1
|
Ntungwe EN, Tchana AN, Abia WA. Mycotoxin management: exploring natural solutions for mycotoxin prevention and detoxification in food and feed. Mycotoxin Res 2024; 40:519-534. [PMID: 39271576 DOI: 10.1007/s12550-024-00562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Mycotoxins, secondary metabolites produced by various fungi, pose a significant threat to food and feed safety worldwide due to their toxic effects on human and animal health. Traditional methods of mycotoxin management often involve chemical treatments, which may raise concerns about residual toxicity and environmental impact. In recent years, there has been growing interest in exploring natural alternatives for preventing mycotoxin contamination and detoxification. This review provides an overview of the current research on the use of natural products for mitigating mycotoxin risks in food and feed. It encompasses a wide range of natural sources, including plant-derived compounds, microbial agents, and enzymatic control. The mechanisms underlying the efficacy of these natural products in inhibiting mycotoxin synthesis, adsorbing mycotoxins, or enhancing detoxification processes are discussed. Challenges and future directions in the development and application of natural products for mycotoxin management are also addressed. Overall, this review highlights the promising role of natural products as sustainable and eco-friendly alternatives for combating mycotoxin contamination in the food and feed supply chain.
Collapse
Affiliation(s)
- Epole Ngolle Ntungwe
- Department of Chemistry, University of Coimbra, P-3004-535, Coimbra, Portugal.
- Agri-Food Safety and One Health Agency (AFS1HA), Yaounde, Cameroon.
| | - Angéle N Tchana
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
| | - Wilfred Angie Abia
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon.
- Agri-Food Safety and One Health Agency (AFS1HA), Yaounde, Cameroon.
- Institute for Global Food Security, School of Biological Sciences, The Queen's University of Belfast, Belfast, Northern Ireland, BT9 5DL, UK.
| |
Collapse
|
2
|
Barrera-Vázquez OS, Escobar-Ramírez JL, Magos-Guerrero GA. Network Pharmacology Approaches Used to Identify Therapeutic Molecules for Chronic Venous Disease Based on Potential miRNA Biomarkers. J Xenobiot 2024; 14:1519-1540. [PMID: 39449424 PMCID: PMC11503387 DOI: 10.3390/jox14040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Chronic venous disease (CVD) is a prevalent condition in adults, significantly affecting the global elderly population, with a higher incidence in women than in men. The modulation of gene expression through microRNA (miRNA) partly regulated the development of cardiovascular disease (CVD). Previous research identified a functional analysis of seven genes (CDS2, HDAC5, PPP6R2, PRRC2B, TBC1D22A, WNK1, and PABPC3) as targets of miRNAs related to CVD. In this context, miRNAs emerge as essential candidates for CVD diagnosis, representing novel molecular and biological knowledge. This work aims to identify, by network analysis, the miRNAs involved in CVD as potential biomarkers, either by interacting with small molecules such as toxins and pollutants or by searching for new drugs. Our study shows an updated landscape of the signaling pathways involving miRNAs in CVD pathology. This latest research includes data found through experimental tests and uses predictions to propose both miRNAs and genes as potential biomarkers to develop diagnostic and therapeutic methods for the early detection of CVD in the clinical setting. In addition, our pharmacological network analysis has, for the first time, shown how to use these potential biomarkers to find small molecules that may regulate them. Between the small molecules in this research, toxins, pollutants, and drugs showed outstanding interactions with these miRNAs. One of them, hesperidin, a widely prescribed drug for treating CVD and modulating the gene expression associated with CVD, was used as a reference for searching for new molecules that may interact with miRNAs involved in CVD. Among the drugs that exhibit the same miRNA expression profile as hesperidin, potential candidates include desoximetasone, curcumin, flurandrenolide, trifluridine, fludrocortisone, diflorasone, gemcitabine, floxuridine, and reversine. Further investigation of these drugs is essential to improve the treatment of cardiovascular disease. Additionally, supporting the clinical use of miRNAs as biomarkers for diagnosing and predicting CVD is crucial.
Collapse
Affiliation(s)
| | | | - Gil Alfonso Magos-Guerrero
- Department of Pharmacology, Faculty of Medicine, University National Autonomous of Mexico (UNAM), Mexico City 04510, Mexico; (O.S.B.-V.); (J.L.E.-R.)
| |
Collapse
|
3
|
Wang H, He X, Li J, Wu J, Jiang S, Xue H, Zhang J, Jha R, Wang R. Lactic acid bacteria fermentation improves physicochemical properties, bioactivity, and metabolic profiles of Opuntia ficus-indica fruit juice. Food Chem 2024; 453:139646. [PMID: 38762948 DOI: 10.1016/j.foodchem.2024.139646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
Lactic acid bacteria (LAB) fermentation has been proven to promote human health. The effect of different LAB fermentation on the quality of Opuntia ficus-indica fruit juice (OFIJ) was investigated. OFIJ was an excellent substrate for fermentation, with colony counts of more than 8 log CFU/mL after fermentation. The fermentation altered the acid and sugar contents. Simultaneously, the total phenolic and anthocyanin contents significantly increased. Antioxidant activity enhanced significantly in Lactiplantibacillus plantarum HNU082-fermented OFIJ, primarily in ABTS+ (increased by 16.81%) and DPPH (increased by 23.62%) free radical scavenging ability. Lacticaseibacillus paracasei HNU502-fermented OFIJ showed the most potent inhibition of xanthine oxidase (IC50 = 31.01 ± 3.88 mg TAC/L). Analysis of volatile and non-volatile compounds indicated that fermentation changed the flavor quality and metabolic profiles and caused the most significant modifications in amino acid metabolism. These findings offer valuable information into processing of OFIJ, making it a great choice for functional foods.
Collapse
Affiliation(s)
- Huixian Wang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China
| | - Xingqiao He
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China
| | - Juanni Li
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China
| | - Jintao Wu
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Hui Xue
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Rajesh Jha
- Department of Human Nutrition, Food, and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Ruimin Wang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Boukhers I, Domingo R, Septembre-Malaterre A, Antih J, Silvestre C, Petit T, Kodja H, Poucheret P. Bioguided Optimization of the Nutrition-Health, Antioxidant, and Immunomodulatory Properties of Manihot esculenta (Cassava) Flour Enriched with Cassava Leaves. Nutrients 2024; 16:3023. [PMID: 39275338 PMCID: PMC11397558 DOI: 10.3390/nu16173023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Manihot esculenta (cassava) roots is a major food crop for its energy content. Leaves contain nutrients and demonstrate biological properties but remain undervalorized. In order to develop a bioguided optimization of cassava nutrition-health properties, we compared the phytochemistry and bioactive potential of cassava root flour extract (CF) with cassava flour extract enriched with 30% leaves powder (CFL). Cassava flour supplementation impact was explored on flour composition (starch, fiber, carotenoids, phenolic compounds), in vivo glycemic index, and bioactivity potential using macrophage cells. We assessed the impact of cassava flour supplementation on free radicals scavenging and cellular production of pro-inflammatory mediators. CFL showed higher levels of fiber, carotenoids, phenolic compounds, and lower glycemic index. Significantly higher bioactive properties (anti-inflammatory and antioxidant) were recorded, and inhibition of cytokines production has been demonstrated as a function of extract concentration. Overall, our results indicate that enrichment of cassava flour with leaves significantly enhances its nutrition-health and bioactive potential. This bioguided matrix recombination approach may be of interest to provide prophylactic and therapeutic dietary strategy to manage malnutrition and associated chronic non-communicable diseases characterized by low-grade inflammation and unbalanced redox status. It would also promote a more efficient use of available food resources.
Collapse
Affiliation(s)
- Imane Boukhers
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Romain Domingo
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Axelle Septembre-Malaterre
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Julien Antih
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Charlotte Silvestre
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Thomas Petit
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels, ChemBioPro (EA2212), Université de La Réunion, 15 Avenue René Cassin, 97490 Sainte-Clotilde, France
| | - Hippolyte Kodja
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Patrick Poucheret
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| |
Collapse
|
5
|
Hatami A. Phytochemical profiling and antibacterial activities of Ziziphora tenuior root extracts: a molecular docking against VanA of vancomycin-resistant enterococci. 3 Biotech 2024; 14:217. [PMID: 39220828 PMCID: PMC11362404 DOI: 10.1007/s13205-024-04056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Medicinal plants, renowned for their antibacterial phytocompounds and secondary metabolites, hold significant promise in addressing antibiotic-resistant bacterial strains. This study aimed to conduct phytochemical profiling of the methanolic and dichloromethane extracts of Ziziphora tenuior root using the GC-MS technique. These extracts' antioxidant potential was assessed via DPPH assay and their antibacterial activity was evaluated against S. aureus, E. coli, and VRE bacterial strains. Furthermore, the drug-ligand interactions between the extracts' biocompounds and d-alanyl-d-lactate ligase (VanA) protein of vancomycin-resistant enterococci strains (VRE) were analyzed using molecular docking. Based on the results, 74% of methanolic extract consisted of (3methyl, 24S)-stigmast-5-en-3-ol (which is a β-sitosterol), followed by Tetrasiloxane, decamethyl (15.5%), and 1-methyl-4-phenyl-5-thioxo-1,2,4-triazolidin-3-one (10.5%). Also, the only predominant compound identified in the dichloromethane extract was Benzo[h]quinoline, 2,4-dimethyl-. Both extracts showed antioxidant activity, while the antioxidant activity of the methanolic extract (IC50 = 95.33 μg/ml) was significantly higher than that of the dichloromethane extract (IC50 = 934.23 μg/ml). Also, both extracts displayed substantial antibacterial efficacy against the tested pathogens, particularly against VRE. Moreover, the in silico analysis revealed that (3methyl, 24S)-stigmast-5-en-3-ol and Benzo[h]quinoline,2,4-dimethyl- exhibited notable interactions with VanA through docking energy values of - 9.0 and - 9.1 kcal/mol, respectively. Furthermore, these compounds formed 2 and 1 hydrogen bonds with VanA, respectively, highlighting their potential as effective interactants. These findings provide valuable visions into the therapeutic potentials of these plant-derived biocompounds in combating antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Asma Hatami
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| |
Collapse
|
6
|
Saci S, Msela A, Saoudi B, Sebbane H, Trabelsi L, Alam M, Ernst B, Benguerba Y, Houali K. Assessment of antibacterial activity, modes of action, and synergistic effects of Origanum vulgare hydroethanolic extract with antibiotics against avian pathogenic Escherichia coli. Fitoterapia 2024; 177:106055. [PMID: 38838822 DOI: 10.1016/j.fitote.2024.106055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
This study evaluates the antibacterial effectiveness of Origanum vulgare hydroethanolic extract, both independently and in combination with antibiotics, against Escherichia coli strains associated with avian colibacillosis-a significant concern for the poultry industry due to the rise of antibiotic-resistant E. coli. The urgent demand for new treatments is addressed by analyzing the extract's phytochemical makeup via High-Performance Liquid Chromatography (HPLC), which identified sixteen phenolic compounds. Antibacterial activity was determined through agar diffusion and the measurement of minimum inhibitory and bactericidal concentrations (MIC and MBC), showing moderate efficacy (MIC: 3.9 to 7.8 mg/mL, MBC: 31.2 to 62.4 mg/mL). Combining the extract with antibiotics like ampicillin and tetracycline amplified antibacterial activity, indicating a synergistic effect and highlighting the importance of combinatory treatments against resistant strains. Further analysis revealed the extract's mechanisms of action include disrupting bacterial cell membrane integrity and inhibiting ATPase/H+ proton pumps, essential for bacterial survival. Moreover, the extract effectively inhibited and eradicated biofilms, crucial for preventing bacterial colonization. Regarding cytotoxicity, the extract showed no hemolytic effect at 1 to 9 mg/mL concentrations. These results suggest Origanum vulgare extract, particularly when used with antibiotics, offers a promising strategy for managing avian colibacillosis, providing both direct antibacterial benefits and moderating antibiotic resistance, thus potentially reducing the economic impact of the disease on the poultry industry.
Collapse
Affiliation(s)
- Sarah Saci
- Laboratoire de Biochimie Analytique et Biotechnologies (LABAB), Faculté des Sciences Biologiques et Agronomiques, Université Mouloud MAMMERI de Tizi-Ouzou, Algeria
| | - Amine Msela
- Laboratoire de Biochimie Analytique et Biotechnologies (LABAB), Faculté des Sciences Biologiques et Agronomiques, Université Mouloud MAMMERI de Tizi-Ouzou, Algeria
| | - Bilal Saoudi
- Laboratoire de Biochimie Analytique et Biotechnologies (LABAB), Faculté des Sciences Biologiques et Agronomiques, Université Mouloud MAMMERI de Tizi-Ouzou, Algeria
| | - Hillal Sebbane
- Laboratoire de Biochimie Analytique et Biotechnologies (LABAB), Faculté des Sciences Biologiques et Agronomiques, Université Mouloud MAMMERI de Tizi-Ouzou, Algeria
| | - Lamia Trabelsi
- Marine Biodiversity Laboratory, National Institute of Marine Sciences and Technology (inStm), University of Carthage, Tunis, Tunisia
| | - Manawwer Alam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Barbara Ernst
- Université de Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), ECPM 25 rue Becquerel, F-67000 Strasbourg, France
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Université Ferhat ABBAS Sétif-1, Sétif, Algeria.
| | - Karim Houali
- Laboratoire de Biochimie Analytique et Biotechnologies (LABAB), Faculté des Sciences Biologiques et Agronomiques, Université Mouloud MAMMERI de Tizi-Ouzou, Algeria.
| |
Collapse
|
7
|
Kim KJ, Kim JY. Polyphenols in foods: a potential strategy for preventing and managing the postprandial hyperglycemic response. Food Sci Biotechnol 2024; 33:2699-2713. [PMID: 39184987 PMCID: PMC11339232 DOI: 10.1007/s10068-024-01607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 08/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a significant health risk worldwide, and effective management strategies are needed. Polyphenols exhibit diverse biological functions, are abundant in various plants, and influence carbohydrate digestion and absorption. This review provides a comprehensive overview of clinical evidence regarding the relationship between dietary polyphenols and the postprandial hyperglycemic response. Human intervention studies have demonstrated the benefits of polyphenol-rich foods in improving glucose and insulin metabolism, underscoring their role in preventing T2DM. These findings highlight the potential of polyphenol-rich foods for managing hyperglycemia and mitigating T2DM risk and provide insight into effective dietary strategies for glycemic control and overall health.
Collapse
Affiliation(s)
- Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| |
Collapse
|
8
|
Pezzino S, Sofia M, Mazzone C, Litrico G, Greco LP, Gallo L, La Greca G, Latteri S. Innovative treatments for obesity and NAFLD: A bibliometric study on antioxidants, herbs, phytochemicals, and natural compounds. Heliyon 2024; 10:e35498. [PMID: 39220898 PMCID: PMC11365328 DOI: 10.1016/j.heliyon.2024.e35498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The increasing scientific interest in antioxidants and naturally derived compounds as potential remedies for obesity and non-alcoholic fatty liver disease (NAFLD) has led to extensive research. The objective of this bibliometric analysis is to present an updated perspective on the topic of antioxidants, herbs, phytochemicals, and natural compounds, in the control of obesity and NAFLD, to identify new areas for future research. Publications from the years 2012-2022 were retrieved using the Scopus database. The research trends were analyzed using the Biblioshiny and VOSviewer tools. The field has seen a significant increase in research activity, as indicated by an annual growth rate of 10 % in the number of published manuscripts. China, Korea, and the USA emerged as the most prominent contributors in this specific field, supported by their notable volumes of publications and citations. The density analysis revealed that the most frequently occurring authors' keywords related to herbal species are, in rank order, Camelia sinensis, Momordica charantia, Curcuma longa, Ilex paraguariensis, Panax ginseng, Moringa oleifera, Garcinia cambogia, Garcinia mangostana, Zingiber officinale, and Cinnamomum verum. In the group of antioxidants, phytochemicals, and natural compounds, the top 10 were resveratrol, curcumin, quercetin, vitamin E, alpha-lipoic acid, vitamin C, chlorogenic acid, lycopene, fucoxanthin, and berberine. The co-occurrence analysis unveiled significant themes and potential trends, including a notable interest in the impact of herbal species, antioxidants, phytochemicals, and natural compounds on obesity and NAFLD through the modulation of the gut microbiome. Another recurring theme that arises, is the ongoing investigation of molecular targets that demonstrate anti-adipogenesis properties. The analysis presented in this study provides valuable insights for researchers investigating the efficacy of antioxidants, herbs, phytochemicals, and natural compounds in addressing obesity and NAFLD. Through the use of bibliometric methods, the study offers a comprehensive overview. Furthermore, the findings of this analysis can serve as a foundation for future research in this specific domain.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Maria Sofia
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Chiara Mazzone
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Giorgia Litrico
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Luigi Piero Greco
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Luisa Gallo
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Gaetano La Greca
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| |
Collapse
|
9
|
Hatami A. Phytochemical characterisation of dichloromethane and methanolic extracts of the Ziziphora tenuior leaves and evaluation of their antioxidant and antibacterial activities. Nat Prod Res 2024:1-8. [PMID: 39086216 DOI: 10.1080/14786419.2024.2386127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Medicinal plants, known for their antibacterial phytocompounds and secondary metabolites, offer promising potential in combating antibiotic-resistant bacteria. This study aimed to perform a phytochemical analysis of the methanol and dichloromethane extracts obtained from Ziziphora tenuior leaves using GC-MS. Furthermore, the antioxidant activity of the extracts was evaluated through the DPPH assay. And, their antibacterial activity was assessed against S. aureus, E. coli, methicillin-resistant S. aureus, and vancomycin-resistant enterococcus (VRE) bacterial strains. Based on the results 90-92% of these extracts consisted of phytocompounds with pharmaceutical properties. Of these, 5-methyl- 2-(1-methylethylidele), Cyclohexanone (Pulegone; C10H16O) comprised the highest percentage of the extracts, constituting 62% of methanolic extract and 81% of dichloromethane extract. Also, both methanolic and dichloromethane extracts showed potent antioxidant activity with IC50 of 277.6 µg/ml and 49.6 µg/ml, respectively. Moreover, these extracts demonstrated considerable antibacterial activity against the tested pathogens, especially against S. aureus and VRE.
Collapse
Affiliation(s)
- Asma Hatami
- Department of Medicinal Chemistry, University of Isfahan, Isfahan, Iran
| |
Collapse
|
10
|
Im JH, Lee MK, Lee HI. Physicochemical and Sensory Properties and Antioxidant Activity of Xylitol Candies Containing Yuja ( Citrus junos) Peels or Pulp. Foods 2024; 13:2396. [PMID: 39123587 PMCID: PMC11311515 DOI: 10.3390/foods13152396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Xylitol candies offer numerous health benefits such as preventing cavities and obesity. However, a preference for them tends to be low due to their distinctive flavor. In this study, we developed xylitol candies containing mature yuja peel (MYP-C), immature yuja peel (IYP-C), and yuja pulp (YP-C). To determine the optimal yuja added to xylitol candy, we compared and analyzed its physicochemical properties, sensory characteristics, and antioxidant activities. IYP-C and MYP-C significantly increased the naringin and hesperidin contents compared to the control and the YP-C. In particular, the IYP-C exhibited the highest content of flavonoids and polyphenols, which contributed to enhancing antioxidant activity such as ferric reducing antioxidant power (FRAP), 1,1 diphenyl-2-picrylhydrazyl (DPPH), and 2,2'-azino-di-2 ethyl-benzothiazoline sulfonate (ABTS+) radical scavenging activities. The IYP-C had the highest crude ash content. The L*, a*, and b* values of MYP-C and IYP-C showed dark red and yellow colors compared to the CON and YP-C groups. The sensory analysis conducted using electronic tongue equipment revealed that IYP-C exhibited high levels of umami, sweetness, and bitterness, while YP-C showed the highest intensity of sourness. In conclusion, these results suggest that IYP-C rather than MYP-C and YP-C provide xylitol candy with good qualities in terms of antioxidant activities and physicochemical characteristics.
Collapse
Affiliation(s)
| | | | - Hae-In Lee
- Food and Nutrition Department, Sunchon National University, Suncheon-si 57922, Republic of Korea; (J.-H.I.); (M.-K.L.)
| |
Collapse
|
11
|
Merecz-Sadowska A, Sitarek P, Zajdel K, Sztandera W, Zajdel R. Genus Sambucus: Exploring Its Potential as a Functional Food Ingredient with Neuroprotective Properties Mediated by Antioxidant and Anti-Inflammatory Mechanisms. Int J Mol Sci 2024; 25:7843. [PMID: 39063085 PMCID: PMC11277136 DOI: 10.3390/ijms25147843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The genus Sambucus, mainly Sambucus nigra, has emerged as a valuable source of bioactive compounds with potential neuroprotective properties. This review explores the antioxidant, anti-inflammatory, and neuroregenerative effects of Sambucus-derived compounds and their implications for brain health and cognitive function. In vitro studies have demonstrated the ability of Sambucus extracts to mitigate oxidative stress, modulate inflammatory responses, and promote neural stem cell proliferation and differentiation. In vivo studies using animal models of neurodegenerative diseases, such as Alzheimer's and Parkinson's, have shown that Sambucus compounds can improve cognitive function, motor performance, and neuronal survival while attenuating neuroinflammation and oxidative damage. The neuroprotective effects of Sambucus are primarily attributed to its rich content of polyphenols, particularly anthocyanins, which exert their benefits through multiple mechanisms, including the modulation of signaling pathways involved in inflammation, apoptosis, mitochondrial function, and oxidative stress. Furthermore, the potential of Sambucus as a functional food ingredient is discussed, highlighting its application in various food products and the challenges associated with the stability and bioavailability of its bioactive compounds. This review provides a comprehensive overview of the current state of research on the neuroprotective potential of Sambucus and its derivatives, offering valuable insights for the development of dietary strategies to promote brain health and prevent age-related cognitive decline.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland;
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, 90-725 Lodz, Poland
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Wiktoria Sztandera
- Department of Internal Medicine, Rehabilitation and Physical Medicine, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Radosław Zajdel
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland;
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| |
Collapse
|
12
|
Scarpa ES, Antonelli A, Balercia G, Sabatelli S, Maggi F, Caprioli G, Giacchetti G, Micucci M. Antioxidant, Anti-Inflammatory, Anti-Diabetic, and Pro-Osteogenic Activities of Polyphenols for the Treatment of Two Different Chronic Diseases: Type 2 Diabetes Mellitus and Osteoporosis. Biomolecules 2024; 14:836. [PMID: 39062550 PMCID: PMC11275061 DOI: 10.3390/biom14070836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Polyphenols are natural bioactives occurring in medicinal and aromatic plants and food and beverages of plant origin. Compared with conventional therapies, plant-derived phytochemicals are more affordable and accessible and have no toxic side effects. Thus, pharmaceutical research is increasingly inclined to discover and study new and innovative natural molecules for the treatment of several chronic human diseases, like type 2 diabetes mellitus (T2DM) and osteoporosis. These pathological conditions are characterized by a chronic inflammatory state and persistent oxidative stress, which are interconnected and lead to the development and worsening of these two health disorders. Oral nano delivery strategies have been used to improve the bioavailability of polyphenols and to allow these natural molecules to exert their antioxidant, anti-inflammatory, anti-diabetic, and pro-osteogenic biological activities in in vivo experimental models and in patients. Polyphenols are commonly used in the formulations of nutraceuticals, which can counteract the detrimental effects of T2DM and osteoporosis pathologies. This review describes the polyphenols that can exert protective effects against T2DM and osteoporosis through the modulation of specific molecular markers and pathways. These bioactives could be used as adjuvants, in combination with synthetic drugs, in the future to develop innovative therapeutic strategies for the treatment of T2DM and osteoporosis.
Collapse
Affiliation(s)
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Sofia Sabatelli
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Gilberta Giacchetti
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Matteo Micucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| |
Collapse
|
13
|
Bouzaiene A, Mansour RB, Jemaa-Guirat MB, Hammami I, Trabelsi D, Msaada K, Labidi N. Exploring the bioactive potential of dried fruit by-products: a focus on hazelnut, peanut, and almond teguments and shells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-14. [PMID: 38944750 DOI: 10.1080/09603123.2024.2373174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Dried fruits are renowned for their nutritional value, particularly their seeds. However, their skins, shells, and hulls also hold significant nutritional and commercial potential, yet remain largely unexplored for their bioactive compounds. This study examines the teguments and shells of three types of dried fruits - hazelnut, peanut, and two almond varieties. Ethanol extracts from these by-products reveal a variety of phytochemicals with antioxidant, antimicrobial, anti-inflammatory, and antiviral properties, confirmed through in vitro and in vivo assays. Teguments contain higher polyphenol levels compared to shells, with 24 compounds identified via HPLC analysis. The Achak almond tegument extract demonstrates strong antiradical activity, significant antimicrobial effects, and notable antiviral properties at a low concentration. Moreover, extracts from Achak almond tegument and hazelnut shells exhibit notable anti-inflammatory properties. This underscores the potential of utilizing dried fruit by-products to create innovative, value-added products, supporting environmental sustainability and boosting the competitiveness of the dried fruit industry.
Collapse
Affiliation(s)
- Arij Bouzaiene
- Département de Biologie, Ecole Supérieure des Sciences et Techniques de la Santé de Tunis, Tunis, Tunisia
| | - Rim Ben Mansour
- Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de Borj Cédria (CBBC), Hammam-Lif, Tunisia
| | - Mariem Ben Jemaa-Guirat
- Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de Borj Cédria (CBBC), Hammam-Lif, Tunisia
| | - Imran Hammami
- LR: Bioressources, Environment and Biotechnology - ISSBAT, Tunis El Manar University, Tunis, Tunisia
| | - Darine Trabelsi
- Laboratoire des Légumineuses, Centre de Biotechnologie de Borj Cédria (CBBC), Hammam-Lif, Tunisia
| | - Kamel Msaada
- Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de Borj Cédria (CBBC), Hammam-Lif, Tunisia
| | - Nehla Labidi
- Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de Borj Cédria (CBBC), Hammam-Lif, Tunisia
| |
Collapse
|
14
|
Ferrucci V, Miceli M, Pagliuca C, Bianco O, Castaldo L, Izzo L, Cozzolino M, Zannella C, Oglio F, Polcaro A, Randazzo A, Colicchio R, Galdiero M, Berni Canani R, Salvatore P, Zollo M. Modulation of innate immunity related genes resulting in prophylactic antimicrobial and antiviral properties. J Transl Med 2024; 22:574. [PMID: 38886736 PMCID: PMC11184722 DOI: 10.1186/s12967-024-05378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The innate immunity acts during the early phases of infection and its failure in response to a multilayer network of co-infections is cause of immune system dysregulation. Epidemiological SARS-CoV-2 infections data, show that Influenza Virus (FLU-A-B-C) and Respiratory Syncytial Virus (RSV) are co-habiting those respiratory traits. These viruses, especially in children (mostly affected by 'multi-system inflammatory syndrome in children' [MIS-C] and the winter pandemic FLU), in the aged population, and in 'fragile' patients are causing alteration in immune response. Then, bacterial and fungal pathogens are also co-habiting the upper respiratory traits (e.g., Staphylococcus aureus and Candida albicans), thus contributing to morbidity in those COVID-19 affected patients. METHODS Liquid chromatography coupled with high-resolution mass spectrometry using the quadrupole orbital ion trap analyser (i.e., UHPLC-Q-Orbitrap HRMS) was adopted to measure the polyphenols content of a new nutraceutical formula (Solution-3). Viral infections with SARS-CoV-2 (EG.5), FLU-A and RSV-A viruses (as performed in BLS3 authorised laboratory) and real time RT-PCR (qPCR) assay were used to test the antiviral action of the nutraceutical formula. Dilution susceptibility tests have been used to estimate the minimum inhibitory and bactericidal concentration (MIC and MBC, respectively) of Solution-3 on a variety of microorganisms belonging to Gram positive/ negative bacteria and fungi. Transcriptomic data analyses and functional genomics (i.e., RNAseq and data mining), coupled to qPCR and ELISA assays have been used to investigate the mechanisms of action of the nutraceutical formula on those processes involved in innate immune response. RESULTS Here, we have tested the combination of natural products containing higher amounts of polyphenols (i.e., propolis, Verbascum thapsus L., and Thymus vulgaris L.), together with the inorganic long chain polyphosphates 'polyPs' with antiviral, antibacterial, and antifungal behaviours, against SARS-CoV-2, FLU-A, RSV-A, Gram positive/ negative bacteria and fungi (i.e., Candida albicans). These components synergistically exert an immunomodulatory action by enhancing those processes involved in innate immune response (e.g., cytokines: IFNγ, TNFα, IL-10, IL-6/12; chemokines: CXCL1; antimicrobial peptides: HBD-2, LL-37; complement system: C3). CONCLUSION The prophylactic antimicrobial success of this nutraceutical formula against SARS-CoV-2, FLU-A and RSV-A viruses, together with the common bacteria and fungi co-infections as present in human oral cavity, is expected to be valuable.
Collapse
Affiliation(s)
- Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Elysium Cell Bio Ita, Via Gaetano Salvatore 486, 80145, Naples, Italy.
| | - Marco Miceli
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
| | - Orazio Bianco
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Luigi Castaldo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Luana Izzo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Marica Cozzolino
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Franca Oglio
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Antonio Polcaro
- Polcaro Fitopreparazioni S.R.L, Via Sant Agnello, 9 D; 80030, Roccarainola, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
- UOC of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Roberto Berni Canani
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Elysium Cell Bio Ita, Via Gaetano Salvatore 486, 80145, Naples, Italy.
- DAI Medicina di Laboratorio e Trasfusionale, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
15
|
Zima K, Khaidakov B, Banaszkiewicz L, Lemke K, Kowalczyk PK. Exploring the Potential of Ribes nigrum L., Aronia melanocarpa (Michx.) Elliott, and Sambucus nigra L. Fruit Polyphenol-Rich Composition and Metformin Synergy in Type 2 Diabetes Management. J Diabetes Res 2024; 2024:1092462. [PMID: 38919261 PMCID: PMC11199064 DOI: 10.1155/2024/1092462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 04/30/2024] [Indexed: 06/27/2024] Open
Abstract
Type 2 diabetes, characterized by insulin resistance and impaired glucose homeostasis, is commonly managed through lifestyle interventions and medications such as metformin. Although metformin is generally well-tolerated, it may cause gastrointestinal adverse effects and, in rare cases, precipitate lactic acidosis, necessitating cautious use in individuals with renal dysfunction. Additionally, concerns regarding its impact on hepatic function have led to its discontinuation in cirrhotic patients. This study explores the potential synergistic benefits of a polyphenol-rich blend containing black currant, chokeberry, and black elderberry extracts alongside metformin in managing type 2 diabetes. In vitro results highlighted distinct effects of AMPK pathway modulation, showcasing reductions in cholesterol and triglyceride levels alongside a notable enhancement in glucose uptake. The blend, when combined with metformin, significantly reduced insulin levels and fasting glucose concentrations in an in vivo model. Furthermore, hepatic analyses unveiled a modulation in cellular pathways, suggesting a potential influence on lipid metabolism, attenuation of inflammatory pathways, a decrease in cellular stress response, and antioxidant defense mechanisms, collectively implying a potential reduction in liver fat accumulation. The findings suggest a potential complementary role of polyphenols in enhancing the efficacy of metformin, possibly allowing for reduced metformin dosage and mitigating its side effects. Further clinical studies are warranted to validate these findings and establish the safety and efficacy of this nutraceutical approach in managing type 2 diabetes.
Collapse
Affiliation(s)
- Katarzyna Zima
- Department of PhysiologyMedical University of GdańskDębinki 1 80-211, Gdańsk, Poland
- R&D DepartmentAronPharma Ltd.Trzy Lipy Street 3 80-172, Gdańsk, Poland
| | - Barbara Khaidakov
- R&D DepartmentAronPharma Ltd.Trzy Lipy Street 3 80-172, Gdańsk, Poland
| | | | - Krzysztof Lemke
- R&D DepartmentAronPharma Ltd.Trzy Lipy Street 3 80-172, Gdańsk, Poland
| | | |
Collapse
|
16
|
Sedláček P, Bludovská M, Plavinová I, Zavaďáková A, Müller L, Müllerová D. Dietary intake of plant polyphenols: Exploring trend in the Czech population. Cent Eur J Public Health 2024; 32:101-107. [PMID: 39069313 DOI: 10.21101/cejph.a7994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES This study aimed to determine trend in polyphenol consumption in the Czech Republic during the last three decades. Additionally, it provides a brief overview of the beneficial effects of polyphenols in several body systems. METHODS Data from the Phenol-Explorer 3.6, a specialized database of polyphenolic substances, were assigned to the resources of the Czech Statistical Office on the consumption of food and beverages in the Czech Republic for the years 1989-2022. The average daily intake of polyphenols was determined by multiplying the average annual consumption of each type of food by the polyphenol content obtained from the database; results were given in milligrams of polyphenols per inhabitant and day. Since the food items in the data sources are not identical, it was necessary to create an extensive model of food categories. RESULTS The current value of polyphenol intake is 1,673 mg per day per inhabitant; however, this level most likely reflects methodological underestimation. The favourable increase in dietary polyphenol intake in the Czech population - doubling, to be precise - which we observed from 1989 to 2007, has been replaced by the opposite trend in the last 15 years. The current intake of polyphenols corresponds to the level that was already achieved in 2004. Hydroxycinnamic acids (from the group of phenolic acids) are the most prevalent dietary polyphenols, followed by flavanols (from the group of flavonoids). The most frequent source of polyphenols in the Czech population are non-alcoholic beverages such as coffee, tea and juices, followed by fruits, cereals, and vegetables, respectively. CONCLUSION Current trend of dietary polyphenol intake in the Czech population is slightly decreasing. This tendency, lasting since 2008, is indisputably negative. Plant polyphenols offer opportunities for inexpensive interventions in health promotion.
Collapse
Affiliation(s)
- Pavel Sedláček
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Monika Bludovská
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Iveta Plavinová
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Anna Zavaďáková
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Luděk Müller
- Department of Cybernetics, NTIS, University of West Bohemia in Pilsen, Pilsen, Czech Republic
| | - Dana Müllerová
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
17
|
Mandal MK, Domb AJ. Antimicrobial Activities of Natural Bioactive Polyphenols. Pharmaceutics 2024; 16:718. [PMID: 38931842 PMCID: PMC11206801 DOI: 10.3390/pharmaceutics16060718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Secondary metabolites, polyphenols, are widespread in the entire kingdom of plants. They contain one or more hydroxyl groups that have a variety of biological functions in the natural environment. These uses include polyphenols in food, beauty products, dietary supplements, and medicinal products and have grown rapidly during the past 20 years. Antimicrobial polyphenols are described together with their sources, classes, and subclasses. Polyphenols are found in different sources, such as dark chocolate, olive oil, red wine, almonds, cashews, walnuts, berries, green tea, apples, artichokes, mushrooms, etc. Examples of benefits are antiallergic, antioxidant, anticancer agents, anti-inflammatory, antihypertensive, and antimicrobe properties. From these sources, different classes of polyphenols are helpful for the growth of internal functional systems of the human body, providing healthy fats, vitamins, and minerals, lowering the risk of cardiovascular diseases, improving brain health, and rebooting our cellular microbiome health by mitochondrial uncoupling. Among the various health benefits of polyphenols (curcumin, naringenin, quercetin, catechin, etc.) primarily different antimicrobial activities are discussed along with possible future applications. For polyphenols and antimicrobial agents to be proven safe, adverse health impacts must be substantiated by reliable scientific research as well as in vitro and in vivo clinical data. Future research may be influenced by this evaluation.
Collapse
Affiliation(s)
| | - Abraham J. Domb
- The Alex Grass Center for Drug Design & Synthesis and the Center for Cannabis Research, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| |
Collapse
|
18
|
El Oirdi M. Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals (Basel) 2024; 17:692. [PMID: 38931359 PMCID: PMC11206774 DOI: 10.3390/ph17060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
There are a wide variety of phytochemicals collectively known as polyphenols. Their structural diversity results in a broad range of characteristics and biological effects. Polyphenols can be found in a variety of foods and drinks, including fruits, cereals, tea, and coffee. Studies both in vitro and in vivo, as well as clinical trials, have shown that they possess potent antioxidant activities, numerous therapeutic effects, and health advantages. Dietary polyphenols have demonstrated the potential to prevent many health problems, including obesity, atherosclerosis, high blood sugar, diabetes, hypertension, cancer, and neurological diseases. In this paper, the protective effects of polyphenols and the mechanisms behind them are investigated in detail, citing the most recent available literature. This review aims to provide a comprehensive overview of the current knowledge on the role of polyphenols in preventing and managing chronic diseases. The cited publications are derived from in vitro, in vivo, and human-based studies and clinical trials. A more complete understanding of these naturally occurring metabolites will pave the way for the development of novel polyphenol-rich diet and drug development programs. This, in turn, provides further evidence of their health benefits.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
19
|
Ali SK, El-Masry SS, El-Adl K, Abdel-Mawgoud M, Okla MK, Abdel-Raheam HEF, Hesham AEL, Aboel-Ainin MA, Mohamed HS. Assessment of antimicrobial activity and GC-MS using culture filtrate of local marine Bacillus strains. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:399-416. [PMID: 38785435 DOI: 10.1080/03601234.2024.2357465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Secondary metabolites produced by Bacillus species from marine sources encompass a variety of compounds such as lipopeptides, isocoumarins, polyketides, macrolactones, polypeptides and fatty acids. These bioactive substances exhibit various biological activities, including antibiotic, antifungal, antiviral, and antitumor properties. This study aimed to isolate and identify a particular species of Bacillus from marine water and organisms that can produce bioactive secondary metabolites. Among the 73 Bacillus isolates collected, only 5 exhibited antagonistic activity against various viral and bacterial pathogens. The active isolates were subjected to 16S rRNA sequencing to determine their taxonomical affiliation. Among them, Bacillus tequilensis CCASU-2024-66 strain no. 42, with the accession number ON 054302 in GenBank, exhibited the highest inhibitory potential. It displayed an inhibition zone of 21 mm against Bacillus cereus while showing a minimum zone of inhibition of 9 mm against Escherichia coli and gave different inhibition against pathogenic fungi, the highest inhibition zone 15 mm against Candida albicans but the lowest inhibition zone 10 mm was against Botrytis cinerea, Fusarium oxysporum. Furthermore, it demonstrated the highest percentage of virucidal effect against the Newcastle virus and influenza virus, with rates of 98.6% and 98.1%, respectively. Furthermore, GC-MS analysis was employed to examine the bioactive substance components, specifically focusing on volatile and polysaccharide compounds. Based on these results, Bacillus tequilensis strain 42 may have the potential to be employed as an antiviral agent in poultry cultures to combat Newcastle and influenza, two extremely destructive viruses, thus reducing economic losses in the poultry production sector. Bacteria can be harnessed for the purpose of preserving food and controlling pathogenic fungi in both human and plant environments. Molecular docking for the three highly active derivatives 2,3-Butanediol, 2TMS, D-Xylopyranose, 4TMS, and Glucofuranoside, methyl 2,3,5,6-tetrakis-O-(trimethylsilyl) was carried out against the active sites of Bacillus cereus, Listeria monocytogenes, Candida albicans, Newcastle virus and influenza virus. The data obtained from molecular docking is highly correlated with that obtained from biology. Moreover, these highly active compounds exhibited excellent proposed ADMET profile.
Collapse
Affiliation(s)
- Shimaa K Ali
- Microbiology Department, Faculty of Agriculture, Beni-Suef University, Egypt
| | - Samar S El-Masry
- Microbiology Department, Faculty of Agriculture, Ain-Shamas University, Egypt
| | - Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | | | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | - Hussein S Mohamed
- Chemistry of medicinal and aromatic plants department, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Egypt
| |
Collapse
|
20
|
Bhuia MS, Chowdhury R, Akter MA, Ali MA, Afroz M, Akbor MS, Sonia FA, Mubarak MS, Islam MT. A mechanistic insight into the anticancer potentials of resveratrol: Current perspectives. Phytother Res 2024. [PMID: 38768953 DOI: 10.1002/ptr.8239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Resveratrol is a widely recognized polyphenolic phytochemical found in various plants and their fruits, such as peanuts, grapes, and berry fruits. It is renowned for its several health advantages. The phytochemical is well known for its anticancer properties, and a substantial amount of clinical evidence has also established its promise as a chemotherapeutic agent. This study focuses on assessing the anticancer properties of resveratrol and gaining insight into the underlying molecular mechanisms. It also evaluates the biopharmaceutical, toxicological characteristics, and clinical utilization of resveratrol to determine its suitability for further development as a reliable anticancer agent. Therefore, the information about preclinical and clinical studies was collected from different electronic databases up-to-date (2018-2023). Findings from this study revealed that resveratrol has potent therapeutic benefits against various cancers involving different molecular mechanisms, such as induction of oxidative stress, cytotoxicity, inhibition of cell migration and invasion, autophagy, arresting of the S phase of the cell cycle, apoptotic, anti-angiogenic, and antiproliferative effects by regulating different molecular pathways including PI3K/AKT, p38/MAPK/ERK, NGFR-AMPK-mTOR, and so on. However, the compound has poor oral bioavailability due to reduced absorption; this limitation is overcome by applying nanotechnology (nanoformulation of resveratrol). Clinical application also showed therapeutic benefits in several types of cancer with no serious adverse effects. We suggest additional extensive studies to further check the efficacy, safety, and long-term hazards. This could involve a larger number of clinical samples to establish the compound as a reliable drug in the treatment of cancer.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Dhaka, Bangladesh
| | - Mst Asma Akter
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Arman Ali
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Showkot Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
21
|
Cerdá-Bernad D, D’costa AS, Moreno DA, Bordenave N, Frutos MJ. Functional Model Beverages of Saffron Floral By-Products: Polyphenolic Composition, Inhibition of Digestive Enzymes, and Rheological Characterization. Foods 2024; 13:1440. [PMID: 38790740 PMCID: PMC11120039 DOI: 10.3390/foods13101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the rapid and dynamic evolution of research into dietary polyphenols, there is still a knowledge gap regarding their bioaccessibility since it could be influenced by the chemical and nutritional compositions of the food matrix. This study aimed to describe the impact of food thickeners (xanthan gum, guar gum, β-glucan, pectin) on the bioactivity of flavonoids from saffron floral by-products in model beverages before and after thermal processing. The different beverage formulas were characterized in terms of polyphenolic composition using HPLC-DAD-ESI-MSn and rheological properties. The impact of food thickeners and thermal processing on the inhibition of digestive enzymes was also determined. The model beverages mainly presented glycosylated flavonols (of kaempferol, quercetin, and isorhamnetin), with a reduced content in some heat-treated samples. The inhibitory effect on α-amylase was only detected in heat-treated beverages, showing the formulation without any thickener to have the greatest inhibitory effect. Finally, the presence of saffron floral by-products in the beverages showed a tendency to decrease the flow consistency index (K) and an increase in the flow behavior index (n), most probably driven by the aggregation of phenolics with thickeners. Therefore, this research provides new insights into the development of flavonoid-rich beverages in order to ensure that they exert the expected beneficial effects after their ingestion.
Collapse
Affiliation(s)
- Débora Cerdá-Bernad
- Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain;
| | - Adrian S. D’costa
- School of Chemistry and Biomolecular Sciences, Faculty of Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.S.D.); (N.B.)
| | - Diego A. Moreno
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, 30100 Murcia, Spain;
| | - Nicolas Bordenave
- School of Chemistry and Biomolecular Sciences, Faculty of Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.S.D.); (N.B.)
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- INRAE, Avignon Université, UMR SQPOV, 84000 Avignon, France
| | - María José Frutos
- Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain;
| |
Collapse
|
22
|
Sawicki T, Jabłońska M, Danielewicz A, Przybyłowicz KE. Phenolic Compounds Profile and Antioxidant Capacity of Plant-Based Protein Supplements. Molecules 2024; 29:2101. [PMID: 38731592 PMCID: PMC11085232 DOI: 10.3390/molecules29092101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The study aimed to determine the phenolic content and antioxidant capacity of five protein supplements of plant origin. The content and profile of phenolics were determined using the UHPLC-DAD-MS method, while antioxidant capacity (ABTS and DPPH assays) and total phenolic content (TPC) were evaluated using spectrophotometric tests. In the analyzed proteins, twenty-five polyphenols were detected, including eleven phenolic acids, thirteen flavonoids, and one ellagitannin. Hemp protein revealed the highest individual phenolics content and TPC value (1620 μg/g and 1.79 mg GAE/g, respectively). Also, hemp protein showed the highest antioxidant activity determined via ABTS (9.37 μmol TE/g) and DPPH (9.01 μmol TE/g) assays. The contents of p-coumaric acid, m-coumaric acid, kaempferol, rutin, isorhamnetin-3-O-rutinoside, kaempferol-3-O-rutinoside, and TPC value were significantly correlated with antioxidant activity assays. Our findings indicate that plant-based protein supplements are a valuable source of phenols and can also be used in research related to precision medicine, nutrigenetics, and nutrigenomics. This will benefit future health promotion and personalized nutrition in the prevention of chronic diseases.
Collapse
Affiliation(s)
- Tomasz Sawicki
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718 Olsztyn, Poland; (M.J.); (A.D.); (K.E.P.)
| | - Monika Jabłońska
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718 Olsztyn, Poland; (M.J.); (A.D.); (K.E.P.)
- College of Medical Sciences in Olsztyn, Nicolaus Copernicus Superior School, Nowogrodzka 47A, 00-695 Warsaw, Poland
| | - Anna Danielewicz
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718 Olsztyn, Poland; (M.J.); (A.D.); (K.E.P.)
| | - Katarzyna E. Przybyłowicz
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718 Olsztyn, Poland; (M.J.); (A.D.); (K.E.P.)
| |
Collapse
|
23
|
Nikiema WA, Ouédraogo M, Ouédraogo WP, Fofana S, Ouédraogo BHA, Delma TE, Amadé B, Abdoulaye GM, Sawadogo AS, Ouédraogo R, Semde R. Systematic Review of Chemical Compounds with Immunomodulatory Action Isolated from African Medicinal Plants. Molecules 2024; 29:2010. [PMID: 38731500 PMCID: PMC11085867 DOI: 10.3390/molecules29092010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 05/13/2024] Open
Abstract
A robust, well-functioning immune system is the cornerstone of good health. Various factors may influence the immune system's effectiveness, potentially leading to immune system failure. This review aims to provide an overview of the structure and action of immunomodulators isolated from African medicinal plants. The research was conducted according to PRISMA guidelines. Full-text access research articles published in English up to December 2023, including plant characteristics, isolated phytochemicals, and immuno-modulatory activities, were screened. The chemical structures of the isolated compounds were generated using ChemDraw® (version 12.0.1076), and convergent and distinctive signaling pathways were highlighted. These phytochemicals with demonstrated immunostimulatory activity include alkaloids (berberine, piperine, magnoflorine), polysaccharides (pectin, glucan, acemannan, CALB-4, GMP90-1), glycosides (syringin, cordifolioside, tinocordiside, aucubin), phenolic compounds (ferulic acid, vanillic acid, eupalitin), flavonoids (curcumin, centaurein, kaempferin, luteolin, guajaverin, etc.), terpenoids (oleanolic acid, ursolic acid, betulinic acid, boswellic acids, corosolic acid, nimbidin, andrographolides). These discussed compounds exert their effects through various mechanisms, targeting the modulation of MAPKs, PI3K-Akt, and NF-kB. These mechanisms can support the traditional use of medicinal plants to treat immune-related diseases. The outcomes of this overview are to provoke structural action optimization, to orient research on particular natural chemicals for managing inflammatory, infectious diseases and cancers, or to boost vaccine immunogenicity.
Collapse
Affiliation(s)
- Wendwaoga Arsène Nikiema
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Moussa Ouédraogo
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| | - Windbedma Prisca Ouédraogo
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| | - Souleymane Fofana
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Institut des Sciences de la Santé, Université NAZI Boni, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso
| | - Boris Honoré Amadou Ouédraogo
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Talwendpanga Edwige Delma
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Belem Amadé
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Gambo Moustapha Abdoulaye
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Aimé Serge Sawadogo
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| | - Raogo Ouédraogo
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Rasmané Semde
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| |
Collapse
|
24
|
Rudrapal M, Rakshit G, Singh RP, Garse S, Khan J, Chakraborty S. Dietary Polyphenols: Review on Chemistry/Sources, Bioavailability/Metabolism, Antioxidant Effects, and Their Role in Disease Management. Antioxidants (Basel) 2024; 13:429. [PMID: 38671877 PMCID: PMC11047380 DOI: 10.3390/antiox13040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols, as secondary metabolites ubiquitous in plant sources, have emerged as pivotal bioactive compounds with far-reaching implications for human health. Plant polyphenols exhibit direct or indirect associations with biomolecules capable of modulating diverse physiological pathways. Due to their inherent abundance and structural diversity, polyphenols have garnered substantial attention from both the scientific and clinical communities. The review begins by providing an in-depth analysis of the chemical intricacies of polyphenols, shedding light on their structural diversity and the implications of such diversity on their biological activities. Subsequently, an exploration of the dietary origins of polyphenols elucidates the natural plant-based sources that contribute to their global availability. The discussion extends to the bioavailability and metabolism of polyphenols within the human body, unraveling the complex journey from ingestion to systemic effects. A central focus of the review is dedicated to unravelling the antioxidant effects of polyphenols, highlighting their role in combating oxidative stress and associated health conditions. The comprehensive analysis encompasses their impact on diverse health concerns such as hypertension, allergies, aging, and chronic diseases like heart stroke and diabetes. Insights into the global beneficial effects of polyphenols further underscore their potential as preventive and therapeutic agents. This review article critically examines the multifaceted aspects of dietary polyphenols, encompassing their chemistry, dietary origins, bioavailability/metabolism dynamics, and profound antioxidant effects. The synthesis of information presented herein aims to provide a valuable resource for researchers, clinicians, and health enthusiasts, fostering a deeper understanding of the intricate relationship between polyphenols and human health.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur 522213, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai 400614, India;
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia;
| | - Soumi Chakraborty
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| |
Collapse
|
25
|
Kuley F, Rathod NB, Kuley E, Yilmaz MT, Ozogul F. Inhibition of Food-Borne Pathogen Growth and Biogenic Amine Synthesis by Spice Extracts. Foods 2024; 13:364. [PMID: 38338500 PMCID: PMC10855824 DOI: 10.3390/foods13030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Food-borne pathogens and their toxins cause significant health problems in humans. Formation of biogenic amines (BAs) produced by microbial decarboxylation of amino acids in food is undesirable because it can induce toxic effects in consumers. Therefore, it is crucial to investigate the effects of natural additives with high bioactivity like spice extracts to inhibit the growth of these bacteria and the formation of BAs in food. In the present study, the antibacterial effects of diethyl ether spice (sumac, cumin, black pepper, and red pepper) extracts at doses of 1% (w/v) on Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative (Klebsiella pneumoniae, Pseudomonas aeruginosa, Campylobacter jejuni, Aeromonas hydrophila, Salmonella Paratyphi A, and Yersinia enterocolitica) food-borne pathogen bacterial strains (FBP) were established. In addition, the accumulation of ammonia (AMN), trimethylamine (TMA), and biogenic amines (BAs) in tyrosine decarboxylase broth (TDB) was investigated by using high performance liquid chromatography (HPLC). Sumac extract exhibited the highest antibacterial potential against all FBPs, followed by cumin and peppers. AMN (570.71 mg/L) and TMA (53.66 mg/L) production were strongly inhibited by sumac extract in the levels of 55.10 mg/L for Y. enterocolitica and 2.76 mg/L for A. hydrophila, respectively. With the exception of S. aureus, black pepper dramatically reduced the synthesis of putrescine, serotonin, dopamine, and agmatine by FBP especially for Gram-negative ones. Furthermore, sumac extracts inhibited histamine and tyramine production by the majority of FBP. This research suggests the application of sumac extracts as natural preservatives for inhibiting the growth of FBPs and limiting the production of AMN, TMA, and BAs.
Collapse
Affiliation(s)
- Ferhat Kuley
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Balcali, 01330 Adana, Turkey (E.K.)
| | - Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Post Harvest Technology and Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Killa-Roha 402116, Maharashtra State, India;
| | - Esmeray Kuley
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Balcali, 01330 Adana, Turkey (E.K.)
| | - Mustafa Tahsin Yilmaz
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Balcali, 01330 Adana, Turkey (E.K.)
- Biotechnology Research and Application Center, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
26
|
Teodoro KBR, Silva MJ, Andre RS, Schneider R, Martins MA, Mattoso LHC, Correa DS. Exploring the potential of cellulose autofluorescence for optical detection of tannin in red wines. Carbohydr Polym 2024; 324:121494. [PMID: 37985086 DOI: 10.1016/j.carbpol.2023.121494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/08/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
The growing demand for opto-electronic devices within an automated landscape has opened up new opportunities for harnessing sustainable cellulose materials for sensors technology. Cellulose, a versatile material, enables its combination with other materials, but in most of these applications, cellulose is typically employed as support or substrate, while its inherent autofluorescence remains largely underexplored for sensors. In light of this context, this study delves into the autofluorescence characteristics of pristine cellulose nanocrystals extracted from wood via enzymatic route for optical sensors tailored to detect tannins. By fine-tuning the experimental setup, photoluminescence (PL) emission bands were scrutinized across three distinct spectral regions, namely 300-400 nm, 400-500 nm and 550-700 nm. The proposed mechanism reveals the occurrence of dynamic fluorescence quenching, which enabled the selective monitoring of tannins in red wines across a dynamic range spanning from 10 to 1060 μg mL-1. This sensing platform provided a limit of detection (LoD) of 6.1 μg mL-1. Notably, the sensing platform's efficacy was validated with remarkable recovery rates of 99.7 % and 95.3 % when subjected to testing with cabernet sauvignon and tannat wines. These findings emphasize the sensing platform's potential for monitoring tannic acids in beverages and food products.
Collapse
Affiliation(s)
- Kelcilene B R Teodoro
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil.
| | - Maycon J Silva
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil; PPGQ, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, SP, Brazil
| | - Rafaela S Andre
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil
| | - Rodrigo Schneider
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil; PPGQ, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, SP, Brazil
| | - Maria A Martins
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil
| | - Luiz H C Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
27
|
Lončarić A, Flanjak I, Kovač T, Tomac I, Skoko AMG, Babojelić MS, Fruk G, Zrinušić SZ, Čiček D, Babić J, Jozinović A. Unveiling Apple Diversity: The Quality of Juice Produced from Old vs. Commercial Apple Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:3733. [PMID: 37960090 PMCID: PMC10650719 DOI: 10.3390/plants12213733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
This research is focused on comparing the compositions of juice produced from old and commercially grown apple cultivars. We examined factors such as pH, total acids, soluble dry matter, polyphenol profile, and antioxidant activity, which impact the attributes, safety, shelf life, and nutritional value of the juice. Our analysis revealed differences between these two groups of cultivars. For instance, pH values ranged from 3.04 (in 'Bobovec') to 3.69 (in 'Fuji'). The proportions of acids varied from 0.07 g/100 mL (in 'Fuji') to 0.19 g/100 mL (in 'Wagener'). Soluble dry matter content ranged from 14.10% (in 'Fuji') to 18.50% (in 'Kraljevčica'). We also observed variations in sugar content and composition among cultivars; for example, sucrose levels varied from 16.11 g/L ('Fuji') to 39.36 g/L ('Golden Delicious). Glucose levels ranged from 4.95 g/L ('Jonagold') to 19.18 g/L ('Fuji'), while fructose levels spanned from 50.78 g/L ('Austrougarka') to 427.97 g/L ('Ilzer Rosenapfel'). Furthermore, old apple cultivars exhibited higher concentrations of phenols and flavonoids compared to commercial ones; we also noted significant variations in flavonol levels among different cultivars. The 'Wagener' and 'Božićnica' apple varieties had levels of myricetin measuring 0.53 and 0.52 µg/mL, respectively. On the other hand, 'Bobovec' stood out for its content of procyanidin B2 with a concentration of 422.61 µg/mL. When examining non-flavonoid compounds, it was found that old apple cultivars had higher concentrations of gallic acid, trans-ferulic acid, and chlorogenic acid. However, commercial cultivars showed dominance in caffeic and p-coumaric. Comparisons of antioxidant capacity using DPPH and ABTS assays clearly demonstrated the superiority of old apple cultivars. Overall, this study highlights the importance of utilizing apple cultivars for juice production. Their distinct compositions and higher antioxidant capacities contribute to potential health benefits. Preserving these cultivars for enhanced juice quality and nutritional value is encouraged. Further research could explore cultivation practices' impact on composition and health benefits.
Collapse
Affiliation(s)
- Ante Lončarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (A.L.); (I.F.); (I.T.); (A.-M.G.S.); (S.Z.Z.); (J.B.); (A.J.)
| | - Ivana Flanjak
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (A.L.); (I.F.); (I.T.); (A.-M.G.S.); (S.Z.Z.); (J.B.); (A.J.)
| | - Tihomir Kovač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (A.L.); (I.F.); (I.T.); (A.-M.G.S.); (S.Z.Z.); (J.B.); (A.J.)
| | - Ivana Tomac
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (A.L.); (I.F.); (I.T.); (A.-M.G.S.); (S.Z.Z.); (J.B.); (A.J.)
| | - Ana-Marija Gotal Skoko
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (A.L.); (I.F.); (I.T.); (A.-M.G.S.); (S.Z.Z.); (J.B.); (A.J.)
| | | | - Goran Fruk
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (M.S.B.); (G.F.)
| | - Sanja Zec Zrinušić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (A.L.); (I.F.); (I.T.); (A.-M.G.S.); (S.Z.Z.); (J.B.); (A.J.)
| | - Danijel Čiček
- Croatian Agency for Agriculture and Food, Center of Pomology and Vegetable Crops, Gorice 68b, 10000 Zagreb, Croatia;
| | - Jurislav Babić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (A.L.); (I.F.); (I.T.); (A.-M.G.S.); (S.Z.Z.); (J.B.); (A.J.)
| | - Antun Jozinović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (A.L.); (I.F.); (I.T.); (A.-M.G.S.); (S.Z.Z.); (J.B.); (A.J.)
| |
Collapse
|
28
|
Srivastava V, Gross E. Mitophagy-promoting agents and their ability to promote healthy-aging. Biochem Soc Trans 2023; 51:1811-1846. [PMID: 37650304 PMCID: PMC10657188 DOI: 10.1042/bst20221363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
The removal of damaged mitochondrial components through a process called mitochondrial autophagy (mitophagy) is essential for the proper function of the mitochondrial network. Hence, mitophagy is vital for the health of all aerobic animals, including humans. Unfortunately, mitophagy declines with age. Many age-associated diseases, including Alzheimer's and Parkinson's, are characterized by the accumulation of damaged mitochondria and oxidative damage. Therefore, activating the mitophagy process with small molecules is an emerging strategy for treating multiple aging diseases. Recent studies have identified natural and synthetic compounds that promote mitophagy and lifespan. This article aims to summarize the existing knowledge about these substances. For readers' convenience, the knowledge is presented in a table that indicates the chemical data of each substance and its effect on lifespan. The impact on healthspan and the molecular mechanism is reported if known. The article explores the potential of utilizing a combination of mitophagy-inducing drugs within a therapeutic framework and addresses the associated challenges of this strategy. Finally, we discuss the process that balances mitophagy, i.e. mitochondrial biogenesis. In this process, new mitochondrial components are generated to replace the ones cleared by mitophagy. Furthermore, some mitophagy-inducing substances activate biogenesis (e.g. resveratrol and metformin). Finally, we discuss the possibility of combining mitophagy and biogenesis enhancers for future treatment. In conclusion, this article provides an up-to-date source of information about natural and synthetic substances that activate mitophagy and, hopefully, stimulates new hypotheses and studies that promote healthy human aging worldwide.
Collapse
Affiliation(s)
- Vijigisha Srivastava
- Faculty of Medicine, IMRIC Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, PO Box 12271, Jerusalem, Israel
| | - Einav Gross
- Faculty of Medicine, IMRIC Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, PO Box 12271, Jerusalem, Israel
| |
Collapse
|
29
|
Wang K, Hu S. The synergistic effects of polyphenols and intestinal microbiota on osteoporosis. Front Immunol 2023; 14:1285621. [PMID: 37936705 PMCID: PMC10626506 DOI: 10.3389/fimmu.2023.1285621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Osteoporosis is a common metabolic disease in middle-aged and elderly people. It is characterized by a reduction in bone mass, compromised bone microstructure, heightened bone fragility, and an increased susceptibility to fractures. The dynamic imbalance between osteoblast and osteoclast populations is a decisive factor in the occurrence of osteoporosis. With the increase in the elderly population in society, the incidence of osteoporosis, disability, and mortality have gradually increased. Polyphenols are a fascinating class of compounds that are found in both food and medicine and exhibit a variety of biological activities with significant health benefits. As a component of food, polyphenols not only provide color, flavor, and aroma but also act as potent antioxidants, protecting our cells from oxidative stress and reducing the risk of chronic disease. Moreover, these natural compounds exhibit anti-inflammatory properties, which aid in immune response regulation and potentially alleviate symptoms of diverse ailments. The gut microbiota can degrade polyphenols into more absorbable metabolites, thereby increasing their bioavailability. Polyphenols can also shape the gut microbiota and increase its abundance. Therefore, studying the synergistic effect between gut microbiota and polyphenols may help in the treatment and prevention of osteoporosis. By delving into how gut microbiota can enhance the bioavailability of polyphenols and how polyphenols can shape the gut microbiota and increase its abundance, this review offers valuable information and references for the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Keyu Wang
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Wenling, Zhejiang, China
| |
Collapse
|
30
|
Kalderis D, Görmez Ö, Saçlı B, Çalhan SD, Gözmen B. Valorization of loquat seeds by hydrothermal carbonization for the production of hydrochars and aqueous phases as added-value products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118612. [PMID: 37480637 DOI: 10.1016/j.jenvman.2023.118612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
In the framework of circular bio-economy, waste loquat seeds were utilized for the production of two added-value products. The seeds were hydrothermally carbonized at a temperature range of 150-250 °C and time range 2-6 h and the resultant hydrochars and aqueous phases were characterized using various methods. The optimum higher heating value of 30.64 MJ kg-1, ash content of 1.99 wt % and alkali index of 0.05 were achieved for the hydrochar prepared at 250 °C and 6 h, establishing its suitability for energy-related applications. The aqueous phase obtained at 250 °C and 6 h achieved 90% scavenging of the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical and had a IC50 value of 43.71 μg mL-1. Principal component analysis showed that the production of phenols, ketones, alkenes and organic acids was favored at >200 °C, whereas furans and aldehydes were primarily formed at 150 °C. Conclusively, both added-value products were obtained at the same optimum hydrothermal carbonization conditions of 250 °C and 6 h treatment time. In a bio-refinery context, this has the practical implication that both bio-products be obtained simultaneously, without the need to switch between different temperatures and residence times.
Collapse
Affiliation(s)
- Dimitris Kalderis
- Department of Electronics Engineering, Laboratory of Environmental Technologies and Applications (LETA), Hellenic Mediterranean University, Chania, Crete, 73100, Greece.
| | - Özkan Görmez
- Department of Chemistry, Faculty of Science, Mersin University, Mersin, Turkey
| | - Barış Saçlı
- Department of Chemistry, Faculty of Science, Mersin University, Mersin, Turkey
| | - Selda Doğan Çalhan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Belgin Gözmen
- Department of Chemistry, Faculty of Science, Mersin University, Mersin, Turkey
| |
Collapse
|
31
|
Pereira L, Valado A. Algae-Derived Natural Products in Diabetes and Its Complications-Current Advances and Future Prospects. Life (Basel) 2023; 13:1831. [PMID: 37763235 PMCID: PMC10533039 DOI: 10.3390/life13091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetes poses a significant global health challenge, necessitating innovative therapeutic strategies. Natural products and their derivatives have emerged as promising candidates for diabetes management due to their diverse compositions and pharmacological effects. Algae, in particular, have garnered attention for their potential as a source of bioactive compounds with anti-diabetic properties. This review offers a comprehensive overview of algae-derived natural products for diabetes management, highlighting recent developments and future prospects. It underscores the pivotal role of natural products in diabetes care and delves into the diversity of algae, their bioactive constituents, and underlying mechanisms of efficacy. Noteworthy algal derivatives with substantial potential are briefly elucidated, along with their specific contributions to addressing distinct aspects of diabetes. The challenges and limitations inherent in utilizing algae for therapeutic interventions are examined, accompanied by strategic recommendations for optimizing their effectiveness. By addressing these considerations, this review aims to chart a course for future research in refining algae-based approaches. Leveraging the multifaceted pharmacological activities and chemical components of algae holds significant promise in the pursuit of novel antidiabetic treatments. Through continued research and the fine-tuning of algae-based interventions, the global diabetes burden could be mitigated, ultimately leading to enhanced patient outcomes.
Collapse
Affiliation(s)
- Leonel Pereira
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal;
| | - Ana Valado
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal;
- Biomedical Laboratory Sciences, Polytechnic Institute of Coimbra, Coimbra Health School, Rua 5 de Outubro-SM Bispo, Apartado 7006, 3045-043 Coimbra, Portugal
| |
Collapse
|
32
|
Di Sotto A, Di Giacomo S. Plant Polyphenols and Human Health: Novel Findings for Future Therapeutic Developments. Nutrients 2023; 15:3764. [PMID: 37686796 PMCID: PMC10489806 DOI: 10.3390/nu15173764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
Polyphenols are a large class of plant secondary metabolites that are biosynthetically derived from the shikimate pathway and characterized by aromatic rings with one or more hydroxyl groups [...].
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
33
|
Isopencu GO, Covaliu-Mierlă CI, Deleanu IM. From Plants to Wound Dressing and Transdermal Delivery of Bioactive Compounds. PLANTS (BASEL, SWITZERLAND) 2023; 12:2661. [PMID: 37514275 PMCID: PMC10386126 DOI: 10.3390/plants12142661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Transdermal delivery devices and wound dressing materials are constantly improved and upgraded with the aim of enhancing their beneficial effects, biocompatibility, biodegradability, and cost effectiveness. Therefore, researchers in the field have shown an increasing interest in using natural compounds as constituents for such systems. Plants, as an important source of so-called "natural products" with an enormous variety and structural diversity that still exceeds the capacity of present-day sciences to define or even discover them, have been part of medicine since ancient times. However, their benefits are just at the beginning of being fully exploited in modern dermal and transdermal delivery systems. Thus, plant-based primary compounds, with or without biological activity, contained in gums and mucilages, traditionally used as gelling and texturing agents in the food industry, are now being explored as valuable and cost-effective natural components in the biomedical field. Their biodegradability, biocompatibility, and non-toxicity compensate for local availability and compositional variations. Also, secondary metabolites, classified based on their chemical structure, are being intensively investigated for their wide pharmacological and toxicological effects. Their impact on medicine is highlighted in detail through the most recent reported studies. Innovative isolation and purification techniques, new drug delivery devices and systems, and advanced evaluation procedures are presented.
Collapse
Affiliation(s)
- Gabriela Olimpia Isopencu
- Department of Chemical and Biochemical Engineering, University Politehnica of Bucharest, Polizu Str. 1-7, 011061 Bucharest, Romania
| | - Cristina-Ileana Covaliu-Mierlă
- Department of Biotechnical Systems, Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Iuliana-Mihaela Deleanu
- Department of Chemical and Biochemical Engineering, University Politehnica of Bucharest, Polizu Str. 1-7, 011061 Bucharest, Romania
| |
Collapse
|
34
|
Sowa I, Mołdoch J, Dresler S, Kubrak T, Soluch A, Szczepanek D, Strzemski M, Paduch R, Wójciak M. Phytochemical Profiling, Antioxidant Activity, and Protective Effect against H 2O 2-Induced Oxidative Stress of Carlina vulgaris Extract. Molecules 2023; 28:5422. [PMID: 37513294 PMCID: PMC10385139 DOI: 10.3390/molecules28145422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Carlina vulgaris is a little-understood plant with unexplored biological potential, and the papers regarding its chemical composition are scarce. In our study, for the first time, the phytochemical profile of the plant, focusing on polar metabolites, was established using modern chromatographic techniques including LC-HRMS-QTOF-CAD, UHPLC-PDA-MS. Phytochemical analysis revealed that the species is a rich source of polyphenolic components, with the most abundant being chlorogenic acid and C-glycosides of luteolin, including carlinoside, orientin, isoorientin, and C-glycosides of apigenin, schaftoside, isoschaftoside, and vitexin. Furthermore, we assessed the impact of the polyphenolic-rich fraction of C. vulgaris extracts on human skin fibroblasts using the MTT and NR assays. It was found that the extract was non-toxic and exhibited potent antioxidant activity in the cells subjected to induced oxidative stress. Additionally, it effectively protected the cells against H2O2-induced cytotoxicity. Our study contributes to the general trend of searching for new phytotherapeutics with potential applications in pharmacy and medicine. The results indicate that further exploration of C. vulgaris species is worthwhile, as they can serve as valuable plant material for cosmetic use.
Collapse
Affiliation(s)
- Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Tomasz Kubrak
- Department of Biochemistry and General Chemistry, Institute of Medical Studies, Medical College, Rzeszów University, 35-310 Rzeszów, Poland
| | - Agata Soluch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Dariusz Szczepanek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
35
|
Farhan M. Insights on the Role of Polyphenols in Combating Cancer Drug Resistance. Biomedicines 2023; 11:1709. [PMID: 37371804 PMCID: PMC10296548 DOI: 10.3390/biomedicines11061709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chemotherapy resistance is still a serious problem in the treatment of most cancers. Many cellular and molecular mechanisms contribute to both inherent and acquired drug resistance. They include the use of unaffected growth-signaling pathways, changes in the tumor microenvironment, and the active transport of medicines out of the cell. The antioxidant capacity of polyphenols and their potential to inhibit the activation of procarcinogens, cancer cell proliferation, metastasis, and angiogenesis, as well as to promote the inhibition or downregulation of active drug efflux transporters, have been linked to a reduced risk of cancer in epidemiological studies. Polyphenols also have the ability to alter immunological responses and inflammatory cascades, as well as trigger apoptosis in cancer cells. The discovery of the relationship between abnormal growth signaling and metabolic dysfunction in cancer cells highlights the importance of further investigating the effects of dietary polyphenols, including their ability to boost the efficacy of chemotherapy and avoid multidrug resistance (MDR). Here, it is summarized what is known regarding the effectiveness of natural polyphenolic compounds in counteracting the resistance that might develop to cancer drugs as a result of a variety of different mechanisms.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
36
|
Pereira L, Cotas J. Therapeutic Potential of Polyphenols and Other Micronutrients of Marine Origin. Mar Drugs 2023; 21:323. [PMID: 37367648 DOI: 10.3390/md21060323] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Polyphenols are compounds found in various plants and foods, known for their antioxidant and anti-inflammatory properties. Recently, researchers have been exploring the therapeutic potential of marine polyphenols and other minor nutrients that are found in algae, fish and crustaceans. These compounds have unique chemical structures and exhibit diverse biological properties, including anti-inflammatory, antioxidant, antimicrobial and antitumor action. Due to these properties, marine polyphenols are being investigated as possible therapeutic agents for the treatment of a wide variety of conditions, such as cardiovascular disease, diabetes, neurodegenerative diseases and cancer. This review focuses on the therapeutic potential of marine polyphenols and their applications in human health, and also, in marine phenolic classes, the extraction methods, purification techniques and future applications of marine phenolic compounds.
Collapse
Affiliation(s)
- Leonel Pereira
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, IATV-Institute of Environment, Technology and Life, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Instituto do Ambiente Tecnologia e Vida, Faculdade de Ciências e Tecnologia, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - João Cotas
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, IATV-Institute of Environment, Technology and Life, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
37
|
Solnier J, Chang C, Pizzorno J. Consideration for Flavonoid-Containing Dietary Supplements to Tackle Deficiency and Optimize Health. Int J Mol Sci 2023; 24:ijms24108663. [PMID: 37240008 DOI: 10.3390/ijms24108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Randomized clinical trials (RCT) and observational studies have highlighted the importance of flavonoid consumption for human health. Several studies have associated a high intake of dietary flavonoids with (a) enhanced metabolic and cardiovascular health, (b) enhanced cognitive and vascular endothelial functions, (c) an improved glycemic response in type 2 diabetes mellitus, and (d) a reduced risk of breast cancer in postmenopausal women. Since flavonoids belong to a broad and diverse family of polyphenolic plant molecules-with more than 6000 compounds interspersed in the human diet-researchers are still uncertain whether the intake of single, individual polyphenols or a large combination of them (i.e., synergistic action) can produce the greatest health benefits for humans. Furthermore, studies have reported a poor bioavailability of flavonoid compounds in humans, which presents a major challenge for determining their optimal dosage, recommended intake, and, consequently, their therapeutic value. Especially because of their scarce bioavailability from foods-along with the overall declining food quality and nutrient density in foods-the role of flavonoid supplementation may become increasingly important for human health. Although research shows that dietary supplements can be a highly useful tool to complement diets that lack sufficient amounts of important nutrients, some caution is warranted regarding possible interactions with prescription and non-prescription drugs, especially when taken concurrently. Herein, we discuss the current scientific basis for using flavonoid supplementation to improve health as well as the limitations related to high intakes of dietary flavonoids.
Collapse
Affiliation(s)
- Julia Solnier
- ISURA, Clinical Research Unit, 101-3680 Bonneville Place, Burnaby, BC V3N 4T5, Canada
| | - Chuck Chang
- ISURA, Clinical Research Unit, 101-3680 Bonneville Place, Burnaby, BC V3N 4T5, Canada
| | | |
Collapse
|
38
|
Skadiņš I, Labsvārds KD, Grava A, Amirian J, Tomsone LE, Ruško J, Viksna A, Bandere D, Brangule A. Antimicrobial and Antibiofilm Properties of Latvian Honey against Causative Agents of Wound Infections. Antibiotics (Basel) 2023; 12:antibiotics12050816. [PMID: 37237718 DOI: 10.3390/antibiotics12050816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Honey is widely used in traditional medicine and modern wound healing biomaterial research as a broad-spectrum antimicrobial, anti-inflammatory and antioxidant agent. The study's objectives were to evaluate the antibacterial activity and polyphenolic profiles of 40 monofloral honey samples collected from beekeepers in the territory of Latvia. The antimicrobial and antifungal activity of Latvian honey samples were compared with commercial Manuka honey and the honey analogue sugar solutions-carbohydrate mixture and tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, clinical isolates Extended-Spectrum Beta-Lactamases produced Escherichia coli, Methicillin-resistant Staphylococcus aureus and Candida albicans. Antimicrobial activity was evaluated with the well-diffusion method (80% honey solution w/v) and microdilution method. The honey samples with the highest antimicrobial potential were tested to prevent biofilm development and activity against a preformed biofilm. The principal component analysis of the antimicrobial properties of honey samples vs. polyphenolic profile was performed. Eleven honey samples exhibited antibacterial activity to all investigated bacteria. The antibacterial effect of the samples was most significant on the Gram-positive bacteria compared to the studied Gram-negative bacteria. Latvian honey presents promising potential for use in wound healing biomaterials, opening the possibility of achieving long-term antibacterial effects.
Collapse
Affiliation(s)
- Ingus Skadiņš
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
- Department of Biology and Microbiology, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Krišs Dāvids Labsvārds
- Faculty of Chemistry, University of Latvia, LV-1004 Riga, Latvia
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia
| | - Andra Grava
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, LV-1007 Riga, Latvia
| | - Jhaleh Amirian
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Laura Elīna Tomsone
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia
| | - Jānis Ruško
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia
| | - Arturs Viksna
- Faculty of Chemistry, University of Latvia, LV-1004 Riga, Latvia
| | - Dace Bandere
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Agnese Brangule
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia
| |
Collapse
|