grains per plant under salinity, which was alleviated by the addition of ascorbic acid, glutathione, or amino acid mixtures. Conclusion The application of glutathione, ascorbic acid, or an amino acid mixture mitigated the adverse effects of salt stress on various parameters. The results highlight the potentail of these compounds in enhancing plant tolerance to salinity stress and offer insights into the physiological response of barley cultivars under adverse conditions.
Collapse
Affiliation(s)
- Eman Eldakkak
- Botany Department, Faculty of Science, Tanta University, Tanta, Gharbia Governorate, Egypt
| | - Mohamed El-Shourbagy
- Botany Department, Faculty of Science, Tanta University, Tanta, Gharbia Governorate, Egypt
| |
Collapse
|
20
|
Ugurlar F, Kaya C. Synergistic mitigation of nickel toxicity in pepper ( Capsicum annuum) by nitric oxide and thiourea via regulation of nitrogen metabolism and subcellular nickel distribution. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:1099-1116. [PMID: 37875021 DOI: 10.1071/fp23122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
Nickel (Ni) contamination hinders plant growth and yield. Nitric oxide (NO) and thiourea (Thi) aid plant recovery from heavy metal damage, but their combined effects on pepper (Capsicum annuum ) plant tolerance to Ni stress need more study. Sodium nitroprusside (0.1mM, SNP) and 400mgL-1 Thi, alone and combined, were studied for their impact on pepper growth under Ni toxicity. Ni stress reduces chlorophyll, PSII efficiency and leaf water and sugar content. However, SNP and Thi alleviate these effects by increasing leaf water, proline and sugar content. It also increased the activities of superoxide dismutase, catalase, ascorbate peroxidase and peroxidase. Nickel stress lowered nitrogen assimilation enzymes (nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase and glutamate dehydrogenase) and protein content, but increased nitrate, ammonium and amino acid content. SNP and Thi enhanced nitrogen assimilation, increased protein content and improved pepper plant growth and physiological functions during Ni stress. The combined treatment reduced Ni accumulation, increased Ni in leaf cell walls and potentially in root vacuoles, and decreased Ni concentration in cell organelles. It effectively mitigated Ni toxicity to vital organelles, surpassing the effects of SNP or Thi use alone. This study provides valuable insights for addressing heavy metal contamination in agricultural soils and offers potential strategies for sustainable and eco-friendly farming practices.
Collapse
Affiliation(s)
- Ferhat Ugurlar
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| |
Collapse
|
21
|
Mariyam S, Bhardwaj R, Khan NA, Sahi SV, Seth CS. Review on nitric oxide at the forefront of rapid systemic signaling in mitigation of salinity stress in plants: Crosstalk with calcium and hydrogen peroxide. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111835. [PMID: 37611833 DOI: 10.1016/j.plantsci.2023.111835] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Soil salinity is a global issue that limits plant growth in agricultural fields and contributes to food crisis. Salt stressors impede plant's ionic, osmotic, and oxidative balance, as well as a variety of physiological functions. Exposure to salinity stress manifest considerable ROS clustering, entailing modification in performance of various organelles. To deal with salinity, plants use a variety of coping strategies, such as osmoregulation, ion-homeostasis, increased antioxidant synthesis, and so on. Nitric oxide (NO) is a pivotal signalling molecule that helps facilitate salt stress-induced physiological plant responses. A variety of evidences point to NO being produced under similar stress conditions and with similar kinetics as hydrogen peroxide (H2O2). The interplay between H2O2 and NO has important functional implications for modulating plant transduction processes. Besides, NO and calcium (Ca2+)-dependent pathways also have some connection in salt stress response mechanisms. Extensive crosstalk between NO and Ca2+ signalling pathways is investigated, and it suggests that almost every type of Ca2+ channel is under the tight control of NO, and NO acts as a Ca2+ mobilising compound and aids in signal reliance. The review provides insights into understanding recent advances regarding NO's, Ca2+ and H2O2 role in salt stress reduction with entwine signaling mechanisms.
Collapse
Affiliation(s)
- Safoora Mariyam
- Department of Botany, University of Delhi, New Delhi 110007, Delhi, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Nafees A Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Shivendra V Sahi
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19104, USA
| | | |
Collapse
|
22
|
Saini S, Sharma P, Singh P, Kumar V, Yadav P, Sharma A. Nitric oxide: An emerging warrior of plant physiology under abiotic stress. Nitric Oxide 2023; 140-141:58-76. [PMID: 37848156 DOI: 10.1016/j.niox.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
The natural environment of plants comprises a complex set of various abiotic stresses and their capability to react and survive under this anticipated changing climate is highly flexible and involves a series of balanced interactions between signaling molecules where nitric oxide becomes a crucial component. In this article, we focussed on the role of nitric oxide (NO) in various signal transduction pathways of plants and its positive impact on maintaining cellular homeostasis under various abiotic stresses. Besides this, the recent data on interactions of NO with various phytohormones to control physiological and biochemical processes to attain abiotic stress tolerance have also been considered. These crosstalks modulate the plant's defense mechanism and help in alleviating the negative impact of stress. While focusing on the diverse functions of NO, an effort has been made to explore the functions of NO-mediated post-translational modifications, such as the N-end rule pathway, tyrosine nitration, and S-nitrosylation which revealed the exact mechanism and characterization of proteins that modify various metabolic processes in stressed conditions. Considering all of these factors, the present review emphasizes the role of NO and its interlinking with various phytohormones in maintaining developmental processes in plants, specifically under unfavorable environments.
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pooja Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vikram Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priya Yadav
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India.
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
23
|
Rao D, Yadav S, Choudhary R, Singh D, Bhardwaj R, Barthakur S, Yadav SK. Silicic and Humic Acid Priming Improves Micro- and Macronutrient Uptake, Salinity Stress Tolerance, Seed Quality, and Physio-Biochemical Parameters in Lentil ( Lens culinaris spp. culinaris). PLANTS (BASEL, SWITZERLAND) 2023; 12:3539. [PMID: 37896003 PMCID: PMC10609776 DOI: 10.3390/plants12203539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 10/29/2023]
Abstract
Lentil is an important grain legume crop which is mostly grown on marginal soils that hamper its productivity. Improvement of salt tolerance in lentils is considered to be a useful strategy of utilizing salt-affected lands in an economic manner. This study was conducted to evaluate the effectiveness of seed priming using silicic acid and humic acid both seperately and in combination to improve salt stress tolerance among three different lentil varieties: IPL-316 (tolerant), PSL-9, and PDL-1 (susceptible). The concentrations and durations of treatments were standardized under the normal condition and the salinity stress condition. Salt stress hindered seedling emergence and biomass production and accelerated Na+ toxicity and oxidative damage at the seedling stage in untreated seeds. Nevertheless, chemical priming improved early seedling emergence, increased root length, shoot length, and seed vigor index I and II, and reduced the mean germination time. A significant quantitative change in biochemical parameters under normal and salinity stress conditions was observed in IPL-316,viz. Specifically, for IPL-316, the following parameters were observed (values under the normal condition and values under salt stress conditions, respectively): chlorophyll-a (16 and 13 mg/g Fw), chlorophyll-b (25 and 16 mg/g FW), total chlorophyll content (42 and 30 mg/g FW), relative leaf water content (92% and 82%), total soluble sugars (26 and 33 ug/g FW), free amino acid (10 and 7 mg/g FW), total phenol (26 and 24 mg of GAE/g FW), total protein (35 and 29 mg/g FW), carbohydrate (208 and 173 mg/g FW), superoxide dismutase (SOD) (29 and 35 unit/min./g FW), proline (0.28 and 0.32 u mol/g FW), catalase (CAT) (84 and 196 unit/mL/g FW), and peroxidase (POX) (217 and 738 unit/mL/g FW). Furthermore, histochemical analysis of H2O2 and O2-, micronutrients, and macronutrients also increased, while malondialdehyde (MDA) (0.31 and 0.47 nmol/mL FW) content decreased using silicic and humic acid priming under salt stress conditions. The combination of silicic and humic acids improved seedling growth and reduced oxidative damage in lentil plants under salt stress conditions. The combination of silicic and humic acid priming hastened seedling emergence, seed quality parameters, and biochemical parameters under salt stress over respective control. To the best of our knowledge, this is the first report of integrated chemical priming in lentils for salinity stress. In conclusion, chemical priming using a combination of silicic and humic acid performed better in terms of seed quality due to enhanced antioxidant machinery, better membrane stability and osmolyte protection, and enhanced nutrient uptake under salt stress conditions.
Collapse
Affiliation(s)
- Deepak Rao
- Division of Seed Science and Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (D.R.); (R.C.)
| | - Sangita Yadav
- Division of Seed Science and Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (D.R.); (R.C.)
| | - Ravish Choudhary
- Division of Seed Science and Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (D.R.); (R.C.)
| | - Dharmendra Singh
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Rakesh Bhardwaj
- ICAR—National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India;
| | | | - Shiv Kumar Yadav
- Division of Seed Science and Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (D.R.); (R.C.)
| |
Collapse
|
24
|
Hussain S, Ahmed S, Akram W, Sardar R, Abbas M, Yasin NA. Selenium-Priming mediated growth and yield improvement of turnip under saline conditions. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:710-726. [PMID: 37753953 DOI: 10.1080/15226514.2023.2261548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Salt toxicity is one of the foremost environmental stresses that declines nutrient uptake, photosynthetic activity and growth of plants resulting in a decrease in crop yield and quality. Seed priming has become an emergent strategy to alleviate abiotic stress and improve plant growth. During the current study, turnip seed priming with sodium selenite (Na2SeO3) was investigated for its ability to mitigate salt stress. Turnip (Brassica rapa L. var. Purple Top White Globe) seeds primed with 75, 100, and 125 μML-1 of Se were subjected to 200 mM salt stress under field conditions. Findings of the current field research demonstrated that salt toxicity declined seed germination, chlorophyll content, and gas exchange characteristics of B. rapa seedling. Whereas, Se-primed seeds showed higher germination rate and plant growth which may be attributed to the decreased level of hydrogen peroxide (H2O2) and malondialdehyde (MDA) decreased synthesis of proline (36%) and besides increased total chlorophyll (46%) in applied turnip plants. Higher expression levels of genes encoding antioxidative activities (CAT, POD, SO,D and APX) mitigated oxidative stress induced by the salt toxicity. Additionally, Se treatment decreased Na+ content and enhanced K+ content resulting in elevated K+/Na+ ratio in the treated plants. The in-silico assessment revealed the interactive superiority of Se with antioxidant enzymes including CAT, POD, SOD, and APX as compared to sodium chloride (NaCl). Computational study of enzymes-Se and enzymes-NaCl molecules also revealed the stress ameliorative potential of Se through the presence of more Ramachandran-favored regions (94%) and higher docking affinities of Se (-6.3). The in-silico studies through molecular docking of Na2SeO3, NaCl, and ROS synthesizing enzymes (receptors) including cytochrome P450 (CYP), lipoxygenase (LOX), and xanthine oxidase (XO), also confirmed the salt stress ameliorative potential of Se in B. rapa. The increased Ca, P, Mg, and Zn nutrients uptake nutrients uptake in 100 μML-1 Se primed seedlings helped to adjust the stomatal conductivity (35%) intercellular CO2 concentration (32%), and photosynthetic activity (41%) resulting in enhancement of the yield attributes. More number of seeds per plant (6%), increased turnip weight (115 gm) root length (17.24 cm), root diameter (12 cm) as well as turnip yield increased by (9%tons ha-1) were recorded for 100 μML-1 Se treatment under salinity stress. Findings of the current research judiciously advocate the potential of Se seed priming for salt stress alleviation and growth improvement in B. rapa.
Collapse
Affiliation(s)
- Saber Hussain
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Waheed Akram
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | | | | |
Collapse
|
25
|
Huang K, Li M, Li R, Rasul F, Shahzad S, Wu C, Shao J, Huang G, Li R, Almari S, Hashem M, Aamer M. Soil acidification and salinity: the importance of biochar application to agricultural soils. FRONTIERS IN PLANT SCIENCE 2023; 14:1206820. [PMID: 37780526 PMCID: PMC10537949 DOI: 10.3389/fpls.2023.1206820] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/18/2023] [Indexed: 10/03/2023]
Abstract
Soil acidity is a serious problem in agricultural lands as it directly affects the soil, crop production, and human health. Soil acidification in agricultural lands occurs due to the release of protons (H+) from the transforming reactions of various carbon, nitrogen, and sulfur-containing compounds. The use of biochar (BC) has emerged as an excellent tool to manage soil acidity owing to its alkaline nature and its appreciable ability to improve the soil's physical, chemical, and biological properties. The application of BC to acidic soils improves soil pH, soil organic matter (SOM), cation exchange capacity (CEC), nutrient uptake, microbial activity and diversity, and enzyme activities which mitigate the adverse impacts of acidity on plants. Further, BC application also reduce the concentration of H+ and Al3+ ions and other toxic metals which mitigate the soil acidity and supports plant growth. Similarly, soil salinity (SS) is also a serious concern across the globe and it has a direct impact on global production and food security. Due to its appreciable liming potential BC is also an important amendment to mitigate the adverse impacts of SS. The addition of BC to saline soils improves nutrient homeostasis, nutrient uptake, SOM, CEC, soil microbial activity, enzymatic activity, and water uptake and reduces the accumulation of toxic ions sodium (Na+ and chloride (Cl-). All these BC-mediated changes support plant growth by improving antioxidant activity, photosynthesis efficiency, stomata working, and decrease oxidative damage in plants. Thus, in the present review, we discussed the various mechanisms through which BC improves the soil properties and microbial and enzymatic activities to counter acidity and salinity problems. The present review will increase the existing knowledge about the role of BC to mitigate soil acidity and salinity problems. This will also provide new suggestions to readers on how this knowledge can be used to ameliorate acidic and saline soils.
Collapse
Affiliation(s)
- Kai Huang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Mingquan Li
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Rongpeng Li
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Fahd Rasul
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sobia Shahzad
- Islamia University of Bahawalpur, Bahawalnagar, Pakistan
| | - Changhong Wu
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Jinhua Shao
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Guoqin Huang
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ronghui Li
- College of Civil Engineering and Architecture, Guangxi University, Nanning, China
| | - Saad Almari
- King Khalid University, College of Science, Department of Biology, Abha, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, Saudi Arabia
| | - Muhammad Aamer
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
26
|
Aouz A, Khan I, Chattha MB, Ahmad S, Ali M, Ali I, Ali A, Alqahtani FM, Hashem M, Albishi TS, Qari SH, Chatta MU, Hassan MU. Silicon Induces Heat and Salinity Tolerance in Wheat by Increasing Antioxidant Activities, Photosynthetic Activity, Nutrient Homeostasis, and Osmo-Protectant Synthesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2606. [PMID: 37514221 PMCID: PMC10385395 DOI: 10.3390/plants12142606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Modern agriculture is facing the challenges of salinity and heat stresses, which pose a serious threat to crop productivity and global food security. Thus, it is necessary to develop the appropriate measures to minimize the impacts of these serious stresses on field crops. Silicon (Si) is the second most abundant element on earth and has been recognized as an important substance to mitigate the adverse effects of abiotic stresses. Thus, the present study determined the role of Si in mitigating adverse impacts of salinity stress (SS) and heat stress (HS) on wheat crop. This study examined response of different wheat genotypes, namely Akbar-2019, Subhani-2021, and Faisalabad-2008, under different treatments: control, SS (8 dSm-1), HS, SS + HS, control + Si, SS + Si, HS+ Si, and SS + HS+ Si. This study's findings reveal that HS and SS caused a significant decrease in the growth and yield of wheat by increasing electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2) production; sodium (Na+) and chloride (Cl-) accumulation; and decreasing relative water content (RWC), chlorophyll and carotenoid content, total soluble proteins (TSP), and free amino acids (FAA), as well as nutrient uptake (potassium, K; calcium, Ca; and magnesium, Mg). However, Si application offsets the negative effects of both salinity and HS and improved the growth and yield of wheat by increasing chlorophyll and carotenoid contents, RWC, antioxidant activity, TSP, FAA accumulation, and nutrient uptake (Ca, K, and Mg); decreasing EL, electrolyte leakage, MDA, and H2O2; and restricting the uptake of Na+ and Cl-. Thus, the application of Si could be an important approach to improve wheat growth and yield under normal and combined saline and HS conditions by improving plant physiological functioning, antioxidant activities, nutrient homeostasis, and osmolyte accumulation.
Collapse
Affiliation(s)
- Ansa Aouz
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Imran Khan
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Bilal Chattha
- Department of Agronomy, Faculty of Agriculture Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Shahbaz Ahmad
- Department of Entomology, Faculty of Agriculture Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Muqarrab Ali
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Iftikhar Ali
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Abid Ali
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Fatmah M Alqahtani
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Tasahil S Albishi
- Biology Department, College of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Muhammad Umer Chatta
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
27
|
Khan M, Al Azzawi TNI, Ali S, Yun BW, Mun BG. Nitric Oxide, a Key Modulator in the Alleviation of Environmental Stress-Mediated Damage in Crop Plants: A Meta-Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112121. [PMID: 37299100 DOI: 10.3390/plants12112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Nitric oxide (NO) is a small, diatomic, gaseous, free radicle, lipophilic, diffusible, and highly reactive molecule with unique properties that make it a crucial signaling molecule with important physiological, biochemical, and molecular implications for plants under normal and stressful conditions. NO regulates plant growth and developmental processes, such as seed germination, root growth, shoot development, and flowering. It is also a signaling molecule in various plant growth processes, such as cell elongation, differentiation, and proliferation. NO also regulates the expression of genes encoding hormones and signaling molecules associated with plant development. Abiotic stresses induce NO production in plants, which can regulate various biological processes, such as stomatal closure, antioxidant defense, ion homeostasis, and the induction of stress-responsive genes. Moreover, NO can activate plant defense response mechanisms, such as the production of pathogenesis-related proteins, phytohormones, and metabolites against biotic and oxidative stressors. NO can also directly inhibit pathogen growth by damaging their DNA and proteins. Overall, NO exhibits diverse regulatory roles in plant growth, development, and defense responses through complex molecular mechanisms that still require further studies. Understanding NO's role in plant biology is essential for developing strategies for improved plant growth and stress tolerance in agriculture and environmental management.
Collapse
Affiliation(s)
- Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Gyu Mun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
28
|
Qu Z, Tian Y, Zhou X, Li X, Zhou Q, Wang X, Dong S. Effects of Exogenous Sodium Nitroprusside Spraying on Physiological Characteristics of Soybean Leaves at the Flowering Stage under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1598. [PMID: 37111822 PMCID: PMC10143010 DOI: 10.3390/plants12081598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 06/19/2023]
Abstract
Nitric oxide (NO) plays a significant role in plant drought resistance. However, the effects of the exogenous application of NO to crops under drought stress vary within and among species. In this study, we explored the influence of exogenous sodium nitroprusside (SNP) on the drought resistance of soybean leaves in the full flowering stage using two varieties: drought-tolerant HN44 and non-drought-tolerant HN65. Spraying SNP on soybean leaves at the full flowering period under drought stress improved the NO content in soybean leaves. The activities of nitrite reductase (NiR) and nitrate reductase (NR) in leaves were affected by NO inhibition. The activity of antioxidant enzymes in leaves increased with the extension of SNP application time. Contents of osmomodulatory substances, including proline (Pro), soluble sugar (SS), and soluble protein (SP) increased gradually with the extension of SNP application time. The malondialdehyde (MDA) content decreased as the NO content increased, thus reducing membrane system damage. Overall, spraying SNP reduced damage and improved the ability of soybean to cope with drought. This study explored the physiological changes of SNP soybean under drought stress and provided theoretical basis for improving drought-resistant cultivation of soybean.
Collapse
Affiliation(s)
- Zhipeng Qu
- Agricultural College, Northeast Agricultural University, Harbin 150030, China
| | - Yumei Tian
- Agricultural College, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhou
- Agricultural College, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomei Li
- Agriculture and Food Science and Technology Branch, Heilongjiang Agricultural Engineering Vocational College, Harbin 150025, China
| | - Qi Zhou
- Agricultural College, Northeast Agricultural University, Harbin 150030, China
| | - Xiyue Wang
- Agricultural College, Northeast Agricultural University, Harbin 150030, China
| | - Shoukun Dong
- Agricultural College, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
29
|
Zangani E, Angourani HR, Andalibi B, Rad SV, Mastinu A. Sodium Nitroprusside Improves the Growth and Behavior of the Stomata of Silybum marianum L. Subjected to Different Degrees of Drought. Life (Basel) 2023; 13:life13040875. [PMID: 37109404 PMCID: PMC10145804 DOI: 10.3390/life13040875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The use of growth-stimulating signals to increase the tolerance of plants to water deficits can be an important strategy in the production of plants in dry areas. Therefore, a split-plot experiment with three replications was conducted to evaluate the effects of sodium nitroprusside (SNP) application rate as an NO donor (0, 100, and 200 µM) on the growth and yield parameters of Silybum marianum L. (S. marianum) under different irrigation cut-off times (control, irrigation cut-off from stem elongation, and anthesis). The results of this study showed that with increasing drought severity, leaf RWC, proline content and capitula per plant, 1000 grain weight, plant height, branch per plant, capitula diameter, and the biological and grain yield of S. marianum decreased significantly, whereas the number of grains per capitula increased compared with the control. Also, by irrigation cut-off from the stem elongation stage, the density of leaf stomata at the bottom and top epidermis increased by 64% and 39%, respectively, and the length of the stomata at the bottom epidermis of the leaf decreased up to 28%. In contrast, the results of this experiment showed that the exogenous application of nitric oxide reduced the negative effects of irrigation cut-off, such that the application of 100 µM SNP enhanced RWC content (up to 9%), proline concentration (up to 40%), and grain (up to 34%) and biological (up to 44%) yields in plants under drought stress compared with non-application of SNP. The decrease in the number of capitula per plant and capitula diameter was also compensated by foliar application of 100 µM SNP under stress conditions. In addition, exogenous NO changed the behavior of the stomata during the period of dehydration, such that plants treated with SNP showed a decrease in the stomatal density of the leaf and an increase in the length of the stomata at the leaf bottom epidermis. These results indicate that SNP treatment, especially at 100 µM, was helpful in alleviating the deleterious effects of water deficiency and enhancing the tolerance of S. marianum to withholding irrigation times.
Collapse
Affiliation(s)
- Esmaeil Zangani
- Department of Plant Production and Genetics, University of Zanjan, Zanjan 45371-38791, Iran;
- Correspondence: (E.Z.); (A.M.)
| | - Hossein Rabbi Angourani
- Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Babak Andalibi
- Department of Plant Production and Genetics, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Saeid Vaezi Rad
- Department of Agronomy, Science and Research Branch, Islamic Azad University, Zanjan 45156-58145, Iran;
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy
- Correspondence: (E.Z.); (A.M.)
| |
Collapse
|
30
|
Alam P, Balawi TA, Qadir SU, Ahmad P. Gibberellic Acid and Silicon Ameliorate NaCl Toxicity in Brassica juncea: Possible Involvement of Antioxidant System and Ascorbate-Glutathione Cycle. PLANTS (BASEL, SWITZERLAND) 2023; 12:1210. [PMID: 36986898 PMCID: PMC10058815 DOI: 10.3390/plants12061210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
This work was carried out to observe the combined impact of exogenous applications of Gibberellic acid (GA3) and Silicon (Si) on Brassica juncea under salt (NaCl) stress. Application of GA3 and Si enhanced the antioxidant enzyme activities of (APX, CAT, GR, SOD) in B. juncea seedlings under NaCl toxicity. The exogenous Si application decreased Na+ uptake and enhanced the K+ and Ca2+ in salt stressed B. juncea. Moreover, chlorophyll-a (Chl-a), Chlorophyll-b (Chl-b), total chlorophyll (T-Chl), carotenoids and relative water content (RWC) in the leaves declined under salt stress, which were ameorialated after GA3 and Si supplementation individually and in combination. Further, the introduction of Si to NaCl treated B. juncea help in alleviating the negative effects of NaCl toxicity on biomass and biochemical activities. The levels of hydrogen peroxide (H2O2) increase significantly with NaCl treatments, subsequently resulting in enhanced peroxidation of membrane lipids (MDA) and electrolyte leakage (EL). The reduced levels of H2O2 and enhanced antioxidantactivities in Si and GA3 supplemented plants demonstrated the stress mitigating efficiency. In conclusion, it was observed that Si and GA3 application alleviated NaCl toxicity in B. juncea plants through enhanced production of different osmolytes and an antioxidant defence mechanism.
Collapse
Affiliation(s)
- Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Thamer Al Balawi
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami Ullah Qadir
- Department of Environmental Sciences Government, College for Women, Udhampur 182101, India
| | - Parvaiz Ahmad
- Department of Botany, Government Degree College, Jammu and Kashmir, Pulwama 192301, India
| |
Collapse
|
31
|
Hussain S, Ahmed S, Akram W, Li G, Yasin NA. Selenium seed priming enhanced the growth of salt-stressed Brassica rapa L. through improving plant nutrition and the antioxidant system. FRONTIERS IN PLANT SCIENCE 2023; 13:1050359. [PMID: 36714767 PMCID: PMC9880270 DOI: 10.3389/fpls.2022.1050359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Various abiotic stresses may affect the germination, growth, and yield of direct-seeded vegetable crops. Seed priming with effective antioxidant mediators may alleviate these environmental stresses by maintaining uniformity in seed germination and improving the subsequent health of developing seedlings. Salt-induced stress has become a limiting factor for the successful cultivation of Brassica rapa L., especially in Southeast Asian countries. The present study was performed to elucidate the efficacy of seed priming using selenium (Se) in mitigating salt-induced oxidative stress in turnip crops by reducing the uptake of Na+. In this study, we administered three different levels of Se (Se-1, 75 μmol L-1; Se-2, 100 μmol L-1; and Se-3, 125 μmol L-1) alone or in combination with NaCl (200 mM). Conspicuously, salinity and Se-2 modulated the expression levels of the antioxidant genes, including catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX). The upregulated expression of stress-responsive genes alleviated salt stress by scavenging the higher reactive oxygen species (ROS) level. The stress ameliorative potential of Se (Se-2 = 100 μmol L-1) enhanced the final seed germination percentage, photosynthetic content, and seedling biomass production up to 48%, 56%, and 51%, respectively, under stress. The advantageous effects of Se were attributed to the alleviation of salinity stress through the reduction of the levels of malondialdehyde (MDA), proline, and H2O2. Generally, treatment with Se-2 (100 μmo L-1) was more effective in enhancing the growth attributes of B. rapa compared to Se-1 (75 μmo L-1) and Se-3 (125 μmo L-1) under salt-stressed and non-stressed conditions. The findings of the current study advocate the application of the Se seed priming technique as an economical and eco-friendly approach for salt stress mitigation in crops grown under saline conditions.
Collapse
Affiliation(s)
- Saber Hussain
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Waheed Akram
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Nasim Ahmad Yasin
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Senior Superintendent Gardner (SSG) Department, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
32
|
Kumar D, Ohri P. Say "NO" to plant stresses: Unravelling the role of nitric oxide under abiotic and biotic stress. Nitric Oxide 2023; 130:36-57. [PMID: 36460229 DOI: 10.1016/j.niox.2022.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Nitric oxide (NO) is a diatomic gaseous molecule, which plays different roles in different strata of organisms. Discovered as a neurotransmitter in animals, NO has now gained a significant place in plant signaling cascade. NO regulates plant growth and several developmental processes including germination, root formation, stomatal movement, maturation and defense in plants. Due to its gaseous state, it is unchallenging for NO to reach different parts of cell and counterpoise antioxidant pool. Various abiotic and biotic stresses act on plants and affect their growth and development. NO plays a pivotal role in alleviating toxic effects caused by various stressors by modulating oxidative stress, antioxidant defense mechanism, metal transport and ion homeostasis. It also modulates the activity of some transcriptional factors during stress conditions in plants. Besides its role during stress conditions, interaction of NO with other signaling molecules such as other gasotransmitters (hydrogen sulfide), phytohormones (abscisic acid, salicylic acid, jasmonic acid, gibberellin, ethylene, brassinosteroids, cytokinins and auxin), ions, polyamines, etc. has been demonstrated. These interactions play vital role in alleviating plant stress by modulating defense mechanisms in plants. Taking all these aspects into consideration, the current review focuses on the role of NO and its interaction with other signaling molecules in regulating plant growth and development, particularly under stressed conditions.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
33
|
Farag HAS, Ibrahim MFM, El-Yazied AA, El-Beltagi HS, El-Gawad HGA, Alqurashi M, Shalaby TA, Mansour AT, Alkhateeb AA, Farag R. Applied Selenium as a Powerful Antioxidant to Mitigate the Harmful Effects of Salinity Stress in Snap Bean Seedlings. AGRONOMY 2022; 12:3215. [DOI: 10.3390/agronomy12123215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Selenium (Se) plays several significant roles in regulating growth, development and plant responses to various abiotic stresses. However, its influence on sulfate transporters (SULTRS) and achieving the harmony with other salt-tolerance features is still limited in the previous literatures. This study elucidated the effect of Se supplementation (5, 10 and 20 µM) on salt-stressed (50 mM NaCl) snap bean seedlings. Generally, the results indicated that Se had dual effects on the salt stressed seedlings according to its concentration. At a low level (5 µM), plants demonstrated a significant improvement in shoot (13.8%) and root (22.8%) fresh weight, chlorophyll a (7.4%), chlorophyll b (14.7%), carotenoids (23.2%), leaf relative water content (RWC; 8.5%), proline (17.2%), total soluble sugars (34.3%), free amino acids (FAA; 18.4%), K (36.7%), Ca (33.4%), K/Na ratio (77.9%), superoxide dismutase (SOD; 18%), ascorbate peroxidase (APX;12.8%) and guaiacol peroxidase (G-POX; 27.1%) compared to the untreated plants. Meanwhile, most of these responses as well as sulfur (S), Se and catalase (CAT) were obviously decreased in parallel with increasing the applied Se up to 20 µM. The molecular study revealed that three membrane sulfate transporters (SULTR1, SULTR2 and SULTR 3) in the root and leaves and salinity responsive genes (SOS1, NHX1 and Osmotin) in leaves displayed different expression patterns under various Se treatments. Conclusively, Se at low doses can be beneficial in mitigating salinity-mediated damage and achieving the functioning homeostasis to tolerance features.
Collapse
|
34
|
Abdelaziz AM, Kalaba MH, Hashem AH, Sharaf MH, Attia MS. Biostimulation of tomato growth and biocontrol of Fusarium wilt disease using certain endophytic fungi. BOTANICAL STUDIES 2022; 63:34. [PMID: 36484866 PMCID: PMC9733755 DOI: 10.1186/s40529-022-00364-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/15/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Tomato plant (Solanum lycopersicum L.) suffers from numerous fungal pathogens that cause damage to yeild production qualitatively and quantitatively. One of the most destructive disease of tomato is Fusarium wilt that caused by soil borne fungus called F. oxysporum. METHODS In this study, the anti-Fusarium capabilities of the foliar application of fungal endophytes extracts have been investigated on tomato under Fusarium challenges. Antifungal assay, inhibition of conidial germination, disease severity, photosynthetic pigments, osmolytes, secondary metabolites, oxidative stress, peroxidase (POD) and polyphenol oxidases (PPO) isozymes were tested for potential resistance of tomato growing under Fusarium infection. RESULTS Ethyl acetate extracts of A. flavus MZ045563, A. fumigatus MZ045562 and A. nidulans MZ045561 exhibited antifungal activity toward F. oxysporum where inhibition zone diameters were 15, 12 and 20 mm, respectively. Moreover, extracts of all fungal isolates at concentration 7.5 mg/mL reduced conidia germination from 94.4 to 100%. Fusarium infection caused a destructive effects on tomato plant, high severity desiese index 84.37%, reduction in growth parameters, photosynthetic pigments, and soluble protein. However, contents of proline, total phenol, malondialdehyde (MDA), hydrogen peroxide (H2O2) and antioxidant enzymes activity were increased in tomato plants grown under Fusarium wilt. Treatment of healthy or infected tomato plants by ethyl acetate fungal extracts showed improvements in morphological traits, photosynthetic pigments, osmolytes, total phenol and antioxidant enzymes activity. Besides, the harmful impacts of Fusarium wilt disease on tomato plants have also been reduced by lowering MDA and H2O2 levels. Also, treated tomato plants showed different responses in number and density of POD and PPO isozymes. CONCLUSION It could be suggested that application of ethyl acetate extracts of tested fungal endophytes especially combination of A. flavus, A. nidulans and A. fumigatus could be commercially used as safe biostimulation of tomato plants as well as biofungicide against tomato Fusarium wilt disease.
Collapse
Affiliation(s)
- Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Mohamed H Kalaba
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mohamed H Sharaf
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
35
|
Hussain MI, Muscolo A, Ahmed M. Plant Responses to Biotic and Abiotic Stresses: Crosstalk between Biochemistry and Ecophysiology. PLANTS (BASEL, SWITZERLAND) 2022; 11:3294. [PMID: 36501330 PMCID: PMC9737920 DOI: 10.3390/plants11233294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Biotic and abiotic stresses, such as drought, salinity, extreme temperatures (cold and heat) and oxidative stress, are often interrelated; these conditions singularly or in combination induce cellular damage [...].
Collapse
Affiliation(s)
- Muhammad Iftikhar Hussain
- Department of Plant Biology & Soil Science, Universidad de Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain
| | - Adele Muscolo
- Department of Agriculture, Mediterranea University, Feo di Vito, 89122 Reggio Calabria, Italy
| | - Mukhtar Ahmed
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Murree Road, Rawalpindi 46300, Pakistan
| |
Collapse
|
36
|
Molecular Docking Studies on Methanolic Propolis Extracts Collected from Different Regions in Saudi Arabia as a Potential Inhibitor of Topoisomerase IIβ. SEPARATIONS 2022. [DOI: 10.3390/separations9120392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Propolis is a sticky substance made by honeybees from various plant parts that is rich in biologically active substances such as flavonoids, phenolic acids, and phenolics and has a wide range of applications in the food, cosmetics, and pharmaceutical industries. The current study focused on the isolation of honeybee propolis samples from three different locations in Saudi Arabia: Al Hada, Baljurashi, and Rawdat Khuraim, and the evaluation of their anti-cancer effect against human liver cancer cell lines (HeP-G2) and human breast cancer cell lines (MCF-7). Five chemical compounds present in the methanolic extract of propolis honeybee were detected by HPLC. Furthermore, molecular modeling studies were conducted to explain the mechanism of anti-cancer activity exerted by the active compounds. The propolis samples collected from the three isolation sites had anti-cancer activity against MCF-7 and HeP-G2. Samples collected from the Rawdat Khuraim site showed the highest inhibitory activity reaching 81.5% and 83.2% against MCF-7 and HeP-G2, respectively. HPLC detected four main active compounds from propolis samples: pinobanksin, pinocembrin, galangin, and xanthomicrol. The molecular docking technique showed that galangin and pinocembrin had higher anti-cancer activity than xanthomicrol and pinobanksin as the binding affinity of galangin and pinocembrin with the active sites of the topoisomerase IIβ enzyme was much greater.
Collapse
|
37
|
Tahjib-Ul-Arif M, Wei X, Jahan I, Hasanuzzaman M, Sabuj ZH, Zulfiqar F, Chen J, Iqbal R, Dastogeer KMG, Sohag AAM, Tonny SH, Hamid I, Al-Ashkar I, Mirzapour M, El Sabagh A, Murata Y. Exogenous nitric oxide promotes salinity tolerance in plants: A meta-analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:957735. [PMID: 36420041 PMCID: PMC9676926 DOI: 10.3389/fpls.2022.957735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Nitric oxide (NO) has received much attention since it can boost plant defense mechanisms, and plenty of studies have shown that exogenous NO improves salinity tolerance in plants. However, because of the wide range of experimental settings, it is difficult to assess the administration of optimal dosages, frequency, timing, and method of application and the overall favorable effects of NO on growth and yield improvements. Therefore, we conducted a meta-analysis to reveal the exact physiological and biochemical mechanisms and to understand the influence of plant-related or method-related factors on NO-mediated salt tolerance. Exogenous application of NO significantly influenced biomass accumulation, growth, and yield irrespective of salinity stress. According to this analysis, seed priming and foliar pre-treatment were the most effective methods of NO application to plants. Moreover, one-time and regular intervals of NO treatment were more beneficial for plant growth. The optimum concentration of NO ranges from 0.1 to 0.2 mM, and it alleviates salinity stress up to 150 mM NaCl. Furthermore, the beneficial effect of NO treatment was more pronounced as salinity stress was prolonged (>21 days). This meta-analysis showed that NO supplementation was significantly applicable at germination and seedling stages. Interestingly, exogenous NO treatment boosted plant growth most efficiently in dicots. This meta-analysis showed that exogenous NO alleviates salt-induced oxidative damage and improves plant growth and yield potential by regulating osmotic balance, mineral homeostasis, photosynthetic machinery, the metabolism of reactive oxygen species, and the antioxidant defense mechanism. Our analysis pointed out several research gaps, such as lipid metabolism regulation, reproductive stage performance, C4 plant responses, field-level yield impact, and economic profitability of farmers in response to exogenous NO, which need to be evaluated in the subsequent investigation.
Collapse
Affiliation(s)
- Md. Tahjib-Ul-Arif
- Plant Biology and Biofunctional Chemistry Lab, Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Xiangying Wei
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Israt Jahan
- Department of Biology, York University, Toronto, ON, Canada
| | - Md. Hasanuzzaman
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Zahid Hasan Sabuj
- Breeding Division, Bangladesh Sugarcrop Research Institute, Pabna, Bangladesh
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jianjun Chen
- Environmental Horticulture Department and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Abdullah Al Mamun Sohag
- Plant Biology and Biofunctional Chemistry Lab, Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sadia Haque Tonny
- Plant Biology and Biofunctional Chemistry Lab, Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Imran Hamid
- Faculty of Animal Husbandry, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Mohsen Mirzapour
- Faculty of Agriculture, Department of Agricultural Biotechnology, Siirt University, Siirt, Turkey
| | - Ayman El Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr el-sheikh, Egypt
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
38
|
Labudda M, Dziurka K, Fidler J, Gietler M, Rybarczyk-Płońska A, Nykiel M, Prabucka B, Morkunas I, Muszyńska E. The Alleviation of Metal Stress Nuisance for Plants—A Review of Promising Solutions in the Face of Environmental Challenges. PLANTS 2022; 11:plants11192544. [PMID: 36235410 PMCID: PMC9571535 DOI: 10.3390/plants11192544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 12/04/2022]
Abstract
Environmental changes are inevitable with time, but their intensification and diversification, occurring in the last several decades due to the combination of both natural and human-made causes, are really a matter of great apprehension. As a consequence, plants are exposed to a variety of abiotic stressors that contribute to their morpho-physiological, biochemical, and molecular alterations, which affects plant growth and development as well as the quality and productivity of crops. Thus, novel strategies are still being developed to meet the challenges of the modern world related to climate changes and natural ecosystem degradation. Innovative methods that have recently received special attention include eco-friendly, easily available, inexpensive, and, very often, plant-based methods. However, such approaches require better cognition and understanding of plant adaptations and acclimation mechanisms in response to adverse conditions. In this succinct review, we have highlighted defense mechanisms against external stimuli (mainly exposure to elevated levels of metal elements) which can be activated through permanent microevolutionary changes in metal-tolerant species or through exogenously applied priming agents that may ensure plant acclimation and thereby elevated stress resistance.
Collapse
Affiliation(s)
- Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Kinga Dziurka
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anna Rybarczyk-Płońska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Małgorzata Nykiel
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-59326-61
| |
Collapse
|
39
|
Alam P, Arshad M, Al-Kheraif AA, Azzam MA, Al Balawi T. Silicon Nanoparticle-Induced Regulation of Carbohydrate Metabolism, Photosynthesis, and ROS Homeostasis in Solanum lycopersicum Subjected to Salinity Stress. ACS OMEGA 2022; 7:31834-31844. [PMID: 36120047 PMCID: PMC9475630 DOI: 10.1021/acsomega.2c02586] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/11/2022] [Indexed: 06/02/2023]
Abstract
Agricultural crops are facing major restraints with the rapid augmentation of global warming, salt being a major factor affecting productivity. Tomato (Solanum lycopersicum) plant has immense nutritional significance; however, it can be negatively influenced by salinity stress. Nanoparticles (NPs) have excellent properties, due to which these particles are used in agriculture to enhance various growth parameters even in the presence of abiotic stresses. The objective of this study was to investigate the effects of silicon NPs (Si-NPs) through root dipping and foliar spray on tomato in the presence/absence of salt stress. Plant root and leaf were used for the measurements of morphological, physiological, and biochemical parameters treated with Si-NPs under salt stress. At 45 days after sowing, the activity of antioxidant enzymes, photosynthesis, mineral concentration, chlorophyll index, and growth attributes of tomato plants were measured. The developmental processes of tomato plants were severely slowed down by salt stress upto 35.8% (shoot dry mass), 44.3% (root dry mass), 51% (shoot length), and 62% (root length), but this reduction was mitigated by the treatment of Si-NPs. Application of Si-NPs significantly increased the growth attributes (height and dry weight), mineral content [magnesium (Mg), potassium (K), copper (Cu), iron (Fe), manganese (Mn), zinc (Zn)], photosynthesis [net photosynthetic rate (P N), stomatal conductance (gs), transpiration rate (E), internal CO2 concentration (Ci)], and activity of antioxidative enzymes including superoxide dismutase and catalase in salt stress. Foliar application of Si-NPs in tomato plants appears to be more effective over root dipping and alleviates the salt stress by increasing the plant's antioxidant enzyme activity.
Collapse
Affiliation(s)
- Pravej Alam
- Department
of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed Arshad
- Dental
Biomaterials Research Chair, Dental Health Department, College of
Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A. Al-Kheraif
- Dental
Biomaterials Research Chair, Dental Health Department, College of
Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maged A. Azzam
- Department
of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Thamer Al Balawi
- Department
of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
40
|
Shrestha RK, Shi D, Obaid H, Elsayed NS, Xie D, Ni J, Ni C. Crops' response to the emergent air pollutants. PLANTA 2022; 256:80. [PMID: 36097229 DOI: 10.1007/s00425-022-03993-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Consequences of air pollutants on physiology, biology, yield and quality in the crops are evident. Crop and soil management can play significant roles in attenuating the impacts of air pollutants. With rapid urbanization and industrialization, air pollution has emerged as a serious threat to quality crop production. Assessing the effect of the elevated level of pollutants on the performance of the crops is crucial. Compared to the soil and water pollutants, the air pollutants spread more rapidly to the extensive area. This paper has reviewed and highlighted the major findings of the previous research works on the morphological, physiological and biochemical changes in some important crops and fruits exposed to the increasing levels of air pollutants. The crop, soil and environmental factors governing the effect of air pollutants have been discussed. The majority of the observations suggest that the air pollutants alter the physiology and biochemical in the plants, i.e., while some pollutants are beneficial to the growth and yields and modify physiological and morphological processes, most of them appeared to be detrimental to the crop yields and their quality. A better understanding of the mechanisms of the uptake of air pollutants and crop responses is quite important for devising the measures ‒ at both policy and program levels ‒ to minimize their possible negative impacts on crops. Further research directions in this field have also been presented.
Collapse
Affiliation(s)
- Ram Kumar Shrestha
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China
- Lamjung Campus, Institute of Agriculture and Animal Science, Tribhuvan University, Lamjung, Nepal
| | - Dan Shi
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China
- Key Laboratory of Arable Land Conservation (Southwest China), Ministry of Agriculture, Chongqing, 400715, China
| | - Hikmatullah Obaid
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China
- Department of Soil Science and Plant Nutrition, Afghanistan National Agricultural Sciences and Technology University, Kandahar, Afghanistan
| | - Nader Saad Elsayed
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China
- Soil and Agricultural Chemistry Department, Faculty of Agriculture (Saba-Basha), Alexandria University, Alexandria, Egypt
| | - Deti Xie
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China
- Key Laboratory of Arable Land Conservation (Southwest China), Ministry of Agriculture, Chongqing, 400715, China
| | - Jiupai Ni
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China
- Key Laboratory of Arable Land Conservation (Southwest China), Ministry of Agriculture, Chongqing, 400715, China
| | - Chengsheng Ni
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China.
- Key Laboratory of Arable Land Conservation (Southwest China), Ministry of Agriculture, Chongqing, 400715, China.
- National Base of International S and T Collaboration On Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing, 400716, China.
| |
Collapse
|
41
|
Youssef SM, Abdella EMM, Al-Elwany OA, Alshallash KS, Alharbi K, Ibrahim MTS, Tawfik MM, Abu-Elsaoud AM, Elkelish A. Integrative Application of Foliar Yeast Extract and Gibberellic Acid Improves Morpho-Physiological Responses and Nutrient Uptake of Solidago virgaurea Plant in Alkaline Soil. Life (Basel) 2022; 12:life12091405. [PMID: 36143441 PMCID: PMC9506530 DOI: 10.3390/life12091405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Alkaline soils have fertility issues due to poor physical qualities, which have a negative impact on crop growth and output. Solidago is used in flower arrangements, bouquet filler, and traditional medicine. The possible biological fertilizers’ eco-friendly and cost-effective nature favours farmers because of the vital role in soil productivity and environmental sustainability. A field experiment was performed during two successive seasons to explore the effect of applying yeast extract (YE) at (0, 0.5, 1.0, and 1.5 g/L) and/or gibberellic acid (GA3) at (control, 100, 200, and 300 ppm) on the morpho-physiological parameters, macronutrients, and biochemical constituents of Solidago virgaurea. The results emphasize that YE (1.5 g/L) and/or GA3 (300 ppm) treatments show the highest significant increase in plant growth (i.e., plant height, no. of branches, fresh and dry weight of shoots); photosynthetic efficiency (i.e., chlorophyll (a), chlorophyll (b) and total carotenoids); macronutrient content (i.e., N, P, and K); and biochemical constituents (i.e., total soluble sugars, total phenolic, total flavonoids, and total glycosides). The study results recommend using YE and GA3 in combination at concentrations of 1.5 g/L and 300 ppm, respectively, to improve Solidago production sustainability under alkaline soil conditions.
Collapse
Affiliation(s)
- Samah M. Youssef
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ebtsam M. M. Abdella
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Omar A. Al-Elwany
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Khalid S. Alshallash
- College of Science and Humanities—Huraymila, Imam Mohammed Bin Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
- Correspondence: (K.A.); (A.E.)
| | - Mariam T. S. Ibrahim
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Moataz M. Tawfik
- Botany Department, Faculty of Science, Port Said University, Port Said 42526, Egypt
| | | | - Amr Elkelish
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (K.A.); (A.E.)
| |
Collapse
|
42
|
Aljuaid BS, Mukherjee S, Sayed AN, El-Gabry YAEG, Omar MMA, Mahmoud SF, Alsubeie MS, Darwish DBE, Al-Qahtani SM, Al-Harbi NA, Alzuaibr FM, Basahi MA, Hamada MMA. Folic Acid Reinforces Maize Tolerance to Sodic-Alkaline Stress through Modulation of Growth, Biochemical and Molecular Mechanisms. Life (Basel) 2022; 12:life12091327. [PMID: 36143364 PMCID: PMC9506096 DOI: 10.3390/life12091327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanism by which folic acid (FA) or its derivatives (folates) mediates plant tolerance to sodic-alkaline stress has not been clarified in previous literature. To apply sodic-alkaline stress, maize seedlings were irrigated with 50 mM of a combined solution (1:1) of sodic-alkaline salts (NaHCO3 and Na2CO3; pH 9.7). Maize seedlings under stressed and non-stressed conditions were sprayed with folic acid (FA) at 0 (distilled water as control), 0.05, 0.1, and 0.2 mM. Under sodic-alkaline stress, FA applied at 0.2 mM significantly improved shoot fresh weight (95%), chlorophyll (Chl a (41%), Chl b (57%), and total Chl (42%)), and carotenoids (27%) compared to the untreated plants, while root fresh weight was not affected compared to the untreated plants. This improvement was associated with a significant enhancement in the cell-membrane stability index (CMSI), relative water content (RWC), free amino acids (FAA), proline, soluble sugars, K, and Ca. In contrast, Na, Na/K ratio, H2O2, malondialdehyde (MDA), and methylglycoxal (MG) were significantly decreased. Moreover, seedlings treated with FA demonstrated significantly higher activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), and ascorbate peroxidase (APX) compared to the untreated plants. The molecular studies using RT-qPCR demonstrated that FA treatments, specifically at 0.2 mM, enhanced the K+/Na+ selectivity and the performance of photosynthesis under alkaline-stress conditions. These responses were observed through up-regulation of the expression of the high-affinity potassium-transporter protein (ZmHKT1), the major core protein of photosystem II (D2-Protein), and the activity of the first enzyme of carbon fixation cycle in C4 plants (PEP-case) by 74, 248, and 225% over the untreated plants, respectively. Conversely, there was a significant down-regulation in the expression ZmSOS1 and ZmNHX1 by 48.2 and 27.8%, respectively, compared to the untreated plants.
Collapse
Affiliation(s)
- Bandar S. Aljuaid
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, Kalyani 742213, India
- Correspondence: (S.M.); (M.M.A.H.)
| | - Amany N. Sayed
- Department of Agronomy, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | | | - Mohamed M. A. Omar
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Moodi Saham Alsubeie
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Doaa Bahaa Eldin Darwish
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt
- Biology Department, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia
| | - Salem Mesfir Al-Qahtani
- Biology Department, University College of Tayma, University of Tabuk, P.O. Box 741, Tabuk 47512, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, P.O. Box 741, Tabuk 47512, Saudi Arabia
| | - Fahad Mohammed Alzuaibr
- Department of Biology, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Mohammed A. Basahi
- College of Science and Arts Sajir, Shaqra University, P.O. Box 33, Shaqra 11961, Saudi Arabia
| | - Maha M. A. Hamada
- Department of Agronomy, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (S.M.); (M.M.A.H.)
| |
Collapse
|
43
|
Wang J, Lv P, Yan D, Zhang Z, Xu X, Wang T, Wang Y, Peng Z, Yu C, Gao Y, Duan L, Li R. Exogenous Melatonin Improves Seed Germination of Wheat ( Triticum aestivum L.) under Salt Stress. Int J Mol Sci 2022; 23:8436. [PMID: 35955571 PMCID: PMC9368970 DOI: 10.3390/ijms23158436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Melatonin (MT) can effectively reduce oxidative damage induced by abiotic stresses such as salt in plants. However, the effects of MT on physiological responses and molecular regulation during wheat germination remains largely elusive. In this study, the response of wheat seeds to MT under salt stress during germination was investigated at physiological and transcriptome levels. Our results revealed that application of MT significantly reduced the negative influence of salt stress on wheat seed germination. The oxidative load was reduced by inducing high activities of antioxidant enzymes. In parallel, the content of gibberellin A3 (GA3) and jasmonic acid (JA) increased in MT-treated seedling. RNA-seq analysis demonstrated that MT alters oxidoreductase activity and phytohormone-dependent signal transduction pathways under salt stress. Weighted correlation network analysis (WGCNA) revealed that MT participates in enhanced energy metabolism and protected seeds via maintained cell morphology under salt stress during wheat seed germination. Our findings provide a conceptual basis of the MT-mediated regulatory mechanism in plant adaptation to salt stress, and identify the potential candidate genes for salt-tolerant wheat molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Liusheng Duan
- Beijing Key Laboratory of New Technology in Agricultural Application, National Experimental Teaching Demonstration Center for Plant Production, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (P.L.); (D.Y.); (Z.Z.); (X.X.); (T.W.); (Y.W.); (Z.P.); (C.Y.); (Y.G.)
| | - Runzhi Li
- Beijing Key Laboratory of New Technology in Agricultural Application, National Experimental Teaching Demonstration Center for Plant Production, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (P.L.); (D.Y.); (Z.Z.); (X.X.); (T.W.); (Y.W.); (Z.P.); (C.Y.); (Y.G.)
| |
Collapse
|
44
|
Nasrallah AK, Atia MAM, Abd El-Maksoud RM, Kord MA, Fouad AS. Salt Priming as a Smart Approach to Mitigate Salt Stress in Faba Bean (Vicia faba L.). PLANTS 2022; 11:plants11121610. [PMID: 35736763 PMCID: PMC9228577 DOI: 10.3390/plants11121610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/24/2023]
Abstract
The present investigation aims to highlight the role of salt priming in mitigating salt stress on faba bean. In the absence of priming, the results reflected an increase in H2O2 generation and lipid peroxidation in plants subjected to 200 mM salt shock for one week, accompanied by a decline in growth, photosynthetic pigments, and yield. As a defense, the shocked plants showed enhancements in ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), peroxidase (POX), and superoxide dismutase (SOD) activities. Additionally, the salt shock plants revealed a significant increase in phenolics and proline content, as well as an increase in the expression levels of glutathione (GSH) metabolism-related genes (the L-ascorbate peroxidase (L-APX) gene, the spermidine synthase (SPS) gene, the leucyl aminopeptidase (LAP) gene, the aminopeptidase N (AP-N) gene, and the ribonucleo-side-diphosphate reductase subunit M1 (RDS-M) gene). On the other hand, priming with increasing concentrations of NaCl (50–150 mM) exhibited little significant reduction in some growth- and yield-related traits. However, it maintained a permanent alert of plant defense that enhanced the expression of GSH-related genes, proline accumulation, and antioxidant enzymes, establishing a solid defensive front line ameliorating osmotic and oxidative consequences of salt shock and its injurious effect on growth and yield.
Collapse
Affiliation(s)
- Amira K. Nasrallah
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (A.K.N.); (M.A.K.)
| | - Mohamed A. M. Atia
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt
- Correspondence: (M.A.M.A.); (A.S.F.); Tel.: +20-1000164922 (M.A.M.A.); +20-1203770992 (A.S.F.)
| | - Reem M. Abd El-Maksoud
- Nucleic Acid & Protein Chemistry Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Maimona A. Kord
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (A.K.N.); (M.A.K.)
| | - Ahmed S. Fouad
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (A.K.N.); (M.A.K.)
- Correspondence: (M.A.M.A.); (A.S.F.); Tel.: +20-1000164922 (M.A.M.A.); +20-1203770992 (A.S.F.)
| |
Collapse
|
45
|
The Role of Nitric Oxide in Plant Responses to Salt Stress. Int J Mol Sci 2022; 23:ijms23116167. [PMID: 35682856 PMCID: PMC9181674 DOI: 10.3390/ijms23116167] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
The gas nitric oxide (NO) plays an important role in several biological processes in plants, including growth, development, and biotic/abiotic stress responses. Salinity has received increasing attention from scientists as an abiotic stressor that can seriously harm plant growth and crop yields. Under saline conditions, plants produce NO, which can alleviate salt-induced damage. Here, we summarize NO synthesis during salt stress and describe how NO is involved in alleviating salt stress effects through different strategies, including interactions with various other signaling molecules and plant hormones. Finally, future directions for research on the role of NO in plant salt tolerance are discussed. This summary will serve as a reference for researchers studying NO in plants.
Collapse
|
46
|
Alsamadany H, Mansour H, Elkelish A, Ibrahim MFM. Folic Acid Confers Tolerance against Salt Stress-Induced Oxidative Damages in Snap Beans through Regulation Growth, Metabolites, Antioxidant Machinery and Gene Expression. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111459. [PMID: 35684231 PMCID: PMC9182733 DOI: 10.3390/plants11111459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 06/01/2023]
Abstract
Although the effect of folic acid (FA) and its derivatives (folates) have been extensively studied in humans and animals, their effects are still unclear in most plant species, specifically under various abiotic stress conditions. Here, the impact of FA as a foliar application at 0, 0.1, and 0.2 mM was studied on snap bean seedlings grown under non-saline and salinity stress (50 mM NaCl) conditions. The results indicated that under salinity stress, FA-treated plants revealed a significant (p ≤ 0.05) increase in growth parameters (fresh and dry weight of shoot and root). A similar trend was observed in chlorophyll (Chl b), total chlorophyll, carotenoids, leaf relative water content (RWC), proline, free amino acids (FAA), soluble sugars, cell membrane stability index (CMSI), and K, Ca, and K/Na ratio compared to the untreated plants. In contrast, a significant decrease was observed in Na and salinity-induced oxidative damage as indicated by reduced H2O2 production (using biochemical and histochemical detection methods) and rate of lipid peroxidation (malondialdehyde; MDA). This enhancement was correlated by increasing the activities of antioxidant enzymes, i.e., superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (G-POX), and ascorbate peroxidase (APX). Gene expression analyses conducted using qRT-PCR demonstrated that genes coding for the Na+/H+ antiporter protein Salt Overly Sensitive 1 (SOS1), the tonoplast-localized Na+/H+ antiporter protein (NHX1), and the multifunctional osmotic protective protein (Osmotin) were significantly up-regulated in the FA-treated plants under both saline and non-saline treatments. Generally, treatment with 0.2 mM FA was more potent than 0.1 mM and can be recommended to improve snap bean tolerance to salinity stress.
Collapse
Affiliation(s)
- Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hassan Mansour
- Department of Biological Sciences, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia;
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
47
|
Saha I, Ghosh A, Dolui D, Fujita M, Hasanuzzaman M, Adak MK. Differential Impact of Nitric Oxide and Abscisic Acid on the Cellular and Physiological Functioning of sub1A QTL Bearing Rice Genotype under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11081084. [PMID: 35448812 PMCID: PMC9029218 DOI: 10.3390/plants11081084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 05/13/2023]
Abstract
Hydroponic culture containing 200 mM NaCl was used to induce oxidative stress in seedlings of cultivars initially primed with 1 mM SNP and 10 µM ABA. Exogenous application of sodium nitroprusside (SNP - a nitric oxide donor) and abscisic acid (ABA) was well sensitized more in cv. Swarna Sub1 than cv. Swarna and also reflected in different cellular responses. The major effects of salinity, irrespective of the cultivar, were lowering the water relation, including relative water content and osmotic potential, and decreasing the compatible solutes like alanine, gamma-aminobutyric acid, and glycine betaine. The accumulated polyamines were reduced more in cv. Swarna with a concomitant decrease in photosynthetic reserves. NADP-malic enzyme activity, sucrose accumulation, ascorbate peroxidase, and glutathione S-transferase activities gradually declined under NaCl stress and the catabolizing enzymes like invertase (both wall and cytosolic forms) also declined. On the contrary, plants suffered from oxidative stress through superoxide, hydrogen peroxide, and their biosynthetic enzymes like NADP(H) oxidase. Moderation of Na+/K+ by both SNP and ABA were correlated with other salt sensitivities in the plants. The maximum effects of SNP and ABA were found in the recovery of antioxidation pathways, osmotic tolerance, and carbohydrate metabolism. Findings predict the efficacy of SNP and ABA either independently or cumulatively in overcoming NaCl toxicity in rice.
Collapse
Affiliation(s)
- Indraneel Saha
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 74 1235, India; (I.S.); (A.G.); (D.D.)
| | - Arijit Ghosh
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 74 1235, India; (I.S.); (A.G.); (D.D.)
| | - Debabrata Dolui
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 74 1235, India; (I.S.); (A.G.); (D.D.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
- Correspondence: (M.F.); (M.H.); (M.K.A.)
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
- Correspondence: (M.F.); (M.H.); (M.K.A.)
| | - Malay Kumar Adak
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 74 1235, India; (I.S.); (A.G.); (D.D.)
- Correspondence: (M.F.); (M.H.); (M.K.A.)
| |
Collapse
|
48
|
Nykiel M, Gietler M, Fidler J, Prabucka B, Rybarczyk-Płońska A, Graska J, Boguszewska-Mańkowska D, Muszyńska E, Morkunas I, Labudda M. Signal Transduction in Cereal Plants Struggling with Environmental Stresses: From Perception to Response. PLANTS (BASEL, SWITZERLAND) 2022; 11:1009. [PMID: 35448737 PMCID: PMC9026486 DOI: 10.3390/plants11081009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/13/2023]
Abstract
Cereal plants under abiotic or biotic stressors to survive unfavourable conditions and continue growth and development, rapidly and precisely identify external stimuli and activate complex molecular, biochemical, and physiological responses. To elicit a response to the stress factors, interactions between reactive oxygen and nitrogen species, calcium ions, mitogen-activated protein kinases, calcium-dependent protein kinases, calcineurin B-like interacting protein kinase, phytohormones and transcription factors occur. The integration of all these elements enables the change of gene expression, and the release of the antioxidant defence and protein repair systems. There are still numerous gaps in knowledge on these subjects in the literature caused by the multitude of signalling cascade components, simultaneous activation of multiple pathways and the intersection of their individual elements in response to both single and multiple stresses. Here, signal transduction pathways in cereal plants under drought, salinity, heavy metal stress, pathogen, and pest attack, as well as the crosstalk between the reactions during double stress responses are discussed. This article is a summary of the latest discoveries on signal transduction pathways and it integrates the available information to better outline the whole research problem for future research challenges as well as for the creative breeding of stress-tolerant cultivars of cereals.
Collapse
Affiliation(s)
- Małgorzata Nykiel
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Anna Rybarczyk-Płońska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Jakub Graska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | | | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland;
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| |
Collapse
|
49
|
Ramadan KMA, Alharbi MM, Alenzi AM, El-Beltagi HS, Darwish DBE, Aldaej MI, Shalaby TA, Mansour AT, El-Gabry YAEG, Ibrahim MFM. Alpha Lipoic Acid as a Protective Mediator for Regulating the Defensive Responses of Wheat Plants against Sodic Alkaline Stress: Physiological, Biochemical and Molecular Aspects. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060787. [PMID: 35336669 PMCID: PMC8949438 DOI: 10.3390/plants11060787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 05/13/2023]
Abstract
Recently, exogenous α-Lipoic acid (ALA) has been suggested to improve the tolerance of plants to a wide array of abiotic stresses. However, there is currently no definitive data on the role of ALA in wheat plants exposed to sodic alkaline stress. Therefore, this study was designed to evaluate the effects of foliar application by ALA at 0 (distilled water as control) and 20 µM on wheat seedlings grown under sodic alkaline stress (50 mM 1:1 NaHCO3 & Na2CO3; pH 9.7. Under sodic alkaline stress, exogenous ALA significantly (p ≤ 0.05) improved growth (shoot fresh and dry weight), chlorophyll (Chl) a, b and Chl a + b, while Chl a/b ratio was not affected. Moreover, leaf relative water content (RWC), total soluble sugars, carotenoids, total soluble phenols, ascorbic acid, K and Ca were significantly increased in the ALA-treated plants compared to the ALA-untreated plants. This improvement was concomitant with reducing the rate of lipid peroxidation (malondialdehyde, MDA) and H2O2. Superoxide dismutase (SOD) and ascorbate peroxidase (APX) demonstrated greater activity in the ALA-treated plants compared to the non-treated ones. Conversely, proline, catalase (CAT), guaiacol peroxidase (G-POX), Na and Na/K ratio were significantly decreased in the ALA-treated plants. Under sodic alkaline stress, the relative expression of photosystem II (D2 protein; PsbD) was significantly up-regulated in the ALA treatment (67% increase over the ALA-untreated plants); while Δ pyrroline-5-carboxylate synthase (P5CS), plasma membrane Na+/H+ antiporter protein of salt overly sensitive gene (SOS1) and tonoplast-localized Na+/H+ antiporter protein (NHX1) were down-regulated by 21, 37 and 53%, respectively, lower than the ALA-untreated plants. These results reveal that ALA may be involved in several possible mechanisms of alkalinity tolerance in wheat plants.
Collapse
Affiliation(s)
- Khaled M. A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Maha Mohammed Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.M.A.); (A.M.A.); or (D.B.E.D.)
| | - Asma Massad Alenzi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.M.A.); (A.M.A.); or (D.B.E.D.)
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Biochemistry Department, Faculty of Agriculture, Cairo University, Gamma St, Giza 12613, Egypt
- Correspondence: (H.S.E.-B.); (M.F.M.I.); Tel.: +20-1123403173 (M.F.M.I.)
| | - Doaa Bahaa Eldin Darwish
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.M.A.); (A.M.A.); or (D.B.E.D.)
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt
| | - Mohammed I. Aldaej
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Tarek A. Shalaby
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia;
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | | | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (H.S.E.-B.); (M.F.M.I.); Tel.: +20-1123403173 (M.F.M.I.)
| |
Collapse
|
50
|
Liu H, Li C, Yan M, Zhao Z, Huang P, Wei L, Wu X, Wang C, Liao W. Strigolactone is involved in nitric oxide-enhanced the salt resistance in tomato seedlings. JOURNAL OF PLANT RESEARCH 2022; 135:337-350. [PMID: 35106650 DOI: 10.1007/s10265-022-01371-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/12/2022] [Indexed: 05/21/2023]
Abstract
Both strigolactones (SLs) and nitric oxide (NO) are regulatory signals with diverse roles during stress responses. At present, the interaction and mechanism of SLs and NO in tomato salt tolerance remain unclear. In the current study, tomato 'Micro-Tom' was used to study the roles and interactions of SLs and NO in salinity stress tolerance. The results show that 15 μM SLs synthetic analogs GR24 and 10 μM NO donor S-nitrosoglutathione (GSNO) promoted seedling growth under salt stress. TIS108 (an inhibitor of strigolactone synthesis) suppressed the positive roles of NO in tomato growth under salt stress, indicating that endogenous SLs might be involved in NO-induced salt response in tomato seedlings. Meanwhile, under salt stress, GSNO or GR24 treatment induced the increase of endogenous SLs content in tomato seedlings. Moreover, GR24 or GSNO treatment effectively increased the content of chlorophyll, carotenoids and ascorbic acid (ASA), and enhanced the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase), glutathione reductase (GR) and cleavage dioxygenase (CCD) enzyme. Additionally, GSNO or GR24 treatment also up-regulated the expression of SLs synthesis genes (SlCCD7, SlCCD8, SlD27 and SlMAX1) and its signal transduction genes (SlD14 and SlMAX2) in tomato seedlings under salt stress. While, a strigolactone synthesis inhibitor TIS108 blocked the increase of endogenous SLs, chlorophyll, carotenoids and ASA content, and antioxidant enzyme, GR, CCD enzyme activity and SLs-related gene expression levels induced by GSNO. Thus, SLs may play an important role in NO-enhanced salinity tolerance in tomato seedlings by increasing photosynthetic pigment content, enhancing antioxidant capacity and improving endogenous SLs synthesis.
Collapse
Affiliation(s)
- Huwei Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Changxia Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Mei Yan
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zongxi Zhao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Panpan Huang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Xuetong Wu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|