1
|
Cappello L, ‘Jack’ Lo WT, Zhang JZ, Xu P, Barrow D, Chopra I, Clark AG, Wells MT, Kim J. Bayesian phylodynamic inference of population dynamics with dormancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.19.633741. [PMID: 39896623 PMCID: PMC11785064 DOI: 10.1101/2025.01.19.633741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2025]
Abstract
Many organisms employ reversible dormancy, or seedbank, in response to environmental fluctuations. This life-history strategy alters fundamental eco-evolutionary forces, leading to distinct patterns of genetic diversity. Two models of dormancy have been proposed based on the average duration of dormancy relative to coalescent timescales: weak seedbank, induced by scheduled seasonality (e.g., plants, invertebrates), and strong seedbank, where individuals stochastically switch between active and dormant states (e.g., bacteria, fungi). The weak seedbank coalescent is statistically equivalent to the Kingman coalescent with a scaled mutation rate, allowing the use of existing inference methods. In contrast, the strong seedbank coalescent differs fundamentally, as only active lineages can coalesce, while dormant lineages cannot. Additionally, dormant individuals typically mutate at a slower rate than active ones. Consequently, despite the significant role of dormancy in the eco-evolutionary dynamics of many organisms, no methods currently exist for inferring population dynamics involving dormancy and associated parameters. We present a Bayesian framework for jointly inferring a latent genealogy, seedbank parameters, and evolutionary parameters from molecular sequence data under the strong seedbank coalescent. We derive the exact probability density of genealogies sampled under the strong seedbank coalescent, characterize the corresponding likelihood function, and present efficient computational algorithms for its evaluation based on our theoretical framework. We develop a tailored Markov chain Monte Carlo sampler and implement our inference framework as a package SeedbankTree within BEAST2. Our work provides both a theoretical foundation and practical inference framework for studying the population genetic and genealogical impacts of dormancy.
Collapse
Affiliation(s)
- Lorenzo Cappello
- Departments of Economics and Business, Universitat Pompeu Fabra, Barcelona, Spain
- Data Science Center, Barcelona School of Economics, Barcelona, Spain
| | - Wai Tung ‘Jack’ Lo
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Joy Z. Zhang
- Center for Applied Mathematics, Cornell University, Ithaca, New York, USA
| | - Peiyu Xu
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York, USA
| | - Daniel Barrow
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Ishani Chopra
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Andrew G. Clark
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York, USA
| | - Martin T. Wells
- Department of Statistics and Data Science, Cornell University, Ithaca, New York, USA
| | - Jaehee Kim
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Hua Y, Dong L, Sun S, Wang K, Zou Y, Gao Y, Gong T, Hu G, Qin L. Metabonomics and physiology revealed the critical function of 5-Phosphoribosylamine and antioxidant enzymes in enhancing aged oat seed germination. BMC PLANT BIOLOGY 2025; 25:28. [PMID: 39773191 PMCID: PMC11707942 DOI: 10.1186/s12870-024-06035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/04/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Effective Microorganism (EM) is widely employed as a growth promoter in agricultural practices. The aging of oat seeds not only directly impairs agricultural production but also exerts adverse effects on biodiversity. The mechanism through which EM influence the germination of aging seeds remains unclear. In this experiment, the EM bacterial solution underwent pretreatment, which included the original-solution treatment (OrT), supernatant treatment (SuT), and sterile treatment (StT). Aging of oat seeds was induced using the pretreated EM bacterial solution. In this study, the EM bacterial solution facilitated the enhancement of the germination rate, germination index, and vitality index of aged seeds, with SuT demonstrating the most pronounced effects. Specifically, SuT resulted in a significant increase in APX and POD activities, while significantly reducing the malondialdehyde content. In addition, metabolic profiling highlighted the significance of 5-phosphoribosylamine in the purine metabolic pathway. Particularly in the SuT, the upregulation of 5-phosphoribosylamine facilitated the synthesis of (R)-Allantoin, consequently augmenting antioxidant enzyme activity.
Collapse
Affiliation(s)
- Yi Hua
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Linling Dong
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shengnan Sun
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Kexin Wang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yilin Zou
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yongqi Gao
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ting Gong
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guofu Hu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.
| | - Ligang Qin
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
3
|
Renzetti M, Funck D, Trovato M. Proline and ROS: A Unified Mechanism in Plant Development and Stress Response? PLANTS (BASEL, SWITZERLAND) 2024; 14:2. [PMID: 39795262 PMCID: PMC11723217 DOI: 10.3390/plants14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/27/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
The proteinogenic amino acid proline plays crucial roles in both plant development and stress responses, far exceeding its role in protein synthesis. However, the molecular mechanisms and the relative importance of these additional functions of proline remain under study. It is well documented that both stress responses and developmental processes are associated with proline accumulation. Under stress conditions, proline is believed to confer stress tolerance, while under physiological conditions, it assists in developmental processes, particularly during the reproductive phase. Due to proline's properties as a compatible osmolyte and potential reactive oxygen species (ROS) scavenger, most of its beneficial effects have historically been attributed to the physicochemical consequences of its accumulation in plants. However, emerging evidence points to proline metabolism as the primary driver of these beneficial effects. Recent reports have shown that proline metabolism, in addition to supporting reproductive development, can modulate root meristem size by controlling ROS accumulation and distribution in the root meristem. The dynamic interplay between proline and ROS highlights a sophisticated regulatory network essential for plant resilience and survival. This fine-tuning mechanism, enabled by the pro-oxidant and antioxidant properties of compartmentalized proline metabolism, can modulate redox balance and ROS homeostasis, potentially explaining many of the multiple roles attributed to proline. This review uniquely integrates recent findings on the dual role of proline in both ROS scavenging and signaling, provides an updated overview of the most recent research published to date, and proposes a unified mechanism that could account for many of the multiple roles assigned to proline in plant development and stress defense. By focusing on the interplay between proline and ROS, we aim to provide a comprehensive understanding of this proposed mechanism and highlight the potential applications in improving crop resilience to environmental stress. Additionally, we address current gaps in understanding and suggest future research directions to further elucidate the complex roles of proline in plant biology.
Collapse
Affiliation(s)
- Marco Renzetti
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Dietmar Funck
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany;
| | - Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
4
|
Dragičević V, Simić M, Kandić Raftery V, Vukadinović J, Dodevska M, Đurović S, Brankov M. Screening of Nutritionally Important Components in Standard and Ancient Cereals. Foods 2024; 13:4116. [PMID: 39767058 PMCID: PMC11675112 DOI: 10.3390/foods13244116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Sustainable nutrition and food production involve dietary habits and farming systems which are eco-friendly, created to provide highly nutritious staple crops which could serve as a functional food at the same time. This research sought to provide a comprehensive analysis of whole-grain cereals, and some ancient grains toward important macro- (protein), micro-nutrients (mineral elements), and bioactive compounds, such as dietary fiber (arabinoxylan and β-glucan) and antioxidants (phytic acid, total glutathione, yellow pigment, and phenolic compounds) to provide functionality in a sustainable diet. Genotypes, such as durum wheat, triticale, spelt, emmer wheat, and barley, could be considered important and sustainable sources of protein (ranging 11.10-15.00%), as well as prebiotic fiber (β-glucan and arabinoxylan, ranging 0.11-4.59% and 0.51-6.47%, respectively), essential elements, and various antioxidants. Ancient grains can be considered as a source of highly available essential elements. Special attention should be given to the Cimmyt spelt 1, which is high in yellow pigment (5.01 μg·g-1) and has a capacity to reduce DPPH radicals (186.2 µmol TE·g-1), particularly Zn (70.25 mg·kg-1). The presence of phenolics, dihydro-p-coumaric acid, naringin, quercetin, epicatechin in grains of oats (Sopot), as well as catechin in barley grains (Apolon and Osvit) underline their unique chemical profile, making them a desirable genetic pool for breeding genotypes. This research provides a comprehensive assessment of different nutritional aspects of various cereals (some of which are commonly used, while the others are rarely used in diet), indicating their importance as nutraceuticals. It also provides a genetic background that could be translated the genotypes with even more profound effects on human health.
Collapse
Affiliation(s)
- Vesna Dragičević
- Maize Research Institute “Zemun Polje”, Slobodana Bajića 1, 11185 Zemun Polje, Serbia; (M.S.); (V.K.R.); (J.V.); (M.B.)
| | - Milena Simić
- Maize Research Institute “Zemun Polje”, Slobodana Bajića 1, 11185 Zemun Polje, Serbia; (M.S.); (V.K.R.); (J.V.); (M.B.)
| | - Vesna Kandić Raftery
- Maize Research Institute “Zemun Polje”, Slobodana Bajića 1, 11185 Zemun Polje, Serbia; (M.S.); (V.K.R.); (J.V.); (M.B.)
| | - Jelena Vukadinović
- Maize Research Institute “Zemun Polje”, Slobodana Bajića 1, 11185 Zemun Polje, Serbia; (M.S.); (V.K.R.); (J.V.); (M.B.)
| | - Margarita Dodevska
- Institute of Public Health of Serbia “Dr. Milan Jovanović Batut”, Dr Subotića Starijeg 5, 11000 Belgrade, Serbia;
| | - Sanja Đurović
- Institute for Plant Protection and Environment, Teodora Drajzera 9, 11040 Belgrade, Serbia;
| | - Milan Brankov
- Maize Research Institute “Zemun Polje”, Slobodana Bajića 1, 11185 Zemun Polje, Serbia; (M.S.); (V.K.R.); (J.V.); (M.B.)
| |
Collapse
|
5
|
Mohajer MH, Khademi A, Rahmani M, Monfaredi M, Hamidi A, Mirjalili MH, Ghomi H. Optimizing beet seed germination via dielectric barrier discharge plasma parameters. Heliyon 2024; 10:e40020. [PMID: 39553550 PMCID: PMC11565412 DOI: 10.1016/j.heliyon.2024.e40020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
This study explores the synergistic effects of gas composition and electric field modulation on beetroot seed germination using dielectric barrier discharge (DBD) plasma. The investigation initially focuses on the impact of air plasma exposure on germination parameters, varying both voltage and treatment duration. Subsequently, the study examines how different gas compositions (argon, nitrogen, oxygen, and carbon dioxide) affect germination outcomes under optimal air plasma conditions. Results indicate that plasma treatment significantly enhances germination rates and seedling growth relative to untreated controls. Notably, plasma exposure alters seed surface morphology and chemistry, increasing roughness, porosity, and hydrophilicity due to the formation of new polar functional groups. The highest germination rate (a 54.84 % increase) and germination index (a 40.11 % increase) were observed at the lowest voltage and shortest duration, whereas higher voltages and prolonged exposure reduced germination, likely due to oxidative stress. Among the tested gas environments, air plasma was most effective in enhancing water uptake and electrical conductivity, while oxygen plasma resulted in the highest germination index and marked improvements in root and shoot length. Conversely, carbon dioxide plasma treatment exhibited inhibitory effects on both germination and subsequent growth metrics. The results highlight the potential of DBD plasma technology to enhance agricultural productivity by optimizing seed germination and early growth. The study emphasizes the importance of precise parameter tuning, particularly gas composition and plasma exposure conditions, to maximize benefits while minimizing adverse effects, offering a refined approach to seed priming in agricultural practices.
Collapse
Affiliation(s)
| | - Ahmad Khademi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Maede Rahmani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Motahare Monfaredi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Aidin Hamidi
- Agriculture Research, Education and Extension Organization (AREEO), Seed and Plant Certification and Registration Institute (SPCRI), Karaj, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Hamid Ghomi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
Chen M, Liu M, Wang C, Sun Z, Lu A, Yang X, Ma J. Critical radicle length window governing loss of dehydration tolerance in germinated Perilla seeds: insights from physiological and transcriptomic analyses. BMC PLANT BIOLOGY 2024; 24:1078. [PMID: 39543497 PMCID: PMC11566475 DOI: 10.1186/s12870-024-05801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/21/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Perilla (Perilla frutescens L. Britt.) is an important oilseed and medicinal crop that frequently faces seasonal drought stress during seed germination, leading to a loss of dehydration tolerance (DT), which affects seed emergence and significantly reduces yield. DT has been successfully re-established for many species seeds. However, the physiological mechanisms and gene networks that regulate Perilla's response to DT loss remain unclear. RESULTS Phenotypic analysis determined that the window for DT in Perilla seeds occurs at radicle lengths of 0-4 mm. Integrating physiological and transcriptomic analyses revealed that the loss of DT promotes the production of reactive oxygen species (ROS) and regulates oxidase activity and gene expression. This implies that DT may influence seed germination by modulating ROS activity. Four radicle length (i.e., 0, 1, 3, and 4 mm) stages were analyzed, and 262 differentially expressed genes (DEGs) were identified that responded to DT. The majority of these genes were associated with epigenetics, cell function, and transport mechanisms. Analysis of expression data shows that desiccation inhibits the signaling network of genes encoding small secreted peptides (SSPs) and receptor-like protein kinases (RLKs). Finally, a relevant network diagram of DT response was proposed. Based on this information, we have revealed the metabolism regulation maps of the four main pathways involving these DEGs (i.e., metabolic pathways, cell cycle, plant hormone signal transduction, and motor proteins). CONCLUSIONS In conclusion, these findings deepen our understanding of gene network responses to DT during Perilla seed germination and provide potential target genes for the genetic improvement of drought resistance in this crop.
Collapse
Affiliation(s)
- Minghao Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Mingwang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenglong Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhichao Sun
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Ailian Lu
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xiaohuan Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jinhu Ma
- School of Innovation and Intrepreneurship, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
7
|
Sun S, Mi C, Ma W, Mao P. Dynamic responses of germination characteristics and antioxidant systems to alfalfa (Medicago sativa) seed aging based on transcriptome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109205. [PMID: 39442418 DOI: 10.1016/j.plaphy.2024.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/09/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Seed aging poses a significant challenge to agronomic production and germplasm conservation. Reactive oxygen species (ROS) are highly involved in the aging process. However, dynamic response of germination characteristics and antioxidant system to seed aging are not yet very clear. This study explored the potential physiological mechanisms responsible for the reduced and rapid loss of seed vigor in alfalfa, and identified key genes regulating seed vigor. The germination percentage exhibited a decreased trend with the prolongation of aging duration. From 16 to 32 days of aging, the antioxidant enzyme activities of SOD, POD, CAT, DHAR and MDHAR declined significantly, which lead to the disruption of ROS balance and a significant increase in ROS levels, exacerbating seed aging. Based on transcriptome, 29 differentially expressed genes (DEGs) including SOD1, APX-2 and GST-7 within the ROS scavenging system showed a significantly down-regulated expression trend at aging of 16 and 24 days, indicating the abnormal function of antioxidant metabolism. Furthermore, some related genes including ATPF1B, ATPeF0C-3, NDUFS1, NDUFS3 and ND2 in the mitochondrial ETC exhibited a downturn following seed aging, which would result in the losing of seed vigor. This study has uncovered a significant array of potential target genes within the seed antioxidant system and mitochondrial ETC. These discoveries offer a wider lens for delving into the molecular regulatory mechanisms of seed aging. Further research is crucial to comprehensively elucidate the precise pathways through which these pivotal genes regulate seed vigor.
Collapse
Affiliation(s)
- Shoujiang Sun
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chunjiao Mi
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wen Ma
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Peisheng Mao
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Kutluer F, Özkan B, Yalçin E, Çavuşoğlu K. Direct and indirect toxicity mechanisms of the natural insecticide azadirachtin based on in-silico interactions with tubulin, topoisomerase and DNA. CHEMOSPHERE 2024; 364:143006. [PMID: 39098344 DOI: 10.1016/j.chemosphere.2024.143006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/18/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Natural pesticides, which attract attention with safe properties, pose a threat to many non-target organisms, so their toxic effects should be studied extensively. In this study, the toxic effects of Azadirachtin, a natural insecticide derived from Azadirachta indica, were investigated by in-vivo and in-silico methods. In-vivo toxic effects were determined using the Allium test and bulbs were treated with 5 mg/L (0.5x EC50), 10 mg/L (EC50), and 20 mg/L (2xEC50) Azadirachtin. In the groups treated with Azadirachtin, there was a decline in germination-related parameters and accordingly growth was delayed. This regression may be related to oxidative stress in the plant, and the increase in malondialdehyde and proline levels in Azadirachtin-applied groups confirms oxidative stress. Azadirachtin toxicity increased dose-dependently and the most significant toxic effect was observed in the group administered 20 mg/L Azadirachtin. In this group, the mitotic index decreased by 43.4% and sticky chromosomes, vagrant chromosomes and fragments were detected at rates of 83.1 ± 4.01, 72.7 ± 3.46 and 65.1 ± 3.51, respectively. By comet analysis, it was determined that Azadirachtin caused DNA fragmentation, and tail DNA, which was 0.10 ± 0.32% in the control group, increased to 34.5 ± 1.35% in the Azadirachtin -treated groups. These cytotoxic and genotoxic effects of Azadirachtin may be due to direct interaction with macromolecules as well as induced oxidative stress. Azadirachtin has been found to interact in-silico with alpha-tubulin, beta-tubulin, topoisomerase I and II, and various DNA sequences. Possible deteriorations in macromolecular structure and functions as a result of these interactions may cause cytotoxic and genotoxic effects. These results suggest that natural insecticides may also be unreliable for non-target organisms, and the toxic effects of compounds presented as "natural" should also be investigated.
Collapse
Affiliation(s)
- Fatih Kutluer
- Department of Herbal and Animal Production, Kırıkkale Vocational School, Kırıkkale University, Kırıkkale, Turkiye.
| | - Burak Özkan
- Department of Biology, Institute of Science, Giresun University, Giresun, Turkiye.
| | - Emine Yalçin
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkiye.
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkiye.
| |
Collapse
|
9
|
Gordeeva EI, Shoeva OY, Khlestkina EK. A comparative study on germination of wheat grains with different anthocyanin pigmentation of the pericarp in natural or induced aging. Vavilovskii Zhurnal Genet Selektsii 2024; 28:495-505. [PMID: 39280842 PMCID: PMC11393652 DOI: 10.18699/vjgb-24-56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 09/18/2024] Open
Abstract
One of promising areas of wheat breeding is the creation of varieties with a high concentration of anthocyanins in the grain for the production of functional food products. Nonetheless, the question of how these compounds affect seed viability after long-term storage has remained unexplored. A comparative study on seed viability was conducted using a set of near-isogenic lines on the background of spring wheat variety Saratovskaya 29. These sister lines carry different combinations of recombinant DNA regions (on chromosomes 2A and 7D) containing dominant and recessive alleles at loci Pp3 and Pp-D1 (Pp: Purple pericarp), which determine the anthocyanin color of coleoptiles and of the pericarp. Seeds were germinated on two layers of water-moistened filter paper in a climatic chamber at a constant temperature of 20 °C on a 12-hour daylight cycle. During long-term natural storage of the seeds for up to 9 years in a dry ventilated room in Kraft bags at 20 ± 2 °C, the tested wheat samples experienced a loss of seed germination capacity of ~50 %; anthocyanins were found to not participate in the preservation of germination capacity. Nonetheless, anthocyanins contributed to the preservation of seed viability under unfavorable short-term conditions of a temperature rise to 48 °C at 100 % humidity. The accelerated aging test did not predict poor germination capacity after long-term seed storage. The results showed a neutral role of anthocyanins in the maintenance of seed germination capacity for 6-9 years under natural storage conditions at 20 ± 2 °C. A small statistically significant increase in grain germination capacity during natural aging was associated with the presence of a recombinant region containing the Pp-D1 gene on wheat chromosome 7D.
Collapse
Affiliation(s)
- E I Gordeeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O Y Shoeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E K Khlestkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
10
|
Marcin T, Katarzyna C, Urszula K. Reactive nitrogen species act as the enhancers of glutathione pool in embryonic axes of apple seeds subjected to accelerated ageing. PLANTA 2024; 260:51. [PMID: 38995415 PMCID: PMC11245430 DOI: 10.1007/s00425-024-04472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/21/2023] [Accepted: 06/22/2024] [Indexed: 07/13/2024]
Abstract
MAIN CONCLUSION Reactive nitrogen species mitigate the deteriorative effect of accelerated seed ageing by affecting the glutathione concentration and activities of GR and GPX-like. The treatment of apple (Malus domestica Borkh.) embryos isolated from accelerated aged seeds with nitric oxide-derived compounds increases their vigour and is linked to the alleviation of the negative effect of excessive oxidation processes. Reduced form of glutathione (GSH) is involved in the maintenance of redox potential. Glutathione peroxidase-like (GPX-like) uses GSH and converts it to oxidised form (GSSG), while glutathione reductase (GR) reduces GSSG into GSH. The aim of this work was to investigate the impact of the short-time NOx treatment of embryos isolated from apple seeds subjected to accelerated ageing on glutathione-related parameters. Apple seeds were subjected to accelerated ageing for 7, 14 or 21 days. Isolated embryos were shortly treated with NOx and cultured for 48 h. During ageing, in the axes of apple embryos, GSH and GSSG levels as well as half-cell reduction potential remained stable, while GR and GPX-like activities decreased. However, the positive effect of NOx in the vigour preservation of embryos isolated from prolonged aged seeds is linked to the increased total glutathione pool, and above all, higher GSH content. Moreover, NOx increased the level of transcripts encoding GPX-like and stimulated enzymatic activity. The obtained results indicate that high seed vigour related to the mode of action of NO and its derivatives is closely linked to the maintenance of higher GSH levels.
Collapse
Affiliation(s)
- Tyminski Marcin
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Ciacka Katarzyna
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Krasuska Urszula
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
11
|
Li G, Xie J, Zhang W, Meng F, Yang M, Fan X, Sun X, Zheng Y, Zhang Y, Wang M, Chen Q, Wang S, Jiang H. Integrated examination of the transcriptome and metabolome of the gene expression response and metabolite accumulation in soybean seeds for seed storability under aging stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1437107. [PMID: 39040511 PMCID: PMC11261460 DOI: 10.3389/fpls.2024.1437107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/23/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
Soybean quality and production are determined by seed viability. A seed's capacity to sustain germination via dry storage is known as its seed life. Thus, one of the main objectives for breeders is to preserve genetic variety and gather germplasm resources. However, seed quality and germplasm preservation have become significant obstacles. In this study, four artificially simulated aging treatment groups were set for 0, 24, 72, and 120 hours. Following an aging stress treatment, the transcriptome and metabolome data were compared in two soybean lines with notable differences in seed vigor-R31 (aging sensitive) and R80 (aging tolerant). The results showed that 83 (38 upregulated and 45 downregulated), 30 (19 upregulated and 11 downregulated), 90 (52 upregulated and 38 downregulated), and 54 (25 upregulated and 29 downregulated) DEGs were differentially expressed, respectively. A total of 62 (29 upregulated and 33 downregulated), 94 (49 upregulated and 45 downregulated), 91 (53 upregulated and 38 downregulated), and 135 (111 upregulated and 24 downregulated) differential metabolites accumulated. Combining the results of transcriptome and metabolome investigations demonstrated that the difference between R31 and R80 responses to aging stress was caused by genes related to phenylpropanoid metabolism pathway, which is linked to the seed metabolite caffeic acid. According to this study's preliminary findings, the aging-resistant line accumulated more caffeic acid than the aging-sensitive line, which improved its capacity to block lipoxygenase (LOX) activity. An enzyme activity inhibition test was used to demonstrate the effect of caffeic acid. After soaking seeds in 1 mM caffeic acid (a LOX inhibitor) for 6 hours and artificially aging them for 24 hours, the germination rates of the R31 and R80 seeds were enhanced. In conclusion, caffeic acid has been shown to partially mitigate the negative effects of soybean seed aging stress and to improve seed vitality. This finding should serve as a theoretical foundation for future research on the aging mechanism of soybean seeds.
Collapse
Affiliation(s)
- Guang Li
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Jianguo Xie
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Wei Zhang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Fanfan Meng
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Mingliang Yang
- Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xuhong Fan
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Xingmiao Sun
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Yuhong Zheng
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Yunfeng Zhang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Mingliang Wang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Qingshan Chen
- Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuming Wang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Hongwei Jiang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| |
Collapse
|
12
|
Abbattista R, Feinberg NG, Snodgrass IF, Newman JW, Dandekar AM. Unveiling the "hidden quality" of the walnut pellicle: a precious source of bioactive lipids. FRONTIERS IN PLANT SCIENCE 2024; 15:1395543. [PMID: 38957599 PMCID: PMC11217525 DOI: 10.3389/fpls.2024.1395543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/04/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Tree nut consumption has been widely associated with various health benefits, with walnuts, in particular, being linked with improved cardiovascular and neurological health. These benefits have been attributed to walnuts' vast array of phenolic antioxidants and abundant polyunsaturated fatty acids. However, recent studies have revealed unexpected clinical outcomes related to walnut consumption, which cannot be explained simply with the aforementioned molecular hallmarks. With the goal of discovering potential molecular sources of these unexplained clinical outcomes, an exploratory untargeted metabolomics analysis of the isolated walnut pellicle was conducted. This analysis revealed a myriad of unusual lipids, including oxylipins and endocannabinoids. These lipid classes, which are likely present in the pellicle to enhance the seeds' defenses due to their antimicrobial properties, also have known potent bioactivities as mammalian signaling molecules and homeostatic regulators. Given the potential value of this tissue for human health, with respect to its "bioactive" lipid fraction, we sought to quantify the amounts of these compounds in pellicle-enriched waste by-products of mechanized walnut processing in California. An impressive repertoire of these compounds was revealed in these matrices, and in notably significant concentrations. This discovery establishes these low-value agriculture wastes promising candidates for valorization and translation into high-value, health-promoting products; as these molecules represent a potential explanation for the unexpected clinical outcomes of walnut consumption. This "hidden quality" of the walnut pellicle may encourage further consumption of walnuts, and walnut industries may benefit from a revaluation of abundant pellicle-enriched waste streams, leading to increased sustainability and profitability through waste upcycling.
Collapse
Affiliation(s)
- Ramona Abbattista
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Noah G. Feinberg
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Isabel F. Snodgrass
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
| | - John W. Newman
- Western Human Nutrition Research Center, United States Department of Agriculture, Davis, CA, United States
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
13
|
Wang Y, Sun X, Peng J, Li F, Ali F, Wang Z. Regulation of seed germination: ROS, epigenetic, and hormonal aspects. J Adv Res 2024:S2090-1232(24)00225-X. [PMID: 38838783 DOI: 10.1016/j.jare.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The whole life of a plant is regulated by complex environmental or hormonal signaling networks that control genomic stability, environmental signal transduction, and gene expression affecting plant development and viability. Seed germination, responsible for the transformation from seed to seedling, is a key initiation step in plant growth and is controlled by unique physiological and biochemical processes. It is continuously modulated by various factors including epigenetic modifications, hormone transport, ROS signaling, and interaction among them. ROS showed versatile crucial functions in seed germination including various physiological oxidations to nucleic acid, protein, lipid, or chromatin in the cytoplasm, cell wall, and nucleus. AIM of review: This review intends to provide novel insights into underlying mechanisms of seed germination especially associated with the ROS, and considers how these versatile regulatory mechanisms can be developed as useful tools for crop improvement. KEY SCIENTIFIC CONCEPTS OF REVIEW We have summarized the generation and elimination of ROS during seed germination, with a specific focus on uncovering and understanding the mechanisms of seed germination at the level of phytohormones, ROS, and epigenetic switches, as well as the close connections between them. The findings exhibit that ROS plays multiple roles in regulating the ethylene, ABA, and GA homeostasis as well as the Ca2+ signaling, NO signaling, and MAPK cascade in seed germination via either the signal trigger or the oxidative modifier agent. Further, ROS shows the potential in the nuclear genome remodeling and some epigenetic modifiers function, although the detailed mechanisms are unclear in seed germination. We propose that ROS functions as a hub in the complex network regulating seed germination.
Collapse
Affiliation(s)
- Yakong Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiangyang Sun
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Jun Peng
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China; State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China; State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
14
|
Kaur R, Yadu B, Chauhan NS, Parihar AS, Keshavkant S. Nano zinc oxide mediated resuscitation of aged Cajanus cajan via modulating aquaporin, cell cycle regulatory genes and hormonal responses. PLANT CELL REPORTS 2024; 43:110. [PMID: 38564104 DOI: 10.1007/s00299-024-03202-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/05/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
KEY MESSAGE Nanoparticle pretreatment improved the health of aged Cajanus cajan seeds viz., regulation of redox status, gene expression, and restoration of hormonal homeostasis. Ageing deteriorates the quality of seeds by lowering their vigor and viability, and terminating with loss of germination. These days, nanotechnology has been seen to revolutionize the agricultural sectors, and particularly nano zinc oxide (nZnO) has gained considerable interests due to its distinctive properties. The aim of the present work was to decipher the possibilities of using nZnO to rejuvenate accelerated aged (AA) seeds of Cajanus cajan. Both chemically (CnZnO) and green (GnZnO; synthesized using Moringa oleifera) fabricated nZnOs were characterized via standard techniques to interpret their purity, size, and shape. Experimental results revealed erratic germination with a decline in viability and membrane stability as outcomes of reactive oxygen intermediate (ROI) buildup in AA seeds. Application of nZnO substantially rebated the accrual of ROI, along with enhanced production of antioxidants, α-amylase activity, total sugar, protein and DNA content. Higher level of zinc was assessed qualitatively/ histologically and quantitatively in nZnO pulsed AA seeds, supporting germination without inducing toxicity. Meantime, augmentation in the gibberellic acid with a simultaneous reduction in the abscisic acid level were noted in nZnO invigorated seeds than that determined in the AA seeds, suggesting possible involvement of ROI in hormonal signalling. Furthermore, nZnO-subjected AA seeds unveiled differential expression of aquaporins and cell cycle regulatory genes. Summarizing, among CnZnO and GnZnO, later one holds better potential for a revival of AA seeds of Cajanus cajan by providing considerable tolerance against ageing-associated deterioration via recouping the cellular redox homeostasis, hormonal signaling, and alteration in expression patterns of aquaporin and cell cycle regulatory genes.
Collapse
Affiliation(s)
- Rasleen Kaur
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010, India
| | - Bhumika Yadu
- School of Life and Allied Science, ITM University, Raipur, 492 002, India
| | | | | | - S Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010, India.
| |
Collapse
|
15
|
Zheng Q, Teng Z, Zhang J, Ye N. ABA Inhibits Rice Seed Aging by Reducing H 2O 2 Accumulation in the Radicle of Seeds. PLANTS (BASEL, SWITZERLAND) 2024; 13:809. [PMID: 38592812 PMCID: PMC10976155 DOI: 10.3390/plants13060809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/14/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 04/11/2024]
Abstract
The seed, a critical organ in higher plants, serves as a primary determinant of agricultural productivity, with its quality directly influencing crop yield. Improper storage conditions can diminish seed vigor, adversely affecting seed germination and seedling establishment. Therefore, understanding the seed-aging process and exploring strategies to enhance seed-aging resistance are paramount. In this study, we observed that seed aging during storage leads to a decline in seed vigor and can coincide with the accumulation of hydrogen peroxide (H2O2) in the radicle, resulting in compromised or uneven germination and asynchronous seedling emergence. We identified the abscisic acid (ABA) catabolism gene, abscisic acid 8'-hydroxylase 2 (OsABA8ox2), as significantly induced by aging treatment. Interestingly, transgenic seeds overexpressing OsABA8ox2 exhibited reduced seed vigor, while gene knockout enhanced seed vigor, suggesting its role as a negative regulator. Similarly, seeds pretreated with ABA or diphenyleneiodonium chloride (DPI, an H2O2 inhibitor) showed increased resistance to aging, with more robust early seedling establishment. Both OsABA8ox2 mutant seeds and seeds pretreated with ABA or DPI displayed lower H2O2 content during aging treatment. Overall, our findings indicate that ABA mitigates rice seed aging by reducing H2O2 accumulation in the radicle. This study offers valuable germplasm resources and presents a novel approach to enhancing seed resistance against aging.
Collapse
Affiliation(s)
- Qin Zheng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Q.Z.); (Z.T.)
| | - Zhenning Teng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Q.Z.); (Z.T.)
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
- Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong
| | - Nenghui Ye
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Q.Z.); (Z.T.)
- Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong
| |
Collapse
|
16
|
Kamaei R, Kafi M, Afshari RT, Shafaroudi SM, Nabati J. Physiological and molecular changes of onion (Allium cepa L.) seeds under different aging conditions. BMC PLANT BIOLOGY 2024; 24:85. [PMID: 38308226 PMCID: PMC10837900 DOI: 10.1186/s12870-024-04773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Academic Contribution Register] [Received: 08/15/2023] [Accepted: 01/28/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Onion seeds have limited storage capacity compared to other vegetable seeds. It is crucial to identify the mechanisms that induce tolerance to storage conditions and reduce seed deterioration. To address this goal, an experiment was conducted to evaluate changes in germination, biochemical, physiological, and molecular characteristics of onion seed landraces (Horand, Kazerun landraces and Zargan cultivar) at different aging levels (control, three-days and six-days accelerated aging, and natural aging for one year). RESULTS The findings suggest that there was an increase in glucose, fructose, total sugar, and electrolyte leakage in the Horand (HOR), Kazerun (KAZ) landraces, and Zarghan (ZAR) cultivar, with Kazerun exhibiting the greatest increase. The percentage and rate of germination of Kazerun decreased by 54% and 33%, respectively, in six-day accelerated aging compared to the control, while it decreased by 12% and 14%, respectively, in Horand. Protein content decreased with increasing levels of aging, with a decrease of 26% in Kazerun landrace at six days of aging, while it was 16% in Horand landrace. The antioxidant activities of catalase, superoxide dismutase, and glutathione peroxidase decreased more intensively in Kazerun. The expression of AMY1, BMY1, CTR1, and NPR1 genes were lower in Kazerun landraces than in Horand and Zargan at different aging levels. CONCLUSIONS The AMY1, BMY1, CTR1, and NPR1 genes play a pivotal role in onion seed germination, and their downregulation under stressful conditions has been shown to decrease germination rates. In addition, the activity of CAT, SOD, and GPx enzymes decreased by seed aging, and the amount of glucose, fructose, total sugar and electrolyte leakage increased, which ultimately led to seed deterioration. Based on the results of this experiment, it is recommended to conduct further studies into the molecular aspects involved in onion seed deterioration. More research on the genes related to this process is suggested, as well as investigating the impact of different priming treatments on the genes expression involved in the onion seed aging process.
Collapse
Affiliation(s)
- Reza Kamaei
- Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Kafi
- Department of Agrotechnonogy, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | | | - Jafar Nabati
- Department of Agrotechnonogy, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
17
|
Jhanji S, Goyal E, Chumber M, Kaur G. Exploring fine tuning between phytohormones and ROS signaling cascade in regulation of seed dormancy, germination and seedling development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108352. [PMID: 38266558 DOI: 10.1016/j.plaphy.2024.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/30/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
In higher plants, seed is a propagule which ensures dissemination and survival of species. Developmental phases of a seed comprise embryogenesis, maturation and germination paving a way to its final fate i.e. seedling establishment. The final stage of seed maturation is marked by dehydration, acquisition of dessication tolerance and induction of dormancy. A precise Abscisic acid (ABA) to Gibberellins (GA) ratio, accumulation of miRNA 156, low level of reactive oxygen species (ROS) and enzyme inactivity govern seed dormancy. This also prevent pre harvest sprouting of the seeds. Overtime, stored seed mRNAs and proteins are degraded through oxidation of specific nucleotides in response to ROS accumulation. This degradation alleviates seed dormancy and transforms a dormant seed into a germinating seed. At this stage, ABA catabolism and degradation accompanied by GA synthesis contribute to low ABA to GA ratio. GA as well as ROS acts downstream, to mobilize reserve food materials, rupture testa, enhance imbibition and protrude radicle. All these events mark seed germination. Further, seedling is established under the governance of auxin and light. ABA and GA are master regulators while auxin, cytokinins, ethylene, jasmonic acid, brassinosteroids act through interdependent pathways to tightly regulate seed dormancy, germination and seedling establishment. In this review, the role of phytohormones and ROS in accordance with environmental factors in governing seed dormancy, promoting seed germination and thus, establishing a seedling is discussed in detail.
Collapse
Affiliation(s)
- Shalini Jhanji
- Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Eena Goyal
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Manisha Chumber
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Gurpreet Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
18
|
Nogueira A, Puga H, Gerós H, Teixeira A. Seed germination and seedling development assisted by ultrasound: gaps and future research directions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:583-597. [PMID: 37728938 DOI: 10.1002/jsfa.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/26/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
Since the early 1930s, when the first corn hybrids were grown commercially, innovations in the agriculture industry have had an unprecedent impact worldwide, helping to meet the demands for food of an exponentially growing population. In particular, seed technology research has contributed substantially to the improvement of crop performance over the years. Ultrasonic treatment of seeds is a green technology that promises to have an impact on the food industry, enhancing germination and seedling development in different species through the stimulation of water and oxygen uptake and seed metabolism. The increase in starch degradation has been associated with the stimulation of the α-amylases of the endosperm, but relatively few reports focus on how ultrasound affects seed germination at the biochemical and molecular levels. For instance, the picture is still unclear regarding the impact of ultrasound on transcriptional reprogramming in seeds. The purpose of this review is to assess the literature on ultrasound seed treatment accurately and critically, ultimately aiming to encourage new scientific and technological breakthroughs with a real impact on worldwide agricultural production while promoting sustainable practices on biological systems. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- António Nogueira
- CMEMS-UMinho - Centre for Microelectromechanical Systems, University of Minho, Guimarães, Portugal
- CBMA-UMinho - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Hélder Puga
- CMEMS-UMinho - Centre for Microelectromechanical Systems, University of Minho, Guimarães, Portugal
| | - Hernâni Gerós
- CBMA-UMinho - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - António Teixeira
- CBMA-UMinho - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
19
|
Dharni JS, Shi Y, Zhang C, Petersen C, Walia H, Staswick P. Growth and transcriptional response of wheat and rice to the tertiary amine BMVE. FRONTIERS IN PLANT SCIENCE 2024; 14:1273620. [PMID: 38269141 PMCID: PMC10806070 DOI: 10.3389/fpls.2023.1273620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/06/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Introduction Seed vigor is largely a product of sound seed development, maturation processes, genetics, and storage conditions. It is a crucial factor impacting plant growth and crop yield and is negatively affected by unfavorable environmental conditions, which can include drought and heat as well as cold wet conditions. The latter leads to slow germination and increased seedling susceptibility to pathogens. Prior research has shown that a class of plant growth regulators called substituted tertiary amines (STAs) can enhance seed germination, seedling growth, and crop productivity. However, inconsistent benefits have limited STA adoption on a commercial scale. Methods We developed a novel seed treatment protocol to evaluate the efficacy of 2-(N-methyl benzyl aminoethyl)-3-methyl butanoate (BMVE), which has shown promise as a crop seed treatment in field trials. Transcriptomic analysis of rice seedlings 24 h after BMVE treatment was done to identify the molecular basis for the improved seedling growth. The impact of BMVE on seed development was also evaluated by spraying rice panicles shortly after flower fertilization and subsequently monitoring the impact on seed traits. Results BMVE treatment of seeds 24 h after imbibition consistently improved wheat and rice seedling shoot and root growth in lab conditions. Treated wheat seedlings grown to maturity in a greenhouse also resulted in higher biomass than controls, though only under drought conditions. Treated seedlings had increased levels of transcripts involved in reactive oxygen species scavenging and auxin and gibberellic acid signaling. Conversely, several genes associated with increased reactive oxygen species/ROS load, abiotic stress responses, and germination hindering processes were reduced. BMVE spray increased both fresh and mature seed weights relative to the control for plants exposed to 96 h of heat stress. BMVE treatment during seed development also benefited germination and seedling growth in the next generation, under both ambient and heat stress conditions. Discussion The optimized experimental conditions we developed provide convincing evidence that BMVE does indeed have efficacy in plant growth enhancement. The results advance our understanding of how STAs work at the molecular level and provide insights for their practical application to improve crop growth.
Collapse
Affiliation(s)
- Jaspinder Singh Dharni
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| | - Yu Shi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| | | | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
20
|
Yang Z, Chen W, Jia T, Shi H, Sun D. Integrated Transcriptomic and Metabolomic Analyses Identify Critical Genes and Metabolites Associated with Seed Vigor of Common Wheat. Int J Mol Sci 2023; 25:526. [PMID: 38203695 PMCID: PMC10779259 DOI: 10.3390/ijms25010526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Seed aging is a common physiological phenomenon during storage which has a great impact on seed quality. An in-depth analysis of the physiological and molecular mechanisms of wheat seed aging is of great significance for cultivating high-vigor wheat varieties. This study reveals the physiological mechanisms of wheat seed aging in two cultivars differing in seed vigor, combining metabolome and transcriptome analyses. Differences between cultivars were examined based on metabolomic differential analysis. Artificial aging had a significant impact on the metabolism of wheat seeds. A total of 7470 (3641 upregulated and 3829 downregulated) DEGs were detected between non-aging HT and LT seeds; however, 10,648 (4506 up and 6142 down) were detected between the two cultivars after aging treatment. Eleven, eight, and four key metabolic-related gene families were identified in the glycolysis/gluconeogenesis and TCA cycle pathways, starch and sucrose metabolism pathways, and galactose metabolism pathways, respectively. In addition, 111 up-regulated transcription factor genes and 85 down-regulated transcription factor genes were identified in the LT 48h group. A total of 548 metabolites were detected across all samples. Cultivar comparisons between the non-aged groups and aged groups revealed 46 (30 upregulated and 16 downregulated) and 62 (38 upregulated and 24 downregulated) DIMs, respectively. Network analysis of the metabolites indicated that glucarate O-phosphoric acid, L-methionine sulfoxide, isocitric acid, and Gln-Gly might be the most crucial DIMs between HT and LT. The main related metabolites were enriched in pathways such as glyoxylate and dicarboxylate metabolism, biosynthesis of secondary metabolites, fatty acid degradation, etc. However, metabolites that exhibited differences between cultivars were mainly enriched in carbon metabolism, the TCA cycle, etc. Through combined metabolome and transcriptome analyses, it was found that artificial aging significantly affected glycolysis/gluconeogenesis, pyruvate metabolism, and glyoxylate and dicarboxylate metabolism, which involved key genes such as ACS, F16P2, and PPDK1. We thus speculate that these genes may be crucial in regulating physiological changes in seeds during artificial aging. In addition, an analysis of cultivar differences identified pathways related to amino acid and polypeptide metabolism, such as cysteine and methionine metabolism, glutathione metabolism, and amino sugar and nucleotide sugar metabolism, involving key genes such as BCAT3, CHI1, GAUT1, and GAUT4, which may play pivotal roles in vigor differences between cultivars.
Collapse
Affiliation(s)
- Zhenrong Yang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Z.Y.); (T.J.); (H.S.)
| | - Weiguo Chen
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Tianxiang Jia
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Z.Y.); (T.J.); (H.S.)
| | - Huawei Shi
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Z.Y.); (T.J.); (H.S.)
| | - Daizhen Sun
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Z.Y.); (T.J.); (H.S.)
| |
Collapse
|
21
|
Pirredda M, Fañanás-Pueyo I, Oñate-Sánchez L, Mira S. Seed Longevity and Ageing: A Review on Physiological and Genetic Factors with an Emphasis on Hormonal Regulation. PLANTS (BASEL, SWITZERLAND) 2023; 13:41. [PMID: 38202349 PMCID: PMC10780731 DOI: 10.3390/plants13010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Upon storage, seeds inevitably age and lose their viability over time, which determines their longevity. Longevity correlates with successful seed germination and enhancing this trait is of fundamental importance for long-term seed storage (germplasm conservation) and crop improvement. Seed longevity is governed by a complex interplay between genetic factors and environmental conditions experienced during seed development and after-ripening that will shape seed physiology. Several factors have been associated with seed ageing such as oxidative stress responses, DNA repair enzymes, and composition of seed layers. Phytohormones, mainly abscisic acid, auxins, and gibberellins, have also emerged as prominent endogenous regulators of seed longevity, and their study has provided new regulators of longevity. Gaining a thorough understanding of how hormonal signalling genes and pathways are integrated with downstream mechanisms related to seed longevity is essential for formulating strategies aimed at preserving seed quality and viability. A relevant aspect related to research in seed longevity is the existence of significant differences between results depending on the seed equilibrium relative humidity conditions used to study seed ageing. Hence, this review delves into the genetic, environmental and experimental factors affecting seed ageing and longevity, with a particular focus on their hormonal regulation. We also provide gene network models underlying hormone signalling aimed to help visualize their integration into seed longevity and ageing. We believe that the format used to present the information bolsters its value as a resource to support seed longevity research for seed conservation and crop improvement.
Collapse
Affiliation(s)
- Michela Pirredda
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro 2, 28040 Madrid, Spain;
| | - Iris Fañanás-Pueyo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Sara Mira
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro 2, 28040 Madrid, Spain;
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| |
Collapse
|
22
|
Escudero-Feliu J, Lima-Cabello E, Rodríguez de Haro E, Morales-Santana S, Jimenez-Lopez JC. Functional Association between Storage Protein Mobilization and Redox Signaling in Narrow-Leafed Lupin ( Lupinus angustifolius L.) Seed Germination and Seedling Development. Genes (Basel) 2023; 14:1889. [PMID: 37895238 PMCID: PMC10606504 DOI: 10.3390/genes14101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Seed storage mobilization, together with oxidative metabolism, with the ascorbate-glutathione (AsA-GSH) cycle as a crucial signaling and metabolic functional crossroad, is one of the main regulators of the control of cell morphogenesis and division, a fundamental physiological process driving seed germination and seedling growth. This study aims to characterize the cellular changes, composition, and patterns of the protein mobilization and ROS-dependent gene expression of redox metabolism in Lupinus angustifolius L. (narrow-leafed lupin, NLL) cotyledons during seed germination. (2) Methods: We performed gene expression analyses via RT-qPCR for conglutins α (1, 2, and 3), β (1, 2, and 5), γ (1, 2), and δ (2 and 4), including a ubiquitin gene as a control, and for redox metabolism-related genes; GADPH was used as a control gene. A microscopic study was developed on cotyledon samples from different germination stages, including as IMB (imbibition), and 2-5, 7, 9, and 11 DAI (days after imbibition), which were processed for light microscopy. SDS-PAGE and immunocytochemistry assays were performed using an anti-β-conglutin antibody (Agrisera), and an anti-rabbit IgG Daylight 488-conjugated secondary antibody. The controls were made while omitting primary Ab. (3) Results and Discussion: Our results showed that a large amount of seed storage protein (SSP) accumulates in protein bodies (PBs) and mobilizes during germination. Families of conglutins (β and γ) may play important roles as functional and signaling molecules, beyond the storage function, at intermediate steps of the seed germination process. In this regard, metabolic activities are closely associated with the regulation of oxidative homeostasis through AsA-GSH activities (γ-L-Glutamyl-L-cysteine synthetase, NOS, Catalase, Cu/Zn-SOD, GPx, GR, GS, GsT) after the imbibition of NLL mature seeds, metabolism activation, and dormancy breakage, which are key molecular and regulatory signaling pathways with particular importance in morphogenesis and developmental processes. (4) Conclusions: The knowledge generated in this study provides evidence for the functional changes and cellular tightly regulated events occurring in the NLL seed cotyledon, orchestrated by the oxidative-related metabolic machinery involved in seed germination advancement.
Collapse
Affiliation(s)
- Julia Escudero-Feliu
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
| | - Elena Lima-Cabello
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
| | - Esther Rodríguez de Haro
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
| | - Sonia Morales-Santana
- Proteomic Research Unit, Biosanitary Research Institute of Granada (ibs.Granada), 18012 Granada, Spain;
| | - Jose C. Jimenez-Lopez
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Perth 6009, Australia
| |
Collapse
|
23
|
Pal B, Bhattacharjee S. Herbal and chemical seed potentiations improve the redox health of aged seeds of indigenous aromatic rice cultivars through regulation of oxidative window, gene expression, and restoration of hormonal homeostasis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1269-1288. [PMID: 38024956 PMCID: PMC10678913 DOI: 10.1007/s12298-023-01375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/22/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Previous studies associated with seed potentiation support the critical role of metabolic readjustment in restricting the loss of seed vigor and viability of aged seeds. However, their exact role in the regulation of 'oxidative windows' of potentiated seeds is rarely studied and hence is the subject of the present investigation. Seed potentiation of two contrasting indigenous aromatic rice cultivars, differing in sensitivity towards redox attributes (Oryza sativa L., Cultivars Tulaipanji and Jamainadu), with standardized doses of hydrogen peroxide (20 mM), triadimefon (250 μM), herbal extract (1% aqueous extract of Lantana camara flower) and distilled water before accelerated aging (RH 92% and 41 °C for 24 h) found to have significant impact on redox regulation of aged seeds and improvement of germination phenotypes. The efficacy of integrated RBOH-ascorbate-glutathione/catalase pathway, redox status and other redox fingerprints in the metabolic landscape of potentiated-aged seeds vis-a-vis non-potentiated-aged seeds corroborate the impact of seed potentiation on the regulation of 'oxidative window' of experimental rice seeds. Gene expression analysis of central redox hub enzymes (Osrboh, OsAPx2, OsGRase, OsCatA) strongly substantiates the impact of seed potentiation on transcriptional regulation of genes for redox homeostasis in accelerated aged seeds. The novelty of the current effort is that it suggests a positive nexus between seed potentiation-induced redox regulation and hormonal homeostasis. The efficacy of seed potentiation on the redox regulation of experimental accelerated aged seeds is found to be cultivar-specific and comparatively better in the cultivar Tulaipanji as compared to the cultivar Jamainadu and in the order herbal extract, hydrogen peroxide, hydropriming and triadimefon. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01375-9.
Collapse
Affiliation(s)
- Babita Pal
- Plant Physiology and Biochemistry Research Laboratory, UGC Centre for Advanced Study, Department of Botany, University of Burdwan, Burdwan, West Bengal 713104 India
| | - Soumen Bhattacharjee
- Plant Physiology and Biochemistry Research Laboratory, UGC Centre for Advanced Study, Department of Botany, University of Burdwan, Burdwan, West Bengal 713104 India
| |
Collapse
|
24
|
Kumar D, Kumar R, Singh B, Agrawal V. Modulation in the enzymatic antioxidants, MDA level and elicitation in conessine biomolecule in Holarrhena pubescens (medicinal tree) cultures exposed to different heavy metals: Ni, Co, Cr and As. 3 Biotech 2023; 13:307. [PMID: 37608912 PMCID: PMC10441967 DOI: 10.1007/s13205-023-03697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
Nodal explants of Holarrhena pubescens, an important medicinal tree, were cultured on Murashige and Skoog's medium (MS) containing 15 µM BA (control) alone and on medium supplemented with different concentrations (0, 1, 5, 25, 50, 100 and 200 mg/L) of heavy metals such as NiCl2, CoCl2, As2O3 and CrO3 to study their toxic effect. After 28 days of treatments, the nodal segments were harvested to assess the average number of shoots per explants, average shoot length, malondialdehyde content, proline content, conessine accumulation and antioxidant enzymatic activity. Among all the metals tried, best morphogenic response was achieved at 5 mg/L CrO3 where 80% culture differentiated an average of 3.21 ± 0.08 shoots per explant having 0.95 ± 0.018 cm average shoot length. Highest concentration (200 mg/L) of all the heavy metals proved lethal for morphogenesis. Maximum inhibition in average shoot number and average shoot length was observed in nodal explants treated with 25 mg/L As2O3 where an average of 0.49 ± 0.047 shoots having an average shoot length of 0.3 ± 0.02 cm. Contrarily, addition of heavy metals in culture medium proved strong elicitors, exhibiting significant enhancement in the biosynthesis of conessine, an important bioactive compound. HPLC analysis of the crude extract of in vitro grown untreated nodal cultures revealed an average of 117.06 ± 2.59 µg/g d. w. of conessine, whereas those treated with 100 mg/L of CoCl2 accounted for 297.1 ± 7.76 µg/g d. w. (an increase of 156% over control). Among the heavy metals tried, CoCl2 proved to be the best for conessine enhancement which was in the order of CoCl2 > Cr2O3 > NiCl2 > As2O3 in the nodal explants. Concomitantly, MDA content, the antioxidant enzymes activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GR) and ascorbate peroxidase (APX) were also observed to be differentially expressed with the increase in the heavy metals concentration from 1 to 200 mg/L. Free proline, too, increased up to 3.5-fold over control. The results obtained during the present investigation revealed that the overall response of the nodal explants in terms of morphogenesis, conessine content and antioxidant enzyme activities was metal specific as well as dose dependent.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Botany, University of Delhi, Delhi, 110007 India
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077 India
| | | | - Bharat Singh
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077 India
| | - Veena Agrawal
- Department of Botany, University of Delhi, Delhi, 110007 India
| |
Collapse
|
25
|
Kim JH, Chan KL, Hart-Cooper WM, Palumbo JD, Orts WJ. High-efficiency fungal pathogen intervention for seed protection: new utility of long-chain alkyl gallates as heat-sensitizing agents. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1172893. [PMID: 37746121 PMCID: PMC10512402 DOI: 10.3389/ffunb.2023.1172893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/23/2023] [Accepted: 07/13/2023] [Indexed: 09/26/2023]
Abstract
Control of food-contaminating fungi, especially pathogens that produce mycotoxins, is problematic since effective method for intervening fungal infection on food crops is often limited. Generally Regarded As Safe (GRAS) chemicals, such as natural compounds or their structural derivatives, can be developed as antimicrobial agents for sustainable food/crop production. This study identified that long-chain alkyl gallates, i.e., octyl-, nonyl-, and decyl gallates (OG (octyl 3,4,5-trihydroxybenzoic acid), NG, DG), can function as heat-sensitizing agents that effectively prevent fungal contamination. Out of twenty-eight candidate compounds and six conventional antifungal agents examined, the heat-sensitizing capacity was unique to the long-chain alkyl gallates, where OG exhibited the highest activity, followed by DG and NG. Since OG is a GRAS compound classified by the United States Food and Drug Administration (FDA), further in vitro antifungal studies were performed using OG. When OG and mild heat (57.5°C) were co-administered for 90 seconds, the treatment achieved > 99.999% fungal death (> 5 log reduction). Application of either treatment alone was significantly less effective at reducing fungal survival. Of note, co-application of OG (3 mM) and mild heat (50°C) for 20 minutes completely prevented the survival of aflatoxigenic Aspergillus flavus contaminating crop seeds (Brassica rapa Pekinensis), while seed germination rate was unaffected. Heat-sensitization was also determined in selected bacterial strains (Escherichia coli, Agrobacterium tumefaciens). Altogether, OG is an effective heat-sensitizing agent for control of microbial pathogens. OG-mediated heat sensitization will improve the efficacy of antimicrobial practices, achieving safe, rapid, and cost-effective pathogen control in agriculture/food industry settings.
Collapse
Affiliation(s)
- Jong H. Kim
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Albany, CA, United States
| | - Kathleen L. Chan
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Albany, CA, United States
| | - William M. Hart-Cooper
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Albany, CA, United States
| | - Jeffrey D. Palumbo
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Albany, CA, United States
| | - William J. Orts
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Albany, CA, United States
| |
Collapse
|
26
|
Rao PJM, Pallavi M, Bharathi Y, Priya PB, Sujatha P, Prabhavathi K. Insights into mechanisms of seed longevity in soybean: a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1206318. [PMID: 37546268 PMCID: PMC10400919 DOI: 10.3389/fpls.2023.1206318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/15/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023]
Abstract
Soybean, a crop of international importance, is challenged with the problem of seed longevity mainly due to its genetic composition and associated environmental cues. Soybean's fragile seed coat coupled with poor DNA integrity, ribosomal dysfunction, lipid peroxidation and poor antioxidant system constitute the rationale for fast deterioration. Variability among the genotypes for sensitivity to field weathering contributed to their differential seed longevity. Proportion and density of seed coat, glassy state of cells, calcium and lignin content, pore number, space between seed coat and cotyledon are some seed related traits that are strongly correlated to longevity. Further, efficient antioxidant system, surplus protective proteins, effective nucleotide and protein repair systems and free radical scavenging mechanisms also contributed to the storage potential of soybean seeds. Identification of molecular markers and QTLs associated with these mechanisms will pave way for enhanced selection efficiency for seed longevity in soybean breeding programs. This review reflects on the morphological, biochemical and molecular bases of seed longevity along with pointers on harvest, processing and storage strategies for extending vigour and viability in soybean.
Collapse
|
27
|
Luo Y, Zhang Y, Le J, Li Q, Mou J, Deng S, Li J, Wang R, Deng Z, Liu J. Full-Length Transcriptome Sequencing Reveals the Molecular Mechanism of Metasequoia glyptostroboides Seed Responding to Aging. Antioxidants (Basel) 2023; 12:1353. [PMID: 37507893 PMCID: PMC10376015 DOI: 10.3390/antiox12071353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Metasequoia glyptostroboides, Hu and W. C. Cheng, as the only surviving relict species of the Taxodiaceae Metasequoia genus, is a critically endangered and protected species in China. There is a risk of extinction due to the low vigor of M. glyptostroboides seeds, and the physiological mechanism of seed aging in M. glyptostroboides is not yet clear. In order to investigate the physiological and molecular mechanisms underlying the aging process of M. glyptostroboides seeds, we analyzed the antioxidant system and transcriptome at 0, 2, 4, 6, and 8 days after artificial accelerated aging treatment at 40 °C and 100% relative humidity. It was found that the germination percentage of fresh dried M. glyptostroboides seeds was 54 ± 5.29%, and significantly declined to 9.33 ± 1.88% after 6 days of aging, and then gradually decreased until the seed died on day 8. Superoxide dismutase (SOD) activity, ascorbic acid (AsA), glutathione (GSH) content and superoxide anion (O2·-) content and production rate significantly decreased, while malondialdehyde (MDA) and hydrogen peroxide (H2O2) content and glutathione peroxidase (GPX) and catalase (CAT) activity gradually increased during the aging process. A total of 42,189 unigenes were identified in the whole transcriptome, and 40,446 (95.86%) unigenes were annotated in at least one protein database. A total of 15,376 differentially expressed genes (DEGs) were obtained; KEGG enrichment analysis results revealed that seed aging may be mainly involved in the protein-processing pathways in endoplasmic reticulum, oxidative phosphorylation, and ascorbate and aldarate metabolism. Weighted gene co-expression network analysis (WGCNA) revealed that the dark magenta, orange, and medium purple modules were highly correlated with physiological indicators such as SOD, CAT, and GSH and further identified 40 hub genes such as Rboh, ACO, HSF, and CML as playing important roles in the antioxidant network of M. glyptostroboides seeds. These findings provide a broader perspective for studying the regulatory mechanism of seed aging and a large number of potential target genes for the breeding of other endangered gymnosperms.
Collapse
Affiliation(s)
- Yongjian Luo
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Yixin Zhang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jingyu Le
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Qing Li
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiaolin Mou
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Shiming Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Jitao Li
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Ru Wang
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Zhijun Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Jun Liu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
28
|
Nagdalian AA, Blinov AV, Siddiqui SA, Gvozdenko AA, Golik AB, Maglakelidze DG, Rzhepakovsky IV, Kukharuk MY, Piskov SI, Rebezov MB, Shah MA. Effect of selenium nanoparticles on biological and morphofunctional parameters of barley seeds (Hordéum vulgáre L.). Sci Rep 2023; 13:6453. [PMID: 37081125 PMCID: PMC10119286 DOI: 10.1038/s41598-023-33581-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2022] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
The purpose of this work was to study the effect of selenium nanoparticles (Se NPs) on the biological and morphofunctional parameters of barley seeds (Hordéum vulgáre L.) We used seeds of Hordéum vulgáre L. with reduced morphofunctional characteristics. For the experiment, Se NPs were synthesized and stabilized with didecyldimethylammonium chloride. It was found that Se NPs have a spherical shape and a diameter of about 50 nm. According to dynamic light scattering data, the average hydrodynamic radius of the particles was 28 ± 8 nm. It is observed that the nanoparticles have a positive ζ-potential (+ 27.3 mV). For the experiment, we treated Hordéum vulgáre L. seeds with Se NPs (1, 5, 10 and 20 mg/L). The experiment showed that treatment of Hordéum vulgáre L. seeds with Se NPs has the best effect on the length of roots and sprout at concentration of 5 mg/L and on the number and thickness of roots at 10 mg/L. Germinability and germination energy of Hordéum vulgáre L. seeds were higher in group treated with 5 mg/L Se NPs. Analysis of macrophotographs of samples, histological sections of roots and 3D visualization of seeds by microcomputing tomography confirmed the best effect at 5 mg/L Se NPs. Moreover, no local destructions were detected at concentrations > 5 mg/L, which is most likely due to the inhibition of regulatory and catalytic processes in the germinating seeds. the treatment of Hordéum vulgáre L. seeds with > 5 mg/L Se NPs caused significant stress, coupled with intensive formation of reactive oxygen species, leading to a reorientation of root system growth towards thickening. Based on the results obtained, it was concluded that Se NPs at concentrations > 5 mg/L had a toxic effect. The treatment of barley seeds with 5% Se NPs showed maximum efficiency in the experiment, which allows us to further consider Se NPs as a stimulator for the growth and development of crop seeds under stress and reduced morphofunctional characteristics.
Collapse
Affiliation(s)
| | | | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.v.), Prof.-Von-Klitzing-Straße 7, 49610, Quakenbrück, Germany
| | | | | | | | | | | | | | - Maksim Borisovich Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Mohd Asif Shah
- Department of Economics, Kabridahar University, Kabridahar, Post Box 250, Somali, Ethiopia.
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India.
- School of Business, Woxsen University, Hyderabad, Telangana, 502345, India.
| |
Collapse
|
29
|
Pagano A, Macovei A, Balestrazzi A. Molecular dynamics of seed priming at the crossroads between basic and applied research. PLANT CELL REPORTS 2023; 42:657-688. [PMID: 36780009 PMCID: PMC9924218 DOI: 10.1007/s00299-023-02988-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/05/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The potential of seed priming is still not fully exploited. Our limited knowledge of the molecular dynamics of seed pre-germinative metabolism is the main hindrance to more effective new-generation techniques. Climate change and other recent global crises are disrupting food security. To cope with the current demand for increased food, feed, and biofuel production, while preserving sustainability, continuous technological innovation should be provided to the agri-food sector. Seed priming, a pre-sowing technique used to increase seed vigor, has become a valuable tool due to its potential to enhance germination and stress resilience under changing environments. Successful priming protocols result from the ability to properly act on the seed pre-germinative metabolism and stimulate events that are crucial for seed quality. However, the technique still requires constant optimization, and researchers are committed to addressing some key open questions to overcome such drawbacks. In this review, an update of the current scientific and technical knowledge related to seed priming is provided. The rehydration-dehydration cycle associated with priming treatments can be described in terms of metabolic pathways that are triggered, modulated, or turned off, depending on the seed physiological stage. Understanding the ways seed priming affects, either positively or negatively, such metabolic pathways and impacts gene expression and protein/metabolite accumulation/depletion represents an essential step toward the identification of novel seed quality hallmarks. The need to expand the basic knowledge on the molecular mechanisms ruling the seed response to priming is underlined along with the strong potential of applied research on primed seeds as a source of seed quality hallmarks. This route will hasten the implementation of seed priming techniques needed to support sustainable agriculture systems.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| |
Collapse
|
30
|
Griffo A, Bosco N, Pagano A, Balestrazzi A, Macovei A. Noninvasive Methods to Detect Reactive Oxygen Species as a Proxy of Seed Quality. Antioxidants (Basel) 2023; 12:antiox12030626. [PMID: 36978875 PMCID: PMC10045522 DOI: 10.3390/antiox12030626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
ROS homeostasis is crucial to maintain radical levels in a dynamic equilibrium within physiological ranges. Therefore, ROS quantification in seeds with different germination performance may represent a useful tool to predict the efficiency of common methods to enhance seed vigor, such as priming treatments, which are still largely empirical. In the present study, ROS levels were investigated in an experimental system composed of hydroprimed and heat-shocked seeds, thus comparing materials with improved or damaged germination potential. A preliminary phenotypic analysis of germination parameters and seedling growth allowed the selection of the best-per-forming priming protocols for species like soybean, tomato, and wheat, having relevant agroeconomic value. ROS levels were quantified by using two noninvasive assays, namely dichloro-dihydro-fluorescein diacetate (DCFH-DA) and ferrous oxidation-xylenol orange (FOX-1). qRT-PCR was used to assess the expression of genes encoding enzymes involved in ROS production (respiratory burst oxidase homolog family, RBOH) and scavenging (catalase, superoxide dismutase, and peroxidases). The correlation analyses between ROS levels and gene expression data suggest a possible use of these indicators as noninvasive approaches to evaluate seed quality. These findings are relevant given the centrality of seed quality for crop production and the potential of seed priming in sustainable agricultural practices.
Collapse
Affiliation(s)
- Adriano Griffo
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Nicola Bosco
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Correspondence:
| |
Collapse
|
31
|
Liava V, Ntatsi G, Karkanis A. Seed Germination of Three Milk Thistle ( Silybum marianum (L.) Gaertn.) Populations of Greek Origin: Temperature, Duration, and Storage Conditions Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:1025. [PMID: 36903886 PMCID: PMC10005779 DOI: 10.3390/plants12051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Milk thistle besides being a highly competitive weed is cultivated as a medicinal plant, and the seeds of which have been clinically utilized in several disorders caused in liver. The present study aims to evaluate the effect of duration and storage conditions, population, and temperature on seed germination. The experiment was conducted in Petri dishes with three replications and three factors: (a) wild populations of milk thistle (Palaionterveno, Mesopotamia, and Spata) originating from Greece, (b) duration and storage conditions (5 months at room temperature, 17 months at room temperature, and 29 months in the freezer at -18 °C), and (c) temperature (5 °C, 10 °C, 15 °C, 20 °C, 25 °C, and 30 °C). All three factors significantly affected germination percentage (GP), mean germination time (MGT), germination index (GI), radicle length (RL), and hypocotyl length (HL) and significant interactions among the treatments were noted. In specific, no seed germination was recorded at 5 °C, while the populations showed higher GP and GI at 20 °C and 25 °C after 5 months of storage. Prolonged storage negatively affected seed germination although, cold storage mitigated this effect. Moreover, higher temperatures reduced MGT and increased RL and HL with the populations reacting differently in storage and temperature regimes. The results of this study should be taken into consideration when proposing the appropriate sowing date and storage conditions of the seeds used as propagation material for crop establishment. Moreover, the effects of low temperatures such as 5 °C or 10 °C on seed germination as well as the high decline rate in germination percentage over time could be utilized in the design of integrated weed management systems thereby indicating the importance of the sowing time and the suitable crop rotation system to weed control.
Collapse
Affiliation(s)
- Vasiliki Liava
- Laboratory of Weed Science, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., 38446 Volos, Greece
| | - Georgia Ntatsi
- Department of Crop Production, Agricultural University of Athens, 11855 Athens, Greece
| | - Anestis Karkanis
- Laboratory of Weed Science, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., 38446 Volos, Greece
| |
Collapse
|
32
|
Identification of DNA Methylation Changes in European Beech Seeds during Desiccation and Storage. Int J Mol Sci 2023; 24:ijms24043557. [PMID: 36834975 PMCID: PMC9968092 DOI: 10.3390/ijms24043557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Ageing and deterioration of seeds is a major problem for the maintenance of seed quality and viability during long-term storage. Prediction of early stages of seed deterioration in order to point out the plantlets' regeneration time is a major challenge of successful storage. In preserved seeds, damages accumulate within cells at the rate mainly related to their moisture content and temperature of storage. Current research reveals global alterations in DNA methylation in lipid-rich intermediate seeds during desiccation and storage at various regimes covering nonoptimal and optimal conditions. We show for the first time that monitoring of 5-methylcytosine (m5C) level in seeds can be used as a truly universal viability marker regardless of postharvest category of seeds and their composition. For seeds stored up to three years, in varied conditions, moisture content, temperature, and time of storage had significant influence on seedling emergence and DNA methylation (p < 0.05). Similarities among lipid-rich intermediate and orthodox seeds regarding different reactions of embryonic axes and cotyledons to desiccation are newly revealed. Along with previous studies on seeds dramatically different in desiccation tolerance (recalcitrant vs. orthodox), results regarding lipid-rich seeds positioned in-between (intermediate) prove that maintaining global DNA methylation status is crucial for maintaining seed viability.
Collapse
|
33
|
Tan Y, Duan Y, Chi Q, Wang R, Yin Y, Cui D, Li S, Wang A, Ma R, Li B, Jiao Z, Sun H. The Role of Reactive Oxygen Species in Plant Response to Radiation. Int J Mol Sci 2023; 24:3346. [PMID: 36834758 PMCID: PMC9968129 DOI: 10.3390/ijms24043346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Radiation is widespread in nature, including ultraviolet radiation from the sun, cosmic radiation and radiation emitted by natural radionuclides. Over the years, the increasing industrialization of human beings has brought about more radiation, such as enhanced UV-B radiation due to ground ozone decay, and the emission and contamination of nuclear waste due to the increasing nuclear power plants and radioactive material industry. With additional radiation reaching plants, both negative effects including damage to cell membranes, reduction of photosynthetic rate and premature aging and benefits such as growth promotion and stress resistance enhancement have been observed. ROS (Reactive oxygen species) are reactive oxidants in plant cells, including hydrogen peroxide (H2O2), superoxide anions (O2•-) and hydroxide anion radicals (·OH), which may stimulate the antioxidant system of plants and act as signaling molecules to regulate downstream reactions. A number of studies have observed the change of ROS in plant cells under radiation, and new technology such as RNA-seq has molecularly revealed the regulation of radiative biological effects by ROS. This review summarized recent progress on the role of ROS in plant response to radiations including UV, ion beam and plasma, and may help to reveal the mechanisms of plant responses to radiation.
Collapse
Affiliation(s)
- Yuantao Tan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Yaoke Duan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Qing Chi
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Rong Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Yue Yin
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Dongjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Shuang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Aiying Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Ruonan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Bing Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Zhen Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
- Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Sun
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
- Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
34
|
Chuesaard T, Peankid P, Thaworn S, Jaradrattanapaiboon A, Veerana M, Panngom K. Different Effects of Reactive Species Generated from Chemical Donors on Seed Germination, Growth, and Chemical Contents of Oryza sativa L. PLANTS (BASEL, SWITZERLAND) 2023; 12:765. [PMID: 36840122 PMCID: PMC9966467 DOI: 10.3390/plants12040765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Reactive oxygen and nitrogen species (RONS) play an important role as signaling molecules in redox reactions throughout a plant life cycle. The purpose of this study was to assess how hydrogen peroxide (H2O2), a reactive oxygen species (ROS) and reactive nitrogen species (RNS) generated from sodium nitroprusside (SNP) and sodium nitrite, affects the germination, growth, and chemical contents of two rice cultivars (Pathum Tani and Sanpatong). The results showed that RNS generated from chemical donors and, especially, H2O2, enhanced the germination of the studied rice cultivars. Among the three chemical donors, H2O2 showed the best efficacy of the reactive species for activating early seed germination, followed by sodium nitrite and SNP. The highest percentage of seed germination rose to 99% at 6 h germination time after treatment with 25 mM of H2O2 for 24 h. Moreover, H2O2 produced a significant increase in the α-amylase activity and total soluble proteins. It was observed that a treatment with H2O2 on germinated seeds produced radicles with a dark blue color for longer than treatments with sodium nitrite and SNP. Our findings imply that H2O2 had a critical role in improving the germination and altering the chemical contents of rice seeds.
Collapse
Affiliation(s)
- Thanyarat Chuesaard
- Basic Science, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand
| | - Penpilai Peankid
- Forest Management Program, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand
| | - Suwannee Thaworn
- Agroforestry Program, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand
| | | | - Mayura Veerana
- Department of Applied Radiation and Isotope, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kamonporn Panngom
- Basic Science, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand
| |
Collapse
|
35
|
da Costa Siqueira JT, Reis AC, Lopes JML, Ladeira LO, Viccini LF, de Mello Brandão H, Munk M, de Sousa SM. Chromosomal aberrations and changes in the methylation patterns of Lactuca sativa L. (Asteraceae) exposed to carbon nanotubes. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023]
|
36
|
Ciacka K, Staszek P, Sobczynska K, Krasuska U, Gniazdowska A. Nitric Oxide in Seed Biology. Int J Mol Sci 2022; 23:ijms232314951. [PMID: 36499279 PMCID: PMC9736209 DOI: 10.3390/ijms232314951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Nitric oxide (NO) has been recognized as a gasotransmitter in the mainstream of plant research since the beginning of the 21st century. It is produced in plant tissue and the environment. It influences plant physiology during every ontogenetic stage from seed germination to plant senescence. In this review, we demonstrate the increased interest in NO as a regulatory molecule in combination with other signalling molecules and phytohormones in the information network of plant cells. This work is a summary of the current knowledge on NO action in seeds, starting from seed pretreatment techniques applied to increase seed quality. We describe mode of action of NO in the regulation of seed dormancy, germination, and aging. During each stage of seed physiology, NO appears to act as a key agent with a predominantly beneficial effect.
Collapse
|
37
|
Pereira Neto LG, Rossini BC, Marino CL, Toorop PE, Silva EAA. Comparative Seeds Storage Transcriptome Analysis of Astronium fraxinifolium Schott, a Threatened Tree Species from Brazil. Int J Mol Sci 2022; 23:ijms232213852. [PMID: 36430327 PMCID: PMC9696909 DOI: 10.3390/ijms232213852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
Astronium fraxinifolium Schott (Anacardiaceae), also known as a 'gonçalo-alves', is a tree of the American tropics, with distribution in Mexico, part of Central America, Argentina, Bolivia, Brazil and Paraguay. In Brazil it is an endangered species that occurs in the Cerrado, Caatinga and in the Amazon biomes. In support of ex situ conservation, this work aimed to study two accessions with different longevity (p50) of A. fraxinifolium collected from two different geographic regions, and to evaluate the transcriptome during aging of the seeds in order to identify genes related to seed longevity. Artificial ageing was performed at a constant temperature of 45 °C and 60% relative humidity. RNA was extracted from 100 embryonic axes exposed to control and aging conditions for 21 days. The transcriptome analysis revealed differentially expressed genes such as Late Embryogenesis Abundant (LEA) genes, genes involved in the photosystem, glycine rich protein (GRP) genes, and several transcription factors associated with embryo development and ubiquitin-conjugating enzymes. Thus, these results contribute to understanding which genes play a role in seed ageing, and may serve as a basis for future functional characterization of the seed aging process in A. fraxinifolium.
Collapse
Affiliation(s)
| | - Bruno Cesar Rossini
- Biotechnology Institute, São Paulo State University “Júlio de Mesquita Filho”, Botucatu 18607-440, Brazil
- Correspondence:
| | - Celso Luis Marino
- Biotechnology Institute, São Paulo State University “Júlio de Mesquita Filho”, Botucatu 18607-440, Brazil
- Departament of Biological and Chemical Sciences, Biosciences Institute, São Paulo State University “Júlio de Mesquita Filho”, Botucatu 18618-689, Brazil
| | - Peter E. Toorop
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
| | - Edvaldo Aparecido Amaral Silva
- Departamento de Produção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu 18610-034, Brazil
| |
Collapse
|
38
|
Sun M, Sun S, Jia Z, Ma W, Mao C, Ou C, Wang J, Zhang H, Hong L, Li M, Jia S, Mao P. Genome-Wide Analysis and Expression Profiling of Glutathione Reductase Gene Family in Oat ( Avena sativa) Indicate Their Responses to Abiotic Stress during Seed Imbibition. Int J Mol Sci 2022; 23:ijms231911650. [PMID: 36232950 PMCID: PMC9569478 DOI: 10.3390/ijms231911650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Abiotic stress disturbs plant cellular redox homeostasis, inhibiting seed germination and plant growth. This is a crucial limitation to crop yield. Glutathione reductase (GR) is an important component of the ascorbate-glutathione (AsA-GSH) cycle which is involved in multiple plant metabolic processes. In the present study, GRs in A. sativa (AsGRs) were selected to explore their molecular characterization, phylogenetic relationship, and RNA expression changes during seed imbibition under abiotic stress. Seven AsGR genes were identified and mapped on six chromosomes of A, C, and D subgenomes. Phylogenetic analysis and subcellular localization of AsGR proteins divided them into two sub-families, AsGR1 and AsGR2, which were predicted to be mainly located in cytoplasm, mitochondrion, and chloroplast. Cis-elements relevant to stress and hormone responses are distributed in promoter regions of AsGRs. Tissue-specific expression profiling showed that AsGR1 genes were highly expressed in roots, leaves, and seeds, while AsGR2 genes were highly expressed in leaves and seeds. Both AsGR1 and AsGR2 genes showed a decreasing-increasing expression trend during seed germination under non-stress conditions. In addition, their responses to drought, salt, cold, copper, H2O2, and ageing treatments were quite different during seed imbibition. Among the seven AsGR genes, AsGR1-A, AsGR1-C, AsGR2-A, and AsGR2-D responded more significantly, especially under drought, ageing, and H2O2 stress. This study has laid the ground for the functional characterization of GR and the improvement of oat stress tolerance and seed vigor.
Collapse
|
39
|
Ciacka K, Tyminski M, Wal A, Gniazdowska A, Krasuska U. Nitric oxide-an antidote to seed aging modifies meta-tyrosine content and expression of aging-linked genes in apple embryos. FRONTIERS IN PLANT SCIENCE 2022; 13:929245. [PMID: 36110361 PMCID: PMC9468924 DOI: 10.3389/fpls.2022.929245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/26/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Short-term (3 h) treatment of embryos isolated from accelerated aged apple seeds (Malus domestica Borkh.) with nitric oxide (NO) partially reduced the effects of aging. The study aimed to investigate the impact of the short-term NO treatment of embryos isolated from apple seeds subjected to accelerated aging on the expression of genes potentially linked to the regulation of seed aging. Apple seeds were artificially aged for 7, 14, or 21 days. Then, the embryos were isolated from the seeds, treated with NO, and cultured for 48 h. Progression of seed aging was associated with the decreased transcript levels of most of the analyzed genes (Lea1, Lea2a, Lea4, Hsp70b, Hsp20a, Hsp20b, ClpB1, ClpB4, Cpn60a, Cpn60b, Raptor, and Saur). The role of NO in the mitigation of seed aging depended on the duration of the aging. After 7 and 14 days of seed aging, a decreased expression of genes potentially associated with the promotion of aging (Tor, Raptor, Saur) was noted. NO-dependent regulation of seed aging was associated with the stimulation of the expression of genes encoding chaperones and proteins involved in the repair of damaged proteins. After NO application, the greatest upregulation of ClpB, Pimt was noted in the embryos isolated from seeds subjected to 7-day long accelerated aging, Hsp70b, Hsp70c, and Cpn in the embryos of seeds aged for 14 days, and Lea2a in the embryos of seeds after 21 days of aging. We also demonstrated the increased meta-tyrosine concentration depending or in respect the progression of artificial aging, and the NO-induced increased phenylalanine content in seeds artificially aged for 21 days. In the NO-treated embryos of seeds aged for 7 and 21 days, the level of tyrosine was almost doubled compared to the aged tissue. Our data confirmed the usage of meta-tyrosine as a marker of seed aging and indicated that the increased meta-tyrosine/tyrosine ratio could be related to the loss of seed viability.
Collapse
|
40
|
Triticale doubled haploid plant regeneration factors linked by structural equation modeling. J Appl Genet 2022; 63:677-690. [PMID: 36018540 PMCID: PMC9637073 DOI: 10.1007/s13353-022-00719-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
Triticale regeneration via anther culture faces many difficulties, e.g., a low percentage of regenerated plants and the presence of albinos. Plant regeneration may be affected by abiotic stresses and by ingredients added to the induction medium. The latter influences biochemical pathways and plant regeneration efficiency. Among such ingredients, copper and silver ions acting as cofactors for enzymatic reactions are of interest. However, their role in plant tissue cultures and relationships with biochemical pathways has not been studied yet. The study evaluated relationships between DNA methylation, changes in DNA sequence variation, and green plant regeneration efficiency influenced by copper and silver ions during triticale plant regeneration. For this purpose, a biological model based on donor plants and their regenerants, a methylation-sensitive amplified fragment length polymorphism, and structural equation modeling were employed. The green plant regeneration efficiency varied from 0.71 to 6.06 green plants per 100 plated anthers. The values for the components of tissue culture-induced variation related to cytosine methylation in a CHH sequence context (where H is A, C, or T) were 8.65% for sequence variation, 0.76% for DNA demethylation, and 0.58% for de novo methylation. The proposed model states that copper ions affect the regeneration efficiency through cytosine methylation and may induce mutations through, e.g., oxidative processes, which may interfere with the green plant regeneration efficiency. The linear regression confirms that the plant regeneration efficiency rises with increasing copper ion concentration in the absence of Ag ions in the induction medium. The least absolute shrinkage and selection operator regression shows that de novo methylation, demethylation, and copper ions may be involved in the green plant regeneration efficiency. According to structural equation modeling, copper ions play a central role in the model determining the regeneration efficiency.
Collapse
|
41
|
Peng L, Lu H, Chen J, Wu Z, Xiao Z, Qing X, Song J, Wang Z, Zhao J. Characteristics of Seed Vigor in Rice Varieties with Different Globulin Accumulations. Int J Mol Sci 2022; 23:ijms23179717. [PMID: 36077115 PMCID: PMC9456403 DOI: 10.3390/ijms23179717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Seed vigor of rice is an important trait for direct seeding. The objective of this study was to reveal the relationship between globulin and seed vigor, and then to explore a method for evaluating seed vigor. Several rice varieties with different levels of 52 kDa globulin accumulation were used to compare seed vigor under normal and aged conditions. Results showed that varieties with high globulin accumulation obtained significantly higher seed vigor, measured by germination percentage and germination index, compared with those varieties with low globulin accumulation under normal and aged conditions. Meanwhile, a significantly higher accumulation of reactive oxygen species (ROS) was observed in the early germinating seeds of varieties with high globulin accumulation compared to those varieties with low globulin accumulation under normal and aged conditions. Collectively, the globulin content could be applied in the evaluation of seed vigor, which contributes to the selection of rice varieties for direct seeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jia Zhao
- Correspondence: (Z.W.); or (J.Z.)
| |
Collapse
|
42
|
Pachota KA, Orłowska R. Effect of copper and silver ions on sequence and DNA methylation changes in triticale regenerants gained via somatic embryogenesis. J Appl Genet 2022; 63:663-675. [PMID: 35984629 PMCID: PMC9637072 DOI: 10.1007/s13353-022-00717-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
Abstract
Somatic embryogenesis is a plant regeneration method that can be exploited in tissue culture systems for a variety of tasks, such as genetic modification or the selection of somaclones with advantageous characteristics. Therefore, it is crucial to create efficient regeneration procedures and comprehend how medium components affect regeneration effectiveness or the degree of variation created in plant tissue cultures. The level of tissue culture-induced variation in triticale regenerants was examined in the current study in relation to the concentration of copper and silver ions in the induction media as well as the length of time immature zygotic embryo explants were incubated on these media. The high degree of variation (45%) revealed by the methylation-sensitive amplified fragment length polymorphism approach for estimating variation included 38% DNA sequence alterations, 6% DNA demethylation, and 1% de novo DNA methylation. Different levels of variance were found in relation to various DNA sequence settings. The CHG context had the most alterations, whereas CG experienced the fewest; sequence variation predominated in each sequence context. Lower copper ion concentrations showed the most variance. However, it could not be connected to the duration of in vitro culture or the effect of silver ions. Accordingly, we think that altering the concentration of copper ions in the induction medium may throw off the equilibrium of the metabolic processes in which copper is involved, resulting in tissue culture-induced variation.
Collapse
Affiliation(s)
- Katarzyna Anna Pachota
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Renata Orłowska
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland.
| |
Collapse
|
43
|
Pandey A, Chaudhary S, Bhat B. The Potential Role of Plastome Copy Number as a Quality Biomarker for Plant Products using Real-time Quantitative Polymerase Chain Reaction. Curr Genomics 2022; 23:289-298. [PMID: 36777877 PMCID: PMC9875542 DOI: 10.2174/1389202923666220513111643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2022] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Plastids are plant-specific semi-autonomous self-replicating organelles, containing circular DNA molecules called plastomes. Plastids perform crucial functions, including photosynthesis, stress perception and response, synthesis of metabolites, and storage. The plastome and plastid numbers have been shown to be modulated by developmental stage and environmental stimuli and have been used as a biomarker (identification of plant species) and biosensor (an indicator of abiotic and biotic stresses). However, the determination of plastome sequence and plastid number is a laborious process requiring sophisticated equipment. Methods: This study proposes using plastome copy number (PCN), which can be determined rapidly by real-time quantitative polymerase chain reaction (RT-qPCR) as a plant product quality biomarker. This study shows that the PCN log10 and range PCN log10 values calculated from RT-qPCR data, which was obtained for two years from leaves and lint samples of cotton and seed samples of cotton, rice, soybean, maize, and sesame can be used for assessing the quality of the samples. Results: Observation of lower range PCN log10 values for CS (0.31) and CR (0.58) indicated that the PCN showed little variance from the mean PCN log10 values for CS (3.81) and CR (3.85), suggesting that these samples might have encountered ambient environmental conditions during growth and/ or post-harvest storage and processing. This conclusion was further supported by observation of higher range PCN log10 values for RS (3.09) versus RP (0.05), where rice seeds in the RP group had protective hull covering compared to broken hull-less seeds in the RS group. To further support that PCN is affected by external factors, rice seeds treated with high temperatures and pathogens exhibited lower PCN values when compared to untreated seeds. Furthermore, the range PCN log10 values were found to be high for cotton leaf (CL) and lint (Clt) sample groups, 4.11 and 3.63, respectively, where leaf and lint samples were of different sizes, indicating that leaf samples might be of different developmental stage and lint samples might have been processed differently, supporting that the PCN is affected by both internal and external factors, respectively. Moreover, PCN log10 values were found to be plant specific, with oil containing seeds such as SeS (6.49) and MS (5.05) exhibiting high PCN log10 values compared to non-oil seeds such as SS (1.96). Conclusion: In conclusion, it was observed that PCN log10 values calculated from RT-qPCR assays were specific to plant species and the range of PCN log10 values can be directly correlated to the internal and external factors and, therefore might be used as a potential biomarker for assessing the quality of plant products.
Collapse
Affiliation(s)
- Amita Pandey
- 19 University Road, Shriram Institute for Industrial Research, Analytical Science Division - Biology, Molecular Biology Laboratory, New Delhi, India
| | - Shifa Chaudhary
- 19 University Road, Shriram Institute for Industrial Research, Analytical Science Division - Biology, Molecular Biology Laboratory, New Delhi, India
| | - Binu Bhat
- 19 University Road, Shriram Institute for Industrial Research, Analytical Science Division - Biology, Molecular Biology Laboratory, New Delhi, India
| |
Collapse
|
44
|
Gianella M, Balestrazzi A, Ravasio A, Mondoni A, Börner A, Guzzon F. Comparative seed longevity under genebank storage and artificial ageing: a case study in heteromorphic wheat wild relatives. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:836-845. [PMID: 35506610 DOI: 10.1111/plb.13421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/31/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Seed longevity is a complex trait that depends on numerous factors. It varies among species and populations, and within different seed morphs produced by the same plant. Little is known about variation in longevity in different seed morphs or the physiological and molecular basis of these differences. We evaluated the longevity and oxidative stress status in heteromorphic seeds aged in two different storage conditions. We compared controlled ageing tests (seed storage at 45°C and 60% relative humidity; a method of accelerated ageing used to estimate longevity in genebank conditions) with storage in a genebank for up to 40 years (-18°C and 8% seed moisture content). We employed as study species two wild wheats characterized by seed heteromorphism: Aegilops tauschii and Triticum monococcum subsp. aegilopoides. We estimated the ROS content and the expression of genes coding for enzymes related to the H2 O2 scavenging pathway. Results confirmed that seed longevity varies between different seed morphs. Different storage environments resulted in different longevity and survival curves. ROS levels, even if with variable patterns, were higher in several aged seed lots. We observed consistency in the expression of two genes (GSR and CAT) related to ROS scavenging in the late phase of pre-germinative metabolism. Differences in seed longevity between morphs were observed for the first time under genebank conditions. Our results suggest also that controlled ageing tests should be used with caution to infer ranks of longevity under cold storage.
Collapse
Affiliation(s)
- M Gianella
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
- Royal Botanic Gardens, Kew, Ardingly, UK
| | - A Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | - A Ravasio
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - A Mondoni
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - A Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - F Guzzon
- International Maize and Wheat Improvement Center (CIMMYT), El Bátan, Texcoco, Mexico
| |
Collapse
|
45
|
Ramtekey V, Cherukuri S, Kumar S, V. SK, Sheoran S, K. UB, K. BN, Kumar S, Singh AN, Singh HV. Seed Longevity in Legumes: Deeper Insights Into Mechanisms and Molecular Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:918206. [PMID: 35968115 PMCID: PMC9364935 DOI: 10.3389/fpls.2022.918206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/12/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Sustainable agricultural production largely depends upon the viability and longevity of high-quality seeds during storage. Legumes are considered as rich source of dietary protein that helps to ensure nutritional security, but associated with poor seed longevity that hinders their performance and productivity in farmer's fields. Seed longevity is the key determinant to assure proper seed plant value and crop yield. Thus, maintenance of seed longevity during storage is of prime concern and a pre-requisite for enhancing crop productivity of legumes. Seed longevity is significantly correlated with other seed quality parameters such as germination, vigor, viability and seed coat permeability that affect crop growth and development, consequently distressing crop yield. Therefore, information on genetic basis and regulatory networks associated with seed longevity, as well as molecular dissection of traits linked to longevity could help in developing crop varieties with good storability. Keeping this in view, the present review focuses towards highlighting the molecular basis of seed longevity, with special emphasis on candidate genes and proteins associated with seed longevity and their interplay with other quality parameters. Further, an attempt was made to provide information on 3D structures of various genetic loci (genes/proteins) associated to seed longevity that could facilitate in understanding the interactions taking place within the seed at molecular level. This review compiles and provides information on genetic and genomic approaches for the identification of molecular pathways and key players involved in the maintenance of seed longevity in legumes, in a holistic manner. Finally, a hypothetical fast-forward breeding pipeline has been provided, that could assist the breeders to successfully develop varieties with improved seed longevity in legumes.
Collapse
Affiliation(s)
| | | | - Sunil Kumar
- Indian Agricultural Statistics Research Institute-IASRI, New Delhi, India
| | | | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, India
| | - Udaya Bhaskar K.
- ICAR-Indian Institute of Seed Science, Regional Station, Bengaluru, India
| | - Bhojaraja Naik K.
- ICAR-Indian Institute of Seed Science, Regional Station, Bengaluru, India
| | - Sanjay Kumar
- ICAR-Indian Institute of Seed Science, Mau, India
| | | | | |
Collapse
|
46
|
Lin YX, Xu HJ, Yin GK, Zhou YC, Lu XX, Xin X. Dynamic Changes in Membrane Lipid Metabolism and Antioxidant Defense During Soybean ( Glycine max L. Merr.) Seed Aging. FRONTIERS IN PLANT SCIENCE 2022; 13:908949. [PMID: 35812982 PMCID: PMC9263854 DOI: 10.3389/fpls.2022.908949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/31/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Seed viability depends upon the maintenance of functional lipids; however, how membrane lipid components dynamically change during the seed aging process remains obscure. Seed storage is accompanied by the oxidation of membrane lipids and loss of seed viability. Understanding membrane lipid changes and their effect on the cell membrane during seed aging can contribute to revealing the mechanism of seed longevity. In this study, the potential relationship between oxidative stress and membrane lipid metabolism was evaluated by using a non-targeted lipidomics approach during artificial aging of Glycine max L. Merr. Zhongdou No. 27 seeds. We determined changes in reactive oxygen species, malondialdehyde content, and membrane permeability and assessed antioxidant system activity. We found that decreased non-enzymatic antioxidant contents and catalase activity might lead to reactive oxygen species accumulation, resulting in higher electrolyte leakage and lipid peroxidation. The significantly decreased phospholipids and increased glycerolipids and lysophospholipids suggested that hydrolysis of phospholipids to form glycerolipids and lysophospholipids could be the primary pathway of membrane metabolism during seed aging. Moreover, the ratio of phosphatidylcholine to phosphatidylethanolamine, double bond index, and acyl chain length of phospholipids were found to jointly regulate membrane function. In addition, the observed changes in lipid metabolism suggest novel potential hallmarks of soybean seed aging, such as diacylglycerol 36:4; phosphatidylcholine 34:2, 36:2, and 36:4; and phosphatidylethanolamine 34:2. This knowledge can be of great significance for elucidating the molecular mechanism underlying seed aging and germplasm conservation.
Collapse
Affiliation(s)
- Yi-xin Lin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Hai-jin Xu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Guang-kun Yin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan-chang Zhou
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Xin-xiong Lu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xia Xin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
47
|
Epigenetic Marks, DNA Damage Markers, or Both? The Impact of Desiccation and Accelerated Aging on Nucleobase Modifications in Plant Genomic DNA. Cells 2022; 11:cells11111748. [PMID: 35681443 PMCID: PMC9179523 DOI: 10.3390/cells11111748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Modifications of DNA nucleobases are present in all forms of life. The purpose of these modifications in eukaryotic cells, however, is not always clear. Although the role of 5-methylcytosine (m5C) in epigenetic regulation and the maintenance of stability in plant genomes is becoming better understood, knowledge pertaining to the origin and function of oxidized nucleobases is still scarce. The formation of 5-hydroxymetylcytosine (hm5C) in plant genomes is especially debatable. DNA modifications, functioning as regulatory factors or serving as DNA injury markers, may have an effect on DNA structure and the interaction of genomic DNA with proteins. Thus, these modifications can influence plant development and adaptation to environmental stress. Here, for the first time, the changes in DNA global levels of m5C, hm5C, and 8-oxo-7,8-dihydroguanine (8-oxoG) measured by ELISA have been documented in recalcitrant embryonic axes subjected to desiccation and accelerated aging. We demonstrated that tissue desiccation induces a similar trend in changes in the global level of hm5C and 8-oxoG, which may suggest that they both originate from the activity of reactive oxygen species (ROS). Our study supports the premise that m5C can serve as a marker of plant tissue viability whereas oxidized nucleobases, although indicating a cellular redox state, cannot.
Collapse
|
48
|
Gianella M, Doria E, Dondi D, Milanese C, Gallotti L, Börner A, Zannino L, Macovei A, Pagano A, Guzzon F, Biggiogera M, Balestrazzi A. Physiological and molecular aspects of seed longevity: exploring intra-species variation in eight Pisum sativum L. accessions. PHYSIOLOGIA PLANTARUM 2022; 174:e13698. [PMID: 35526223 PMCID: PMC9321030 DOI: 10.1111/ppl.13698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/27/2021] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 05/12/2023]
Abstract
Conservation of plant genetic diversity is fundamental for crop improvement, increasing agricultural production and sustainability, especially in the face of climatic changes. Although seed longevity is essential for the management of seed banks, few studies have, so far, addressed differences in this trait among the accessions of a single species. Eight Pisum sativum L. (pea) accessions were investigated to study the impact of long-term (approximately 20 years) storage, aiming to reveal contrasting seed longevity and clarify the causes for these differences. The outstanding seed longevity observed in the G4 accession provided a unique experimental system. To characterize the biochemical and physical status of stored seeds, reactive oxygen species, lipid peroxidation, tocopherols, free proline and reducing sugars were measured. Thermoanalytical measurements (thermogravimetry and differential scanning calorimetry) and transmission electron microscopy combined with immunohistochemical analysis were performed. The long-lived G4 seeds neither consumed tocopherols during storage nor showed free proline accumulation, as a deterioration hallmark, whereas reducing sugars were not affected. Thermal decomposition suggested a biomass composition compatible with the presence of low molecular weight molecules. Expansion of heterochromatic areas and reduced occurrence of γH2AX foci were highlighted in the nucleus of G4 seeds. The longevity of G4 seeds correlates with the occurrence of a reducing cellular environment and a nuclear ultrastructure favourable to genome stability. This work brings novelty to the study of within-species variations in seed longevity, underlining the relevance of multidisciplinary approaches in seed longevity research.
Collapse
Affiliation(s)
- Maraeva Gianella
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
- Royal Botanic Gardens, Kew, Wakehurst, ArdinglyHaywards HeathWest SussexUK
| | - Enrico Doria
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| | - Daniele Dondi
- C.S.G.I. & Department of ChemistryUniversity of PaviaPaviaItaly
| | - Chiara Milanese
- C.S.G.I. & Department of ChemistryUniversity of PaviaPaviaItaly
| | - Lucia Gallotti
- C.S.G.I. & Department of ChemistryUniversity of PaviaPaviaItaly
| | - Andreas Börner
- Genebank DepartmentLeibniz Institute of Plant Genetics and Crop Plant Research (IPK) CorrensstrSeelandGermany
| | - Lorena Zannino
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| | - Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| | - Filippo Guzzon
- International Maize and Wheat Improvement Center (CIMMYT)Carretera México‐VeracruzTexcocoMexico StateMexico
- Centre for Pacific Crops and Trees (CePaCT), Land Resource Division (LRD)Pacific Community (SPC)SuvaFiji
| | - Marco Biggiogera
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| |
Collapse
|
49
|
Priatama RA, Pervitasari AN, Park S, Park SJ, Lee YK. Current Advancements in the Molecular Mechanism of Plasma Treatment for Seed Germination and Plant Growth. Int J Mol Sci 2022; 23:4609. [PMID: 35562997 PMCID: PMC9105374 DOI: 10.3390/ijms23094609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Low-temperature atmospheric pressure plasma has been used in various fields such as plasma medicine, agriculture, food safety and storage, and food manufacturing. In the field of plasma agriculture, plasma treatment improves seed germination, plant growth, and resistance to abiotic and biotic stresses, allows pesticide removal, and enhances biomass and yield. Currently, the complex molecular mechanisms of plasma treatment in plasma agriculture are fully unexplored, especially those related to seed germination and plant growth. Therefore, in this review, we have summarized the current progress in the application of the plasma treatment technique in plants, including plasma treatment methods, physical and chemical effects, and the molecular mechanism underlying the effects of low-temperature plasma treatment. Additionally, we have discussed the interactions between plasma and seed germination that occur through seed coat modification, reactive species, seed sterilization, heat, and UV radiation in correlation with molecular phenomena, including transcriptional and epigenetic regulation. This review aims to present the mechanisms underlying the effects of plasma treatment and to discuss the potential applications of plasma as a powerful tool, priming agent, elicitor or inducer, and disinfectant in the future.
Collapse
Affiliation(s)
- Ryza A. Priatama
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjangsan-ro, Gunsan 54004, Korea; (R.A.P.); (S.P.)
| | - Aditya N. Pervitasari
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Korea;
| | - Seungil Park
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjangsan-ro, Gunsan 54004, Korea; (R.A.P.); (S.P.)
| | - Soon Ju Park
- Division of Biological Sciences, Wonkwang University, Iksan 54538, Korea
| | - Young Koung Lee
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjangsan-ro, Gunsan 54004, Korea; (R.A.P.); (S.P.)
| |
Collapse
|
50
|
Li BB, Zhang SB, Lv YY, Wei S, Hu YS. Reactive oxygen species-induced protein carbonylation promotes deterioration of physiological activity of wheat seeds. PLoS One 2022; 17:e0263553. [PMID: 35358205 PMCID: PMC8970375 DOI: 10.1371/journal.pone.0263553] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
During the seed aging process, reactive oxygen species (ROS) can induce the carbonylation of proteins, which changes their functional properties and affects seed vigor. However, the impact and regulatory mechanisms of protein carbonylation on wheat seed vigor are still unclear. In this study, we investigated the changes in wheat seed vigor, carbonyl protein content, ROS content and embryo cell structure during an artificial aging process, and we analyzed the correlation between protein carbonylation and seed vigor. During the artificial wheat-seed aging process, the activity levels of antioxidant enzymes and the contents of non-enzyme antioxidants decreased, leading to the accumulation of ROS and an increase in the carbonyl protein content, which ultimately led to a decrease in seed vigor, and there was a significant negative correlation between seed vigor and carbonyl protein content. Moreover, transmission electron microscopy showed that the contents of protein bodies in the embryo cells decreased remarkably. We postulate that during the wheat seed aging process, an imbalance in ROS production and elimination in embryo cells leads to the carbonylation of proteins, which plays a negative role in wheat seed vigor.
Collapse
Affiliation(s)
- Bang-Bang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Shuai-Bing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yang-Yong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yuan-Sen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- * E-mail:
| |
Collapse
|