1
|
Anil Kumar S, Kaniganti S, Hima Kumari P, Sudhakar Reddy P, Suravajhala P, P S, Kishor PBK. Functional and biotechnological cues of potassium homeostasis for stress tolerance and plant development. Biotechnol Genet Eng Rev 2024; 40:3527-3570. [PMID: 36469501 DOI: 10.1080/02648725.2022.2143317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022]
Abstract
Potassium (K+) is indispensable for the regulation of a plethora of functions like plant metabolism, growth, development, and abiotic stress responses. K+ is associated with protein synthesis and entangled in the activation of scores of enzymes, stomatal regulation, and photosynthesis. It has multiple transporters and channels that assist in the uptake, efflux, transport within the cell as well as from soil to different tissues, and the grain filling sites. While it is implicated in ion homeostasis during salt stress, it acts as a modulator of stomatal movements during water deficit conditions. K+ is reported to abate the effects of chilling and photooxidative stresses. K+ has been found to ameliorate effectively the co-occurrence of drought and high-temperature stresses. Nutrient deficiency of K+ makes leaves necrotic, leads to diminished photosynthesis, and decreased assimilate utilization highlighting the role it plays in photosynthesis. Notably, K+ is associated with the detoxification of reactive oxygen species (ROS) when plants are exposed to diverse abiotic stress conditions. It is irrefutable now that K+ reduces the activity of NADPH oxidases and at the same time maintains electron transport activity, which helps in mitigating the oxidative stress. K+ as a macronutrient in plant growth, the role of K+ during abiotic stress and the protein phosphatases involved in K+ transport have been reviewed. This review presents a holistic view of the biological functions of K+, its uptake, translocation, signaling, and the critical roles it plays under abiotic stress conditions, plant growth, and development that are being unraveled in recent times.
Collapse
Affiliation(s)
- S Anil Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Guntur, Andhra Pradesh, India
| | - Sirisha Kaniganti
- Crop transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | - P Sudhakar Reddy
- Crop transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | - Suprasanna P
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Guntur, Andhra Pradesh, India
- Amity Institute of Biotechnology, Amity University Mumbai, Bhatan, Mumbai, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Guntur, Andhra Pradesh, India
| |
Collapse
|
2
|
Mengistu D, Getachew P. Chemical composition, anti-hypertensive properties, and sensory attributes of salt extracted from ash of Hygrophilia schulli. Food Sci Nutr 2024; 12:8220-8232. [PMID: 39479668 PMCID: PMC11521662 DOI: 10.1002/fsn3.4217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 11/02/2024] Open
Abstract
The traditional usage of salt taken from vegetables for the treatment of blood pressure and diabetes is seen in several regions of Ethiopia, particularly in Gambella. The aim of the study was to investigate the mineral content, anti-hypertensive properties, and sensory attributes of salt obtained from the Hygrophilia schulli. The salt was extracted from the ashing of stems of Hygrophilia schulli. Optical Emission Spectroscopy with Inductively Coupled Plasma was used to identify macro-minerals, micro-minerals, and some toxic metals. Flame Atomic Absorption Spectroscopy was used to assess the levels of arsenic and mercury. The anti-hypertensive property of the salt was determined in vivo using the Wistar rats. The extracted salt was rich in potassium and was deficient in sodium from the analyzed macro-minerals. It was free from mercury, cadmium, chromium, and arsenic. Lead and nickel were below the Tolerable Weekly Intake Provisional specified by the European Union. Among carbonate and sulfate, chloride was the main anion in this salt. The salt was discovered to have a low taste characteristic compared to common salt. However, the taste attribute of the combination of vegetable and common salt in different proportions was better than common salt. Rats fed with salt from Hygrophilia schulli showed a statistically significant lower systolic, diastolic, and mean blood pressure compared to normal-fed and common salt-fed rat groups. Generally, this study suggests that Hygrophilia schulli salt has the potential to be a viable alternative to common salt, particularly for those suffering from hypertension and other related chronic conditions.
Collapse
Affiliation(s)
- Degsew Mengistu
- Department of BiologyKotebe University of Education, College of Science and Mathematics EducationAddis AbabaEthiopia
| | - Paulos Getachew
- Center for Food Science and NutritionAddis Ababa UniversityAddis AbabaEthiopia
| |
Collapse
|
3
|
Tang C, Zhang Y, Liu X, Zhang B, Si J, Xia H, Fan S, Kong L. Nitrate Starvation Induces Lateral Root Organogenesis in Triticum aestivum via Auxin Signaling. Int J Mol Sci 2024; 25:9566. [PMID: 39273513 PMCID: PMC11395443 DOI: 10.3390/ijms25179566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
The lateral root (LR) is an essential component of the plant root system, performing important functions for nutrient and water uptake in plants and playing a pivotal role in cereal crop productivity. Nitrate (NO3-) is an essential nutrient for plants. In this study, wheat plants were grown in 1/2 strength Hoagland's solution containing 5 mM NO3- (check; CK), 0.1 mM NO3- (low NO3-; LN), or 0.1 mM NO3- plus 60 mg/L 2,3,5-triiodobenzoic acid (TIBA) (LNT). The results showed that LN increased the LR number significantly at 48 h after treatment compared with CK, while not increasing the root biomass, and LNT significantly decreased the LR number and root biomass. The transcriptomic analysis showed that LN induced the expression of genes related to root IAA synthesis and transport and cell wall remodeling, and it was suppressed in the LNT conditions. A physiological assay revealed that the LN conditions increased the activity of IAA biosynthesis-related enzymes, the concentrations of tryptophan and IAA, and the activity of cell wall remodeling enzymes in the roots, whereas the content of polysaccharides in the LRP cell wall was significantly decreased compared with the control. Fourier-transform infrared spectroscopy and atomic microscopy revealed that the content of cell wall polysaccharides decreased and the cell wall elasticity of LR primordia (LRP) increased under the LN conditions. The effects of LN on IAA synthesis and polar transport, cell wall remodeling, and LR development were abolished when TIBA was applied. Our findings indicate that NO3- starvation may improve auxin homeostasis and the biological properties of the LRP cell wall and thus promote LR initiation, while TIBA addition dampens the effects of LN on auxin signaling, gene expression, physiological processes, and the root architecture.
Collapse
Affiliation(s)
- Chengming Tang
- College of Life Science, Shandong Normal University, Jinan 250014, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yunxiu Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiao Liu
- College of Life Science, Shandong Normal University, Jinan 250014, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Bin Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jisheng Si
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Haiyong Xia
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shoujin Fan
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Lingan Kong
- College of Life Science, Shandong Normal University, Jinan 250014, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
4
|
Qin H, Zhang X, Tian G, Liu C, Xing Y, Feng Z, Lyu M, Liu J, Xu X, Zhu Z, Jiang Y, Ge S. Magnesium alleviates growth inhibition under low potassium by enhancing photosynthesis and carbon-nitrogen metabolism in apple plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108875. [PMID: 38972243 DOI: 10.1016/j.plaphy.2024.108875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Potassium (K) and magnesium (Mg) play analogous roles in regulating plant photosynthesis and carbon and nitrogen (C-N) metabolism. Based on this consensus, we hypothesize that appropriate Mg supplementation may alleviate growth inhibition under low K stress. We monitored morphological, physiological, and molecular changes in G935 apple plants under different K (0.1 and 6 mmol L-1) and Mg supply (3 and 6 mmol L-1) conditions. Low K stress caused changes in root and leaf structure, inhibited photosynthesis, and limited the root growth of the apple rootstock. Further study on Mg supplementation showed that it could promote the uptake of K+ and NO3- by upregulating the expression of K+ transporter proteins such as Arabidopsis K+ transporter 1 (MdAKT1), high-affinity K+ transporter 1 (MdHKT1), and potassium transporter 5 (MdPT5) and nitrate transporters such as nitrate transporter 1.1/1.2/2.1/2.4 (MdNRT 1.1/1.2/2.1/2.4). Mg promoted the translocation of 15N from roots to leaves and enhanced photosynthetic N utilization efficiency (PNUE) by increasing the proportion of photosynthetic N and alleviating photosynthetic restrictions. Furthermore, Mg supplementation improved the synthesis of photosynthates by enhancing the activities of sugar-metabolizing enzymes (Rubisco, SS, SPS, S6PDH). Mg also facilitated the transport of sucrose and sorbitol from leaves to roots by upregulating the expression of sucrose transporter 1.1/1.2/4.1/4.2 (MdSUT 1.1/1.2/4.1/4.2) and sorbitol transporter 1.1/1.2 (MdSOT 1.1/1.2). Overall, Mg effectively alleviated growth inhibition in apple rootstock plants under low K stress by facilitating the uptake of N and K uptake, optimizing nitrogen partitioning, enhancing nitrogen use efficiency (NUE) and PNUE, and promoting the photosynthate synthesis and translocation.
Collapse
Affiliation(s)
- Hanhan Qin
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiuying Zhang
- Apple Industry Research Institute of Zhaotong,Zhaotong, Yunnan, 657000, China
| | - Ge Tian
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Institute of Pomology, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
| | - Chunling Liu
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yue Xing
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ziquan Feng
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Mengxue Lyu
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jingquan Liu
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - XinXiang Xu
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, China
| | - Zhanling Zhu
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Yuanmao Jiang
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Shunfeng Ge
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
5
|
Chabbi N, Labbassi S, Afi C, Chafiki S, Telmoudi M, Tiouidji FE, Wifaya A, Bouharroud R, Tahiri A, Qessaoui R, Bendiab K, Hsissou D, Ait Aabd N, Mimouni A. Mineral and Organic Fertilizers' Effect on the Growth of Young Argane Trees ( Argania spinosa L.) and Soil Properties under Vulnerable Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2026. [PMID: 39124143 PMCID: PMC11314062 DOI: 10.3390/plants13152026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/12/2024]
Abstract
Argania spinosa (L.) Skeels is an endemic species to Morocco that has multiple uses. It plays multiple important roles in terms of its botanical, ecological, and economic properties. However, the domestication of this species will open up considerable economic opportunities for Morocco. Here, for the first time, we assessed the effect of different doses of compost and NPK fertilizers on the vegetative growth parameters, biochemical and antioxidant potential of the Argania spinosa plant, and soil properties. Over a two-year period (2022-2023), eight different treatments were applied across two experimental sites. These treatments included the following: T0 (Control), T1 (F1-80.50.70 g NPK/plant), T2 (F1-125.75.100 g NPK/plant), T3 (F2-160.100.140 g NPK/plant), T4 (F2-250.150.200 g NPK/plant), T5 (F1-2.5 kg/plant compost), T6 (F1-5 kg/plant compost), T7 (F2-5 kg/plant compost), and T8 (F2-10 kg/plant compost), with F1 and F2 being the frequencies of application. We compared several doses of fertilizers with no fertilization as a control. The results showed a significant influence of the compost and NPK fertilizer on the vegetative growth parameters. For the Tamjlojt site, the first year is important because treatments T3 and T4 significantly increased height by 71.94 ± 21.15% and 74.31 ± 12.31%, respectively. For the circumference, the results showed a significant improvement by the treatments T4 and T3, and T1 demonstrated the highest gain. For the collar diameter, all treatments showed a significant difference. The most notable difference was observed with treatments T3 and T7 with 115.63 ± 33.88% and 101.09 ± 20.84%, respectively. For the Rasmouka site, the second year was the most important. The treatments with the most important height increase were T7 and T8, with a value of 43.14 ± 10.06% and 36.44 ± 9.95%; the same was observed for collar diameter as a significant increase was found in T8 and T7 with a value of 55.05 ± 15.7% and 54.08 ± 9.64%. For the circumference parameter, the treatments that increased significantly this parameter were T8 and T7 with a value of 53.36 ± 15.11% and 50.34 ± 11.29% in 2023. In addition, the highest content of carbohydrates was recorded for the treatment T3 with a value of 148.89 ± 8.11 (mg EG/g). For phenolic determination, the highest value was 2532 ± 457.13 (µg GAE/mL), shown for treatment T1. For flavonoids, the treatments that showed a significant effect were T1 and T6 with a value of 2261.98 ± 184.61 and 1237.70 ± 95.65 (µg QE/mL), respectively. For the impact on soil properties, the electrical conductivity, at the Tamjlojt site, treatment T1 showed a significant increase to 1139.00 ± 241.30 (ms/cm), while at the Rasmouka site, treatment T8 showed a significant increase to 303.33 ± 9.33 (ms/cm). Concerning organic carbon, all treatments resulted in increased percentages of this parameter in the soil. For the Tamjlojt site, the T7 treatment had a significant positive effect on this parameter with a value of 0.87 ± 0.12%. For the Rasmouka site, the T3 treatment increased the percentage of organic carbon with a value of 1.17 ± 0.07%. In addition, the organic matter content showed an improvement with a value of 2.02 ± 0.12%. As there are no previous studies in Argania spinosa fertilization, this study greatly contributes to our understanding of the benefits of using different fertilizers at different doses, in particular T8 and T7 as organic fertilizers and T3, T4 as chemical ones, on argan growth, the biochemical and antioxidant properties of leaves, and its soil properties.
Collapse
Affiliation(s)
- Naima Chabbi
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
- Laboratory of Agrobiotechnology and Bioengineering, Department of Biology, Faculty of Science and Technology-Gueliz, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Said Labbassi
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
- Laboratory of Agrobiotechnology and Bioengineering, Department of Biology, Faculty of Science and Technology-Gueliz, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Chaima Afi
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
- Laboratory of Biotechnology and Valorization of Natural Resources (LBVRN), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Salahddine Chafiki
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
- AgroBioSciences Department, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Maryem Telmoudi
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
- Laboratory of Agrobiotechnology and Bioengineering, Department of Biology, Faculty of Science and Technology-Gueliz, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Fatima Ezzahra Tiouidji
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
- Laboratory of Environmental, Ecological and Agro-Industrial Engineering (LGEEAI), Faculty of Science and Technology of Beni Mellal, Sultane Molay Slimane University, Beni Mellal 23000, Morocco
| | - Ahmed Wifaya
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
| | - Rachid Bouharroud
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
| | - Abdelghani Tahiri
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
| | - Redouan Qessaoui
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
| | - Khadija Bendiab
- Laboratory of Agrobiotechnology and Bioengineering, Department of Biology, Faculty of Science and Technology-Gueliz, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Driss Hsissou
- Laboratory of Agrobiotechnology and Bioengineering, Department of Biology, Faculty of Science and Technology-Gueliz, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Naima Ait Aabd
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
| | - Abdelaziz Mimouni
- Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP415 Rabat Principale, Rabat 10090, Morocco
| |
Collapse
|
6
|
Alharbi K, Alnusairi GSH, Alnusaire TS, Alghanem SMS, Alsudays IM, Alaklabi A, Soliman MH. Potassium silica nanostructure improved growth and nutrient uptake of sorghum plants subjected to drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1425834. [PMID: 39086913 PMCID: PMC11288930 DOI: 10.3389/fpls.2024.1425834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Introduction Recent advancements in nanotechnology present promising opportunities for enhancing crop resilience in adverse environmental conditions. Methods In this study, we conducted a factorial experiment to investigate the influence of potassium nanosilicate (PNS) on sorghum plants exposed to varying degrees of drought stress A randomized complete block design with three replications was employed to subject the sorghum plants to different drought conditions. The three levels of stress were designated as non-stress (NS at -0.03 MPa), moderate stress (MD at -0.6 MPa), and severe stress (SD at -1.2 MPa). The plants were administered PNS at concentrations of 0 mM (control), 3.6 mM Si, and 7.2 mM Si. Results and discussion As drought stress intensified, we observed significant reductions in multiple plant parameters, including height, fresh weight, dry weight, leaf number, stem diameter, cluster length, seed weight, and nutrient uptake, with the most pronounced effects observed under SD conditions. Interestingly, nitrogen (N) and potassium (K) levels exhibited an increase under drought stress and PNS application, peaking at MD, alongside Si concentrations. Notably, PNS application facilitated enhanced nutrient uptake, particularly evident in the significant increase in nitrogen concentration observed at 3.6 mM PNS. Furthermore, the application of PNS significantly enhanced the fresh weight and nutrient concentrations (notably K and Si) in sorghum seeds under drought stress, despite varying statistical significance for other nutrients. These findings shed light on the mechanisms through which PNS exerts beneficial effects on plant performance under drought stress. By elucidating the complex interactions between PNS application, drought stress, and plant physiology, this study contributes significantly to the development of sustainable agricultural practices aimed at bolstering crop resilience and productivity in water-limited environments.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | | | | | - Abdullah Alaklabi
- Department of Biology, Faculty of Science, University of Bisha, Bisha, Saudi Arabia
| | - Mona H. Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu, Saudi Arabia
| |
Collapse
|
7
|
Cui J, Zhang Y, Zhang H, Jin H, He L, Wang H, Lu P, Miao C, Yu J, Ding X. Low-Potassium Fruits and Vegetables: Research Progress and Prospects. PLANTS (BASEL, SWITZERLAND) 2024; 13:1893. [PMID: 39065420 PMCID: PMC11280005 DOI: 10.3390/plants13141893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024]
Abstract
With the increasing number of patients with chronic kidney disease (CKD) and the improved recognition of nutritional therapy, research on low-potassium (LK) fruits and vegetables for CKD patients has gained global attention. Despite its already commercial availability primarily in Japan, public awareness remains limited, and cultivation methods lack a comprehensive strategy. This review offers an extensive examination of the developmental significance, current cultivation techniques, and existing limitations of functional LK fruits and vegetables with the objective of providing guidance and inspiration for their exploitation. Additionally, this review investigates various factors influencing K content, including varieties, temperature, light, exogenous substances, harvest time, and harvest parts, with a focus on optimizing production methods to enhance potassium utilization efficiency (KUE) and decrease the K content in plants. Finally, the review outlines the shortcomings and prospects of research on LK fruits and vegetables, emphasizing the importance of interdisciplinary research (in agriculture technology, medicine, and business) for patients with CKD and the future development of this field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jizhu Yu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (J.C.); (Y.Z.); (H.Z.); (H.J.); (L.H.); (H.W.); (P.L.); (C.M.)
| | - Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (J.C.); (Y.Z.); (H.Z.); (H.J.); (L.H.); (H.W.); (P.L.); (C.M.)
| |
Collapse
|
8
|
Li G, Wu J, Kronzucker HJ, Li B, Shi W. Physiological and molecular mechanisms of plant-root responses to iron toxicity. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154257. [PMID: 38688043 DOI: 10.1016/j.jplph.2024.154257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
The chemical form and physiological activity of iron (Fe) in soil are dependent on soil pH and redox potential (Eh), and Fe levels in soils are frequently elevated to the point of causing Fe toxicity in plants, with inhibition of normal physiological activities and of growth and development. In this review, we describe how iron toxicity triggers important physiological changes, including nitric-oxide (NO)-mediated potassium (K+) efflux at the tips of roots and accumulation of reactive oxygen species (ROS) and reactive nitrogen (RNS) in roots, resulting in physiological stress. We focus on the root system, as the first point of contact with Fe in soil, and describe the key processes engaged in Fe transport, distribution, binding, and other mechanisms that are drawn upon to defend against high-Fe stress. We describe the root-system regulation of key physiological processes and of morphological development through signaling substances such as ethylene, auxin, reactive oxygen species, and nitric oxide, and discuss gene-expression responses under high Fe. We especially focus on studies on the physiological and molecular mechanisms in rice and Arabidopsis under high Fe, hoping to provide a valuable theoretical basis for improving the ability of crop roots to adapt to soil Fe toxicity.
Collapse
Affiliation(s)
- Guangjie Li
- State Key Laboratory of Nutrient Use and Management, Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Jinlin Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China; University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
9
|
Zhang Y, Han X, Ren W, Zhang H, Tang M. Arbuscular Mycorrhizal Fungi Improve Lycium barbarum Potassium Uptake by Activating the Expression of LbHAK. PLANTS (BASEL, SWITZERLAND) 2024; 13:1244. [PMID: 38732459 PMCID: PMC11085931 DOI: 10.3390/plants13091244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi can establish a mutualistic relationship with the roots of most terrestrial plants to increase plant nutrient uptake. The effects of potassium uptake and transport by AM symbiosis are much less reported compared to other nutrients. In this research, a heterologous yeast system was used to verify that the LbHAK has capacity for potassium uptake. The split-roots system implemented using seedlings of Lycium barbarum confirmed that R. irregularis locally induced LbHAK expression, which means that LbHAK is only expressed in mycorrhizal roots. Furthermore, the impacts of overexpression of LbHAK on the growth, nutrients and water uptake, and transport of mycorrhizal tobacco (inoculation with Rhizophagus irregularis) at 0.2 mM and 2 mM K conditions were assessed. The mycorrhizal tobacco growth and potassium accumulation were significantly enhanced through LbHAK overexpression in tobacco. In addition, overexpression of LbHAK substantially enhanced phosphorus content, while stimulating the expression of NtPT4, Rir-AQP1, and Rir-AQP2 in mycorrhizal tobacco. Moreover, LbHAK overexpression greatly promoted AM colonization. LbHAK has a potential role in facilitating potassium absorption through the mycorrhizal pathway, and overexpression of LbHAK in tobacco may promote the transport of potassium, phosphorus, and water from AM fungi to tobacco. These data imply the important roles played by the LbHAK in AM-fungi-induced potassium uptake in L. barbarum and in improving plant nutrients and AM colonization.
Collapse
Affiliation(s)
- Yongxin Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, China; (Y.Z.); (X.H.); (W.R.)
| | - Xia Han
- College of Forestry, Northwest A&F University, Yangling 712100, China; (Y.Z.); (X.H.); (W.R.)
- Shaanxi Engineering Research Center of Forage Plants of the Loess Plateau, College of Life Sciences, Yulin University, Yulin 719000, China
| | - Wei Ren
- College of Forestry, Northwest A&F University, Yangling 712100, China; (Y.Z.); (X.H.); (W.R.)
| | - Haoqiang Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, China; (Y.Z.); (X.H.); (W.R.)
| | - Ming Tang
- College of Forestry, Northwest A&F University, Yangling 712100, China; (Y.Z.); (X.H.); (W.R.)
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Choudhary M, Garg K, Reddy MB, Meena BL, Mondal B, Tuti MD, Kumar S, Awasthi MK, Giri BS, Kumar S, Rajawat MVS. Unlocking growth potential: Synergistic potassium fertilization for enhanced yield, nutrient uptake, and energy fractions in Chinese cabbage. Heliyon 2024; 10:e28765. [PMID: 38586349 PMCID: PMC10998139 DOI: 10.1016/j.heliyon.2024.e28765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
The implementation of integrated potassium management presents a viable approach for augmenting plant growth, yield, and nutrient uptake while enhancing soil nutrient availability. A field experiment was executed during the rabi season of 2020, employing a randomized complete block design encompassing eight treatments involving standard (100%) and reduced (75% and 50%) rates of the recommended dose of potassium (RDK) administered through muriate of potash (MOP). Treatments included variations in the incorporation/exclusion of plant growth-promoting rhizobacteria (PGPR), farmyard manure (FYM) at 25% of potassium recommendation, and foliar application of nano potash. The use of 100% RDK +25% K augmentation through FYM + PGPR and nano K fertilizer spray at 25 and 40 DAS (T8) exhibited significant enhancements in green fodder yield (64.0 ± 2.2 t ha-1) over control with no potassium application (47.3 ± 3.7 t ha-1) and found at par with and 75% RDK + 25% K augmentation through FYM + PGPR and nano K fertilizer spray at 25 and 40 DAS (T7). These treatments yielded maximum percent increase for plant height (34.9%), leaf count (38.5%), leaf dimensions (28.8-31.5%), stem girth (25.84%), root volume (27.0%), and root length (37.64%), observed at the harvest stage compared to control (T1-no potassium application). The treatment T8 was on par with T7 and recorded highest uptake of macro (N, P, and K) and micro (Zn, Fe, Cu, and Mn) nutrients. While soil parameters such as available nitrogen and potassium levels were notably increased through the application of treatment T7 across various treatment combinations and found significantly superiority over treatment T8. Multivariate analysis also highlighted treatment T7 is more efficient in maintaining sustainability. Hence, based on the present findings it can be concluded that application of 75% RDK +25% K augmentation through FYM + PGPR and nano K fertilizer spray at 25 and 40 DAS (T7) can be recommended for achieving enhanced productivity and soil fertility improvement within agricultural systems.
Collapse
Affiliation(s)
- Mahendra Choudhary
- Department of Agronomy, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar, Uttarakhand, 263145, India
| | - Kamal Garg
- Agronomy Section, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Marthala Bhuvaneswar Reddy
- Animal Nutrition Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly UP, 243122, India
| | - Babu Lal Meena
- Project Coordinating Unit, ICAR- Central Soil Salinity Research Institute, Karnal, Harayana, 132001, India
| | - Biswajit Mondal
- Division of Crop Production, ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India
| | - Mangal Deep Tuti
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Sudhir Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3 Yangling, Shaanxi, 712100, China
| | - Balendu Shekher Giri
- Sustainability Cluster, University of Petroleum and Energy Studies UPES, Dehradun, Uttarakhand, 248007, India
| | - Sanjeev Kumar
- Agronomy Section, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | | |
Collapse
|
11
|
Moisa C, Brata AM, Muresan IC, Dragan F, Ratiu I, Cadar O, Becze A, Carbunar M, Brata VD, Teusdea AC. Comparative Analysis of Vitamin, Mineral Content, and Antioxidant Capacity in Cereals and Legumes and Influence of Thermal Process. PLANTS (BASEL, SWITZERLAND) 2024; 13:1037. [PMID: 38611566 PMCID: PMC11013170 DOI: 10.3390/plants13071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Cereals, as the world's most consumed food, face challenges related to nutrient quality due to climate change and increased production impacting soil health. In this study, we investigated the vitamin and mineral content, polyphenols, and antioxidant activity in cereals from Western Romania, analyzing whole and hulled wheat, rye, oat, and soybeans before and after heat treatment. Samples from 2022 crops were processed into dough and subjected to 220 °C for 30 min. The results reveal that, despite efforts to optimize nutrient content, cereals, particularly after heat processing, exhibited lower vitamin and mineral levels than the recommended daily intake. The decrease in polyphenols and antioxidant capacity was notable, with rye flour experiencing the largest decline (15%). Mineral analysis showed copper levels in decorticated wheat decreased by 82.5%, while iron in rye decreased by 5.63%. Soy flour consistently displayed the highest calcium, magnesium, and potassium levels, whereas oat flour had the highest zinc and copper levels before and after heat processing. The study highlights the concerningly low vitamins and minerals contents in cereals, as well as in the final products reaching consumers in the Western part of Romania, and contributes to the assessment of measures that are meant to improve the contents of these minerals.
Collapse
Affiliation(s)
- Corina Moisa
- Department of Pharmacy, Medicine and Pharmacy Faculty, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (C.M.); (F.D.)
| | - Anca Monica Brata
- Department of Engineering of Food Products, Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru St., 410087 Oradea, Romania
| | - Iulia C. Muresan
- Department of Economic Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3–5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Felicia Dragan
- Department of Pharmacy, Medicine and Pharmacy Faculty, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (C.M.); (F.D.)
| | - Ioana Ratiu
- Department of Medicine, Medicine and Pharmacy Faculty, University of Oradea, 1 University Street, 410087 Oradea, Romania;
| | - Oana Cadar
- INCDO INOE 2000, Research Institute for Analytical Instrumentation Subsidiary, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (A.B.)
| | - Anca Becze
- INCDO INOE 2000, Research Institute for Analytical Instrumentation Subsidiary, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (A.B.)
| | - Mihai Carbunar
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru St., 410087 Oradea, Romania; (M.C.)
| | - Vlad Dumitru Brata
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania;
| | - Alin Cristian Teusdea
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru St., 410087 Oradea, Romania; (M.C.)
| |
Collapse
|
12
|
Lv G, Li Z, Zhao Z, Liu H, Li L, Li M. The factors affecting the development of medicinal plants from a value chain perspective. PLANTA 2024; 259:108. [PMID: 38555562 DOI: 10.1007/s00425-024-04380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
MAIN CONCLUSION From a value chain perspective, this paper examines the important factors from the selection of planting areas to storage, which restrict the development of medicinal plants. The purpose of this paper is to provide theoretical basis for the sustainable development of medicinal plants. Medicinal plants have significant economic and medicinal value. Due to the gradual depletion of wild medicinal plant resources, cultivators of medicinal plants must resort to artificial cultivation to cope. However, there are still many problems in the production process of medicinal plants, resulting in decreases in both yield and quality, thus hindering sustainable development. To date, research on the value chain of medicinal plants is still limited. Therefore, this paper analyzes the factors affecting the development of medicinal plants from the perspective of the value chain, including the selection of growing areas to the storage process of medicinal plants, and summarizes the challenges faced in the production process of medicinal plants. The purpose of this paper is to provide theoretical basis for the sustainable development of medicinal plants.
Collapse
Affiliation(s)
- Guoshuai Lv
- University Engineering Research Center of Chinese (Mongolia), Ecological Planting Medicinal Materials (Nurture) in Inner Mongolia Autonomous Region, College of Agronomy, Inner Mongolia Minzu University, Tongliao, China
| | - Zhihe Li
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Zeyuan Zhao
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Haolin Liu
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ling Li
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Minhui Li
- University Engineering Research Center of Chinese (Mongolia), Ecological Planting Medicinal Materials (Nurture) in Inner Mongolia Autonomous Region, College of Agronomy, Inner Mongolia Minzu University, Tongliao, China.
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, Inner Mongolia, China.
| |
Collapse
|
13
|
Wang J, Lu Y, Zhang X, Hu W, Lin L, Deng Q, Xia H, Liang D, Lv X. Effects of Potassium-Containing Fertilizers on Sugar and Organic Acid Metabolism in Grape Fruits. Int J Mol Sci 2024; 25:2828. [PMID: 38474075 DOI: 10.3390/ijms25052828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
To identify suitable potassium fertilizers for grape (Vitis vinifera L.) production and study their mechanism of action, the effects of four potassium-containing fertilizers (complex fertilizer, potassium nitrate, potassium sulfate, and potassium dihydrogen phosphate) on sugar and organic acid metabolism in grape fruits were investigated. Potassium-containing fertilizers increased the activity of sugar and organic acid metabolism-related enzymes at all stages of grape fruit development. During the later stages of fruit development, potassium-containing fertilizers increased the total soluble solid content and the sugar content of the different sugar fractions and decreased the titratable acid content and organic acid content of the different organic acid fractions. At the ripening stage of grape fruit, compared with the control, complex fertilizer, potassium nitrate, potassium sulfate, and potassium dihydrogen phosphate increased the total soluble solid content by 1.5, 1.2, 3.5, and 3.4 percentage points, decreased the titratable acid content by 0.09, 0.06, 0.18, and 0.17 percentage points, respectively, and also increased the total potassium content in grape fruits to a certain degree. Transcriptome analysis of the differentially expressed genes (DEGs) in the berries showed that applying potassium-containing fertilizers enriched the genes in pathways involved in fruit quality, namely, carbon metabolism, carbon fixation in photosynthetic organisms, glycolysis and gluconeogenesis, and fructose and mannose metabolism. Potassium-containing fertilizers affected the expression levels of genes regulating sugar metabolism and potassium ion uptake and transport. Overall, potassium-containing fertilizers can promote sugar accumulation and reduce acid accumulation in grape fruits, and potassium sulfate and potassium dihydrogen phosphate had the best effects among the fertilizers tested.
Collapse
Affiliation(s)
- Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenjie Hu
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
14
|
Skalski T, Zając E, Jędrszczyk E, Papaj K, Kohyt J, Góra A, Kasprzycka A, Shytum D, Skowera B, Ziernicka-Wojtaszek A. Effects of γ-polyglutamic acid on grassland sandy soil properties and plant functional traits exposed to drought stress. Sci Rep 2024; 14:3769. [PMID: 38355917 PMCID: PMC10866894 DOI: 10.1038/s41598-024-54459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/13/2024] [Indexed: 02/16/2024] Open
Abstract
The current study provides field experimental data that support the use of γ-polyglutamic acid (γ-PGA) in drought stress and proposes its application in grassland management. We hypothesized that water treatment combined with PGA application to sandy soil would reduce drought stress in grasslands more effectively than watering alone. A randomized block design was used, with three replicate watering blocks (no watering, weekly watering, and monthly watering) and PGA treatments at four different concentrations (0%, 0.3%, 1%, and 2% PGA). The results showed that PGA acts as a biostimulant, alleviating the effects of stress in plants by: (1) increasing the availability of ions, especially K+, Zn2+, Mn2+, Fe2+/3+, Ca2+, and Mg2+, as well as N-NH4+, and N-NO3-, (2) elongating plant roots, (3) increasing the aboveground biomass, (4) improving the resprouting capacity of the dominant grass Nardus stricta, and (5) improving the regeneration of dicotyledons. In the case of meadows on sandy soils, the use of low PGA concentrations (0.3% or 1%) was the most beneficial for the availability of macro- and microelements and improving the functional traits of plants. Irrigation had a greater effect than using PGA only for the dicotyledon to monocotyledon ratio.
Collapse
Affiliation(s)
- Tomasz Skalski
- Tunneling Group, Biotechnology Center, Silesian University of Technology, Gliwice, Poland.
| | - Ewelina Zając
- Department of Land Reclamation and Development, University of Agriculture, Krakow, Poland
| | | | - Katarzyna Papaj
- Tunneling Group, Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| | - Joanna Kohyt
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Artur Góra
- Tunneling Group, Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| | - Anna Kasprzycka
- Department of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - Divine Shytum
- Tunneling Group, Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| | - Barbara Skowera
- Department of Ecology, Climatology and Air Protection, University of Agriculture, Krakow, Poland
| | | |
Collapse
|
15
|
Aggarwal B, Rajora N, Raturi G, Dhar H, Kadam SB, Mundada PS, Shivaraj SM, Varshney V, Deshmukh R, Barvkar VT, Salvi P, Sonah H. Biotechnology and urban agriculture: A partnership for the future sustainability. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111903. [PMID: 37865210 DOI: 10.1016/j.plantsci.2023.111903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
The global population is growing rapidly, and with it, the demand for food. In the coming decades, more and more people will be living in urban areas, where land for traditional agriculture is scarce. Urban agriculture can help to meet this growing demand for food in a sustainable way. Urban agriculture is the practice of growing food in urban areas. It can be done on rooftops, balconies, vacant lots, and even in alleyways. Urban agriculture can produce a variety of crops, including fruits, vegetables, and herbs. It can also help to improve air quality, reduce stormwater runoff, and create jobs. Biotechnology can be used to improve the efficiency and sustainability of urban agriculture. Biotechnological tools can be used to develop crops that are resistant to pests and diseases, that are more tolerant of drought and heat, and that have higher yields. Biotechnology can also be used to improve the nutritional value of crops. This review article discusses the need for and importance of urban agriculture, biotechnology, and genome editing in meeting the growing demand for food in urban areas. It also discusses the potential of biotechnology to improve the sustainability of urban agriculture.
Collapse
Affiliation(s)
- Bharti Aggarwal
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Nitika Rajora
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Hena Dhar
- Department of Microbiology, School of Biosciences, RIMT University, Mandi Gobindgarh, India
| | - Swapnil B Kadam
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Pankaj S Mundada
- Department of Biotechnology, Yashavantrao Chavan Institute of Science, Satara, India
| | - S M Shivaraj
- National Agri-Food Biotechnology Institute (NABI), Mohali, India; Department of Science, Alliance University, Bengaluru, Karnataka, India
| | - Vishal Varshney
- Govt. Shaheed Gend Singh College, Charama, Chhattisgarh, India
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana (CUH), Mahendergarh, India
| | | | - Prafull Salvi
- National Agri-Food Biotechnology Institute (NABI), Mohali, India.
| | - Humira Sonah
- Department of Biotechnology, Central University of Haryana (CUH), Mahendergarh, India.
| |
Collapse
|
16
|
Mallikarjuna MG, Tomar R, Lohithaswa HC, Sahu S, Mishra DC, Rao AR, Chinnusamy V. Genome-wide identification of potassium channels in maize showed evolutionary patterns and variable functional responses to abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108235. [PMID: 38039585 DOI: 10.1016/j.plaphy.2023.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Potassium (K) channels are essential components of plant biology, mediating not only K ion (K+) homeostasis but also regulating several physiological processes and stress tolerance. In the current investigation, we identified 27 K+ channels in maize and deciphered the evolution and divergence pattern with four monocots and five dicot species. Chromosomal localization and expansion of K+ channel genes showed uneven distribution and were independent of genome size. The dispersed duplication is the major force in expanding K+ channels in the target genomes. The mean Ka/Ks ratio of <0.5 in paralogs and orthologs indicates horizontal and vertical expansions of K+ channel genes under strong purifying selection. The one-to-one K+ channel orthologs were prominent among the closely related species, with higher synteny between maize and the rest of the monocots. Comprehensive K+ channels promoter analysis revealed various cis-regulatory elements mediating stress tolerance with the predominance of MYB and STRE binding sites. The regulatory network showed AP2-EREBP TFs, miR164 and miR399 are prominent regulatory elements of K+ channels. The qRT-PCR analysis of K+ channels and regulatory miRNAs showed significant expressions in response to drought and waterlogging stresses. The present study expanded the knowledge on K+ channels in maize and will serve as a basis for an in-depth functional analysis.
Collapse
Affiliation(s)
| | - Rakhi Tomar
- Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Sarika Sahu
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Dwijesh Chandra Mishra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Atmakuri Ramakrishna Rao
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
17
|
Chen Y, Zhang M, Sui D, Jiang J, Wang L. Role of bZIP Transcription Factors in Response to NaCl Stress in Tamarix ramosissima under Exogenous Potassium (K +). Genes (Basel) 2023; 14:2203. [PMID: 38137025 PMCID: PMC10743189 DOI: 10.3390/genes14122203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/19/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Salt stress is a significant environmental factor affecting plant growth and development, with NaCl stress being one of the most common types of salt stress. The halophyte, Tamarix ramosissima Ledeb (T. ramosissima), is frequently utilized for the afforestation of saline-alkali soils. Indeed, there has been limited research and reports by experts and scholars on the regulatory mechanisms of basic leucine zipper (bZIP) genes in T. ramosissima when treated with exogenous potassium (K+) to alleviate the effects of NaCl stress. This study focused on the bZIP genes in T. ramosissima roots under NaCl stress with additional KCl applied. We identified key candidate genes and metabolic pathways related to bZIP and validated them through quantitative real-time PCR (qRT-PCR). The results revealed that under NaCl stress with additional KCl applied treatments at 0 h, 48 h, and 168 h, based on Pfam protein domain prediction and physicochemical property analysis, we identified 20 related bZIP genes. Notably, four bZIP genes (bZIP_2, bZIP_6, bZIP_16, and bZIP_18) were labeled with the plant hormone signal transduction pathway, showing a predominant up-regulation in expression levels. The results suggest that these genes may mediate multiple physiological pathways under NaCl stress with additional KCl applied at 48 h and 168 h, enhancing signal transduction, reducing the accumulation of ROS, and decreasing oxidative damage, thereby enhancing the tolerance of T. ramosissima to NaCl stress. This study provides gene resources and a theoretical basis for further breeding of salt-tolerant Tamarix species and the involvement of bZIP transcription factors in mitigating NaCl toxicity.
Collapse
Affiliation(s)
- Yahui Chen
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Min Zhang
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
| | - Dezong Sui
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Wang
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
| |
Collapse
|
18
|
Guo S, Liu Z, Sheng H, Olukayode T, Zhou Z, Liu Y, Wang M, He M, Kochian L, Qin Y. Dynamic transcriptome analysis unravels key regulatory genes of maize root growth and development in response to potassium deficiency. PLANTA 2023; 258:99. [PMID: 37837470 PMCID: PMC10576708 DOI: 10.1007/s00425-023-04260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
MAIN CONCLUSION Integrated root phenotypes and transcriptome analysis have revealed key candidate genes responsible for maize root growth and development in potassium deficiency. Potassium (K) is a vital macronutrient for plant growth, but our understanding of its regulatory mechanisms in maize root system architecture (RSA) and K+ uptake remains limited. To address this, we conducted hydroponic and field trials at different growth stages. K+ deficiency significantly inhibited maize root growth, with metrics like total root length, primary root length, width and maximum root number reduced by 50% to 80% during early seedling stages. In the field, RSA traits exhibited maximum values at the silking stage but continued to decline thereafter. Furthermore, K deprivation had a pronounced negative impact on root morphology and RSA growth and grain yield. RNA-Seq analysis identified 5972 differentially expressed genes (DEGs), including 17 associated with K+ signaling, transcription factors, and transporters. Weighted gene co-expression network analysis revealed 23 co-expressed modules, with enrichment of transcription factors at different developmental stages under K deficiency. Several DEGs and transcription factors were predicted as potential candidate genes responsible for maize root growth and development. Interestingly, some of these genes exhibited homology to well-known regulators of root architecture or development in Arabidopsis, such as Zm00001d014467 (AtRCI3), Zm00001d011237 (AtWRKY9), and Zm00001d030862 (AtAP2/ERF). Identifying these key genes helps to provide a deeper understanding of the molecular mechanisms governing maize root growth and development under nutrient deficient conditions offering potential benefits for enhancing maize production and improving stress resistance through targeted manipulation of RSA traits in modern breeding efforts.
Collapse
Affiliation(s)
- Song Guo
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China
| | - Zhigang Liu
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Huajin Sheng
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Toluwase Olukayode
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Zijun Zhou
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China
| | - Yonghong Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China
| | - Meng Wang
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, Changchun, 130033, People's Republic of China
| | - Mingjiang He
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China
| | - Leon Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Yusheng Qin
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China.
| |
Collapse
|
19
|
Chen P, Li L, Xia S, Zhang R, Zhang R, Zeng XM, Shuai D, Liu Y, Li ZG. Enhancement patterns of potassium on nitrogen transport and functional genes in cotton vary with nitrogen levels. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111824. [PMID: 37572966 DOI: 10.1016/j.plantsci.2023.111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The application of potassium (K) in conjunction with nitrogen (N) has been shown to enhance N use efficiency. However, there is still a need for further understanding of the optimal ratios and molecular regulatory mechanisms, particularly in soil-cotton systems. Here, a field trial was conducted, involving varying rates of N and K, alongside pot and hydroponic experiments. The objective was to assess the impact of N-K interaction on the absorption, transport and distribution of N in cotton. The results showed that K supply at 90 and 240 kg ha-1 had a beneficial impact on N uptake and distribution to both seed and lint, resulting in the highest N use efficiency ranging from 22% to 62% and yield improvements from 20% to 123%. The increase in stem and root diameters, rather than the quantify of xylem vessels and phloem sieve tubes, facilitated the uptake and transport of N due to the provision of K. At the molecular level, K supply upregulated the expression levels of genes encoding GhNRT2.1 transporter and GhSLAH3 channel in cotton roots to promote N uptake and GhNRT1.5/NPF7.3 genes to transport N to shoot under low-N conditions. However, under high-N conditions, K supply induced anion channel genes (GhSLAH4) of roots to promote N uptake and genes encoding GhNRT1.5/NPF7.3 and GhNRT1.8/NPF7.2 transporters to facilitate NO3- unloading from xylem to mesophyll cell in high-N plants. Furthermore, K supply resulted in the upregulation of gene expression for GhGS2 in leaves, while simultaneously downregulating the expression of GhNADH-GOGAT, GhGDH1 and GhGDH3 genes in high-N roots. The enzyme activities of nitrite reductase and glutamine synthetase increased and glutamate dehydrogenase decreased, but the concentration of NO3- and soluble protein exhibited a significant increase and free amino acid decreased in the shoots subsequent to K supply.
Collapse
Affiliation(s)
- Peng Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Linyang Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shujie Xia
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Runhua Zhang
- Wuhan Academy of Agriculture Science and Technology, Vegetable Research Institute, Wuhan 430345, China
| | - Runqin Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiao-Min Zeng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Du Shuai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Conservation Biology / Economic Botany / Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Zhi-Guo Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
20
|
Wu X, Zhao Z, Zhao Z, Zhang Y, Li M, Yu Q. Analysis of the Potassium-Solubilizing Priestia megaterium Strain NK851 and Its Potassium Feldspar-Binding Proteins. Int J Mol Sci 2023; 24:14226. [PMID: 37762528 PMCID: PMC10531590 DOI: 10.3390/ijms241814226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Potassium-solubilizing bacteria are an important microbial group that play a critical role in releasing mineral potassium from potassium-containing minerals, e.g., potassium feldspar. Their application may reduce eutrophication caused by overused potassium fertilizers and facilitate plants to utilize environmental potassium. In this study, a high-efficiency potassium-solubilizing bacterium, named NK851, was isolated from the Astragalus sinicus rhizosphere soil. This bacterium can grow in the medium with potassium feldspar as the sole potassium source, releasing 157 mg/L and 222 mg/L potassium after 3 days and 5 days of incubation, respectively. 16S rDNA sequencing and cluster analysis showed that this strain belongs to Priestia megaterium. Genome sequencing further revealed that this strain has a genome length of 5,305,142 bp, encoding 5473 genes. Among them, abundant genes are related to potassium decomposition and utilization, e.g., the genes involved in adherence to mineral potassium, potassium release, and intracellular trafficking. Moreover, the strong potassium-releasing capacity of NK851 is not attributed to the acidic pH but is attributed to the extracellular potassium feldspar-binding proteins, such as the elongation factor TU and the enolase that contains potassium feldspar-binding cavities. This study provides new information for exploration of the bacterium-mediated potassium solubilization mechanisms.
Collapse
Affiliation(s)
- Xinyue Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (X.W.); (Z.Z.); (Z.Z.); (M.L.)
| | - Zijian Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (X.W.); (Z.Z.); (Z.Z.); (M.L.)
| | - Zirun Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (X.W.); (Z.Z.); (Z.Z.); (M.L.)
| | - Youjun Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China;
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (X.W.); (Z.Z.); (Z.Z.); (M.L.)
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (X.W.); (Z.Z.); (Z.Z.); (M.L.)
| |
Collapse
|
21
|
Chen Y, Zheng J, Yang Z, Xu C, Liao P, Pu S, El-Kassaby YA, Feng J. Role of soil nutrient elements transport on Camellia oleifera yield under different soil types. BMC PLANT BIOLOGY 2023; 23:378. [PMID: 37528351 PMCID: PMC10394891 DOI: 10.1186/s12870-023-04352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/19/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Most of Camellia oleifera forests have low fruit yield and poor oil quality that are largely associated with soil fertility. Soil physical and chemical properties interact with each other affecting soil fertility and C. oleifera growing under different soil conditions produced different yield and oil composition. Three main soil types were studied, and redundancy, correlation, and double-screening stepwise regression analysis were used for exploring the relationships between C. oleifera nutrients uptake and soil physical and chemical properties, shedding light on the transport law of nutrient elements from root, leaves, and kernel, and affecting the regulation of fruit yield and oil composition. RESULTS In the present study, available soil elements content of C. oleifera forest were mainly regulated by water content, pH value, and total N, P and Fe contents. Seven elements (N, P, K, Mg, Cu, Mn and C) were key for kernel's growth and development, with N, P, K, Cu and Mn contents determining 74.0% the yield traits. The transport characteristics of these nutrients from root, leaves to the kernel had synergistic and antagonistic effects. Increasing oil production and unsaturated fatty acid content can be accomplished in two ways: one through increasing N, P, Mg, and Zn contents of leaves by applying corresponding N, P, Mg, Zn foliar fertilizers, while the other through maintaining proper soil moisture content by applying Zn fertilizer in the surface layer and Mg and Ca fertilizer in deep gully. CONCLUSION Soil type controlled nutrient absorption by soil pH, water content and total N, P and Fe content. There were synergistic and antagonistic effects on the inter-organ transport of nutrient elements, ultimately affecting N, P, K, Cu and Mn contents in kernel, which determined the yield and oil composition of C. oleifera.
Collapse
Affiliation(s)
- Yu Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinjia Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhijian Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenhao Xu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Penghui Liao
- Popularization Station of Forestry Science Technology of Fujian Province, Fuzhou, 350003, Fujian, China
| | - Shaosheng Pu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Jinling Feng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
22
|
Tian H, Sun H, Zhu L, Zhang K, Zhang Y, Zhang H, Zhu J, Liu X, Bai Z, Li A, Tian L, Liu L, Li C. Response of in situ root phenotypes to potassium stress in cotton. PeerJ 2023; 11:e15587. [PMID: 37361035 PMCID: PMC10290453 DOI: 10.7717/peerj.15587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Potassium plays a significant role in the basic functions of plant growth and development. Potassium uptake is closely associated with morphological characteristics of the roots. However, the dynamic characteristics of phenotype and lifespan of cotton (Gossypium hirsutum L.) lateral roots and root hairs under low and high potassium stress remain unclear. In this study, potassium stress experiments (low and high potassium, medium potassium as control) were conducted using RhizoPot (an in situ root observation device) to determine the response characteristics of lateral roots and root hairs in cotton under potassium stress. The plant morphology, photosynthetic characteristics, root phenotypic changes, and lifespan of lateral roots and root hairs were measured. Potassium accumulation, aboveground phenotype, photosynthetic capacity, root length density, root dry weight, root diameter, lateral root lifespan, and root hair lifespan under low potassium stress were significantly decreased compared to medium potassium treatment. However, the root hair length of the former was significantly increased than that of the latter. Potassium accumulation and the lateral root lifespan were significantly increased under high potassium treatment, while root length density, root dry weight, root diameter, root hair length, and root hair lifespan were significantly decreased compared to the medium potassium treatment. Notably, there were no significant differences in aboveground morphology and photosynthetic characters. Principal component analysis revealed that lateral root lifespan, root hair lifespan of the first lateral root, and root hair length significantly correlated with potassium accumulation. The root had similar regularity responses to low and high potassium stress except for lifespan and root hair length. The findings of this study enhance the understanding of the phenotype and lifespan of cotton's lateral roots and root hairs under low and high potassium stress.
Collapse
Affiliation(s)
- Heyang Tian
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Hongchun Sun
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Lingxiao Zhu
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Yongjiang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Haina Zhang
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semi-Arid Region, Ministry of Agriculture /Hebei Branch of National Cotton Improvement Center, Shijiazhuang, Hebei, China
| | - Jijie Zhu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xiaoqing Liu
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhiying Bai
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Anchang Li
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Liwen Tian
- Institute of Industrial Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Liantao Liu
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Cundong Li
- State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
23
|
Yusefi-Tanha E, Fallah S, Pokhrel LR, Rostamnejadi A. Addressing global food insecurity: Soil-applied zinc oxide nanoparticles promote yield attributes and seed nutrient quality in Glycine max L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162762. [PMID: 36914126 DOI: 10.1016/j.scitotenv.2023.162762] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Consumed globally, oilseeds serve as a major source of proteins and oils in human and animal nutrition, supporting global food security. Zinc (Zn) is an essential micronutrient critical for oil and protein synthesis in plants. In this study, we synthesized three distinct sized zinc oxide nanoparticles (nZnO: 38 nm = S [small], 59 nm = M [medium], and > 500 nm = L [large], and assessed the potential effects of varied particle sizes and concentrations (0, 50, 100, 200, and 500 mg/kg-soil) on seed yield attributes, nutrient quality and oil and protein yield in soybean (Glycine max L.) grown for a full lifecycle of 120 days, and compared with soluble Zn2+ ions (ZnCl2) and water-only controls. We observed particle size- and concentration-dependent influence of nZnO on photosynthetic pigments, pod formation, potassium and phosphorus accumulation in seed, and protein and oil yields. Overall, soybean showed significant stimulatory responses to nZnO-S for most of the parameters tested compared to nZnO-M, nZnO-L, and Zn2+ ions treatments up to 200 mg/kg, suggesting the potential for small size nZnO to improve seed quality and production in soybean. At 500 mg/kg, however, for all endpoints (except for carotenoids and seed formation) toxicity was observed with all Zn compounds. Further, TEM analysis of seed ultrastructure indicated potential alterations in seed oil bodies and protein storage vacuoles at a toxic concentration (500 mg/kg) of nZnO-S compared to control. These findings suggest 200 mg/kg as an optimal dose for the smallest size nZnO-S (38 nm) to significantly improve seed yield, nutrient quality, and oil and protein yield, paving a path for addressing global food insecurity using small sized nZnO as a novel nano-fertilizer to promote crop yield and nutrient quality, in soil-grown soybean.
Collapse
Affiliation(s)
- Elham Yusefi-Tanha
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
| | - Lok Raj Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Ali Rostamnejadi
- Faculty of Electromagnetics, Malek Ashtar University of Technology, Iran
| |
Collapse
|
24
|
Madani I, Peltier JB, Boeglin M, Sentenac H, Véry AA. Plasticity of wheat seedling responses to K + deficiency highlighted by integrated phenotyping of roots and root hairs over the whole root system. STRESS BIOLOGY 2023; 3:5. [PMID: 37676444 PMCID: PMC10441938 DOI: 10.1007/s44154-023-00083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/22/2023] [Indexed: 09/08/2023]
Abstract
The availability in the soil of potassium (K+), a poorly mobile macronutrient required in large quantities for plant growth, is generally suboptimal for crop production in the absence of fertilization, making improvement of the ability of crops to adapt to K+ deficiency stress a major issue. Increasing the uptake capacity of the root system is among the main strategies to achieve this goal. Here, we report an integrative approach to examine the effect of K+ deficiency on the development of young plant entire root system, including root hairs which are known to provide a significant contribution to the uptake of poorly mobile nutrients such as K+, in two genetically distant wheat varieties. A rhizobox-type methodology was developed to obtain highly-resolved images of root and root hairs, allowing to describe global root and root hair traits over the whole root system via image analysis procedures. The two wheat varieties responded differently to the K+ shortage: Escandia, a wheat ancestor, reduced shoot biomass in condition of K+ shortage and substantially increased the surface area of its root system, specifically by increasing the total root hair area. Oued Zenati, a landrace, conversely appeared unresponsive to the K+ shortage but was shown to constitutively express, independently of the external K+ availability, favorable traits to cope with reduced K+ availability, among which a high total root hair area. Thus, valuable information on root system adaptation to K+ deficiency was provided by global analyses including root hairs, which should also be relevant for other nutrient stresses.
Collapse
Affiliation(s)
- Ikram Madani
- Institut des Sciences des Plantes de Montpellier, UMR 5004 CNRS- 386 INRAE- Université Montpellier- Institut Agro, Campus SupAgro-INRAE Bat 7, Place Viala, Montpellier, 34060 Cedex 2, France
| | - Jean-Benoît Peltier
- Institut des Sciences des Plantes de Montpellier, UMR 5004 CNRS- 386 INRAE- Université Montpellier- Institut Agro, Campus SupAgro-INRAE Bat 7, Place Viala, Montpellier, 34060 Cedex 2, France
| | - Martin Boeglin
- Institut des Sciences des Plantes de Montpellier, UMR 5004 CNRS- 386 INRAE- Université Montpellier- Institut Agro, Campus SupAgro-INRAE Bat 7, Place Viala, Montpellier, 34060 Cedex 2, France
| | - Hervé Sentenac
- Institut des Sciences des Plantes de Montpellier, UMR 5004 CNRS- 386 INRAE- Université Montpellier- Institut Agro, Campus SupAgro-INRAE Bat 7, Place Viala, Montpellier, 34060 Cedex 2, France
| | - Anne-Aliénor Véry
- Institut des Sciences des Plantes de Montpellier, UMR 5004 CNRS- 386 INRAE- Université Montpellier- Institut Agro, Campus SupAgro-INRAE Bat 7, Place Viala, Montpellier, 34060 Cedex 2, France.
| |
Collapse
|
25
|
Wang X, Zhang Q, Luo J, Liu X, Jiang J. Major-effect quantitative trait locus qLKR4.1 encodes a phospholipase Dδ protein associated with low-K + stress tolerance by promoting root length. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:88. [PMID: 36973446 DOI: 10.1007/s00122-023-04351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
qLKR4.1, controlling low K+ resistance in tomato, was fine-mapped to an interval of 67.5 kb on chromosome A04, and one gene encoding phospholipase Dδ was identified as a candidate gene. In plants, changes in root length are an important morphological response to low K+ (LK) stress; however, the underlying genetics in tomato remain unclear. Here, we combined bulked segregant analysis-based whole-genome sequencing, single-nucleotide polymorphism haplotyping, and fine genetic mapping to identify a candidate gene as a major-effect quantitative trait loci (QTL), i.e., qLKR4.1, which was associated with LK tolerance due to increased root elongation in the tomato line JZ34. Through multiple analyses, we found that Solyc04g082000 is the most likely candidate for qLKR4.1, which encodes phospholipase Dδ (PLDδ). Increased root elongation under LK in JZ34 may be attributed to a non-synonymous single-nucleotide polymorphism in the Ca2+-binding domain region of this gene. Solyc04g082000 increases root length through its PLDδ activity. Silencing of Solyc04g082000Arg in JZ34 led to a significant decrease in root length compared with silencing of Solyc04g082000His allele in JZ18 under LK conditions. Mutation of a Solyc04g082000 homologue in Arabidopsis, pldδ, resulted in decreased primary root lengths under LK conditions, compared to the wild type. Transgenic tomato expressing the qLKR4.1Arg allele from JZ34 exhibited a significant increase in root length compared with the wild type expressing the allele from JZ18 under LK conditions. Taken together, our results confirm that the PLDδ gene Solyc04g082000 exerts important functions in increasing tomato root length and LK tolerance.
Collapse
Affiliation(s)
- Xi Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Qiongqiong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Junfeng Luo
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xin Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, 110866, Liaoning, China.
| | - Jing Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
26
|
Muthuraja R, Muthukumar T, Natthapol C. Drought tolerance of Aspergillus violaceofuscus and Bacillus licheniformis and their influence on tomato growth and potassium uptake in mica amended tropical soils under water-limiting conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1114288. [PMID: 36938042 PMCID: PMC10014471 DOI: 10.3389/fpls.2023.1114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Drought is a significant abiotic stress that alters plant physiology and ultimately affects crop productivity. Among essential plant nutrients, potassium (K) is known to mitigate the deleterious effect of drought on plant growth. If so, K addition or inoculation of potassium solubilizing microorganisms (KSMs) that are tolerant to drought should promote plant growth during water stress. Therefore, in this study, K solubilizing Aspergillus violaceofuscus and Bacillus licheniformis, isolated from saxicolous environments, were tested for their capacity to tolerate drought using different molecular weights (~4000, 6000, and 8000 Da), and concentrations (0, 250, 500, 750, 1000, and 1250 mg/L) of polyethylene glycol (PEG) under in vitro conditions. The results showed that high concentrations (750 and 1000 mg/L) of PEG with different molecular weight considerably improved bacterial cell numbers/fungal biomass and catalase (CAT) and proline activities. Moreover, the ability of KSMs alone or in combination to impart drought tolerance and promote plant growth in the presence and absence of mica (9.3% K2O) supplementation was tested in Alfisol and Vertisol soil types under greenhouse conditions. The results revealed that the tomato plants inoculated with KSMs individually or dually with/without mica improved the physiological and morphological traits of the tomato plants under drought. Generally, tomato plants co-inoculated with KSMs and supplemented with mica were taller (2.62 and 3.38-fold) and had more leaf area (2.03 and 1.98-fold), total root length (3.26 and 8.86-fold), shoot biomass (3.87 and 3.93-fold), root biomass (9.00 and 7.24-fold), shoot K content (3.08 and 3.62-fold), root K content (3.39 and 2.03-fold), relative water content (1.51 and 1.27-fold), CAT activity (2.11 and 2.14-fold), proline content (3.41 and 3.28-fold), and total chlorophyll content (1.81 and 1.90-fold), in unsterilized Alfisol and Vertisol soil types, respectively, than uninoculated ones. Dual inoculation of the KSMs along with mica amendment, also improved the endorrhizal symbiosis of tomato plants more than their individual inoculation or application in both soil types. These findings imply that the A. violaceofuscus and B. licheniformis isolates are promising as novel bioinoculants for improving crop growth in water-stressed and rainfed areas of the tropics in the future.
Collapse
Affiliation(s)
- Raji Muthuraja
- Department of Soil Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
- Department of Botany, Bharathiar University, Coimbatore, India
| | | | - Chittamart Natthapol
- Department of Soil Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
27
|
Organic fragments of k-carrageenan, lipids and peptides plus K-rich inorganic fraction in Kappaphycus alvarezii biomass are responsible for growth stimulus in rice plant when applied both foliar and root pathway. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
28
|
Tarkowski ŁP, Signorelli S, Considine MJ, Montrichard F. Integration of reactive oxygen species and nutrient signalling to shape root system architecture. PLANT, CELL & ENVIRONMENT 2023; 46:379-390. [PMID: 36479711 PMCID: PMC10107350 DOI: 10.1111/pce.14504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Yield losses due to nutrient deficiency are estimated as the primary cause of the yield gap worldwide. Understanding how plant roots perceive external nutrient status and elaborate morphological adaptations in response to it is necessary to develop reliable strategies to increase crop yield. In the last decade, reactive oxygen species (ROS) were shown to be key players of the mechanisms underlying root responses to nutrient limitation. ROS contribute in multiple ways to shape the root system in response to nutritional cues, both as direct effectors acting on cell wall architecture and as second messengers in signalling pathways. Here, we review the mutual interconnections existing between perception and signalling of the most common forms of the major macronutrients (nitrogen, phosphorus and potassium), and ROS in shaping plant root system architecture. We discuss recent advances in dissecting the integration of these elements and their impact on morphological traits of the root system, highlighting the functional ductility of ROS and enzymes implied in ROS metabolism, such as class III peroxidases.
Collapse
Affiliation(s)
| | - Santiago Signorelli
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
- Food and Plant Biology group, Departamento de Biología Vegetal, Facultad de AgronomíaUniversidad de la RepúblicaMontevideoUruguay
| | - Michael J. Considine
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
- Department of Primary Industries and Regional DevelopmentPerthWestern AustraliaAustralia
| | | |
Collapse
|
29
|
Mariotti B, Martini S, Raddi S, Ugolini F, Oliet JA, Jacobs DF, Maltoni A. Cultivation Using Coir Substrate and P or K Enriched Fertilizer Provides Higher Resistance to Drought in Ecologically Diverse Quercus Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:525. [PMID: 36771610 PMCID: PMC9920752 DOI: 10.3390/plants12030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Nursery cultivation practices can be modified to increase resistance to water stress in forest seedlings following field establishment, which may be increasingly important under climate change. We evaluated the morphological (survival, growth) and physiological (chlorophyll fluorescence, leaf water potential) responses to water stress for three ecologically diverse Quercus species (Q. robur, Q. pubescens, and Q. ilex) with varying traits resulting from the combination of growing media (peat, coir) and fertilization (standard, P-enriched, K-enriched). For all species under water stress, seedlings grown in coir had generally higher growth than those grown in peat. Seedlings fertilized with P performed better, particularly for survival; conversely, K fertilization resulted in inconsistent findings. Such results could be explained by a combination of factors. P fertilization resulted in higher P accumulation in seedlings, while no K accumulation was observed in K fertilized seedlings. As expected, the more drought-sensitive species, Q. robur, showed the worst response, while Q. pubescens had a drought resistance equal or better to Q. ilex despite being classified as intermediate in drought resistance in Mediterranean environments.
Collapse
Affiliation(s)
- Barbara Mariotti
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali—DAGRI, Università di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Sofia Martini
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali—DAGRI, Università di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Sabrina Raddi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali—DAGRI, Università di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Francesca Ugolini
- Istituto per la Bioeconomia, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Juan A. Oliet
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Douglass F. Jacobs
- Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration Center, Purdue University, West Lafayette, IN 47907, USA
| | - Alberto Maltoni
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali—DAGRI, Università di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| |
Collapse
|
30
|
Huang T, Zhang X, Wang Q, Guo Y, Xie H, Li L, Zhang P, Liu J, Qin P. Metabolome and transcriptome profiles in quinoa seedlings in response to potassium supply. BMC PLANT BIOLOGY 2022; 22:604. [PMID: 36539684 PMCID: PMC9768898 DOI: 10.1186/s12870-022-03928-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Quinoa (Chenopodium quinoa Willd.) is a herb within the Quinoa subfamily of Amaranthaceae, with remarkable environmental adaptability. Its edible young leaves and grains are rich in protein, amino acids, microorganisms, and minerals. Although assessing the effects of fertilization on quinoa yield and quality has become an intensive area of research focus, the associated underlying mechanisms remain unclear. As one of the three macro nutrients in plants, potassium has an important impact on plant growth and development. In this study, extensive metabolome and transcriptome analyses were conducted in quinoa seedlings 30 days after fertilizer application to characterize the growth response mechanism to potassium. RESULTS: The differential metabolites and genes present in the seedlings of white and red quinoa cultivars were significantly enriched in the photosynthetic pathway. Moreover, the PsbQ enzyme on photosystem II and delta enzyme on ATP synthase were significantly down regulated in quinoa seedlings under potassium deficiency. Additionally, the differential metabolites and genes of red quinoa seedlings were significantly enriched in the arginine biosynthetic pathway. CONCLUSIONS These findings provide a more thorough understanding of the molecular changes in quinoa seedlings that occur under deficient, relative to normal, potassium levels. Furthermore, this study provides a theoretical basis regarding the importance of potassium fertilizers, as well as their efficient utilization by growing quinoa seedlings.
Collapse
Affiliation(s)
- Tingzhi Huang
- Yunnan Agricultural University, Panlong District, Yunnan Province, Kunming City, China
| | - Xuesong Zhang
- Yunnan Agricultural University, Panlong District, Yunnan Province, Kunming City, China
| | - Qianchao Wang
- Yunnan Agricultural University, Panlong District, Yunnan Province, Kunming City, China
| | - Yirui Guo
- Yunnan Agricultural University, Panlong District, Yunnan Province, Kunming City, China
| | - Heng Xie
- Yunnan Agricultural University, Panlong District, Yunnan Province, Kunming City, China
| | - Li Li
- Yunnan Agricultural University, Panlong District, Yunnan Province, Kunming City, China
| | - Ping Zhang
- Yunnan Agricultural University, Panlong District, Yunnan Province, Kunming City, China
| | - Junna Liu
- Yunnan Agricultural University, Panlong District, Yunnan Province, Kunming City, China
| | - Peng Qin
- Yunnan Agricultural University, Panlong District, Yunnan Province, Kunming City, China.
| |
Collapse
|
31
|
Ray I, Mridha D, Sarkar J, Joardar M, Das A, Chowdhury NR, De A, Acharya K, Roychowdhury T. Application of potassium humate to reduce arsenic bioavailability and toxicity in rice plants (Oryza sativa L.) during its course of germination and seedling growth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120066. [PMID: 36067973 DOI: 10.1016/j.envpol.2022.120066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 06/04/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As), a metalloid is a class I carcinogen and is a major problem in various parts of the world. Food crops are severely affected due to As poisoning and suffer from low germination, yield and disfiguration of morphological and anatomical traits. To attenuate such adverse effects and tone down As uptake by plants, the present study attempts to explore the role of K-humate (KH) in alleviation of As toxicity in rice. KH was administered in the growth media containing 800 ppb As (III) at varying doses to observe the stress alleviating capacity of the amendment. Five treatments were investigated, viz: (a) 800 ppb As (control), (b) 800 ppb As + 25 ppm KH, (c) 800 ppb As + 50 ppm KH, (d) 800 ppb As + 75 ppm KH and (e) 800 ppb As + 100 ppm KH. The results of the amendment administration were noted at 14 days after seeding (DAS). Application of KH significantly improved germination percentage, vigour indices and chlorophyll content by reducing the oxidative stress, antioxidant and antioxidant enzyme activities under As stress. In vivo detection of reactive oxygen species (ROS) using DCF-2DA fluorescent dye and scanning electron microscope (SEM) study of root further depicted that KH application effectively reduced ROS formation and improved root anatomical structure under As stress, respectively. Gradually increasing concentrations of KH was capable of decreasing the bioavailability of As to the rice plants, thus minimizing toxic effect of the metalloid.
Collapse
Affiliation(s)
- Iravati Ray
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Jit Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | | | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
32
|
Thorne SJ, Maathuis FJM. Reducing potassium deficiency by using sodium fertilisation. STRESS BIOLOGY 2022; 2:45. [PMID: 37676370 PMCID: PMC10441835 DOI: 10.1007/s44154-022-00070-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2023]
Abstract
Potassium (K) is the most abundant cation in the vast majority of plants. It is required in large quantities which, in an agronomic context, typically necessitates application of K in the form of potash or other K fertilisers. Recently, the price of K fertiliser has risen dramatically, a situation that is paralleled by increasing K deficiency of soils around the globe. A potential solution to this problem is to reduce crop K fertiliser dependency by replacing it with sodium (Na) fertiliser which carries a much smaller price tag. In this paper we discuss the physiological roles of K and Na and the implications of Na fertilisation for crop cultivation and soil management. By using greenhouse growth assays we show distinct growth promotion after Na fertilisation in wheat, tomato, oilseed and sorghum. Our results also show that up to 60% of tissue K can be substituted by Na without growth penalty. Based on these data, simple economic models suggest that (part) replacement of K fertiliser with Na fertiliser leads to considerable savings.
Collapse
Affiliation(s)
- Sarah J. Thorne
- Department of Biology, University of Sheffield, Sheffield, S10 2TN UK
| | | |
Collapse
|
33
|
Effect of Potassium Deficiency on Physiological Responses and Anatomical Structure of Basil, Ocimum basilicum L. BIOLOGY 2022; 11:biology11111557. [PMID: 36358259 PMCID: PMC9688027 DOI: 10.3390/biology11111557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/23/2022]
Abstract
The aim of this study was to investigate the effect of a variable supply of potassium to culture medium on physiological and anatomical parameters (histological sections at the third internode) in basil, Ocimum basilicum. Thirty-four-day-old plants grown on basic nutrient medium were divided into four batches and grown on media with varying doses of potassium: 0.375 mM, 0.250 mM, 0.125 mM and 0 mM K+. After 64 days of culture, a final harvest was performed. The results showed that root and shoot growth in basil was decreased with decreased K+ concentration. This restriction was associated with a reduction in root elongation and leaf expansion, which was coupled with a decrease in chlorophyll and carotenoid contents. The estimation of electrolyte leakage reveals that this parameter was increased by potassium deficiency. With respect to total polyphenol and flavonoid contents, only the third leaf-stage extracts exhibited a decrease under low-K+ conditions. However, variability in response of phenolic compounds was recorded depending on the organ and the K+ concentration in the medium. Stem cross sections of potassium-deficient basil plants revealed a decrease in the diameter of these organs, which can be attributed to a restriction of the extent of different tissue territories (cortex and medulla), as well as by a reduction in cell size. These effects were associated with a decrease in the number of conducting vessels and an increase in the number of woody fibers.
Collapse
|
34
|
Wang F, Tan WF, Song W, Yang ST, Qiao S. Transcriptome analysis of sweet potato responses to potassium deficiency. BMC Genomics 2022; 23:655. [PMID: 36109727 PMCID: PMC9479357 DOI: 10.1186/s12864-022-08870-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background As one of three essential nutrients, potassium is regarded as a main limiting factor for growth and development in plant. Sweet potato (Ipomoea batatas L.) is one of seven major food crops grown worldwide, and is both a nutrient-rich food and a bioenergy crop. It is a typical ‘K-favoring’ crop, and the level of potassium ion (K+) supplementation directly influences its production. However, little is known about the transcriptional changes in sweet potato genes under low-K+ conditions. Here, we analyzed the transcriptomic profiles of sweet potato roots in response to K+ deficiency to determine the effect of low-K+ stress on this economically important crop. Results The roots of sweet potato seedlings with or without K+ treatment were harvested and used for transcriptome analyses. The results showed 559 differently expressed genes (DEGs) in low and high K+ groups. Among the DEGs, 336 were upregulated and 223 were downregulated. These DEGs were involved in transcriptional regulation, calcium binding, redox-signaling, biosynthesis, transport, and metabolic process. Further analysis revealed previously unknow genes involved in low-K+ stress, which could be investigated further to improve low K+ tolerance in plants. Confirmation of RNA-sequencing results using qRT-PCR displayed a high level of consistency between the two experiments. Analysis showed that many auxin-, ethylene- and jasmonic acid-related genes respond to K+ deficiency, suggesting that these hormones have important roles in K+ nutrient signaling in sweet potato. Conclusions According to the transcriptome data of sweet potato, various DEGs showed transcriptional changes in response to low-K+ stress. However, the expression level of some kinases, transporters, transcription factors (TFs), hormone-related genes, and plant defense-related genes changed significantly, suggesting that they have important roles during K+ deficiency. Thus, this study identifies potential genes for genetic improvement of responses to low-K+ stress and provides valuable insight into the molecular mechanisms regulating low K+ tolerance in sweet potato. Further research is required to clarify the function of these DEGs under low-K+ stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08870-5.
Collapse
|
35
|
Mofokeng MM, Prinsloo G, Araya HT, Amoo SO, du Plooy CP, Mashela PW. NADES Compounds Identified in Hypoxis hemerocallidea Corms during Dormancy. PLANTS 2022; 11:plants11182387. [PMID: 36145788 PMCID: PMC9503605 DOI: 10.3390/plants11182387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022]
Abstract
Soaking Hypoxis hemerocallidea corms in distilled water improved the propagation and development of cormlets, suggesting the potential leaching-out of inhibitory chemical compounds. To investigate the presence of inhibitory compounds, nuclear magnetic resonance (NMR) spectral data of the leachate from dormant H. hemerocallidea corms were obtained using a 600 MHz 1H-NMR spectrometer. The 1H-NMR analysis led to the identification of choline, succinate, propylene glycol, and lactose, as inhibitory compounds. These four chemical compounds are part of the “Natural Deep Eutectic Solvents” (NADES) that protect plant cells during stress periods, each of which has the potential to inhibit bud growth and development. These compounds are supposedly leached out of the corms during the first rain under natural conditions, possibly accompanied by changes in the ratios of dormancy-breaking phytohormones and inhibitory compounds, to release bud dormancy. The identified chemical compounds heralded a novel frontier in the vegetative propagation of H. hemerocallidea as a medicinal plant, and for its enhanced sustainable uses.
Collapse
Affiliation(s)
- Motiki M. Mofokeng
- Agricultural Research Council—Vegetable, Industrial and Medicinal Plants (ARC-VIMP), Private Bag X293, Pretoria 0001, South Africa
- Green Technologies Research Centre, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
- Correspondence: (M.M.M.); (H.T.A.); (S.O.A.); Tel.: +27-12-808-8000 (M.M.M. & H.T.A. & S.O.A)
| | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, Johannesburg 1710, South Africa
| | - Hintsa T. Araya
- Agricultural Research Council—Vegetable, Industrial and Medicinal Plants (ARC-VIMP), Private Bag X293, Pretoria 0001, South Africa
- Correspondence: (M.M.M.); (H.T.A.); (S.O.A.); Tel.: +27-12-808-8000 (M.M.M. & H.T.A. & S.O.A)
| | - Stephen O. Amoo
- Agricultural Research Council—Vegetable, Industrial and Medicinal Plants (ARC-VIMP), Private Bag X293, Pretoria 0001, South Africa
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
- Correspondence: (M.M.M.); (H.T.A.); (S.O.A.); Tel.: +27-12-808-8000 (M.M.M. & H.T.A. & S.O.A)
| | - Christian P. du Plooy
- Agricultural Research Council—Vegetable, Industrial and Medicinal Plants (ARC-VIMP), Private Bag X293, Pretoria 0001, South Africa
| | - Phatu W. Mashela
- Green Technologies Research Centre, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| |
Collapse
|
36
|
Zhang J, Wang J, Zhou Y, Xu L, Chen Y, Ding Y, Ning Y, Liang D, Zhang Y, Li G. Reduced basal and increased topdressing fertilizer rate combined with straw incorporation improves rice yield stability and soil organic carbon sequestration in a rice-wheat system. FRONTIERS IN PLANT SCIENCE 2022; 13:964957. [PMID: 36092398 PMCID: PMC9459092 DOI: 10.3389/fpls.2022.964957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Fertilizer management is vital for sustainable agriculture under climate change. Reduced basal and increased topdressing fertilizer rate (RBIT) has been reported to improve the yield of in-season rice or wheat. However, the effect of RBIT on rice and wheat yield stability and soil organic carbon (SOC) sequestration potential is unknown, especially when combined with straw incorporation. Here, we report the effect of RBIT with/without straw incorporation on crop yields, yield stability, SOC stock, and SOC fractions in the lower Yangtze River rice-wheat system region over nine years. RBIT with/without straw incorporation significantly increased nine-year average and annual rice yields but not wheat yields. Compared with conventional fertilization (CF), RBIT did not significantly affect wheat or rice yield stability, but combined with straw incorporation, it increased the sustainable yield index (SYI) of wheat and rice by 7.6 and 12.8%, respectively. RBIT produced a higher C sequestration rate (0.20 Mg C ha-1 year-1) than CF (0.06 Mg ha-1 year-1) in the 0-20 cm layer due to higher root C input and lower C mineralization rate, and RBIT in combination with straw incorporation produced the highest C sequestration rate (0.47 Mg ha-1 year-1). Long-term RBIT had a greater positive effect on silt+clay (0.053 mm)-associated C, microbial biomass C (MBC), dissolved organic C, and hot water organic C in the surface layer (0-10 cm) than in the subsurface layer (10-20 cm). In particular, the increases in SOC pools and mean weight diameter (MWD) of soil aggregates were greater when RBIT was combined with straw incorporation. Correlation analysis indicated that topsoil SOC fractions and MWD were positively correlated with the SYI of wheat and rice. Our findings suggest that the long-term application of RBIT combined with straw incorporation contributed to improving the sustainability of rice production and SOC sequestration in a rice-wheat system.
Collapse
Affiliation(s)
- Jianwei Zhang
- Scientific Observing and Experimental Station of Arable Land, Ministry of Agriculture and Rural/National Agricultural Experimental Station for Agricultural Environment/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jidong Wang
- Scientific Observing and Experimental Station of Arable Land, Ministry of Agriculture and Rural/National Agricultural Experimental Station for Agricultural Environment/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, China
| | - Yan Zhou
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lei Xu
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yinglong Chen
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Yanfeng Ding
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yunwang Ning
- Scientific Observing and Experimental Station of Arable Land, Ministry of Agriculture and Rural/National Agricultural Experimental Station for Agricultural Environment/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dong Liang
- Scientific Observing and Experimental Station of Arable Land, Ministry of Agriculture and Rural/National Agricultural Experimental Station for Agricultural Environment/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yongchun Zhang
- Scientific Observing and Experimental Station of Arable Land, Ministry of Agriculture and Rural/National Agricultural Experimental Station for Agricultural Environment/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ganghua Li
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
37
|
Morpho-Anatomical, Physiological, and Mineral Composition Responses Induced by a Vegetal-Based Biostimulant at Three Rates of Foliar Application in Greenhouse Lettuce. PLANTS 2022; 11:plants11152030. [PMID: 35956509 PMCID: PMC9370316 DOI: 10.3390/plants11152030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
A promising strategy for sustainably increasing the quality and yield of horticultural products is the use of natural plant biostimulants. In this work, through a greenhouse experiment, we evaluated the effect of a legume-derived biostimulant at three dose treatments (0.0 control, 2.5 mL L−1, and 5.0 mL L−1) on the yield performance, nutrients traits, leaf anatomical traits, gas exchanges, and carbon photosynthetic assimilation of greenhouse lettuce. The lettuce plants were foliar sprayed every 7 days for 5 weeks. The application of plant biostimulant, at both lower and higher dosages, increased the nutrient use efficiency, root dry weight, and leaf area. However, it is noteworthy that the 5.0 mL L−1 dose enhanced photosynthetic activity in the early phase of growth (15 DAT), thus supplying carbon skeletons useful for increasing the number of leaves and their efficiency (higher SPAD), and for boosting nutrient uptake (P, S, and K) and transport to leaves, while the 2.5 mL L−1 dose exerted specific effects on roots, increasing their dimension and enabling them to better use nitrate and Ca. A higher dose of biostimulant application might find its way in shorter growing cycle, thus presenting new horizons for new lines of research in baby leaves production.
Collapse
|
38
|
Growth, Nutrient Accumulation, and Nutritional Efficiency of a Clonal Eucalyptus Hybrid in Competition with Grasses. FORESTS 2022. [DOI: 10.3390/f13081157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Invasive grasses reduce resource availability, mainly nutrients in the soil, and the growth of eucalyptus plants. Efficient management to increase productivity depends on understanding levels of weed interference in eucalyptus plantations. The nutritional efficiency of eucalyptus plants in competition has been evaluated by plant tissue analysis. The objective was to evaluate the growth, relative accumulation of nutrients, and nutritional efficiency of the eucalyptus clonal hybrid I144 (Eucalyptus urophylla × Eucalyptus grandis), in competition with Megathyrsus maximus cv. BRS zuri, Urochloa brizantha cv. marandu, Urochloa decumbens cv. basilisk and in the control (eucalyptus plants without weed competition). The experiment was carried out with a completely randomized design, with four treatments and ten replications. The height, stem diameter, number of leaves, leaf area, dry matter of leaves and stem, nutrient content in leaves and uptake, transport, and N, P, and K utilization efficiency of the eucalyptus clonal hybrid were evaluated at 110 days after transplantation. The growth parameters and relative contents of macro and micronutrients in the eucalyptus clonal hybrid were lower in competition with M. maximus, U. brizantha and U. decumbens. The efficiency of N, P, and K uptake and transport by the eucalyptus clonal hybrid was 29.41 and 7.32% lower in competition with U. decumbens than in the control treatments, respectively. The efficiency of N, P, and K utilization by eucalypts was 13.73, 9.18, and 22.54% lower in competition with M. maximus, U. brizantha, and U. decumbens, respectively. The reduced growth and nutritional parameters of the eucalyptus clonal hybrid were more evident in competition with U. decumbens. Plant tissue analyses efficiently determined the level of competition for nutrients between species. Crop competition with grasses can decrease the efficiency and use of nutrients, which consequently reduces plant development and productivity.
Collapse
|
39
|
Colzi I, Renna L, Bianchi E, Castellani MB, Coppi A, Pignattelli S, Loppi S, Gonnelli C. Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127238. [PMID: 34844356 DOI: 10.1016/j.jhazmat.2021.127238] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 05/23/2023]
Abstract
In this study, Cucurbita pepo L., one of the most cultivated, consumed and economically important crop worldwide, was used as model plant to test the toxic effects of the four most abundant microplastics identified in contaminated soils, i.e. polypropylene (PP), polyethylene (PE), polyvinylchloride (PVC), and polyethyleneterephthalate (PET). Cucurbita plants were grown in pots with increasing concentrations of the microplastics, then plant biometry, photosynthetic parameters and ionome of treated vs. untreated samples were compared to evaluate the toxicity of each plastic. All the pollutants impaired root and, especially, shoot growth. Specific and concentration-dependant effects of the different microplastics were found, including reduction in leaf size, chlorophyll content and photosynthetic efficiency, as well as changes in the micro- and macro-elemental profile. Among all the microplastics, PVC was identified as the most toxic and PE as the less toxic material. PVC decreased the dimensions of the leaf lamina, the values of the photosynthetic performance index and the plant iron concentration to a higher extent in respect to the other treatments. Microplastic toxicity exerted on the growth of C. pepo raises concerns about possible yield and economic loss, as well as for risks of a possible transfer into the food chain.
Collapse
Affiliation(s)
- Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Luciana Renna
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy; Department of Agriculture, Università degli Studi di Firenze, Viale delle Idee 30, Sesto Fiorentino, 50019 Florence, Italy.
| | - Elisabetta Bianchi
- Department of Life Sciences, University of Siena, via Mattioli 3, 53100 Siena, Italy
| | | | - Andrea Coppi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Sara Pignattelli
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, SI-5000, Rožna Dolina, Nova Gorica, Slovenia
| | - Stefano Loppi
- Department of Life Sciences, University of Siena, via Mattioli 3, 53100 Siena, Italy
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| |
Collapse
|
40
|
Wahid I, Rani P, Kumari S, Ahmad R, Hussain SJ, Alamri S, Tripathy N, Khan MIR. Biosynthesized gold nanoparticles maintained nitrogen metabolism, nitric oxide synthesis, ions balance, and stabilizes the defense systems to improve salt stress tolerance in wheat. CHEMOSPHERE 2022; 287:132142. [PMID: 34826894 DOI: 10.1016/j.chemosphere.2021.132142] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 05/15/2023]
Abstract
Green synthesis of nanoparticles (NPs) is competent in inducing physiological responses in plants for combating the abiotic stresses. Considering this, salt stress is one of the most alarming conditions that exerts complex and polygenic impacts on morph-physiological functioning of plants; resulting in reduced crop productivity and yield. Therefore, understanding the salt responses and tolerance mechanisms are important for sustaining crop productivity. In the current study, we have examined the effects of biosynthesized gold nanoparticles (AuNPs) on wheat (Triticum aestivum) plants under salt stress. Green-synthesized AuNPs were found beneficial in modulating the K+/Na+ ratio, chlorophyll concentration, defense systems, nitrogen assimilation, stomatal dynamics and growth traits under salt stress condition. Furthermore, the excessive accumulation of oxidative stress markers including reactive oxygen/nitrogen species was controlled in response of AuNPs treatment under salt stress. Overall, modulation of these traits commanded to induce salt stress tolerance in wheat plants.
Collapse
Affiliation(s)
- Iram Wahid
- Department of Biosciences, Integral University, Lucknow, India
| | - Pratibha Rani
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Sarika Kumari
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Rafiq Ahmad
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Sofi J Hussain
- Department of Botany, Government Degree College, Kokernag, Jammu & Kashmir, India
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Saudi Arabia
| | - Nirmalya Tripathy
- Department of Pharmacy, Oregon State University, Corvallis, United States
| | | |
Collapse
|
41
|
Lana LG, de Araújo LM, Silva TF, Modolo LV. Interplay between gasotransmitters and potassium is a K +ey factor during plant response to abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:322-332. [PMID: 34837865 DOI: 10.1016/j.plaphy.2021.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/15/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Carbon monoxide (CO), nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitters known for their roles in plant response to (a)biotic stresses. The crosstalk between these gasotransmitters and potassium ions (K+) has received considerable attention in recent years, particularly due to the dual role of K+ as an essential mineral nutrient and a promoter of plant tolerance to abiotic stress. This review brings together what it is known about the interplay among NO, CO, H2S and K+ in plants with focus on the response to high salinity. Some findings obtained for plants under water deficit and metal stress are also presented and discussed since both abiotic stresses share similarities with salt stress. The molecular targets of the gasotransmitters NO, CO and H2S in root and guard cells that drive plant tolerance to salt stress are highlighted as well.
Collapse
Affiliation(s)
- Luísa Gouveia Lana
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Lara Matos de Araújo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Thamara Ferreira Silva
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luzia Valentina Modolo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
42
|
Pélissier PM, Motte H, Beeckman T. Lateral root formation and nutrients: nitrogen in the spotlight. PLANT PHYSIOLOGY 2021; 187:1104-1116. [PMID: 33768243 PMCID: PMC8566224 DOI: 10.1093/plphys/kiab145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/12/2021] [Indexed: 05/08/2023]
Abstract
Lateral roots are important to forage for nutrients due to their ability to increase the uptake area of a root system. Hence, it comes as no surprise that lateral root formation is affected by nutrients or nutrient starvation, and as such contributes to the root system plasticity. Understanding the molecular mechanisms regulating root adaptation dynamics toward nutrient availability is useful to optimize plant nutrient use efficiency. There is at present a profound, though still evolving, knowledge on lateral root pathways. Here, we aimed to review the intersection with nutrient signaling pathways to give an update on the regulation of lateral root development by nutrients, with a particular focus on nitrogen. Remarkably, it is for most nutrients not clear how lateral root formation is controlled. Only for nitrogen, one of the most dominant nutrients in the control of lateral root formation, the crosstalk with multiple key signals determining lateral root development is clearly shown. In this update, we first present a general overview of the current knowledge of how nutrients affect lateral root formation, followed by a deeper discussion on how nitrogen signaling pathways act on different lateral root-mediating mechanisms for which multiple recent studies yield insights.
Collapse
Affiliation(s)
- Pierre-Mathieu Pélissier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent 9052, Belgium
- Author for communication:
| |
Collapse
|
43
|
Henschel JM, Brito FAL, Pimenta TM, Picoli EAT, Zsögön A, Ribeiro DM. Irradiance-regulated biomass allocation in Raphanus sativus plants depends on gibberellin biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:43-52. [PMID: 34619597 DOI: 10.1016/j.plaphy.2021.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Gibberellin has been proposed to increase leaf elongation in radish (Raphanus sativus L.) plants, which is associated with decreased tuber growth. Since light intensity can control growth through interaction with gibberellin, investigation of the effect of gibberellin levels on the growth of radish plants would be a step forward towards unraveling factors that underlie biomass accumulation and allocation in response to irradiance levels. Here, we report that the gibberellin biosynthesis inhibitor paclobutrazol (PAC) decreased petiole elongation, but not lamina growth of radish plants grown under full sunlight. However, shading promoted an increase in shoot elongation, while in plants treated with PAC the petiole and leaf lamina fail to elongate. Plants treated with PAC allocated proportionally more biomass to their tubers and less to shoot compared to control under shade. Moreover, PAC decreased the abundance of transcripts encoding cell wall expansion proteins in leaf lamina and petiole of plants grown under shade, which was positively correlated with sugar consumption by the tuber, thereby increasing the mass fraction and concentrations of minerals for tuber. Thus, allocation of biomass during the growth of radish plants and nutritional quality of tubers depend on gibberellin and light intensity.
Collapse
Affiliation(s)
- Juliane M Henschel
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Fred A L Brito
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Thaline M Pimenta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Edgard A T Picoli
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
44
|
Yang N, Jiang W, Jiang B, Liu J, Liu Y, Wang H, Guo X, Tang Z. Cotyledon loss of Astragalus membranaceus hindered seedling establishment through mineral element reallocation and carbohydrate depletion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:481-491. [PMID: 34425393 DOI: 10.1016/j.plaphy.2021.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Tissue loss of plants caused by herbivores is very common in nature. As the storage and first photosynthetic organ, the loss of cotyledon severely impacts dicot seedling establishment and the subsequent growth. However, it is still not clear how plants adjust their metabolic strategy in response to cotyledon loss. In this study, we employed ICP-OES, GC and LC-MS to examine the effects of cotyledon removal (RC1: remove one cotyledon, RC2: remove two cotyledon) on mineral element distribution and metabolite changes in a traditional Chinese herbal plant, Astragalus membranaceus. The results showed that cotyledon removal had a greater effect on shoot than root growth. Specifically, RC2 revealed a more serious impact on shoot growth than RC1. Microelement Mn and Na in shoot increased more in RC2 than RC1. Macroelement K and microelement B in root increased in RC2. The metabolite results in shoot showed that sugars related to galactose metabolism reduced while amino acids significantly increased in RC2. In root, sugars related to fructose and mannose metabolism decreased in both RC1 and RC2 while most flavonoids increased in RC2. It can be concluded that cotyledon removal triggered different metabolic strategies in both root and shoot. In shoot, more Mn was absorbed to improve the lowered photosynthetic efficiency. Meanwhile, increased Na may have promoted carbohydrate consumption and amino acid synthesis, thereby maintaining shoot growth. In root, K and B participation in cell division and expansion increased, as well as the delivery and metabolism of carbohydrates, to maintain root system growth.
Collapse
Affiliation(s)
- Nan Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Wanting Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Bing Jiang
- Harbin Customs Technology Center, Harbin, 150040, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Yang Liu
- School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Hongzheng Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
45
|
Abstract
Bacteriophage predation is an important factor in bacterial community dynamics and evolution. Phage-bacterium interaction has mainly been studied in lab cultures, while dynamics in natural habitats, and especially in the plant root niche, are underexplored. To better understand this process, we characterized infection of the soil bacterium Bacillus subtilis NCBI 3610 by the lytic phage SPO1 during growth in LB medium and compared it to root colonization. Resistance in vitro was primarily through modification of the phage receptor. However, this type of resistance reduced the ability to colonize the root. From a line that survived phage infection while retaining the ability to colonize the root, we identified a new phage resistance mechanism involving potassium (K+) ion influx modulation and enhanced biofilm formation. Furthermore, we show that potassium serves as a stimulator of root colonization among diverse growth-promoting bacilli species, with implications for plant health.
Collapse
|
46
|
Britto DT, Coskun D, Kronzucker HJ. Potassium physiology from Archean to Holocene: A higher-plant perspective. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153432. [PMID: 34034042 DOI: 10.1016/j.jplph.2021.153432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 05/27/2023]
Abstract
In this paper, we discuss biological potassium acquisition and utilization processes over an evolutionary timescale, with emphasis on modern vascular plants. The quintessential osmotic and electrical functions of the K+ ion are shown to be intimately tied to K+-transport systems and membrane energization. Several prominent themes in plant K+-transport physiology are explored in greater detail, including: (1) channel mediated K+ acquisition by roots at low external [K+]; (2) K+ loading of root xylem elements by active transport; (3) variations on the theme of K+ efflux from root cells to the extracellular environment; (4) the veracity and utility of the "affinity" concept in relation to transport systems. We close with a discussion of the importance of plant-potassium relations to our human world, and current trends in potassium nutrition from farm to table.
Collapse
Affiliation(s)
- Dev T Britto
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Devrim Coskun
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Herbert J Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
47
|
Lhamo D, Luan S. Potential Networks of Nitrogen-Phosphorus-Potassium Channels and Transporters in Arabidopsis Roots at a Single Cell Resolution. FRONTIERS IN PLANT SCIENCE 2021; 12:689545. [PMID: 34220911 PMCID: PMC8242960 DOI: 10.3389/fpls.2021.689545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/24/2021] [Indexed: 05/08/2023]
Abstract
Nitrogen (N), phosphorus (P), and potassium (K) are three major macronutrients essential for plant life. These nutrients are acquired and transported by several large families of transporters expressed in plant roots. However, it remains largely unknown how these transporters are distributed in different cell-types that work together to transfer the nutrients from the soil to different layers of root cells and eventually reach vasculature for massive flow. Using the single cell transcriptomics data from Arabidopsis roots, we profiled the transcriptional patterns of putative nutrient transporters in different root cell-types. Such analyses identified a number of uncharacterized NPK transporters expressed in the root epidermis to mediate NPK uptake and distribution to the adjacent cells. Some transport genes showed cortex- and endodermis-specific expression to direct the nutrient flow toward the vasculature. For long-distance transport, a variety of transporters were shown to express and potentially function in the xylem and phloem. In the context of subcellular distribution of mineral nutrients, the NPK transporters at subcellular compartments were often found to show ubiquitous expression patterns, which suggests function in house-keeping processes. Overall, these single cell transcriptomic analyses provide working models of nutrient transport from the epidermis across the cortex to the vasculature, which can be further tested experimentally in the future.
Collapse
Affiliation(s)
- Dhondup Lhamo
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | | |
Collapse
|
48
|
Root hairs: the villi of plants. Biochem Soc Trans 2021; 49:1133-1146. [PMID: 34013353 DOI: 10.1042/bst20200716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023]
Abstract
Strikingly, evolution shaped similar tubular structures at the µm to mm scale in roots of sessile plants and in small intestines of mobile mammals to ensure an efficient transfer of essential nutrients from 'dead matter' into biota. These structures, named root hairs (RHs) in plants and villi in mammals, numerously stretch into the environment, and extremely enlarge root and intestine surfaces. They are believed to forage for nutrients, and mediate their uptake. While the conceptional understanding of plant RH function in hydromineral nutrition seems clear, experimental evidence presented in textbooks is restricted to a very limited number of reference-nutrients. Here, we make an element-by-element journey through the periodic table and link individual nutrient availabilities to the development, structure/shape and function of RHs. Based on recent developments in molecular biology and the identification of mutants differing in number, length or other shape-related characteristics of RHs in various plant species, we present comprehensive advances in (i) the physiological role of RHs for the uptake of specific nutrients, (ii) the developmental and morphological responses of RHs to element availability and (iii) RH-localized nutrient transport proteins. Our update identifies crucial roles of RHs for hydromineral nutrition, mostly under nutrient and/or water limiting conditions, and highlights the influence of certain mineral availabilities on early stages of RH development, suggesting that nutritional stimuli, as deficiencies in P, Mn or B, can even dominate over intrinsic developmental programs underlying RH differentiation.
Collapse
|
49
|
Musavizadeh Z, Najafi-Zarrini H, Kazemitabar SK, Hashemi SH, Faraji S, Barcaccia G, Heidari P. Genome-Wide Analysis of Potassium Channel Genes in Rice: Expression of the OsAKT and OsKAT Genes under Salt Stress. Genes (Basel) 2021; 12:784. [PMID: 34065373 PMCID: PMC8160896 DOI: 10.3390/genes12050784] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/09/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
Potassium (K+), as a vital element, is involved in regulating important cellular processes such as enzyme activity, cell turgor, and nutrient movement in plant cells, which affects plant growth and production. Potassium channels are involved in the transport and release of potassium in plant cells. In the current study, three OsKAT genes and two OsAKT genes, along with 11 nonredundant putative potassium channel genes in the rice genome, were characterized based on their physiochemical properties, protein structure, evolution, duplication, in silico gene expression, and protein-protein interactions. In addition, the expression patterns of OsAKTs and OsKATs were studied in root and shoot tissues under salt stress using real-time PCR in three rice cultivars. K+ channel genes were found to have diverse functions and structures, and OsKATs showed high genetic divergence from other K+ channel genes. Furthermore, the Ka/Ks ratios of duplicated gene pairs from the K+ channel gene family in rice suggested that these genes underwent purifying selection. Among the studied K+ channel proteins, OsKAT1 and OsAKT1 were identified as proteins with high potential N-glycosylation and phosphorylation sites, and LEU, VAL, SER, PRO, HIS, GLY, LYS, TYR, CYC, and ARG amino acids were predicted as the binding residues in the ligand-binding sites of K+ channel proteins. Regarding the coexpression network and KEGG ontology results, several metabolic pathways, including sugar metabolism, purine metabolism, carbon metabolism, glycerophospholipid metabolism, monoterpenoid biosynthesis, and folate biosynthesis, were recognized in the coexpression network of K+ channel proteins. Based on the available RNA-seq data, the K+ channel genes showed differential expression levels in rice tissues in response to biotic and abiotic stresses. In addition, the real-time PCR results revealed that OsAKTs and OsKATs are induced by salt stress in root and shoot tissues of rice cultivars, and OsKAT1 was identified as a key gene involved in the rice response to salt stress. In the present study, we found that the repression of OsAKTs, OsKAT2, and OsKAT2 in roots was related to salinity tolerance in rice. Our findings provide valuable insights for further structural and functional assays of K+ channel genes in rice.
Collapse
Affiliation(s)
- Zahra Musavizadeh
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Hamid Najafi-Zarrini
- Department of Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 4818166996, Iran; (H.N.-Z.); (S.K.K.); (S.F.)
| | - Seyed Kamal Kazemitabar
- Department of Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 4818166996, Iran; (H.N.-Z.); (S.K.K.); (S.F.)
| | - Seyed Hamidreza Hashemi
- Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari 4818166996, Iran;
| | - Sahar Faraji
- Department of Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 4818166996, Iran; (H.N.-Z.); (S.K.K.); (S.F.)
| | - Gianni Barcaccia
- Laboratory of Genomics for Breeding, DAFNAE, Campus of Agripolis, University of Padova, Legnaro, 35020 Padova, Italy;
| | - Parviz Heidari
- Faculty of Agriculture, Shahrood University of Technology, Shahrood 3619995161, Iran
| |
Collapse
|
50
|
Angelo LM, França D, Faez R. Biodegradation and viability of chitosan-based microencapsulated fertilizers. Carbohydr Polym 2021; 257:117635. [PMID: 33541660 DOI: 10.1016/j.carbpol.2021.117635] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/01/2020] [Accepted: 01/09/2021] [Indexed: 02/07/2023]
Abstract
Enhanced efficiency fertilizers (EEF) are an important subject for sustainable materials. It is fundamental for the released nutrient and biodegradation in the soil to have synergy to ensure material harmlessness. Chitosan, montmorillonite, and KNO3 were considered to develop the EEF because of the high biodegradation potential of the final product. We correlated the material biodegradability and release in water and soil to their formulation. We assume the materials are biodegradable since the biodegradation efficiency achieved over 30 %. As the nutrient diffusion and matrix degradation happen concomitantly, we also observed that the clay delays degradation and the KNO3 improved it. Likewise, the storage period can change the biodegradability properties once the material started to degrade. Hereupon, the amount of nutrient delivered will match the amount consumed by the plant, the matrix will degrade and no residue will be left in the soil.
Collapse
Affiliation(s)
- Luciana Moretti Angelo
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, UFSCar, 13600970, Araras, SP, Brazil
| | - Débora França
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, UFSCar, 13600970, Araras, SP, Brazil; Graduate Program in Materials Science and Engineering, University of São Paulo, USP- FZEA, 13635900, Pirassununga, SP, Brazil
| | - Roselena Faez
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, UFSCar, 13600970, Araras, SP, Brazil; Graduate Program in Materials Science and Engineering, University of São Paulo, USP- FZEA, 13635900, Pirassununga, SP, Brazil.
| |
Collapse
|