1
|
Gajera HP, Hirpara DG, Bhadani RV, Kandoliya UK, Valu MG. Integrating genetic assortment and molecular insights for climate-resilient breeding to unravel drought tolerance in cotton. J Biotechnol 2024; 394:92-102. [PMID: 39181209 DOI: 10.1016/j.jbiotec.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/18/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
This study addresses the challenges posed by rainfall variability, leading to water deficits during critical stages of crop growth, resulting in a drastic reduction of cotton yield. In a comprehensive evaluation, thirty cotton genotypes, including five Gossypium arboreum (wild) and twenty-five Gossypium hirsutum (cultivated), were grown under rainfed and irrigated conditions. Drought tolerance indices (DTI) were evaluated, categorizing genotypes based on their resilience. Further, in-vitro screening at the seedling stage (20 days) under PEG-induced drought identified tolerant genotypes exhibiting elevated levels of free proline (19.07±5.31 mg.g-100fr.wt.), amino acids (34.59±6.51 mg.g-100fr.wt.), soluble proteins (13.73±2.65 mg.g-1fr.wt.), and glycine betaine (10.95±3.62 mg.g-100fr.wt.), in their leaves, positively correlating (p<0.001) with relative water content (87.70±3.45 %). Molecular analysis using drought-specific simple sequence repeats (SSR) markers revealed significant genetic variability in a cotton genotypes, with lower observed and higher expected heterozygosity. F statistics exposed a higher level of gene flow corresponding to low differentiation among populations. Among the genotypes group, wild GAM-67 and cultivated Deviraj emerged as the most potent, exhibiting the higher DTI and diverse gene pools. Study exhibited higher total gene diversity in drought-tolerant wild GAM-67 (0.8501) and greater expected heterozygosity (0.626) and gene flow (0.6731) in cultivated Deviraj, underlining their robust genetic adaptability to drought conditions. The integrated approach of field evaluations, in-vitro screening, and molecular analyses explained substantial genetic diversity, with the identification of promising genotypes displaying higher drought tolerance indices, elevated levels of stress-related biochemical osmolytes, and pronounced genetic adaptability, thereby contributing to the advancement of breeding initiatives for enhanced drought resilience in cotton.
Collapse
Affiliation(s)
- H P Gajera
- Department of Biotechnology, Junagadh Agricultural University, Junagadh 362 001, India.
| | - Darshna G Hirpara
- Department of Biotechnology, Junagadh Agricultural University, Junagadh 362 001, India
| | - Rushita V Bhadani
- Department of Biotechnology, Junagadh Agricultural University, Junagadh 362 001, India
| | - U K Kandoliya
- Department of Biotechnology, Junagadh Agricultural University, Junagadh 362 001, India
| | - M G Valu
- Cotton Research Station, Junagadh Agricultural University, Junagadh 362 001, India
| |
Collapse
|
2
|
Wang H, Kovaleski AP, Londo JP. Physiological and transcriptomic characterization of cold acclimation in endodormant grapevine under different temperature regimes. PHYSIOLOGIA PLANTARUM 2024; 176:e14607. [PMID: 39489599 DOI: 10.1111/ppl.14607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
It is essential for the survival of grapevines in cool climate viticultural regions where vines properly acclimate in late fall and early winter and develop freezing tolerance. Climate change-associated abnormities in temperature during the dormant season, including oscillations between prolonged warmth in late fall and extreme cold in midwinter, impact cold acclimation and threaten the sustainability of the grape and wine industry. We conducted two experiments in controlled environment to investigate the impacts of different temperature regimes on cold acclimation ability in endodormant grapevine buds through a combination of freezing tolerance-based physiological and RNA-seq-based transcriptomic monitoring. Results show that exposure to a constant temperature, whether warm (22 and 11°C), moderate (7°C), or cool (4 and 2°C) was insufficient for triggering cold acclimation and increasing freezing tolerance in dormant buds. However, when the same buds were exposed to temperature cycling (7±5°C), acclimation occurred, and freezing tolerance was increased by 5°C. We characterized the transcriptomic response of endodormant buds to high and low temperatures and temperature cycling and identified new potential roles for the ethylene pathway, starch and sugar metabolism, phenylpropanoid regulation, and protein metabolism in the genetic control of endodormancy maintenance. Despite clear evidence of temperature-responsive transcription in endodormant buds, our current understanding of the genetic control of cold acclimation remains a challenge when generalizing across grapevine tissues and phenological stages.
Collapse
Affiliation(s)
- Hongrui Wang
- School of Integrative Plant Science, Horticulture Section, Cornell University-Cornell AgriTech, Geneva, NY, USA
| | - Al P Kovaleski
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason P Londo
- School of Integrative Plant Science, Horticulture Section, Cornell University-Cornell AgriTech, Geneva, NY, USA
| |
Collapse
|
3
|
Dong X, Shi L, Bao S, Ren Y, Fu H, You Y, Li Q, Chen Z. Comprehensive evaluation of freezing tolerance in prickly ash and its correlation with ecological and geographical origin factors. Sci Rep 2024; 14:26301. [PMID: 39487305 PMCID: PMC11530428 DOI: 10.1038/s41598-024-77397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Low temperatures are a key factor affecting the growth, development, and geographical distribution of prickly ash. This study investigated the impact of ecological and geographical factors on the freezing tolerance of prickly ash germplasm. Thirty-seven germplasm samples from 18 different origins were collected, and their freezing tolerance was comprehensively evaluated. The correlation between freezing tolerance and the ecological and geographical factors of their origins was also analyzed. Significant differences in freezing tolerance were observed among germplasm from different origins. The semi-lethal temperature of the germplasm ranged from - 12.37 to 1.08 °C. As temperatures decreased, the relative conductivity (REC) and catalase (CAT) activity of the germplasm gradually increased, while soluble sugar (SS), soluble protein (SP), free proline (Pro), and Peroxidase (POD) activities decreased and then increased. Superoxide dismutase (SOD) activity initially increased and then decreased. A comprehensive evaluation of freezing tolerance was conducted using a logistic equation, membership function, and cluster analysis. Germplasm from Tongchuan and Hancheng (Shaanxi Province, China), Asakura (Japan), and Yuncheng (Shanxi Province, China) exhibited the highest freezing tolerance, whereas those from Rongchang (Chongqing Municipality, China), Qujing (Yunnan Province, China), and Honghe (Yunnan Province, China) had the lowest. The correlation analysis revealed a significant positive correlation between freezing tolerance and latitude, and a significant negative correlation with the temperature of origin. Germplasm from higher latitudes showed higher SS content, SOD and CAT activities, stronger antioxidant enzyme activity, and better freezing tolerance compared to those from lower latitudes. REC was lower in germplasm originating from low-temperature areas than in those from high-temperature areas. Additionally, SP, Pro content, SOD, and POD activities were higher, indicating effective scavenging of active oxygen free radicals. No significant correlation was found between altitude and longitude of origin and freezing tolerance. However, at similar latitudes, prickly ash from higher altitudes displayed higher antioxidant enzyme activity and stronger freezing tolerance compared to those from lower altitudes. These findings provide a scientific basis for breeding prickly ash cultivars suited to different ecological regions.
Collapse
Affiliation(s)
- Xixi Dong
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Lin Shi
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Shuqin Bao
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Yun Ren
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Hao Fu
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
- Geological Team 607, Chongqing Geological and Mineral Exploration and Development Bureau, Chongqing, 401300, China
| | - Yuming You
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Qiang Li
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Zexiong Chen
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
4
|
Tushabe D, Rosbakh S. Patterns and Drivers of Pollen Temperature Tolerance. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39445784 DOI: 10.1111/pce.15207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Pollen, a pivotal stage in the plant reproductive cycle, is highly sensitive to temperature fluctuations, impacting seed quality and quantity. While the importance of understanding pollen temperature limits (Tmin, Topt, Tmax - collectively PTLs) is recognized, a comprehensive synthesis of underlying drivers is lacking. Here, we examined PTLs, correlating them with vegetative tissue thermotolerance and assessing variability at the intra- and interspecific levels across 191 species with contrasting phylogeny, cultivation history, growth form and ecology. At the species level, the PTLs range from 9.0 to 42.4°C, with considerable differences among individual species. Vegetative tissue showed greater tolerance to both low and high temperatures than pollen. A significant, though weak, correlation was observed between PTLs and leaf temperature tolerance. Pollen heat tolerance was independent of that in leaves and stems. The greatest intraspecific variability was observed in pollen cold tolerance (Tmin), followed by Topt and Tmax. Phylogenetic analysis revealed family-level conservation in all three pollen temperature tolerance measures. Climate emerged as a significant PTL driver of pollen cold tolerance, with species from colder and stable climates exhibiting enhanced cold tolerance. Cultivated and wild species did not differ in their pollen temperature tolerances. Herbaceous plants showed higher tolerance to high temperatures compared to shrubs and trees, potentially reflecting divergent thermal conditions during anthesis. This study provides the first formal analysis of complex relationships between pollen temperature limits, plant characteristics and environmental factors, providing crucial insights into climate change impacts on plant reproduction.
Collapse
Affiliation(s)
- Donam Tushabe
- Ecology and Conservation Biology, Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| | - Sergey Rosbakh
- Ecology and Conservation Biology, Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Puttamadanayaka S, Emayavaramban P, Yadav PK, Radhakrishna A, Mehta BK, Chandra A, Ahmad S, Sanivarapu H, Siddaiah CN, Yogendra K. Unravelling the molecular mechanism underlying drought stress tolerance in Dinanath (Pennisetum pedicellatum Trin.) grass via integrated transcriptomic and metabolomic analyses. BMC PLANT BIOLOGY 2024; 24:928. [PMID: 39367330 PMCID: PMC11452992 DOI: 10.1186/s12870-024-05579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Dinanath grass (Pennisetum pedicellatum Trin.) is an extensively grown forage grass known for its significant drought resilience. In order to comprehensively grasp the adaptive mechanism of Dinanath grass in response to water deficient conditions, transcriptomic and metabolomics were applied in the leaves of Dinanath grass exposed to two distinct drought intensities (48-hour and 96-hour). Transcriptomic analysis of Dinanath grass leaves revealed that a total of 218 and 704 genes were differentially expressed under 48- and 96-hour drought conditions, respectively. The genes that were expressed differently (DEGs) and the metabolites that accumulated in response to 48-hour drought stress mainly showed enrichment in the biosynthesis of secondary metabolites, particularly phenolics and flavonoids. Conversely, under 96-hour drought conditions, the enriched pathways predominantly involved lipid metabolism, specifically sterol lipids. In particular, phenylpropanoid pathway and brassinosteroid signaling played a crucial role in drought response to 48- and 96-hour water deficit conditions, respectively. This variation in drought response indicates that the adaptation mechanism in Dinanath grass is highly dependent on the intensity of drought stress. In addition, different genes associated with phenylpropanoid and fatty acid biosynthesis, as well as signal transduction pathways namely phenylalanine ammonia-lyase, putrescine hydroxycinnamoyl transferase, abscisic acid 8'-hydroxylase 2, syntaxin-61, lipoxygenase 5, calcium-dependent protein kinase and phospholipase D alpha one, positively regulated with drought tolerance. Combined transcriptomic and metabolomic analyses highlights the outstanding involvement of regulatory pathways related to secondary cell wall thickening and lignin biosynthesis in imparting drought tolerance to Dinanath grass leaves. These findings collectively contribute to an enhanced understanding of candidate genes and key metabolites relevant to drought response in Dinanath grass. Furthermore, they establish a groundwork for the creation of a transcriptome database aimed at developing abiotic stress-tolerant grasses and major crop varieties through both transgenic and genome editing approaches.
Collapse
Affiliation(s)
| | | | | | - Auji Radhakrishna
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | | | - Amaresh Chandra
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - Shahid Ahmad
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - Hemalatha Sanivarapu
- International Crops Research Institute for Semi-Arid Tropics, Patancheru, 502324, India
| | | | - Kalenahalli Yogendra
- International Crops Research Institute for Semi-Arid Tropics, Patancheru, 502324, India.
| |
Collapse
|
6
|
Pandey S, Divakar S, Singh A. Genome editing prospects for heat stress tolerance in cereal crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108989. [PMID: 39094478 DOI: 10.1016/j.plaphy.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The world population is steadily growing, exerting increasing pressure to feed in the future, which would need additional production of major crops. Challenges associated with changing and unpredicted climate (such as heat waves) are causing global food security threats. Cereal crops are a staple food for a large portion of the world's population. They are mostly affected by these environmentally generated abiotic stresses. Therefore, it is imperative to develop climate-resilient cultivars to support the sustainable production of main cereal crops (Rice, wheat, and maize). Among these stresses, heat stress causes significant losses to major cereals. These issues can be solved by comprehending the molecular mechanisms of heat stress and creating heat-tolerant varieties. Different breeding and biotechnology techniques in the last decade have been employed to develop heat-stress-tolerant varieties. However, these time-consuming techniques often lack the pace required for varietal improvement in climate change scenarios. Genome editing technologies offer precise alteration in the crop genome for developing stress-resistant cultivars. CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeat/Cas9), one such genome editing platform, recently got scientists' attention due to its easy procedures. It is a powerful tool for functional genomics as well as crop breeding. This review will focus on the molecular mechanism of heat stress and different targets that can be altered using CRISPR/Cas genome editing tools to generate climate-smart cereal crops. Further, heat stress signaling and essential players have been highlighted to provide a comprehensive overview of the topic.
Collapse
Affiliation(s)
- Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - S Divakar
- Department of Agricultural Biotechnology Biotechnology and Molecular Biotechnology, CBSH, RPCAU, Pusa, Samastipur, Bihar, 8481253, India
| | - Ashutosh Singh
- Centre for Advanced Studies on Climate Change, RPCAU, Pusa, Bihar, 848125, India.
| |
Collapse
|
7
|
Ithape D, Dalvi S, Srivastava AK. Chitosan-thiourea and their derivatives: Applications and action mechanisms for imparting drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154365. [PMID: 39383780 DOI: 10.1016/j.jplph.2024.154365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
The increasing abiotic stresses from changing global climatic conditions, including drought, extreme temperatures, salinity, storms, pollutants, and floods, impend crop cultivation and sustainability. To mitigate these effects, numerous synthetic and non-synthetic chemicals or plant growth regulators are in practice. Chitosan, a natural organic substance rich in nitrogen and carbon, and thiourea, a synthetic plant growth regulator containing sulfur and nitrogen, have garnered significant interest for their roles in enhancing plant stress tolerance. Despite extensive use, the precise mechanisms of their actions remain unclear. Towards this endeavor, the present review examines how chitosan and thiourea contribute to stress tolerance in crop plants, particularly under drought conditions, to improve production and sustainability. It also explores thiourea's potential as a hydrogen sulfide (H2S) donor and the possible applications of thiolated chitosan derivatives and chitosan-thiourea combinations, emphasizing their biological functions and benefits for sustainable agriculture.
Collapse
Affiliation(s)
- Dinesh Ithape
- Tissue Culture Section, Agri. Sci & Tech. Dept. Vasantdada Sugar Institute, Manjari(Bk), Pune, 412307, India; Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Sunil Dalvi
- Tissue Culture Section, Agri. Sci & Tech. Dept. Vasantdada Sugar Institute, Manjari(Bk), Pune, 412307, India.
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha Atomic Research Center, Mumbai, 400094, India
| |
Collapse
|
8
|
Singh A, Arora K, Chandra Babu S. Examining the impact of climate change on cereal production in India: Empirical evidence from ARDL modelling approach. Heliyon 2024; 10:e36403. [PMID: 39309923 PMCID: PMC11415674 DOI: 10.1016/j.heliyon.2024.e36403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Agriculture sector is major sufferer of climate change both at a global level as well as at India level. Cereals account for about 92 % of India's total food grain output and climate change has a significant influence on the production of cereals. This study aimed to evaluate the long-term and short-term effects of climatic and non-climatic variables, specifically temperature, precipitation, cereal area, total cropped area, fertilizer consumption, and pesticide consumption, on cereal production in India. The study included annual time series data that covered the period from 1960 to 2018, covering a period of 58 years. Various econometric techniques were employed to examine these relationships. The validity of a long-term and short-term relationship among the relevant variables included in the study was validated by employing the Autoregressive Distributed Lag (ARDL) technique and the Johansen cointegration test. The ARDL model's estimation outcomes reveals that input factors such as cereal area became a key factor in rising cereal production, as evidenced by its positive coefficient. Similarly, fertilizer consumption and precipitation had positive effects on production in the long run whereas total cropped area and minimum temperature has little influence over the results of production both in short run as well as long run. Furthermore, the long-term findings were also supported using econometric tools like Canonical Cointegrating Regression (CCR) and Fully Modified Least Squares (FMOLS). These methods confirmed that variations in cereal production in India were significantly influenced by both climatic factors and agricultural inputs and factors. The study emphasizes the urgency for policymakers to prioritize proactive measures aimed at reducing the adverse impacts of climate change on cereal production in India. This necessitates a comprehensive strategy integrating sustainable practices, technological innovations, and robust policy frameworks to ensure resilient agricultural sectors and sustainable food production.
Collapse
Affiliation(s)
- Arshdeep Singh
- Department of Economics and Sociology, Punjab Agricultural University, Ludhiana, Punjab, India
- Indian Council of Agricultural Research – National Institute of Agricultural Economics and Policy Research (ICAR-NIAP), New Delhi, India
| | - Kashish Arora
- Department of Economics and Sociology, Punjab Agricultural University, Ludhiana, Punjab, India
| | | |
Collapse
|
9
|
Chamanehfar S, Baygi MM, Modaresi F, Babaeian I. Near future variations in temperature extremes in northeastern Iran under CMIP6 projections. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:972. [PMID: 39311989 DOI: 10.1007/s10661-024-13125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024]
Abstract
Extreme air temperatures which are of significance in plant growth are influenced by climate change. The aim of this study was to assess the climate change effects on temperature extreme indices (TEIs) in northeastern Iran based on the CMIP6 projections. For this purpose, five extreme indices including maximum of maximum temperature (TXx), minimum of minimum temperature (TNn), cold nights (TN10p), warm nights (TN90p), and summer days (SU25) which are effective on plant growth were evaluated. The projections of the three Earth system models including ACCESS-CM2, MIROC6, and MRI-ESM2-0 were assessed under the three scenarios of SSP1-2.6, SSP2-4.5, and SSP5-8.5 for the period 2026-2050 compared to the historical period (1989-2014). The models' projections were evaluated by statistical tests on the changes in the average and trend of data. Results showed that the MRI-ESM2-0 model revealed the best efficiency compared to the other models. The projections of all models and scenarios indicated a significant increase in the average of TXx and SU25 indices over the study area at the confidence level of 95% by 1.6 to 2.4 °C, as well as 15 to 18 days under the three scenarios. Also, the results exhibited a significant increasing trend in TN90p and a decreasing one in TN10p overall province at confidence level of 95%. These changes will lead to an increase in evapotranspiration of the plants and an increase in agricultural water demand, and as a result, a decrease in the yield of some main products like wheat and saffron which are the main products in the study area.
Collapse
Affiliation(s)
- Sanaz Chamanehfar
- Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Mousavi Baygi
- Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fereshteh Modaresi
- Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Iman Babaeian
- Climate Research Institute, Atmospheric Science and Meteorological Research Center (ASMERC), Mashhad, Iran
| |
Collapse
|
10
|
Reinman T, Braden J, Miller ND, Murphy KM. Mineral, seed morphology, and agronomic characteristics of proso millet grown in the inland Pacific Northwest. Front Nutr 2024; 11:1394136. [PMID: 39323567 PMCID: PMC11422230 DOI: 10.3389/fnut.2024.1394136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/31/2024] [Indexed: 09/27/2024] Open
Abstract
Climate change increases stressors that will challenge the resiliency of global agricultural production. Just three crops, wheat, maize, and rice, are estimated to sustain 50% of the caloric demand of the world population, meaning that significant loss of any of these crops would threaten global food security. However, increasing cropping system diversity can create a more resilient food system. One crop that could add diversity to wheat-dominated cropping systems in the inland Pacific Northwest is proso millet, a climate-resilient, small-seeded cereal crop that is highly water efficient, able to grow in low fertility soils, and has a desirable nutritional profile. Proso millet shows potential for adoption in this region due to its short growing season, compatibility with regional equipment, and environmental requirements, however US cultivars have been developed for the Great Plains and little research has been conducted outside of this region. To better understand the potential for adoption in the inland PNW, seven commercially available varieties were planted in a researcher-run trial in Pullman, WA and in a series of producer-run trials across the region in 2022. Samples were analyzed for mineral concentration (Zn, Fe, Cu, Mn, Mg, Ca, P, and K), seed morphology phenotypes (seed area, seed eccentricity, thousand seed weight, and seed color), and agronomic phenotypes (grain yield, plant height, days to heading, days to maturity, and percent emergence). Varieties from the researcher-run trial showed significant differences for all traits excluding percent emergence. Samples from producer-run trials showed differences by location for concentration of all minerals and for all seed morphology traits but were not analyzed for agronomic phenotypes. Samples from producer-run trials showed no difference by variety for mineral concentration but showed varietal differences for all seed morphology phenotypes. Most minerals were positively correlated with one another (0.28 < r < 0.92). Grain yield was negatively correlated with Zn (r = -0.55, p < 0.01) and was positively correlated with plant height (r = 0.62, p < 0.001), seed area (r = 0.45, p < 0.05), and thousand seed weight (r = 0.45, p < 0.05). Results from this study can inform variety selection for stakeholders interested in adopting proso millet in the inland PNW and can support future proso millet breeding efforts, particularly in this region.
Collapse
Affiliation(s)
- Tayler Reinman
- Sustainable Seed Systems Lab, Department of Crop and Soil Science, Washington States University, Pullman, WA, United States
| | - Jessica Braden
- Sustainable Seed Systems Lab, Department of Crop and Soil Science, Washington States University, Pullman, WA, United States
| | - Nathan Daniel Miller
- Spalding Lab, Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Kevin M Murphy
- Sustainable Seed Systems Lab, Department of Crop and Soil Science, Washington States University, Pullman, WA, United States
| |
Collapse
|
11
|
Kaur R, Gupta S, Tripathi V, Bharadwaj A. Unravelling the secrets of soil microbiome and climate change for sustainable agroecosystems. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01194-9. [PMID: 39249146 DOI: 10.1007/s12223-024-01194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
The soil microbiota exhibits an important function in the ecosystem, and its response to climate change is of paramount importance for sustainable agroecosystems. The macronutrients, micronutrients, and additional constituents vital for the growth of plants are cycled biogeochemically under the regulation of the soil microbiome. Identifying and forecasting the effect of climate change on soil microbiomes and ecosystem services is the need of the hour to address one of the biggest global challenges of the present time. The impact of climate change on the structure and function of the soil microbiota is a major concern, explained by one or more sustainability factors around resilience, reluctance, and rework. However, the past research has revealed that microbial interventions have the potential to regenerate soils and improve crop resilience to climate change factors. The methods used therein include using soil microbes' innate capacity for carbon sequestration, rhizomediation, bio-fertilization, enzyme-mediated breakdown, phyto-stimulation, biocontrol of plant pathogens, antibiosis, inducing the antioxidative defense pathways, induced systemic resistance response (ISR), and releasing volatile organic compounds (VOCs) in the host plant. Microbial phytohormones have a major role in altering root shape in response to exposure to drought, salt, severe temperatures, and heavy metal toxicity and also have an impact on the metabolism of endogenous growth regulators in plant tissue. However, shelf life due to the short lifespan and storage time of microbial formulations is still a major challenge, and efforts should be made to evaluate their effectiveness in crop growth based on climate change. This review focuses on the influence of climate change on soil physico-chemical status, climate change adaptation by the soil microbiome, and its future implications.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, IAH, GLA University, Mathura, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Saurabh Gupta
- Department of Biotechnology, IAH, GLA University, Mathura, India.
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002, Uttarakhand, India.
| | - Alok Bharadwaj
- Department of Biotechnology, IAH, GLA University, Mathura, India
| |
Collapse
|
12
|
Spychała J, Tomkowiak A, Noweiska A, Bobrowska R, Rychel-Bielska S, Bocianowski J, Wolko Ł, Kowalczewski PŁ, Nowicki M, Kwiatek MT. Expression patterns of candidate genes for the Lr46/Yr29 "slow rust" locus in common wheat (Triticum aestivum L.) and associated miRNAs inform of the gene conferring the Puccinia triticina resistance trait. PLoS One 2024; 19:e0309944. [PMID: 39240941 PMCID: PMC11379320 DOI: 10.1371/journal.pone.0309944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/22/2024] [Indexed: 09/08/2024] Open
Abstract
Leaf rust caused by Puccinia triticina (Pt) is one of the most impactful diseases causing substantial losses in common wheat (Triticum aestivum L.) crops. In adult plants resistant to Pt, a horizontal adult plant resistance (APR) is observed: APR protects the plant against multiple pathogen races and is distinguished by durable persistence under production conditions. The Lr46/Yr29 locus was mapped to chromosome 1B of common wheat genome, but the identity of the underlying gene has not been demonstrated although several candidate genes have been proposed. This study aimed to analyze the expression of nine candidate genes located at the Lr46/Yr29 locus and their four complementary miRNAs (tae-miR5384-3p, tae-miR9780, tae-miR9775, and tae-miR164), in response to Pt infection. The plant materials tested included five reference cultivars in which the molecular marker csLV46G22 associated with the Lr46/Yr29-based Pt resistance was identified, as well as one susceptible control cultivar. Biotic stress was induced in adult plants by inoculation with fungal spores under controlled conditions. Plant material was sampled before and at 6, 12, 24, 48 hours post inoculation (hpi). Differences in expression of candidate genes at the Lr46/Yr29 locus were analyzed by qRT-PCR and showed that the expression of the genes varied at the analyzed time points. The highest expression of Lr46/Yr29 candidate genes (Lr46-Glu1, Lr46-Glu2, Lr46-Glu3, Lr46-RLK1, Lr46-RLK2, Lr46-RLK3, Lr46-RLK4, Lr46-Snex, and Lr46-WRKY) occurred at 12 and 24 hpi and such expression profiles were obtained only for one candidate gene among the nine genes analyzed (Lr46-Glu2), indicating that it may be a contributing factor in the resistance response to Pt infection.
Collapse
Affiliation(s)
- Julia Spychała
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Poznań Division, Department of Oilseed Crops, Poznań, Poland
| | - Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - Aleksandra Noweiska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Poznań Division, Department of Oilseed Crops, Poznań, Poland
| | - Roksana Bobrowska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Łukasz Wolko
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Marcin Nowicki
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Michał Tomasz Kwiatek
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Radzikow, Poland
| |
Collapse
|
13
|
Hosseiniyan Khatibi SM, Dimaano NG, Veliz E, Sundaresan V, Ali J. Exploring and exploiting the rice phytobiome to tackle climate change challenges. PLANT COMMUNICATIONS 2024:101078. [PMID: 39233440 DOI: 10.1016/j.xplc.2024.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
The future of agriculture is uncertain under the current climate change scenario. Climate change directly and indirectly affects the biotic and abiotic elements that control agroecosystems, jeopardizing the safety of the world's food supply. A new area that focuses on characterizing the phytobiome is emerging. The phytobiome comprises plants and their immediate surroundings, involving numerous interdependent microscopic and macroscopic organisms that affect the health and productivity of plants. Phytobiome studies primarily focus on the microbial communities associated with plants, which are referred to as the plant microbiome. The development of high-throughput sequencing technologies over the past 10 years has dramatically advanced our understanding of the structure, functionality, and dynamics of the phytobiome; however, comprehensive methods for using this knowledge are lacking, particularly for major crops such as rice. Considering the impact of rice production on world food security, gaining fresh perspectives on the interdependent and interrelated components of the rice phytobiome could enhance rice production and crop health, sustain rice ecosystem function, and combat the effects of climate change. Our review re-conceptualizes the complex dynamics of the microscopic and macroscopic components in the rice phytobiome as influenced by human interventions and changing environmental conditions driven by climate change. We also discuss interdisciplinary and systematic approaches to decipher and reprogram the sophisticated interactions in the rice phytobiome using novel strategies and cutting-edge technology. Merging the gigantic datasets and complex information on the rice phytobiome and their application in the context of regenerative agriculture could lead to sustainable rice farming practices that are resilient to the impacts of climate change.
Collapse
Affiliation(s)
| | - Niña Gracel Dimaano
- International Rice Research Institute, Los Baños, Laguna, Philippines; College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
| | - Esteban Veliz
- College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Venkatesan Sundaresan
- College of Biological Sciences, University of California, Davis, Davis, CA, USA; College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Jauhar Ali
- International Rice Research Institute, Los Baños, Laguna, Philippines.
| |
Collapse
|
14
|
Mumtaz S, Javed R, Rana JN, Iqbal M, Choi EH. Pulsed high power microwave seeds priming modulates germination, growth, redox homeostasis, and hormonal shifts in barley for improved seedling growth: Unleashing the molecular dynamics. Free Radic Biol Med 2024; 222:371-385. [PMID: 38901500 DOI: 10.1016/j.freeradbiomed.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Increasing the seed germination potential and seedling growth rates play a pivotal role in increasing overall crop productivity. Seed germination and early vegetative (seedling) growth are critical developmental stages in plants. High-power microwave (HPM) technology has facilitated both the emergence of novel applications and improvements to existing in agriculture. The implications of pulsed HPM on agriculture remain unexplored. In this study, we have investigated the effects of pulsed HPM exposure on barley germination and seedling growth, elucidating the plausible underlying mechanisms. Barley seeds underwent direct HPM irradiation, with 60 pulses by 2.04 mJ/pulse, across three distinct irradiation settings: dry, submerged in deionized (DI) water, and submerged in DI water one day before exposure. Seed germination significantly increased in all HPM-treated groups, where the HPM-dry group exhibited a notable increase, with a 2.48-fold rise at day 2 and a 1.9-fold increment at day 3. Similarly, all HPM-treated groups displayed significant enhancements in water uptake, and seedling growth (weight and length), as well as elevated levels of chlorophyll, carotenoids, and total soluble protein content. The obtained results indicate that when comparing three irradiation setting, HPM-dry showed the most promising effects. Condition HPM seed treatment increases the level of reactive species within the barley seedlings, thereby modulating plant biochemistry, physiology, and different cellular signaling cascades via induced enzymatic activities. Notably, the markers associated with plant growth are upregulated and growth inhibitory markers are downregulated post-HPM exposure. Under optimal HPM-dry treatment, auxin (IAA) levels increased threefold, while ABA levels decreased by up to 65 %. These molecular findings illuminate the intricate regulatory mechanisms governing phenotypic changes in barley seedlings subjected to HPM treatment. The results of this study might play a key role to understand molecular mechanisms after pulsed-HPM irradiation of seeds, contributing significantly to address the global need of sustainable crop yield.
Collapse
Affiliation(s)
- Sohail Mumtaz
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul, Republic of Korea; Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Rida Javed
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea; Department of Plasma Bio Display, Kwangwoon University, Seoul, Republic of Korea
| | - Juie Nahushkumar Rana
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea; Department of Plasma Bio Display, Kwangwoon University, Seoul, Republic of Korea
| | - Madeeha Iqbal
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea; Department of Plasma Bio Display, Kwangwoon University, Seoul, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul, Republic of Korea; Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea; Department of Plasma Bio Display, Kwangwoon University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Gill SS, Khan NA, Agarwala N, Singh K, Sunkar R, Tuteja N. ncRNAs in plant development and stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108950. [PMID: 39034172 DOI: 10.1016/j.plaphy.2024.108950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Affiliation(s)
- Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124 001, Haryana, India.
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati, Assam, 781014, India.
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, India.
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), New Delhi, India.
| |
Collapse
|
16
|
Trivedi AK, Shukla SK, Pandey G, Singh A. Exogenous Melatonin Enhances Moisture Stress Tolerance in Mango (Mangifera indica L.) through Alleviating Oxidative Damages. PHYSIOLOGIA PLANTARUM 2024; 176:e14566. [PMID: 39385348 DOI: 10.1111/ppl.14566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024]
Abstract
In subtropical regions, April to June represents a temporary moisture stress for mango trees, leading to huge economic loss. Although water is available in the deep root zone, the upper soil surface, which has fibrous roots, is dry, and the tree transpiration rate is high. Moisture stress causes an increased oxidation state, which is detrimental to fruit growth and development. Finding substitutes for moisture stress management is important for sustainable mango production. To manage this moisture stress in mango, we tested if foliar application of 20, 50, 100 and 150 μM melatonin helped to maintain a reduced oxidation state in the cells. Applications were made at three phenological stages of fruit development (marble, egg and mature fruit stages) in 16-year-old trees and the same plants for each treatment were followed over three years. Melatonin application indeed improved the fruit yield of mango. Moisture stress decreased yield by 55.94% compared to irrigated trees but only by 7.5% in melatonin treatment. Also, more 'A' grade fruits were harvested in irrigated and melatonin-treated conditions than in non-irrigated and non-treated conditions. Indeed, the total chlorophyll content in the leaves of moisture-stressed melatonin-treated trees (12.58 mg.g-1 fresh weight) was well above non-treated trees (6.77 mg.g-1) and similar to irrigated trees (12.50 mg.g-1). A dose-dependent increase in the chlorophyll content of melatonin-treated plants was found. Similarly, the activities of catalase, peroxidase, superoxidase dismutase enzymes in leaves of irrigated and melatonin-treated trees were lower than in non-irrigated condition, and superoxide free radial formation was lower in moisture-stressed melatonin-treated trees (0.77 nmol H2O2.mg-1 protein) and irrigated trees (0.65) than moisture-stressed non-treated trees (4.27). Significant variations was found in antioxidants (total, reduced and oxidized glutathione and ascorbate) content and antioxidant enzymes' activities (i.e., glutathione reductase and ascorbate peroxidase) in irrigated, melatonin-treated and non-irrigated conditions. Overall, 150 μM exogenous melatonin applied three times at different fruit development stages may be a sustainable and useful approach to manage transient moisture stress in mango trees thanks to its positive action on the antioxidant system.
Collapse
Affiliation(s)
| | | | - Ghanshyam Pandey
- ICAR - Central Institute for Subtropical Horticulture, Lucknow, India
| | - Achal Singh
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, India
| |
Collapse
|
17
|
Ghosh D, Borzée A. Biological pest regulation can benefit from diverse predation modes. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240535. [PMID: 39295914 PMCID: PMC11407875 DOI: 10.1098/rsos.240535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/15/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024]
Abstract
Increases in agricultural intensity due to anthropogenic demands alongside the need to reduce the reliance on pesticides have resulted in an urgent need for sustainable options for pest control. Biological pest regulation is an alternative strategy that relies on natural predators and is essentially a by-product of successful foraging. Therefore, knowledge of the predator's specific foraging behaviour can significantly improve bioregulation. In this article, we discuss the implications of predators' diverse foraging modes on their efficiency as bioregulators of crop pests using amphibians and reptiles as models. Amphibians and reptiles are promising bioregulators as they are insectivorous, and the diversity in their foraging styles-ambush and active foraging, differing in energy expenditure, movement, cognitive abilities, reliance on cues, response to predatory risk, competition and prey salience-can have specific impacts on pest regulation. We propose the uptake of this concept into strategizing pest management actions. We are now moving towards an era of biological pest regulation, which is the most targeted, economically profitable method with zero negative impact on the ecosystem. Utilizing diverse traits associated with the different foraging modes in vertebrate predators can be a crucial tool in allowing pest management to adapt to the extreme challenges it is facing.
Collapse
Affiliation(s)
- Deyatima Ghosh
- Laboratory of Animal Behaviour and Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Amaël Borzée
- Laboratory of Animal Behaviour and Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
- Jiangsu Agricultural Biodiversity Cultivation and Utilization Research Center, Nanjing 210014, People's Republic of China
| |
Collapse
|
18
|
Mughal N, Shoaib N, Chen J, Li Y, He Y, Fu M, Li X, He Y, Guo J, Deng J, Yang W, Liu J. Adaptive roles of cytokinins in enhancing plant resilience and yield against environmental stressors. CHEMOSPHERE 2024; 364:143189. [PMID: 39191348 DOI: 10.1016/j.chemosphere.2024.143189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/03/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Innovative agricultural strategies are essential for addressing the urgent challenge of food security in light of climate change, population growth, and various environmental stressors. Cytokinins (CKs) play a pivotal role in enhancing plant resilience and productivity. These compounds, which include isoprenoid and aromatic types, are synthesized through pathways involving key enzymes such as isopentenyl transferase and cytokinin oxidase. Under abiotic stress conditions, CKs regulate critical physiological processes by improving photosynthetic efficiency, enhancing antioxidant enzyme activity, and optimizing root architecture. They also reduce the levels of reactive oxygen species and malondialdehyde, resulting in improved plant performance and yield. CKs interact intricately with other phytohormones, including abscisic acid, ethylene, salicylic acid, and jasmonic acid, to modulate stress-responsive pathways. This hormonal cross-talk is vital for finely tuning plant responses to stress. Additionally, CKs influence nutrient uptake and enhance responses to heavy metal stress, thereby bolstering overall plant resilience. The application of CKs helps plants maintain higher chlorophyll levels, boost antioxidant systems, and promote root and shoot growth. The strategic utilization of CKs presents an adaptive approach for developing robust crops capable of withstanding diverse environmental stressors, thus contributing to sustainable agricultural practices and global food security. Ongoing research into the mechanisms of CK action and their interactions with other hormones is essential for maximizing their agricultural potential. This underscores the necessity for continued innovation and research in agricultural practices, in alignment with global goals of sustainable productivity and food security.
Collapse
Affiliation(s)
- Nishbah Mughal
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Noman Shoaib
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jianhua Chen
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Li
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuhong He
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Man Fu
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xingyun Li
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanyuan He
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinya Guo
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Juncai Deng
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wenyu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiang Liu
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China; College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
19
|
Fatima S, Rashid M, Hameed A. Development of Rice Mutants with Enhanced Resilience to Drought Stress and Their Evaluation by Lab Assay, Field, and Multivariate Analysis. SCIENTIFICA 2024; 2024:4373987. [PMID: 39238607 PMCID: PMC11377117 DOI: 10.1155/2024/4373987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Drought is one of the foremost devastating abiotic stresses reported for rice crops. To improve the productivity of rice, diversity is being enlarged by induced mutation using a source of gamma rays. But this type of mutation rarely results in fruitful products because the chances of getting the desired mutant are very low. The present study aimed to evaluate the rice mutants against drought or osmotic stress. In this study, three experiments were conducted that comprised of seventy-one mutants originating from different doses of gamma rays (Cs137) along with parent RICF-160 and commercial variety (Kainat) were tested. In the first experiment, germination and seedling attributes were calculated under control and osmotic stress conditions created by using 16% (0.6 MPa) polyethylene glycol (PEG-6000). Results revealed that all the mutants exhibited significant (p < 0.01) responses to PEG-induced osmotic stress. Principal component biplot analysis (PCBA) revealed the first seventeen cumulative PCs with eigenvalues >1 contributed 88%. It was noted that the germination percentage (GP), germination rate (GR), coefficient velocity of germination (CVG), and seed vigor (SV) contributed maximum and positively in PC1. Results showed the highest germination percentage (GP) at 48 hrs in mutant NMSF-11 (88.9%) followed by NMSf-38 (73.3%). Similarly, the germination rate (GR) and coefficient velocity of germination (CVG) were measured highest in NMSF-11 (9.7 and 118.1%), respectively. In stress conditions, the mutants NMSF-35 and NMSF-36 depicted the highest GP, GR, and CVG. The maximum seed vigor (SV), shoot length (SL), root length (RL), and fresh weight (FW) were observed in mutants NMSF-50 and NMSF-51 under both conditions, whereas the mutants NMSF-59, NMSF-60, NMSF-64, and NMSF-67 showed lower values for SV, SL, RL, and FW. In the second experiment, a field trial was conducted at the Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, in two control and stress sets. A bit different trend was observed among all mutants for agronomic parameters under both conditions. In the third experiment, biochemical profiling was done in Marker Assisted Breeding (MAB) Lab-1, Plant Breeding and Genetics Division. A significant variation was seen in enzymatic antioxidants and chlorophyll content in both control and stress conditions. Under control conditions, the ascorbate peroxidase (APX) content was observed higher in mutant NMSF-49 (106.07 Units/g. f. wt.). In comparison with the stress, the ascorbate peroxidase activity was higher in NMSF-41 (82.34 Units/g. f. wt.). Catalase (CAT) activity was observed maximum in NMSF-29 (17.54 Units/g. f. wt.) and NMSF-40 (14.17 Units/g. f. wt.) under control and stress conditions, respectively. Peroxidase (POD) activity was observed maximum in NMSF-51 (22.55 Units/g. f. wt. and 10.84 Units/g. f. wt.) under control and stress conditions, respectively. In conclusion, to fit in the changing climate conditions for resilient rice crop production, the promising mutant lines may be used to transfer the desirable drought-tolerant/drought-resistant genes in rice germplasm.
Collapse
Affiliation(s)
- Shahwar Fatima
- Nuclear Institute for Agriculture and Biology College Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Rashid
- Nuclear Institute for Agriculture and Biology College Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology College Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
20
|
Aslam N, Li Q, Bashir S, Yuan L, Qiao L, Li W. Integrated Review of Transcriptomic and Proteomic Studies to Understand Molecular Mechanisms of Rice's Response to Environmental Stresses. BIOLOGY 2024; 13:659. [PMID: 39336087 PMCID: PMC11428526 DOI: 10.3390/biology13090659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Rice (Oryza sativa L.) is grown nearly worldwide and is a staple food for more than half of the world's population. With the rise in extreme weather and climate events, there is an urgent need to decode the complex mechanisms of rice's response to environmental stress and to breed high-yield, high-quality and stress-resistant varieties. Over the past few decades, significant advancements in molecular biology have led to the widespread use of several omics methodologies to study all aspects of plant growth, development and environmental adaptation. Transcriptomics and proteomics have become the most popular techniques used to investigate plants' stress-responsive mechanisms despite the complexity of the underlying molecular landscapes. This review offers a comprehensive and current summary of how transcriptomics and proteomics together reveal the molecular details of rice's response to environmental stresses. It also provides a catalog of the current applications of omics in comprehending this imperative crop in relation to stress tolerance improvement and breeding. The evaluation of recent advances in CRISPR/Cas-based genome editing and the application of synthetic biology technologies highlights the possibility of expediting the development of rice cultivars that are resistant to stress and suited to various agroecological environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenqiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China; (N.A.); (Q.L.); (S.B.); (L.Y.); (L.Q.)
| |
Collapse
|
21
|
Xing Y, Wang X. Impact of Agricultural Activities on Climate Change: A Review of Greenhouse Gas Emission Patterns in Field Crop Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:2285. [PMID: 39204720 PMCID: PMC11360188 DOI: 10.3390/plants13162285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
This review paper synthesizes the current understanding of greenhouse gas (GHG) emissions from field cropping systems. It examines the key factors influencing GHG emissions, including crop type, management practices, and soil conditions. The review highlights the variability in GHG emissions across different cropping systems. Conventional tillage systems generally emit higher levels of carbon dioxide (CO2) and nitrous oxide (N2O) than no-till or reduced tillage systems. Crop rotation, cover cropping, and residue management can significantly reduce GHG emissions by improving soil carbon sequestration and reducing nitrogen fertilizer requirements. The paper also discusses the challenges and opportunities for mitigating GHG emissions in field cropping systems. Precision agriculture techniques, such as variable rate application of fertilizers and water, can optimize crop production while minimizing environmental impacts. Agroforestry systems, which integrate trees and crops, offer the potential for carbon sequestration and reducing N2O emissions. This review provides insights into the latest research on GHG emissions from field cropping systems and identifies areas for further study. It emphasizes the importance of adopting sustainable management practices to reduce GHG emissions and enhance the environmental sustainability of agricultural systems.
Collapse
Affiliation(s)
| | - Xiukang Wang
- Key Laboratory of Applied Ecology of Loess Plateau, College of Life Science, Yan’an University, Yan’an 716000, China;
| |
Collapse
|
22
|
Vigil BE, Ascue F, Ayala RY, Murúa P, Calderon MS, Bustamante DE. Functional prediction based on 16S rRNA metagenome data from bacterial microbiota associated with macroalgae from the Peruvian coast. Sci Rep 2024; 14:18577. [PMID: 39127849 PMCID: PMC11316746 DOI: 10.1038/s41598-024-69538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Macroalgae are vital reservoirs for essential epibiotic microorganisms. Among these are growth-promoting bacteria that support the growth and healthy development of their host macroalgae, and these macroalgae can be utilized in agriculture as biostimulants, offering an alternative to traditional agrochemicals. However, to date, no comparative studies have been conducted on the functional profile and bacterial diversity associated with coastal macroalgae of Peru. In this study, we employed amplicon sequencing of the V3-V4 region of 16S rRNA gene in twelve host macroalgae collected from two rocky shores in central Peru to compare their bacterial communities. The results revealed high bacterial diversity across both sites, but differences in microbial composition were noted. The phyla Bacteroidota and Pseudomonadota were predominant. The functional prediction highlighted 44 significant metabolic pathways associated with the bacterial microbiota when comparing host macroalgae. These active pathways are related to metabolism and genetic and cellular information processing. No direct association was detected between the macroalgal genera and the associated microbiota, suggesting that the bacterial community is largely influenced by their genetic functions than the taxonomic composition of their hosts. Furthermore, some species of Chlorophyta and Rhodophyta were observed to host growth-promoting bacteria, such as Maribacter sp. and Sulfitobacter sp.
Collapse
Affiliation(s)
- Bianca E Vigil
- Programa de Maestría en Mejoramiento Genético de Plantas, Universidad Nacional Agraria La Molina, Lima, Peru
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Francisco Ascue
- Escuela de Posgrado de la Universidad de Ciencia y Tecnología (UTEC), Barranco, Lima, Peru
| | - Rosmery Y Ayala
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Pedro Murúa
- Laboratorio de Macroalgas y Ficopatología (FICOPAT), Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Martha S Calderon
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
- Instituto de Investigación en Ingeniería Ambiental (INAM), Facultad de Ingeniería Civil y Ambiental (FICIAM), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Danilo E Bustamante
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru.
- Instituto de Investigación en Ingeniería Ambiental (INAM), Facultad de Ingeniería Civil y Ambiental (FICIAM), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru.
| |
Collapse
|
23
|
Bester AU, Shimoia EP, Da-Silva CJ, Posso DA, Carvalho IR, Corrêa FM, de Oliveira ACB, do Amarante L. Enhancing stress resilience in soybeans ( Glycine max): assessing the efficacy of priming and cross-priming for mitigating water deficit and waterlogging effects. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24064. [PMID: 39163496 DOI: 10.1071/fp24064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
Priming enables plants to respond more promptly, minimise damage, and survive subsequent stress events. Here, we aimed to assess the efficacy of priming and cross-priming in mitigating the stress caused by waterlogging and/or dehydration in soybeans (Glycine max ). Soybean plants were cultivated in a greenhouse in plastic pots in which soil moisture was maintained at pot capacity through irrigation. The first stress was applied in plants at the vegetative stage for 5days and involved either dehydration or waterlogging, depending on the treatment. Subsequently, the plants were irrigated or drained and maintained at pot capacity until the second stress. For the second stress, the conditions were repeated in plants at the reproductive stage. We then evaluated the levels of hydrogen peroxide (H2 O2 ), lipid peroxidation, total soluble sugars (TSS), amino acids, proline, and starch, and the activity of antioxidant, fermentative, and aminotransferase enzymes. Under waterlogging and dehydration, priming and cross-priming significantly increased the activity of antioxidant enzymes and the levels of TSS, amino acids, and proline while reducing H2 O2 concentration and lipid peroxidation. Under waterlogging, priming suppressed fermentative activity and increased carbohydrate content. This demonstrates that soybean plants activate their defence systems more promptly when subjected to priming.
Collapse
Affiliation(s)
- Adriano U Bester
- Departamento de Botânica, Universidade Federal de Pelotas, Capão do Leão 96160-000, Brazil
| | - Eduardo P Shimoia
- Departamento de Botânica, Universidade Federal de Pelotas, Capão do Leão 96160-000, Brazil
| | - Cristiane J Da-Silva
- Departamento de Botânica, Universidade Federal de Pelotas, Capão do Leão 96160-000, Brazil
| | - Douglas A Posso
- Departamento de Botânica, Universidade Federal de Pelotas, Capão do Leão 96160-000, Brazil
| | - Ivan R Carvalho
- Departamento de Estudos Agrários, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí 97800-000, Brazil
| | - Fernanda M Corrêa
- Departamento de Botânica, Universidade Federal de Pelotas, Capão do Leão 96160-000, Brazil
| | - Ana C B de Oliveira
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Clima Temperado, Pelotas 96010-971, Brazil
| | - Luciano do Amarante
- Departamento de Botânica, Universidade Federal de Pelotas, Capão do Leão 96160-000, Brazil
| |
Collapse
|
24
|
Cheng S, Feng C, Wingen LU, Cheng H, Riche AB, Jiang M, Leverington-Waite M, Huang Z, Collier S, Orford S, Wang X, Awal R, Barker G, O'Hara T, Lister C, Siluveru A, Quiroz-Chávez J, Ramírez-González RH, Bryant R, Berry S, Bansal U, Bariana HS, Bennett MJ, Bicego B, Bilham L, Brown JKM, Burridge A, Burt C, Buurman M, Castle M, Chartrain L, Chen B, Denbel W, Elkot AF, Fenwick P, Feuerhelm D, Foulkes J, Gaju O, Gauley A, Gaurav K, Hafeez AN, Han R, Horler R, Hou J, Iqbal MS, Kerton M, Kondic-Spica A, Kowalski A, Lage J, Li X, Liu H, Liu S, Lovegrove A, Ma L, Mumford C, Parmar S, Philp C, Playford D, Przewieslik-Allen AM, Sarfraz Z, Schafer D, Shewry PR, Shi Y, Slafer GA, Song B, Song B, Steele D, Steuernagel B, Tailby P, Tyrrell S, Waheed A, Wamalwa MN, Wang X, Wei Y, Winfield M, Wu S, Wu Y, Wulff BBH, Xian W, Xu Y, Xu Y, Yuan Q, Zhang X, Edwards KJ, Dixon L, Nicholson P, Chayut N, Hawkesford MJ, Uauy C, Sanders D, Huang S, Griffiths S. Harnessing landrace diversity empowers wheat breeding. Nature 2024; 632:823-831. [PMID: 38885696 PMCID: PMC11338829 DOI: 10.1038/s41586-024-07682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security1. Here we examined the genetic and phenotypic diversity of the A. E. Watkins landrace collection2 of bread wheat (Triticum aestivum), a major global cereal, by whole-genome re-sequencing of 827 Watkins landraces and 208 modern cultivars and in-depth field evaluation spanning a decade. We found that modern cultivars are derived from two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium-based haplotypes and association genetics analyses link Watkins genomes to the thousands of identified high-resolution quantitative trait loci and significant marker-trait associations. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritized quantitative trait loci in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilizing genetic diversity in crop improvement to achieve sustainable food security.
Collapse
Affiliation(s)
- Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Cong Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Hong Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Mei Jiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Zejian Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | | | - Xiaoming Wang
- John Innes Centre, Norwich, UK
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | | | - Gary Barker
- Functional Genomics, School of Biological Sciences, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | | - Urmil Bansal
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, Cobbitty, New South Wales, Australia
| | - Harbans S Bariana
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, Cobbitty, New South Wales, Australia
- Western Sydney University, Richmond, New South Wales, Australia
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Breno Bicego
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida-AGROTECNIO-CERCA Center, Lleida, Spain
| | | | | | - Amanda Burridge
- Functional Genomics, School of Biological Sciences, University of Bristol, Bristol, UK
| | | | | | | | | | - Baizhi Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Worku Denbel
- Debre Zeit Agricultural Research Center, Ethiopian Institute of Agricultural Research, Debre Zeit, Ethiopia
| | - Ahmed F Elkot
- Wheat Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | | | | | - John Foulkes
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Oorbessy Gaju
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Adam Gauley
- School of Biology, University of Leeds, Leeds, UK
- Agri-Food and Biosciences Institute, Belfast, UK
| | | | | | - Ruirui Han
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Qingdao Agricultural University, Qingdao, China
| | | | - Junliang Hou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Muhammad S Iqbal
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Ankica Kondic-Spica
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Republic of Serbia
| | | | | | - Xiaolong Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Hongbing Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shiyan Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Lingling Ma
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | | | | | | | | | - Zareen Sarfraz
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | | | - Yan Shi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Gustavo A Slafer
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida-AGROTECNIO-CERCA Center, Lleida, Spain
- ICREA, Catalonian Institution for Research and Advanced Studies, Barcelona, Spain
| | - Baoxing Song
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Bo Song
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | | | | | | | - Abdul Waheed
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Xingwei Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yanping Wei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mark Winfield
- Functional Genomics, School of Biological Sciences, University of Bristol, Bristol, UK
| | - Shishi Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yubing Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Huazhong Agricultural University, Wuhan, China
| | - Brande B H Wulff
- John Innes Centre, Norwich, UK
- Center for Desert Agriculture, Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Yawen Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Huazhong Agricultural University, Wuhan, China
| | - Yunfeng Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Quan Yuan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xin Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Huazhong Agricultural University, Wuhan, China
| | - Keith J Edwards
- Functional Genomics, School of Biological Sciences, University of Bristol, Bristol, UK
| | - Laura Dixon
- School of Biology, University of Leeds, Leeds, UK
| | | | | | | | | | | | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | |
Collapse
|
25
|
Thenveettil N, Bheemanahalli R, Reddy KN, Gao W, Reddy KR. Temperature and elevated CO 2 alter soybean seed yield and quality, exhibiting transgenerational effects on seedling emergence and vigor. FRONTIERS IN PLANT SCIENCE 2024; 15:1427086. [PMID: 39145187 PMCID: PMC11322351 DOI: 10.3389/fpls.2024.1427086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Introduction Environmental conditions play a prime role in the growth and development of plant species, exerting a significant influence on their reproductive capacity. Soybean is sensitive to high temperatures during flowering and seed developmental stages. Little is known about the combined environmental effect of temperature and CO2 on seed yield and quality and its future generation. Methods A study was conducted to examine the effect of temperature (22/14°C (low), 30/22°C (optimum), and 38/30°C (high)), and CO2 (420 ppm (ambient; aCO2) and 720 ppm (elevated; eCO2)) on seed yield, quality, and transgenerational seedling vigor traits of soybean cultivars (DS25-1 and DS31-243) using Soil-Plant-Atmospheric-Research facility. Results A significant temperature effect was recorded among yield and quality attributes. At high-temperature, the 100-seed weights of DS25-1 and DS31-243 declined by 40% and 24%, respectively, over the optimum temperature at aCO2. The harvest index of varieties reduced by 70% when exposed to high temperature under both aCO2 and eCO2, compared to the optimum temperature at aCO2. The seed oil (- 2%) and protein (8%) content altered when developed under high temperature under aCO2. Maximum sucrose (7.5%) and stachyose (3.8%) accumulation in seeds were observed when developed under low temperatures and eCO2. When the growing temperature increased from optimum to high, the seed oleic acids increased (63%), while linoleic and linolenic acids decreased (- 28% and - 43%, respectively). Significant temperature and CO2 effects were observed in progenies with the highest maximum seedling emergence (80%), lesser time to 50% emergence (5.5 days), and higher seedling vigor from parents grown at low-temperature treatment under eCO2. Discussion Exposure of plants to 38/30°C was detrimental to soybean seed yield, and eCO2 levels did not compensate for this yield loss. The high temperature during seed developmental stages altered the chemical composition of the seed, leading to an increased content of monounsaturated fatty acids. The findings suggest that parental stress can significantly impact the development of offspring, indicating that epigenetic regulation or memory repose may be at play.
Collapse
Affiliation(s)
- Naflath Thenveettil
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Raju Bheemanahalli
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Krishna N. Reddy
- United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Crop Production Systems Research Unit, Stoneville, MS, United States
| | - Wei Gao
- United States Department of Agriculture - Ultraviolet B (USDA UVB) Monitoring and Research Program, Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, United States
| | - K. Raja Reddy
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
26
|
Choudry MW, Riaz R, Nawaz P, Ashraf M, Ijaz B, Bakhsh A. CRISPR-Cas9 mediated understanding of plants' abiotic stress-responsive genes to combat changing climatic patterns. Funct Integr Genomics 2024; 24:132. [PMID: 39078500 DOI: 10.1007/s10142-024-01405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024]
Abstract
Multiple abiotic stresses like extreme temperatures, water shortage, flooding, salinity, and exposure to heavy metals are confronted by crop plants with changing climatic patterns. Prolonged exposure to these adverse environmental conditions leads to stunted plant growth and development with significant yield loss in crops. CRISPR-Cas9 genome editing tool is being frequently employed to understand abiotic stress-responsive genes. Noteworthy improvements in CRISPR-Cas technology have been made over the years, including upgradation of Cas proteins fidelity and efficiency, optimization of transformation protocols for different crop species, base and prime editing, multiplex gene-targeting, transgene-free editing, and graft-based heritable CRISPR-Cas9 approaches. These developments helped to improve the knowledge of abiotic stress tolerance in crops that could potentially be utilized to develop knock-out varieties and over-expressed lines to tackle the adverse effects of altered climatic patterns. This review summarizes the mechanistic understanding of heat, drought, salinity, and metal stress-responsive genes characterized so far using CRISPR-Cas9 and provides data on potential candidate genes that can be exploited by modern-day biotechnological tools to develop transgene-free genome-edited crops with better climate adaptability. Furthermore, the importance of early-maturing crop varieties to withstand abiotic stresses is also discussed in this review.
Collapse
Affiliation(s)
| | - Rabia Riaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Pashma Nawaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maria Ashraf
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
27
|
Arunachalam T, Gade K, Mahadule PA, Soumia PS, Govindasamy V, Gawande SJ, Mahajan V. Optimizing plant growth, nutrient uptake, and yield of onion through the application of phosphorus solubilizing bacteria and endophytic fungi. Front Microbiol 2024; 15:1442912. [PMID: 39119140 PMCID: PMC11306034 DOI: 10.3389/fmicb.2024.1442912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction The application of mineral fertilizers deteriorates soil properties and affects crop yield and nutritional properties. However, plant growth-promoting microorganisms (PGPM- Serendipita indica, phosphorus solubilizing bacteria (PSB), and vesicular arbuscular mycorrhizae (VAM)) have great potential to reduce fertilizers and improve soil fertility, crop yield, and nutrient uptake and mitigate the environmental effect of mineral fertilizers. Material and methods Hence, a field experiment was conducted involving nine treatments to evaluate the effects of PGPM along with 50% or 100% of the recommended dose of fertilizers on plant growth, soil fertility, nutrient uptake, and onion productivity. Results and discussion Results indicated that 100% RDF combined with S. indica or PSB led to improved plant growth, and higher nutrient concentrations in both leaves and bulbs of onions compared to RDF alone. Moreover, the application of 100% RDF with S. indica increased total dry matter yield by 11.5% and 7.6% in the 2018-2019 and 2019-2020 seasons, respectively, compared to 100% RDF alone. This treatment also resulted in the highest nutrient uptake, with N uptake increasing by 6.9%-29.9%, P by 13.7%-21.7%, K by 20.0%-23.7%, and S by 18.1%-23.4%. Additionally, the combination of 100% RDF with S. indica inoculation led to a notable increase in bulb yield, with increments of 16.2% and 13.9% observed in 2018-2019 and 2019-2020, respectively, compared to 100% RDF alone. Similarly, the application of 100% RDF along with PSB inoculation resulted in an increase in bulb yield by 7.2% and 9.4% in the respective years. However, VAM did not exhibit satisfactory performance or improvements in the onion crop. Conclusion Overall, the study suggests that combining 100% RDF with S. indica or PSB can enhance onion productivity and nutrient use efficiency. The present study may open a new avenue of PGPM application in enhancing onion yield and improving the bulb quality as well as soil health. However, field trials across different regions and soil types are necessary to validate these findings for practical adoption by farmers.
Collapse
Affiliation(s)
| | - Komal Gade
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | | | - P. S. Soumia
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | | | | | - Vijay Mahajan
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| |
Collapse
|
28
|
Mondal S, Sarkar O, Raut J, Mandal SM, Chattopadhyay A, Sahoo P. Development of a Nanomarker for In Vivo Monitoring of Dopamine in Plants. ACS APPLIED BIO MATERIALS 2024; 7:4690-4701. [PMID: 38952293 DOI: 10.1021/acsabm.4c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Dopamine, alongside norepinephrine and epinephrine, belongs to the catecholamine group, widely distributed across both plant and animal kingdoms. In mammals, these compounds serve as neurotransmitters with roles in glycogen mobilization. In plants, their synthesis is modulated in response to stress conditions aiding plant survival by emitting these chemicals, especially dopamine that relieves their resilience against stress caused by both abiotic and biotic factors. In present studies, there is a lack of robust methods to monitor the operations of dopamine under stress conditions or any adverse situations across the plant's developmental stages from cell to cell. In our study, we have introduced a groundbreaking approach to track dopamine generation and activity in various metabolic pathways by using the simple nitrogen and sulfur co-doped carbon quantum dots (N, S-CQDs). These CQDs exhibit dominant biocompatibility, negligible toxicity, and environmentally friendly characteristics using a quenching process for fluorometric dopamine detection. This innovative nanomarker can detect even small amounts of dopamine within plant cells, providing insights into plant responses to strain and anxiety. Confocal microscopy has been used to corroborate this occurrence and to provide visual proof of the process of binding dopamine with these N, S-CQDs inside the cells.
Collapse
Affiliation(s)
- Shrodha Mondal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Olivia Sarkar
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Jiko Raut
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Santi M Mandal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
29
|
Bacelar E, Pinto T, Anjos R, Morais MC, Oliveira I, Vilela A, Cosme F. Impacts of Climate Change and Mitigation Strategies for Some Abiotic and Biotic Constraints Influencing Fruit Growth and Quality. PLANTS (BASEL, SWITZERLAND) 2024; 13:1942. [PMID: 39065469 PMCID: PMC11280748 DOI: 10.3390/plants13141942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Factors such as extreme temperatures, light radiation, and nutritional condition influence the physiological, biochemical, and molecular processes associated with fruit development and its quality. Besides abiotic stresses, biotic constraints can also affect fruit growth and quality. Moreover, there can be interactions between stressful conditions. However, it is challenging to predict and generalize the risks of climate change scenarios on seasonal patterns of growth, development, yield, and quality of fruit species because their responses are often highly complex and involve changes at multiple levels. Advancements in genetic editing technologies hold great potential for the agricultural sector, particularly in enhancing fruit crop traits. These improvements can be tailored to meet consumer preferences, which is crucial for commercial success. Canopy management and innovative training systems are also key factors that contribute to maximizing yield efficiency and improving fruit quality, which are essential for the competitiveness of orchards. Moreover, the creation of habitats that support pollinators is a critical aspect of sustainable agriculture, as they play a significant role in the production of many crops, including fruits. Incorporating these strategies allows fruit growers to adapt to changing climate conditions, which is increasingly important for the stability of food production. By investing in these areas, fruit growers can stay ahead of challenges and opportunities in the industry, ultimately leading to increased success and profitability. In this review, we aim to provide an updated overview of the current knowledge on this important topic. We also provide recommendations for future research.
Collapse
Affiliation(s)
- Eunice Bacelar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Teresa Pinto
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Rosário Anjos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Maria Cristina Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Ivo Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Alice Vilela
- Chemistry Research Centre–Vila Real (CQ-VR), Department of Agronomy, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| | - Fernanda Cosme
- Chemistry Research Centre–Vila Real (CQ-VR), Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| |
Collapse
|
30
|
Gelaw TA, Sanan-Mishra N. Molecular priming with H 2O 2 and proline triggers antioxidant enzyme signals in maize seedlings during drought stress. Biochim Biophys Acta Gen Subj 2024; 1868:130633. [PMID: 38762030 DOI: 10.1016/j.bbagen.2024.130633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Drought and water stress impose major limitations to crops, including Maize, as they affect the plant biology at multiple levels. Drought activates the cellular signalling machinery to maintain the osmotic and ROS homeostasis for controlling plant response and adaptation to stress. Molecular priming of seeds plays a significant role in imparting stress tolerance by helping plants to remember the stress, which improves their response when they encounter stress again. METHODS In this study, we examined the effect of priming maize seeds with H2O2 and proline, individually or in combination, on response to drought stress. We investigated the role of molecular priming on the physiological, biochemical and molecular response of maize seedlings during drought stress. RESULTS We observed that seed-priming played a significant role in mediating stress tolerance of seedlings under drought stress as indicated by changes in growth, biochemical properties, pigment and osmolyte accumulation, antioxidant enzyme activities, gas exchange parameters and gene expression. Seed-priming resulted in reduced expression of specific miRNAs to increase target transcripts associated with synthesis of osmolytes and maintenance of ROS homeostasis for reducing potential damage to the cellular components. CONCLUSIONS Seed-priming induced changes in the growth, biochemical properties, pigment and osmolyte accumulation, antioxidant enzyme activities, gas exchange parameters and gene expression, though the response was dependent on the genotype, as well as concentration and combination of the priming agents.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India; Department of Biotechnology, College of Agriculture and Natural Resource Sciences, Debre Birhan University, 445 Debre Birhan, Ethiopia
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India.
| |
Collapse
|
31
|
Tisarum R, Theerawitaya C, Praseartkul P, Chungloo D, Ullah H, Himanshu SK, Datta A, Cha-Um S. Screening cotton genotypes for their drought tolerance ability based on the expression level of dehydration-responsive element-binding protein and proline biosynthesis-related genes and morpho-physio-biochemical responses. PROTOPLASMA 2024; 261:783-798. [PMID: 38376598 DOI: 10.1007/s00709-024-01935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
Drought stress adversely affects growth, development, productivity, and fiber quality of cotton (Gossypium hirsutum L). Breeding strategies to enhance drought tolerance require an improved knowledge of plant drought responses necessitating proper identification of drought-tolerant genotypes of crops, including cotton. The objective of this study was to classify the selected cotton genotypes for their drought tolerance ability based on morpho-physio-biochemical traits using Hierarchical Ward's cluster analysis. Five genotypes of cotton (Takfa 3, Takfa 6, Takfa 7, Takfa 84-4, and Takfa 86-5) were selected as plant materials, and were grown under well-watered (WW; 98 ± 2% field capacity) and water-deficit (WD; 50 ± 2% field capacity) conditions for 16 days during the flower initiation stage. Data on morpho-physio-biochemical parameters and gene expression levels for these parameters were collected, and subsequently genotypes were classified either as a drought tolerant or drought susceptible one. Upregulation of GhPRP (proline-rich protein), GhP5CS (Δ1-pyrroline-5-carboxylate synthetase), and GhP5CR (Δ1-pyrroline-5-carboxylate reductase) in relation to free proline enrichment was observed in Takfa 3 genotype under WD condition. An accumulation of free proline, total soluble sugar, and potassium in plants under WD conditions was detected, which played a key role as major osmolytes controlling cellular osmotic potential. Magnesium and calcium concentrations were also enriched in leaves under WD conditions, functioning as essential elements and regulating photosynthetic abilities. Leaf greenness, net photosynthetic rate, stomatal conductance, and transpiration rate were also declined under WD conditions, leading to growth retardation, especially aboveground traits of Takfa 6, Takfa 7, Takfa 84-4, and Takfa 86-5 genotypes. An increase in leaf temperature (1.1 - 4.0 °C) and crop water stress index (CWSI > 0.75) in relation to stomatal closure and reduced transpiration rate was recorded in cotton genotypes under WD conditions compared with WW conditions. Based on the increase of free proline, soluble sugar, leaf temperature, and CWSI, as well as the decrease of aboveground growth traits and physiological attributes, five genotypes were categorized into two cluster groups: drought tolerant (Takfa 3) and drought susceptible (Takfa 6, Takfa 7, Takfa 84-4, and Takfa 86-5). The identified drought-tolerant cotton genotype, namely, Takfa 3, may be grown in areas experiencing drought conditions. It is recommended to further validate the yield traits of Takfa 3 under rainfed field conditions in drought-prone environments.
Collapse
Affiliation(s)
- Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Patchara Praseartkul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Daonapa Chungloo
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Hayat Ullah
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Sushil Kumar Himanshu
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Avishek Datta
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.
| |
Collapse
|
32
|
Elsisi M, Elshiekh M, Sabry N, Aziz M, Attia K, Islam F, Chen J, Abdelrahman M. The genetic orchestra of salicylic acid in plant resilience to climate change induced abiotic stress: critical review. STRESS BIOLOGY 2024; 4:31. [PMID: 38880851 PMCID: PMC11180647 DOI: 10.1007/s44154-024-00160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 06/18/2024]
Abstract
Climate change, driven by human activities and natural processes, has led to critical alterations in varying patterns during cropping seasons and is a vital threat to global food security. The climate change impose several abiotic stresses on crop production systems. These abiotic stresses include extreme temperatures, drought, and salinity, which expose agricultural fields to more vulnerable conditions and lead to substantial crop yield and quality losses. Plant hormones, especially salicylic acid (SA), has crucial roles for plant resiliency under unfavorable environments. This review explores the genetics and molecular mechanisms underlying SA's role in mitigating abiotic stress-induced damage in plants. It also explores the SA biosynthesis pathways, and highlights the regulation of their products under several abiotic stresses. Various roles and possible modes of action of SA in mitigating abiotic stresses are discussed, along with unraveling the genetic mechanisms and genes involved in responses under stress conditions. Additionally, this review investigates molecular pathways and mechanisms through which SA exerts its protective effects, such as redox signaling, cross-talks with other plant hormones, and mitogen-activated protein kinase pathways. Moreover, the review discusses potentials of using genetic engineering approaches, such as CRISPR technology, for deciphering the roles of SA in enhancing plant resilience to climate change related abiotic stresses. This comprehensive analysis bridges the gap between genetics of SA role in response to climate change related stressors. Overall goal is to highlight SA's significance in safeguarding plants and by offering insights of SA hormone for sustainable agriculture under challenging environmental conditions.
Collapse
Affiliation(s)
- Mohamed Elsisi
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Moaz Elshiekh
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Nourine Sabry
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Mark Aziz
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Kotb Attia
- College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | | |
Collapse
|
33
|
Ijaz A, Anwar Z, Ali A, Ditta A, Shani MY, Haidar S, Wang B, Fang L, Khan SMUD, Khan MKR. Unraveling the genetic and molecular basis of heat stress in cotton. Front Genet 2024; 15:1296622. [PMID: 38919956 PMCID: PMC11196824 DOI: 10.3389/fgene.2024.1296622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/29/2024] [Indexed: 06/27/2024] Open
Abstract
Human activities and climate change have resulted in frequent and intense weather fluctuations, leading to diverse abiotic stresses on crops which hampers greatly their metabolic activities. Heat stress, a prevalent abiotic factor, significantly influences cotton plant biological activities resulting in reducing yield and production. We must deepen our understanding of how plants respond to heat stress across various dimensions, encompassing genes, RNAs, proteins, metabolites for effective cotton breeding. Multi-omics methods, primarily genomics, transcriptomics, proteomics, metabolomics, and phenomics, proves instrumental in studying cotton's responses to abiotic stresses. Integrating genomics, transcriptomics, proteomics, and metabolomic is imperative for our better understanding regarding genetics and molecular basis of heat tolerance in cotton. The current review explores fundamental omics techniques, covering genomics, transcriptomics, proteomics, and metabolomics, to highlight the progress made in cotton omics research.
Collapse
Affiliation(s)
- Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Allah Ditta
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Muhammad Yousaf Shani
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sajjad Haidar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Boahua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Liu Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | | | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| |
Collapse
|
34
|
Pereira MC, Souza NOS, Nascimento WM, da Silva GO, da Silva CR, Suinaga FA. Stability Evaluation for Heat Tolerance in Lettuce: Implications and Recommendations. PLANTS (BASEL, SWITZERLAND) 2024; 13:1546. [PMID: 38891354 PMCID: PMC11175035 DOI: 10.3390/plants13111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Lettuce is an important cool-temperature crop, and its principal abiotic stress is low heat tolerance. Lettuce production has become more challenging in the context of global warming changes. Hence, the main objective of this research was to investigate the relationship between stability and lettuce heat tolerance. Field and greenhouse trials were run in 2015 (summer) and 2016 (fall and spring). The environments were composed of a combination of season and place (field, glass, and plastic greenhouse), and the assessed genotypes were BRS Leila and Mediterrânea, Elisa, Everglades, Simpson, and Vanda. Statistical analysis showed a significant effect (p < 0.05) of environments (E), genotypes (G), and the GEI. BRS Leila, Elisa, and BRS Mediterrânea showed the greatest means to the first anthesis in suitable environments (milder temperatures). Among these cultivars, BRS Mediterrânea was the most stable and adapted to hot environments. The environmental conditions studied in this research, mainly high temperatures, could become a reality in many lettuce-producing areas. Therefore, the results can help indicate and develop lettuce varieties with greater heat tolerance.
Collapse
Affiliation(s)
- Maryanne C. Pereira
- Conselho dos Exportadores de Café (CECAFE), Av. Nove de Julho, 4865, Torre A, Conjunto 61, São Paulo 01407-200, SP, Brazil;
| | - Nara O. S. Souza
- Faculdade de Agronomia e Medicina Veterinária (FAV), Campus Darcy Ribeiro, Universidade de Brasília (UnB), ICC-Sul, Asa Norte, Brasília 70910-900, DF, Brazil; (N.O.S.S.); (C.R.d.S.)
| | - Warley M. Nascimento
- Embrapa Hortaliças (CNPH), Rodovia BR 060 Km 9—Samambaia Norte, Brasília 70351-970, DF, Brazil; (W.M.N.); (G.O.d.S.)
| | - Giovani O. da Silva
- Embrapa Hortaliças (CNPH), Rodovia BR 060 Km 9—Samambaia Norte, Brasília 70351-970, DF, Brazil; (W.M.N.); (G.O.d.S.)
| | - Caroline R. da Silva
- Faculdade de Agronomia e Medicina Veterinária (FAV), Campus Darcy Ribeiro, Universidade de Brasília (UnB), ICC-Sul, Asa Norte, Brasília 70910-900, DF, Brazil; (N.O.S.S.); (C.R.d.S.)
| | - Fabio A. Suinaga
- Embrapa Hortaliças (CNPH), Rodovia BR 060 Km 9—Samambaia Norte, Brasília 70351-970, DF, Brazil; (W.M.N.); (G.O.d.S.)
| |
Collapse
|
35
|
Ronceret A, Bolaños‐Villegas P. Plant reproduction research in Latin America: Toward sustainable agriculture in a changing environment. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10143. [PMID: 38764600 PMCID: PMC11101159 DOI: 10.1002/pei3.10143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/21/2024]
Abstract
Food production and food security depend on the ability of crops to cope with anthropogenic climate change and successfully produce seed. To guarantee food production well into the future, contemporary plant scientists in Latin America must carry out research on how plants respond to environmental stressors such as temperature, drought, and salinity. This review shows the opportunities to apply these results locally and abroad and points to the gaps that still exist in terms of reproductive processes with the purpose to better link research with translational work in plant breeding and biotechnology. Suggestions are put forth to address these gaps creatively in the face of chronic low investment in science with a focus on applicability.
Collapse
Affiliation(s)
- Arnaud Ronceret
- Instituto de Biotecnología/Universidad Nacional Autónoma de México (UNAM)CuernavacaMorelosMexico
| | - Pablo Bolaños‐Villegas
- Fabio Baudrit Agricultural Research StationUniversity of Costa RicaAlajuelaCosta Rica
- Lankester Botanical GardenUniversity of Costa RicaCartagoCosta Rica
- Faculty of Food and Agricultural Sciences, Rodrigo Facio Campus, School of AgronomyUniversity of Costa RicaSan JoseCosta Rica
| |
Collapse
|
36
|
Kapoor RT, Zdarta J. Fabrication of engineered biochar for remediation of toxic contaminants in soil matrices and soil valorization. CHEMOSPHERE 2024; 358:142101. [PMID: 38653395 DOI: 10.1016/j.chemosphere.2024.142101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Biochar has emerged as an efficacious green material for remediation of a wide spectrum of environmental pollutants. Biochar has excellent characteristics and can be used to reduce the bioavailability and leachability of emerging pollutants in soil through adsorption and other physico-chemical reactions. This paper systematically reviewed previous researches on application of biochar/engineered biochar for removal of soil contaminants, and underlying adsorption mechanism. Engineered biochar are derivatives of pristine biochar that are modified by various physico-chemical and biological procedures to improve their adsorption capacities for contaminants. This review will promote the possibility to expand the application of biochar for restoration of degraded lands in the industrial area or saline soil, and further increase the useable area. This review shows that application of biochar is a win-win strategy for recycling and utilization of waste biomass and environmental remediation. Application of biochar for remediation of contaminated soils may provide a new solution to the problem of soil pollution. However, these studies were performed mainly in a laboratory or a small scale, hence, further investigations are required to fill the research gaps and to check real-time applicability of engineered biochar on the industrial contaminated sites for its large-scale application.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201 313, Uttar Pradesh, India.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland.
| |
Collapse
|
37
|
Hayford RK, Haley OC, Cannon EK, Portwood JL, Gardiner JM, Andorf CM, Woodhouse MR. Functional annotation and meta-analysis of maize transcriptomes reveal genes involved in biotic and abiotic stress. BMC Genomics 2024; 25:533. [PMID: 38816789 PMCID: PMC11137889 DOI: 10.1186/s12864-024-10443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Environmental stress factors, such as biotic and abiotic stress, are becoming more common due to climate variability, significantly affecting global maize yield. Transcriptome profiling studies provide insights into the molecular mechanisms underlying stress response in maize, though the functions of many genes are still unknown. To enhance the functional annotation of maize-specific genes, MaizeGDB has outlined a data-driven approach with an emphasis on identifying genes and traits related to biotic and abiotic stress. RESULTS We mapped high-quality RNA-Seq expression reads from 24 different publicly available datasets (17 abiotic and seven biotic studies) generated from the B73 cultivar to the recent version of the reference genome B73 (B73v5) and deduced stress-related functional annotation of maize gene models. We conducted a robust meta-analysis of the transcriptome profiles from the datasets to identify maize loci responsive to stress, identifying 3,230 differentially expressed genes (DEGs): 2,555 DEGs regulated in response to abiotic stress, 408 DEGs regulated during biotic stress, and 267 common DEGs (co-DEGs) that overlap between abiotic and biotic stress. We discovered hub genes from network analyses, and among the hub genes of the co-DEGs we identified a putative NAC domain transcription factor superfamily protein (Zm00001eb369060) IDP275, which previously responded to herbivory and drought stress. IDP275 was up-regulated in our analysis in response to eight different abiotic and four different biotic stresses. A gene set enrichment and pathway analysis of hub genes of the co-DEGs revealed hormone-mediated signaling processes and phenylpropanoid biosynthesis pathways, respectively. Using phylostratigraphic analysis, we also demonstrated how abiotic and biotic stress genes differentially evolve to adapt to changing environments. CONCLUSIONS These results will help facilitate the functional annotation of multiple stress response gene models and annotation in maize. Data can be accessed and downloaded at the Maize Genetics and Genomics Database (MaizeGDB).
Collapse
Affiliation(s)
- Rita K Hayford
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA.
| | - Olivia C Haley
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
| | - Ethalinda K Cannon
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
| | - John L Portwood
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
| | - Jack M Gardiner
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Carson M Andorf
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA.
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA.
| | | |
Collapse
|
38
|
Hagen M, Dass R, Westhues C, Blom J, Schultheiss SJ, Patz S. Interpretable machine learning decodes soil microbiome's response to drought stress. ENVIRONMENTAL MICROBIOME 2024; 19:35. [PMID: 38812054 PMCID: PMC11138018 DOI: 10.1186/s40793-024-00578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/10/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Extreme weather events induced by climate change, particularly droughts, have detrimental consequences for crop yields and food security. Concurrently, these conditions provoke substantial changes in the soil bacterial microbiota and affect plant health. Early recognition of soil affected by drought enables farmers to implement appropriate agricultural management practices. In this context, interpretable machine learning holds immense potential for drought stress classification of soil based on marker taxa. RESULTS This study demonstrates that the 16S rRNA-based metagenomic approach of Differential Abundance Analysis methods and machine learning-based Shapley Additive Explanation values provide similar information. They exhibit their potential as complementary approaches for identifying marker taxa and investigating their enrichment or depletion under drought stress in grass lineages. Additionally, the Random Forest Classifier trained on a diverse range of relative abundance data from the soil bacterial micobiome of various plant species achieves a high accuracy of 92.3 % at the genus rank for drought stress prediction. It demonstrates its generalization capacity for the lineages tested. CONCLUSIONS In the detection of drought stress in soil bacterial microbiota, this study emphasizes the potential of an optimized and generalized location-based ML classifier. By identifying marker taxa, this approach holds promising implications for microbe-assisted plant breeding programs and contributes to the development of sustainable agriculture practices. These findings are crucial for preserving global food security in the face of climate change.
Collapse
Affiliation(s)
- Michelle Hagen
- Computomics GmbH, Eisenbahnstraße 1, 72072, Tübingen, Baden-Württemberg, Germany
| | - Rupashree Dass
- Computomics GmbH, Eisenbahnstraße 1, 72072, Tübingen, Baden-Württemberg, Germany
| | - Cathy Westhues
- Computomics GmbH, Eisenbahnstraße 1, 72072, Tübingen, Baden-Württemberg, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Gießen, Heinrich-Buff-Ring 58, 35390, Gießen, Hesse, Germany
| | | | - Sascha Patz
- Computomics GmbH, Eisenbahnstraße 1, 72072, Tübingen, Baden-Württemberg, Germany.
| |
Collapse
|
39
|
Vurro F, Manfrini L, Boini A, Bettelli M, Buono V, Caselli S, Gioli B, Zappettini A, Palermo N, Janni M. Kiwi 4.0: In Vivo Real-Time Monitoring to Improve Water Use Efficiency in Yellow Flesh Actinidia chinensis. BIOSENSORS 2024; 14:226. [PMID: 38785700 PMCID: PMC11117891 DOI: 10.3390/bios14050226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
This manuscript reports the application of sensors for water use efficiency with a focus on the application of an in vivo OECT biosensor. In two distinct experimental trials, the in vivo sensor bioristor was applied in yellow kiwi plants to monitor, in real-time and continuously, the changes in the composition and concentration of the plant sap in an open field during plant growth and development. The bioristor response and physiological data, together with other fruit sensor monitoring data, were acquired and combined in both trials, giving a complete picture of the biosphere conditions. A high correlation was observed between the bioristor index (ΔIgs), the canopy cover expressed as the fraction of intercepted PAR (fi_PAR), and the soil water content (SWC). In addition, the bioristor was confirmed to be a good proxy for the occurrence of drought in kiwi plants; in fact, a period of drought stress was identified within the month of July. A novelty of the bioristor measurements was their ability to detect in advance the occurrence of defoliation, thereby reducing yield and quality losses. A plant-based irrigation protocol can be achieved and tailored based on real plant needs, increasing water use sustainability and preserving high-quality standards.
Collapse
Affiliation(s)
- Filippo Vurro
- Istituto dei Materiali per L’Elettronica e il Magnetismo (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (F.V.); (M.B.); (A.Z.); (N.P.)
| | - Luigi Manfrini
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy; (L.M.); (A.B.)
| | - Alexandra Boini
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy; (L.M.); (A.B.)
| | - Manuele Bettelli
- Istituto dei Materiali per L’Elettronica e il Magnetismo (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (F.V.); (M.B.); (A.Z.); (N.P.)
| | - Vito Buono
- Sysman Projects & Services Ltd., 70121 Bari, Italy;
| | - Stefano Caselli
- CIDEA-UNIPR—Center for Energy and Environment, University of Parma, Parco Area delle Scienze, 95, 43124 Parma, Italy;
| | - Beniamino Gioli
- Institute of BioEconomy, National Research Council, 50145 Florence, Italy;
| | - Andrea Zappettini
- Istituto dei Materiali per L’Elettronica e il Magnetismo (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (F.V.); (M.B.); (A.Z.); (N.P.)
| | - Nadia Palermo
- Istituto dei Materiali per L’Elettronica e il Magnetismo (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (F.V.); (M.B.); (A.Z.); (N.P.)
| | - Michela Janni
- Istituto dei Materiali per L’Elettronica e il Magnetismo (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (F.V.); (M.B.); (A.Z.); (N.P.)
| |
Collapse
|
40
|
Alam O, Purugganan MD. Domestication and the evolution of crops: variable syndromes, complex genetic architectures, and ecological entanglements. THE PLANT CELL 2024; 36:1227-1241. [PMID: 38243576 PMCID: PMC11062453 DOI: 10.1093/plcell/koae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024]
Abstract
Domestication can be considered a specialized mutualism in which a domesticator exerts control over the reproduction or propagation (fitness) of a domesticated species to gain resources or services. The evolution of crops by human-associated selection provides a powerful set of models to study recent evolutionary adaptations and their genetic bases. Moreover, the domestication and dispersal of crops such as rice, maize, and wheat during the Holocene transformed human social and political organization by serving as the key mechanism by which human societies fed themselves. Here we review major themes and identify emerging questions in three fundamental areas of crop domestication research: domestication phenotypes and syndromes, genetic architecture underlying crop evolution, and the ecology of domestication. Current insights on the domestication syndrome in crops largely come from research on cereal crops such as rice and maize, and recent work indicates distinct domestication phenotypes can arise from different domestication histories. While early studies on the genetics of domestication often identified single large-effect loci underlying major domestication traits, emerging evidence supports polygenic bases for many canonical traits such as shattering and plant architecture. Adaptation in human-constructed environments also influenced ecological traits in domesticates such as resource acquisition rates and interactions with other organisms such as root mycorrhizal fungi and pollinators. Understanding the ecological context of domestication will be key to developing resource-efficient crops and implementing more sustainable land management and cultivation practices.
Collapse
Affiliation(s)
- Ornob Alam
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Institute for the Study of the Ancient World, New York University, New York, NY, 10028, USA
| |
Collapse
|
41
|
Ahmad I, Mashwani ZUR, Zohaib Younas, Yousaf T, Ahmad A, Vladulescu C. Antioxidant activity, metabolic profiling, in-silico molecular docking and ADMET analysis of nano selenium treated sesame seed bioactive compounds as potential novel drug targets against cardiovascular disease related receptors. Heliyon 2024; 10:e27909. [PMID: 38571619 PMCID: PMC10987859 DOI: 10.1016/j.heliyon.2024.e27909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Sesame (Sesamum indicum) is abundant in a diverse range of lignans, including sesamin, and γ-tocopherol, constituting a cluster of bioactive phenolic compound used for food and medicinal purposes. Cardiovascular diseases remain a leading global health challenge, demanding vigilant prevention and innovative treatments. This study was carried out to evaluate the effect of plant mediated SeNPs on sesame metabolic profile and to screen and check the effect bioactive compounds against CVD via molecular drug docking technique. Three sesame germplasms TS-5, TH-6 and Till-18 were treated with varying concentrations (10, 20, 30, 40 and 50 ppm) of plant-mediated selenium nanoparticles (SeNPs). There were three groups of treatments group-1 got only seed pretreatments of SeNPs, Group-2 with only foliar applications of SeNPs and Group-3 with both seed pretreatments and foliar applications of SeNPs. It was found that plants treated with 40 ppm of SeNPS in group 3 exhibited the highest total phenolic and flavonoid content. Total phenolic content at T4 was highest for TS-5 (134%), TH-6 (132%), and Till-18 (112%). LCMS analysis revealed a total of 276 metabolites, with phenolics, flavonoids, and free fatty acids being most abundant. KEGG analysis indicated enrichment in free fatty acid and phenylalanine tryptophan pathways. ADMET analysis and virtual screening resulted in total of five metabolic compounds as a potential ligand against Hemoglobin beta subunit. Lowest binding energy was achieved by Delta-Tocopherol (-6.98) followed by Lactoflavin (-6.20) and Sesamin (-5.00). Lipinski rule of five revealed that all the compounds completely safe to be used as drug against CVD and specifically for HBB. It was concluded that bioactive compounds from sesame could be an alternative source of drug for CVD related problems and especially for HBB.
Collapse
Affiliation(s)
- Ilyas Ahmad
- Department of Botany, Arid Agriculture University, Rawalpindi, Punjab, Pakistan
- Department of Food Science and Nutrition, College of Food, Agriculture and Natural Resources, University of Minnesota, Twin Cities, Minneapolis, USA
| | - Zia-ur-Rehman Mashwani
- Department of Botany, Arid Agriculture University, Rawalpindi, Punjab, Pakistan
- Pakistan Academy of Sciences, Islamabad 44010, Pakistan
| | - Zohaib Younas
- Department of Botany, Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Tayyaba Yousaf
- Department of Botany, Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Carmen Vladulescu
- Department of Biology and Environmental Engineering, University of Craiova, A. I Cuza 13, Craiva, 200585, Romania
| |
Collapse
|
42
|
Berhanu AA, Ayele ZB, Dagnew DC, Melese T, Fenta AB, Kassie KE. Smallholder farmers' vulnerability to climate change and variability: Evidence from three agroecologies in the Upper Blue Nile, Ethiopia. Heliyon 2024; 10:e28277. [PMID: 38596012 PMCID: PMC11002065 DOI: 10.1016/j.heliyon.2024.e28277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
This study delves into the profound impact of climate change on agriculture in Ethiopia, particularly the vulnerabilities faced by smallholder farmers and the resulting implications for poverty. Focusing on three distinct agroecologies, namely: highland, midland, and lowland zones. The study employed a robust methodology, combining a cross-sectional survey, spatial-temporal trend analysis using GIS, and the development of an overall vulnerability index through the balanced weighted average method. The study, encompassing 646 households, combines data from a variety of sources and analytical tools like the vulnerability index, ArcGIS 10.8, and ERDA's IMAGINE 2015. Utilizing the LVI-IPCC scale, the study shows that climate change is an immediate vulnerability in all agroecological zones. It identifies highland areas as the most sensitive and exposed regions, while lowland households are found to be the most vulnerable in terms of overall vulnerabilities. The research reveals specific challenges faced by communities, such as inadequate health facilities and insufficient food and water supplies in both highland and lowland agroecosystems. Additionally, our investigation has observed a significant alteration in land use practices, specifically the shift from communal grazing land to private cultivation and plantations, emphasizing eucalyptus. This alteration enhances the ecosystem's vulnerability to climate disturbances. The study suggests targeted interventions, such as advocating for sustainable land-use practices, afforestation, and adopting climate-smart agriculture practices. It is important to implement policy measures that prioritize conserving and restoring shrubland, grazing land, and natural forests to ensure both long-term socio-economic and ecosystem resilience. The study's nuanced insights are instrumental in understanding the diverse challenges posed by climate change in Ethiopian agriculture, supporting informed policymaking and sustainable interventions.
Collapse
Affiliation(s)
- Assefa A. Berhanu
- Department of Rural Development and Agricultural Extension, College of Agriculture and Environmental Sciences, Bahir Dar University, Ethiopia
| | - Zewdu B. Ayele
- Department of Agricultural Economics, College of Agriculture and Environmental Sciences, Bahir Dar University, Ethiopia
| | - Dessalegn C. Dagnew
- Institute of Food Security, Disaster Risk Management and Sustainable Development, Bahir Dar University, Ethiopia
| | - Tadele Melese
- Department of Natural Resource Management, College of Agriculture and Environmental Sciences, Bahir Dar University. P.O. Box 5501, Bahir Dar, Ethiopia
| | - Abeje B. Fenta
- Department of Rural Development and Agricultural Extension, College of Agriculture and Environmental Sciences, Bahir Dar University, Ethiopia
| | - Koyachew E. Kassie
- Department of Rural Development and Agricultural Extension, College of Agriculture and Environmental Sciences, Bahir Dar University, Ethiopia
| |
Collapse
|
43
|
Khalfalla M, Zsombik L, Nagy R, Győri Z. Promoting the elemental profile of sorghum grain: Driving factors affecting nutritional properties under nitrogen fertilizer conditions. Heliyon 2024; 10:e28759. [PMID: 38601610 PMCID: PMC11004528 DOI: 10.1016/j.heliyon.2024.e28759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/09/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024] Open
Abstract
Monitoring nitrogen utilization is crucial in agricultural practices, emphasizing the interrelationship between soil health, nutrient management, and human health. The study was conducted to evaluate the impact of N fertilizer on the nutritional characteristics of diverse S. bicolor varieties, namely Alföldi 1, ES Föehn (Lidea Seeds) with a red pericarp, ES Albanus, Albita, and Farmsugro 180 (all white varieties), the study was conducted in sorghum-producing areas where the crop is non-native. Specifically, the study investigated two soil types: loam clay and sandy soil. Furthermore, the respective varieties were grown under N (27% N CAN) fertilizer conditions, involving 60 kg/ha-1 and 120 kg/ha-1 of the treatment rates applied at each experiment site. We measured the specific element concentration in each sample using the Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) technology. Certainly, the results demonstrated that the different S. bicolor varieties had unique nutritional characteristics attributed to several factors such as soil type, variety, and treatment, which showed a significance value of (P < 0.05). The findings demonstrated that the treatments had distinct impacts as stimulators and inhibitors for certain elements. Specifically, the application of 120 kg/ha-1 negatively affected the levels of particular elements, such as Ca mg/kg-1, in loam clay and sandy soil. The statistical analysis of trace microelement variance did not show a significance value (P > 0.05) when considering the year factor, which supported the data analysis's reliability and accuracy. In summary, to enhance the nutritional value of sorghum grain and supply nutrient-rich food choices for individuals, consider factors such as fertilizer response, nutrient uptake by grain, element mineral accumulation, and advisory variety. Additional research could enhance the nutritional properties of sorghum to provide the required dietary stuff, such as grain processing, which can render sorghum a proper addition to a healthy and balanced human diet.
Collapse
Affiliation(s)
- Maha Khalfalla
- University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Nutrition Science, Debrecen, Böszörményi utca. 138, 4032, Hungary
| | - László Zsombik
- University of Debrecen, Institutes for Agricultural Research and Educational Farm, Research Institute of Nyíregyháza, Vilmos utca 4-6, 4400, Hungary
| | - Róbert Nagy
- University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Nutrition Science, Debrecen, Böszörményi utca. 138, 4032, Hungary
| | - Zoltán Győri
- University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Nutrition Science, Debrecen, Böszörményi utca. 138, 4032, Hungary
| |
Collapse
|
44
|
Tchonkouang RD, Onyeaka H, Nkoutchou H. Assessing the vulnerability of food supply chains to climate change-induced disruptions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171047. [PMID: 38373458 DOI: 10.1016/j.scitotenv.2024.171047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Climate change is one of the most significant challenges worldwide. There is strong evidence from research that climate change will impact several food chain-related elements such as agricultural output, incomes, prices, food access, food quality, and food safety. This scoping review seeks to outline the state of knowledge of the food supply chain's vulnerability to climate change and to identify existing literature that may guide future research, policy, and decision-making aimed at enhancing the resilience of the food supply chain. A total of 1526 publications were identified using the SCOPUS database, of which 67 were selected for the present study. The vulnerability assessment methods as well as the adaptation and resilience measures that have been employed to alleviate the impact of climate change in the food supply chain were discussed. The results revealed a growing number of publications providing evidence of the weakening of the food supply chain due to climate change and extreme weather events. Our assessment demonstrated the need to broaden research into the entire food supply chain and various forms of climatic variability because most studies have concentrated on the relationships between climatic fluctuations (especially extreme rainfall, temperatures, and drought) and production. A lack of knowledge about the effects of climate change on the food supply chain and the underlying socio-economic consequences could result in underperformance or failure of the food supply chain.
Collapse
Affiliation(s)
- Rose Daphnee Tchonkouang
- MED-Mediterranean Institute for Agriculture, Environment and Development & Change-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Hugue Nkoutchou
- Public Policy in Africa Initiative (PPiAI), Douala, Cameroon
| |
Collapse
|
45
|
Laftouhi A, Mahraz MA, Hmamou A, Assouguem A, Ullah R, Bari A, Lahlali R, Ercisli S, Kaur S, Idrissi AM, Eloutassi N, Rais Z, Taleb A, Taleb M. Analysis of Primary and Secondary Metabolites, Physical Properties, Antioxidant and Antidiabetic Activities, and Chemical Composition of Rosmarinus officinalis Essential Oils under Differential Water Stress Conditions. ACS OMEGA 2024; 9:16656-16664. [PMID: 38617605 PMCID: PMC11007863 DOI: 10.1021/acsomega.4c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
This study investigated the effects of varying water stress levels on Rosmarinus officinalis essential oils (EO). Three samples (S1, S2, and S3) were cultivated under different stress levels (40, 60, and 80%). Increased water stress led to changes in primary and secondary metabolites, EO contents, and physical properties. Antioxidant activity varied, with S2 exhibiting the highest IC50 value. In terms of antidiabetic activity, S2 showed robust α-amylase inhibition, while S3 displayed a commendable influence. For α-galactosidase inhibition, S3 had a moderate effect, and S2 stood out with increased efficacy. Gas chromatography-mass spectrometry analysis revealed stress-induced changes in major compounds. The study enhances the understanding of plant responses to water stress, with potential applications in antioxidant therapy and diabetes management. The findings emphasize the importance of sustainable water management for optimizing the EO quality in its various uses.
Collapse
Affiliation(s)
- Abdelouahid Laftouhi
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Mohamed Adil Mahraz
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Anouar Hmamou
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Amine Assouguem
- Department
of Plant Protection and Environment, École
Nationale d’Agriculture de Meknès, Km.10, Route Haj Kaddour, B.P.S/40, Meknes 50001, Morocco
- Laboratory
of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, P.O. Box 2202, Fez 30000, Morocco
| | - Riaz Ullah
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Bari
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rachid Lahlali
- Department
of Plant Protection and Environment, École
Nationale d’Agriculture de Meknès, Km.10, Route Haj Kaddour, B.P.S/40, Meknes 50001, Morocco
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| | - Sawinder Kaur
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Amine Mounadi Idrissi
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Noureddine Eloutassi
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Zakia Rais
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Abdslam Taleb
- Environmental
Process Engineering Laboratory-Faculty of Science and Technology Mohammedia, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Mustapha Taleb
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| |
Collapse
|
46
|
Forlani G, Sabbioni G, Barera S, Funck D. A complex array of factors regulate the activity of Arabidopsis thaliana δ 1 -pyrroline-5-carboxylate synthetase isoenzymes to ensure their specific role in plant cell metabolism. PLANT, CELL & ENVIRONMENT 2024; 47:1348-1362. [PMID: 38223941 DOI: 10.1111/pce.14817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
The first and committed step in proline synthesis from glutamate is catalyzed by δ1 -pyrroline-5-carboxylate synthetase (P5CS). Two P5CS genes have been found in most angiosperms, one constitutively expressed to satisfy proline demand for protein synthesis, the other stress-induced. Despite the number of papers to investigate regulation at the transcriptional level, to date, the properties of the enzymes have been subjected to limited study. The isolation of Arabidopsis thaliana P5CS isoenzymes was achieved through heterologous expression and affinity purification. The two proteins were characterized with respect to kinetic and biochemical properties. AtP5CS2 showed KM values in the micro- to millimolar range, and its activity was inhibited by NADP+ , ADP and proline, and by glutamine and arginine at high levels. Mg2+ ions were required for activity, which was further stimulated by K+ and other cations. AtP5CS1 displayed positive cooperativity with glutamate and was almost insensitive to inhibition by proline. In the presence of physiological, nonsaturating concentrations of glutamate, proline was slightly stimulatory, and glutamine strongly increased the catalytic rate. Data suggest that the activity of AtP5CS isoenzymes is differentially regulated by a complex array of factors including the concentrations of proline, glutamate, glutamine, monovalent cations and pyridine dinucleotides.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Sabbioni
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Simone Barera
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dietmar Funck
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| |
Collapse
|
47
|
Singh R, Pandey R. Underlying plant trait strategies for understanding the carbon sequestration in Banj oak Forest of Himalaya. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170681. [PMID: 38325486 DOI: 10.1016/j.scitotenv.2024.170681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Plant functional attributes are subjected to environmental adjustments, which lead to modulations in forest processes under environmental changes. However, a comprehensive assessment of the relationships between plant traits and carbon stock remains subtle. The present study attempted to accomplish the gap of knowledge by examining the linkages between forest carbon with plant traits within the Banj Oak forest in the Garhwal Himalaya. Twelve individuals from three major species in the Banj Oak forest were randomly selected for trait measurements, and soil samples were collected randomly across the area for evaluation of soil nutrients and carbon. Forest biomass and soil carbon were estimated following standard protocols. A Structural Equation Model (SEM) was applied to establish the relationship between above ground carbon (AGC) and soil organic carbon (SOC) with leaf and stem traits, and soil nutrients. Stem traits were tree height and tree diameter; whereas leaf morphological traits were leaf area, specific leaf area, leaf dry matter content; leaf physiological traits were photosynthesis rate, stomatal conductance, and transpiration rate; and leaf biochemical traits were leaf carbon concentration, leaf nitrogen concentration, and leaf phosphorus concentration. Soil nutrients were available nitrogen, available phosphorus, and exchangeable potassium. Based on SEM results, AGC of the forest was positively correlated with stem traits and leaf physiological traits, while negatively correlated with leaf morphological traits. SOC was positively correlated with soil nutrients and leaf biochemical traits, whereas negatively correlated with stem traits. These findings may support for precise quantification of forest carbon and modeling of forest carbon stocks besides providing inputs to forest managers for devising effective forest management strategies.
Collapse
Affiliation(s)
| | - Rajiv Pandey
- Indian Council of Forestry Research and Education, Dehradun, India.
| |
Collapse
|
48
|
Manzoor MA, Xu Y, Lv Z, Xu J, Shah IH, Sabir IA, Wang Y, Sun W, Liu X, Wang L, Liu R, Jiu S, Zhang C. Horticulture crop under pressure: Unraveling the impact of climate change on nutrition and fruit cracking. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120759. [PMID: 38554453 DOI: 10.1016/j.jenvman.2024.120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Climate change is increasingly affecting the nutritional content and structural integrity of horticultural crops, leading to challenges such as diminished fruit quality and the exacerbation of fruit cracking. This manuscript systematically explores the multifaceted impacts of these changes, with a particular focus on the nutritional quality and increased incidence of fruit cracking. An exhaustive review of current research identifies the critical role of transcription factors in mediating plant responses to climatic stressors, such as drought, temperature extremes, and saline conditions. The significance of transcription factors, including bHLH, bZIP, DOF, MDP, HD-ZIP, MYB, and ERF4, is highlighted in the development of fruit cracking, underscoring the genetic underpinnings behind stress-related phenotypic outcomes. The effectiveness of greenhouse structures in mitigating adverse climatic effects is evaluated, offering a strategic approach to sustain crop productivity amidst CO2 fluctuations and water scarcity, which are shown to influence plant physiology and lead to changes in fruit development, nutrient dynamics, and a heightened risk of cracking. Moreover, the manuscript delves into advanced breeding strategies and genetic engineering techniques, such as genome editing, to enhance crop resilience against climatic challenges. It also discusses adaptation strategies vital for sustainable horticulture, emphasizing the need to integrate novel genetic insights with controlled environment horticulture to counteract climate change's detrimental effects. The synthesis presented here underscores the urgent need for innovative breeding strategies aimed at developing resilient crop varieties that can withstand climatic uncertainty while preserving nutritional integrity.
Collapse
Affiliation(s)
- Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jieming Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Li Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
49
|
Zaheer U, Munir F, Salum YM, He W. Function and regulation of plant ARGONAUTE proteins in response to environmental challenges: a review. PeerJ 2024; 12:e17115. [PMID: 38560454 PMCID: PMC10979746 DOI: 10.7717/peerj.17115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Environmental stresses diversely affect multiple processes related to the growth, development, and yield of many crops worldwide. In response, plants have developed numerous sophisticated defense mechanisms at the cellular and subcellular levels to react and adapt to biotic and abiotic stressors. RNA silencing, which is an innate immune mechanism, mediates sequence-specific gene expression regulation in higher eukaryotes. ARGONAUTE (AGO) proteins are essential components of the RNA-induced silencing complex (RISC). They bind to small noncoding RNAs (sRNAs) and target complementary RNAs, causing translational repression or triggering endonucleolytic cleavage pathways. In this review, we aim to illustrate the recently published molecular functions, regulatory mechanisms, and biological roles of AGO family proteins in model plants and cash crops, especially in the defense against diverse biotic and abiotic stresses, which could be helpful in crop improvement and stress tolerance in various plants.
Collapse
Affiliation(s)
- Uroosa Zaheer
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Faisal Munir
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yussuf Mohamed Salum
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weiyi He
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
50
|
Arai M, Kigoshi K, Moriwaki K, Miyashita K, Nakano Y, Fujiwara S. SHOOT GRAVITROPISM 5 mediates the stomatal response to darkness in Arabidopsis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:19-25. [PMID: 39464871 PMCID: PMC11500565 DOI: 10.5511/plantbiotechnology.23.1122a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 10/29/2024]
Abstract
Stomatal regulation, a multifaceted mechanism enabling plants to adapt to diverse environmental conditions and optimize photosynthesis for survival and growth, is considered crucial in drought stress tolerance research. To further enhance our understanding of stomatal regulation, we investigated the novel transcription factors involved in this process. Our findings reveal that SHOOT GRAVITROPISM 5 (SGR5) is involved in the stomatal response to darkness in Arabidopsis. Water loss measurements showed that SGR5-overexpressing plants retained more water, whereas SGR5-knockout lines exhibited increased water loss compared with the control. Unexpectedly, our analyses indicated that SGR5 was not associated with the abscisic acid signaling pathway, in contrast to its homologous transcription factor, INDETERMINATE DOMAIN 14. Instead, SGR5-knockout lines exhibited weakened stomatal closure responses upon transition to darkness. Collectively, our results highlight the regulatory role of SGR5 in mediating stomatal movement in response to darkness.
Collapse
Affiliation(s)
- Moeca Arai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Keiko Kigoshi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Kosuke Moriwaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Kyoko Miyashita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Yoshimi Nakano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Sumire Fujiwara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|