1
|
Gao G, Zhou L, Liu J, Wang P, Gong P, Tian S, Qin G, Wang W, Wang Y. E3 ligase SlCOP1-1 stabilizes transcription factor SlOpaque2 and enhances fruit resistance to Botrytis cinerea in tomato. PLANT PHYSIOLOGY 2024; 196:1196-1213. [PMID: 39077783 PMCID: PMC11444291 DOI: 10.1093/plphys/kiae404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024]
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a pivotal repressor in plant photomorphogenesis, has been extensively studied in various plant processes. However, the specific roles of COP1 in fruit remain poorly understood. Here, we functionally characterized SlCOP1-1 (also known as LeCOP1), an Arabidopsis (Arabidopsis thaliana) COP1 ortholog, in tomato (Solanum lycopersicum) fruit ripening and disease resistance. Despite the clear upregulation of SlCOP1-1 during fruit ripening, knockout or overexpression (OE) of SlCOP1-1 in tomatoes only minimally affected ripening. Intriguingly, these genetic manipulations substantially altered fruit resistance to the fungal pathogen Botrytis cinerea. Proteomic analysis revealed differential accumulation of proteins associated with fruit disease resistance upon SlCOP1-1 knockout or OE. To unravel the mechanism of SlCOP1-1 in disease resistance, we conducted a screen for SlCOP1-1-interacting proteins and identified the stress-related bZIP transcription factor SlOpaque2. We provide evidence that SlOpaque2 functions in tomato resistance to B. cinerea, and SlCOP1-1-mediated mono-ubiquitination and stabilization of SlOpaque2 contributes to fruit resistance against B. cinerea. Our findings uncover a regulatory role of COP1 in controlling fruit disease resistance, enriching our understanding of the regulatory network orchestrating fruit responses to disease.
Collapse
Affiliation(s)
- Guangtong Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Leilei Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
| | - Jinying Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Peiwen Wang
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Pichang Gong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shiping Tian
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Guozheng Qin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Weihao Wang
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuying Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
2
|
Ma Z, Hu L. WRKY Transcription Factor Responses and Tolerance to Abiotic Stresses in Plants. Int J Mol Sci 2024; 25:6845. [PMID: 38999954 PMCID: PMC11241455 DOI: 10.3390/ijms25136845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Plants are subjected to abiotic stresses throughout their developmental period. Abiotic stresses include drought, salt, heat, cold, heavy metals, nutritional elements, and oxidative stresses. Improving plant responses to various environmental stresses is critical for plant survival and perpetuation. WRKY transcription factors have special structures (WRKY structural domains), which enable the WRKY transcription factors to have different transcriptional regulatory functions. WRKY transcription factors can not only regulate abiotic stress responses and plant growth and development by regulating phytohormone signalling pathways but also promote or suppress the expression of downstream genes by binding to the W-box [TGACCA/TGACCT] in the promoters of their target genes. In addition, WRKY transcription factors not only interact with other families of transcription factors to regulate plant defence responses to abiotic stresses but also self-regulate by recognising and binding to W-boxes in their own target genes to regulate their defence responses to abiotic stresses. However, in recent years, research reviews on the regulatory roles of WRKY transcription factors in higher plants have been scarce and shallow. In this review, we focus on the structure and classification of WRKY transcription factors, as well as the identification of their downstream target genes and molecular mechanisms involved in the response to abiotic stresses, which can improve the tolerance ability of plants under abiotic stress, and we also look forward to their future research directions, with a view of providing theoretical support for the genetic improvement of crop abiotic stress tolerance.
Collapse
Affiliation(s)
- Ziming Ma
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, Golm, 14476 Potsdam, Germany
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
| | - Lanjuan Hu
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
3
|
Pradhan UK, Mahapatra A, Naha S, Gupta A, Parsad R, Gahlaut V, Rath SN, Meher PK. ASPTF: A computational tool to predict abiotic stress-responsive transcription factors in plants by employing machine learning algorithms. Biochim Biophys Acta Gen Subj 2024; 1868:130597. [PMID: 38490467 DOI: 10.1016/j.bbagen.2024.130597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Abiotic stresses pose serious threat to the growth and yield of crop plants. Several studies suggest that in plants, transcription factors (TFs) are important regulators of gene expression, especially when it comes to coping with abiotic stresses. Therefore, it is crucial to identify TFs associated with abiotic stress response for breeding of abiotic stress tolerant crop cultivars. METHODS Based on a machine learning framework, a computational model was envisaged to predict TFs associated with abiotic stress response in plants. To numerically encode TF sequences, four distinct sequence derived features were generated. The prediction was performed using ten shallow learning and four deep learning algorithms. For prediction using more pertinent and informative features, feature selection techniques were also employed. RESULTS Using the features chosen by the light-gradient boosting machine-variable importance measure (LGBM-VIM), the LGBM achieved the highest cross-validation performance metrics (accuracy: 86.81%, auROC: 92.98%, and auPRC: 94.03%). Further evaluation of the proposed model (LGBM prediction method + LGBM-VIM selected features) was also done using an independent test dataset, where the accuracy, auROC and auPRC were observed 81.98%, 90.65% and 91.30%, respectively. CONCLUSIONS To facilitate the adoption of the proposed strategy by users, the approach was implemented as a prediction server called ASPTF, accessible at https://iasri-sg.icar.gov.in/asptf/. The developed approach and the corresponding web application are anticipated to supplement experimental methods in the identification of transcription factors (TFs) responsive to abiotic stress in plants.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Anuradha Mahapatra
- Department of Bioinformatics, Odisha University of Agriculture & Technology, Bhubaneswar 751003, Odisha, India
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Rajender Parsad
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Vijay Gahlaut
- University Centre for Research & Development, Chandigarh University, Mohali, Punjab, India.
| | - Surya Narayan Rath
- Department of Bioinformatics, Odisha University of Agriculture & Technology, Bhubaneswar 751003, Odisha, India
| | - Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| |
Collapse
|
4
|
Fuertes-Aguilar J, Matilla AJ. Transcriptional Control of Seed Life: New Insights into the Role of the NAC Family. Int J Mol Sci 2024; 25:5369. [PMID: 38791407 PMCID: PMC11121595 DOI: 10.3390/ijms25105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Transcription factors (TFs) regulate gene expression by binding to specific sequences on DNA through their DNA-binding domain (DBD), a universal process. This update conveys information about the diverse roles of TFs, focusing on the NACs (NAM-ATAF-CUC), in regulating target-gene expression and influencing various aspects of plant biology. NAC TFs appeared before the emergence of land plants. The NAC family constitutes a diverse group of plant-specific TFs found in mosses, conifers, monocots, and eudicots. This update discusses the evolutionary origins of plant NAC genes/proteins from green algae to their crucial roles in plant development and stress response across various plant species. From mosses and lycophytes to various angiosperms, the number of NAC proteins increases significantly, suggesting a gradual evolution from basal streptophytic green algae. NAC TFs play a critical role in enhancing abiotic stress tolerance, with their function conserved in angiosperms. Furthermore, the modular organization of NACs, their dimeric function, and their localization within cellular compartments contribute to their functional versatility and complexity. While most NAC TFs are nuclear-localized and active, a subset is found in other cellular compartments, indicating inactive forms until specific cues trigger their translocation to the nucleus. Additionally, it highlights their involvement in endoplasmic reticulum (ER) stress-induced programmed cell death (PCD) by activating the vacuolar processing enzyme (VPE) gene. Moreover, this update provides a comprehensive overview of the diverse roles of NAC TFs in plants, including their participation in ER stress responses, leaf senescence (LS), and growth and development. Notably, NACs exhibit correlations with various phytohormones (i.e., ABA, GAs, CK, IAA, JA, and SA), and several NAC genes are inducible by them, influencing a broad spectrum of biological processes. The study of the spatiotemporal expression patterns provides insights into when and where specific NAC genes are active, shedding light on their metabolic contributions. Likewise, this review emphasizes the significance of NAC TFs in transcriptional modules, seed reserve accumulation, and regulation of seed dormancy and germination. Overall, it effectively communicates the intricate and essential functions of NAC TFs in plant biology. Finally, from an evolutionary standpoint, a phylogenetic analysis suggests that it is highly probable that the WRKY family is evolutionarily older than the NAC family.
Collapse
Affiliation(s)
| | - Angel J. Matilla
- Departamento de Biología Funcional, Universidad de Santiago de Compostela, 14971 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Li J, Guo S, Min Htwe Y, Sun X, Zhou L, Wang F, Zeng C, Chen S, Iqbal A, Yang Y. Genome-wide identification, classification and expression analysis of MYB gene family in coconut ( Cocos nucifera L.). FRONTIERS IN PLANT SCIENCE 2024; 14:1263595. [PMID: 38288415 PMCID: PMC10822967 DOI: 10.3389/fpls.2023.1263595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
MYB transcription factors regulate the growth, development, and secondary metabolism of plant species. To investigate the origin of color variations in coconut pericarp, we identified and analyzed the MYB gene family present in coconut. According to the sequence of MYB genes in Arabidopsis thaliana, homologous MYB gene sequences were found in the whole genome database of coconut, the conserved sequence motifs within MYB proteins were analyzed by Motif Elicitation (MEME) tool, and the sequences without conservative structure were eliminated. Additionally, we employed RNA-seq technology to generate gene expression signatures of the R2R3-MYB genes across distinctive coconut parts exhibiting diverse colors. To validate these profiles, we conducted quantitative PCR (qPCR). Through comprehensive genome-wide screening, we successfully identified a collection of 179 MYB genes in coconut. Subsequent phylogenetic analysis categorized these 179 coconut MYB genes into 4-subfamilies: 124 R2R3-MYB, 4 3R-MYB types, 4 4R-MYB type, and 47 unknown types. Furthermore, these genes were further divided into 34 subgroups, with 28 of these subgroups successfully classified into known subfamilies found in Arabidopsis thaliana. By mapping the CnMYB genes onto the 16 chromosomes of the coconut genome, we unveiled a collinearity association between them. Moreover, a preservation of gene structure and motif distribution was observed across the CnMYB genes. Our research encompassed a thorough investigation of the R2R3-MYB genes present in the coconut genome, including the chromosomal localization, gene assembly, conserved regions, phylogenetic associations, and promoter cis-acting elements of the studied genes. Our findings revealed a collection of 12 R2R3-MYB candidate genes, namely CnMYB8, CnMYB15, CnMYB27, CnMYB28, CnMYB61, CnMYB63, CnMYB68, CnMYB94, CnMYB101, CnMYB150, CnMYB153, and CnMYB164. These genes showed differential expressions in diverse tissues and developmental stages of four coconut species, such as CnMYB68, CnMYB101, and CnMYB28 exhibited high expression in majority of tissues and coconut species, while CnMYB94 and CnMYB164 showed lower expression. These findings shed light on the crucial functional divergence of CnMYB genes across various coconut tissues, suggesting these genes as promising candidate genes for facilitating color development in this important crop.
Collapse
Affiliation(s)
- Jing Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Shukuan Guo
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Yin Min Htwe
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Fangyuan Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Chunru Zeng
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Shuangyan Chen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
- School of Tropical Crops, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Amjad Iqbal
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| |
Collapse
|
6
|
Graci S, Barone A. Tomato plant response to heat stress: a focus on candidate genes for yield-related traits. FRONTIERS IN PLANT SCIENCE 2024; 14:1245661. [PMID: 38259925 PMCID: PMC10800405 DOI: 10.3389/fpls.2023.1245661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Climate change and global warming represent the main threats for many agricultural crops. Tomato is one of the most extensively grown and consumed horticultural products and can survive in a wide range of climatic conditions. However, high temperatures negatively affect both vegetative growth and reproductive processes, resulting in losses of yield and fruit quality traits. Researchers have employed different parameters to evaluate the heat stress tolerance, including evaluation of leaf- (stomatal conductance, net photosynthetic rate, Fv/Fm), flower- (inflorescence number, flower number, stigma exertion), pollen-related traits (pollen germination and viability, pollen tube growth) and fruit yield per plant. Moreover, several authors have gone even further, trying to understand the plants molecular response mechanisms to this stress. The present review focused on the tomato molecular response to heat stress during the reproductive stage, since the increase of temperatures above the optimum usually occurs late in the growing tomato season. Reproductive-related traits directly affects the final yield and are regulated by several genes such as transcriptional factors, heat shock proteins, genes related to flower, flowering, pollen and fruit set, and epigenetic mechanisms involving DNA methylation, histone modification, chromatin remodelling and non-coding RNAs. We provided a detailed list of these genes and their function under high temperature conditions in defining the final yield with the aim to summarize the recent findings and pose the attention on candidate genes that could prompt on the selection and constitution of new thermotolerant tomato plant genotypes able to face this abiotic challenge.
Collapse
Affiliation(s)
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| |
Collapse
|
7
|
Altaf MA, Behera B, Mangal V, Singhal RK, Kumar R, More S, Naz S, Mandal S, Dey A, Saqib M, Kishan G, Kumar A, Singh B, Tiwari RK, Lal MK. Tolerance and adaptation mechanism of Solanaceous crops under salinity stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 36356932 DOI: 10.1071/fp22158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Solanaceous crops act as a source of food, nutrition and medicine for humans. Soil salinity is a damaging environmental stress, causing significant reductions in cultivated land area, crop productivity and quality, especially under climate change. Solanaceous crops are extremely vulnerable to salinity stress due to high water requirements during the reproductive stage and the succulent nature of fruits and tubers. Salinity stress impedes morphological and anatomical development, which ultimately affect the production and productivity of the economic part of these crops. The morpho-physiological parameters such as root-to-shoot ratio, leaf area, biomass production, photosynthesis, hormonal balance, leaf water content are disturbed under salinity stress in Solanaceous crops. Moreover, the synthesis and signalling of reactive oxygen species, reactive nitrogen species, accumulation of compatible solutes, and osmoprotectant are significant under salinity stress which might be responsible for providing tolerance in these crops. The regulation at the molecular level is mediated by different genes, transcription factors, and proteins, which are vital in the tolerance mechanism. The present review aims to redraw the attention of the researchers to explore the mechanistic understanding and potential mitigation strategies against salinity stress in Solanaceous crops, which is an often-neglected commodity.
Collapse
Affiliation(s)
| | | | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rajesh Kumar Singhal
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh, India
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Sanket More
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala, India
| | - Safina Naz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Sayanti Mandal
- Institute of Bioinformatics Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Pune, Maharashtra, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073, India
| | - Muhammad Saqib
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Gopi Kishan
- ICAR-Indian Institute of Seed Science, Mau, Uttar Pradesh, India
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India; and ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India; and ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
8
|
Saha B, Nayak J, Srivastava R, Samal S, Kumar D, Chanwala J, Dey N, Giri MK. Unraveling the involvement of WRKY TFs in regulating plant disease defense signaling. PLANTA 2023; 259:7. [PMID: 38012461 DOI: 10.1007/s00425-023-04269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
MAIN CONCLUSION This review article explores the intricate role, regulation, and signaling mechanisms of WRKY TFs in response to biotic stress, particularly emphasizing their pivotal role in the trophism of plant-pathogen interactions. Transcription factors (TFs) play a vital role in governing both plant defense and development by controlling the expression of various downstream target genes. Early studies have shown the differential expression of certain WRKY transcription factors by microbial infections. Several transcriptome-wide studies later demonstrated that diverse sets of WRKYs are significantly activated in the early stages of viral, bacterial, and fungal infections. Furthermore, functional investigations indicated that overexpression or silencing of certain WRKY genes in plants can drastically alter disease symptoms as well as pathogen multiplication rates. Hence the new aspects of pathogen-triggered WRKY TFs mediated regulation of plant defense can be explored. The already recognized roles of WRKYs include transcriptional regulation of defense-related genes, modulation of hormonal signaling, and participation in signal transduction pathways. Some WRKYs have been shown to directly bind to pathogen effectors, acting as decoys or resistance proteins. Notably, the signaling molecules like salicylic acid, jasmonic acid, and ethylene which are associated with plant defense significantly increase the expression of several WRKYs. Moreover, induction of WRKY genes or heightened WRKY activities is also observed during ISR triggered by the beneficial microbes which protect the plants from subsequent pathogen infection. To understand the contribution of WRKY TFs towards disease resistance and their exact metabolic functions in infected plants, further studies are required. This review article explores the intrinsic transcriptional regulation, signaling mechanisms, and hormonal crosstalk governed by WRKY TFs in plant disease defense response, particularly emphasizing their specific role against different biotrophic, hemibiotrophic, and necrotrophic pathogen infections.
Collapse
Affiliation(s)
- Baisista Saha
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Jagatjeet Nayak
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Richa Srivastava
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Swarnmala Samal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Jeky Chanwala
- Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Nrisingha Dey
- Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Mrunmay Kumar Giri
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
9
|
Fu C, Liu M. Genome-wide identification and molecular evolution of NAC gene family in Dendrobium nobile. FRONTIERS IN PLANT SCIENCE 2023; 14:1232804. [PMID: 37670854 PMCID: PMC10475575 DOI: 10.3389/fpls.2023.1232804] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023]
Abstract
NAC transcription factors are an important genes that regulate plant growth and development, and can regulate functions such as fruit ripening in plants. Based on genome data of Dendrobium nobile, the NAC gene family was identified and analyzed by bioinformatics methods. In this study, we identified 85 NAC genes in Dendrobium nobile genome, and systematically analyzed the NAC gene family. We found that they were distributed unevenly in the nineteen chromosomes. The amino acid length of D. nobile NAC gene family (DnoNACs) ranged from 80 to 1065, molecular weight ranged from 22.17 to 119.02 kD, and isoelectric point ranged from 4.61~9.26. Its promoter region contains multiple stress responsive elements, including light responsive, gibberellin-responsive, abscisic acid responsiveness, MeJA-responsiveness and drought-inducibility elements. Phylogenetic analysis indicates that the D. nobile NAC gene family is most closely related to Dendrobium catenatum and Dendrobium chrysotoxum. Analysis of SSR loci indicates that the fraction of mononucleotide repeats was the largest, as was the frequency of A/T. Non-coding RNA analysis showed that these 85 NAC genes contain 397 miRNAs. The collinearity analysis shows that 9 collinear locis were found on the chromosomes of D. nobile with Arabidopsis thaliana, and 75 collinear locis with D.chrysotoxum. QRT-PCR experiment under different salt concentration and temperature conditions verified the response mechanism of DnoNAC gene family under stress conditions. Most DnoNAC genes are sensitive to salt stress and temperature stress. The results of this study provide a reference for further understanding the function of NAC gene in D. nobile.
Collapse
|
10
|
Han X, Yang R, Zhang L, Wei Q, Zhang Y, Wang Y, Shi Y. A Review of Potato Salt Tolerance. Int J Mol Sci 2023; 24:10726. [PMID: 37445900 DOI: 10.3390/ijms241310726] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Potato is the world's fourth largest food crop. Due to limited arable land and an ever-increasing demand for food from a growing population, it is critical to increase crop yields on existing acreage. Soil salinization is an increasing problem that dramatically impacts crop yields and restricts the growing area of potato. One possible solution to this problem is the development of salt-tolerant transgenic potato cultivars. In this work, we review the current potato planting distribution and the ways in which it overlaps with salinized land, in addition to covering the development and utilization of potato salt-tolerant cultivars. We also provide an overview of the current progress toward identifying potato salt tolerance genes and how they may be deployed to overcome the current challenges facing potato growers.
Collapse
Affiliation(s)
- Xue Han
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Ruijie Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Qiaorong Wei
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yazhi Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Ying Shi
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
11
|
Singh R, Shankar R, Yadav SK, Kumar V. Transcriptome analysis of ovules offers early developmental clues after fertilization in Cicer arietinum L.. 3 Biotech 2023; 13:177. [PMID: 37188294 PMCID: PMC10175530 DOI: 10.1007/s13205-023-03599-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
Chickpea (Cicer arietinum L.) seeds are valued for their nutritional scores and limited information on the molecular mechanisms of chickpea fertilization and seed development is available. In the current work, comparative transcriptome analysis was performed on two different stages of chickpea ovules (pre- and post-fertilization) to identify key regulatory transcripts. Two-staged transcriptome sequencing was generated and over 208 million reads were mapped to quantify transcript abundance during fertilization events. Mapping to the reference genome showed that the majority (92.88%) of high-quality Illumina reads were aligned to the chickpea genome. Reference-guided genome and transcriptome assembly yielded a total of 28,783 genes. Of these, 3399 genes were differentially expressed after the fertilization event. These involve upregulated genes including a protease-like secreted in CO(2) response (LOC101500970), amino acid permease 4-like (LOC101506539), and downregulated genes MYB-related protein 305-like (LOC101493897), receptor like protein 29 (LOC101491695). WGCNA analysis and pairwise comparison of datasets, successfully constructed four co-expression modules. Transcription factor families including bHLH, MYB, MYB-related, C2H2 zinc finger, ERF, WRKY and NAC transcription factor were also found to be activated after fertilization. Activation of these genes and transcription factors results in the accumulation of carbohydrates and proteins by enhancing their trafficking and biosynthesis. Total 17 differentially expressed genes, were randomly selected for qRT-PCR for validation of transcriptome analysis and showed statistically significant correlations with the transcriptome data. Our findings provide insights into the regulatory mechanisms underlying changes in fertilized chickpea ovules. This work may come closer to a comprehensive understanding of the mechanisms that initiate developmental events in chickpea seeds after fertilization. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03599-8.
Collapse
Affiliation(s)
- Reetu Singh
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| | - Rama Shankar
- Department of Paediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503 USA
| | | | - Vinay Kumar
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| |
Collapse
|
12
|
Wang L, Doan PPT, Chuong NN, Lee HY, Kim JH, Kim J. Comprehensive transcriptomic analysis of age-, dark-, and salt-induced senescence reveals underlying mechanisms and key regulators of leaf senescence in Zoysia japonica. FRONTIERS IN PLANT SCIENCE 2023; 14:1170808. [PMID: 37324695 PMCID: PMC10265201 DOI: 10.3389/fpls.2023.1170808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 06/17/2023]
Abstract
The lawn grass Zoysia japonica is widely cultivated for its ornamental and recreational value. However, its green period is subject to shortening, which significantly decreases the economic value of Z. japonica, especially for large cultivations. Leaf senescence is a crucial biological and developmental process that significantly influences the lifespan of plants. Moreover, manipulation of this process can improve the economic value of Z. japonica by extending its greening period. In this study, we conducted a comparative transcriptomic analysis using high-throughput RNA sequencing (RNA-seq) to investigate early senescence responses triggered by age, dark, and salt. Gene set enrichment analysis results indicated that while distinct biological processes were involved in each type of senescence response, common processes were also enriched across all senescence responses. The identification and validation of differentially expressed genes (DEGs) via RNA-seq and quantitative real-time PCR provided up- and down-regulated senescence markers for each senescence and putative senescence regulators that trigger common senescence pathways. Our findings revealed that the NAC, WRKY, bHLH, and ARF transcription factor (TF) groups are major senescence-associated TF families that may be required for the transcriptional regulation of DEGs during leaf senescence. In addition, we experimentally validated the senescence regulatory function of seven TFs including ZjNAP, ZjWRKY75, ZjARF2, ZjNAC1, ZjNAC083, ZjARF1, and ZjPIL5 using a protoplast-based senescence assay. This study provides new insight into the molecular mechanisms underlying Z. japonica leaf senescence and identifies potential genetic resources for enhancing its economic value by prolonging its green period.
Collapse
Affiliation(s)
- Lanshuo Wang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Phan Phuong Thao Doan
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Nguyen Nguyen Chuong
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Hyo-Yeon Lee
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
- Department of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Jin Hee Kim
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Jeongsik Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
- Faculty of Science Education, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
13
|
Kumar N, Mishra BK, Liu J, Mohan B, Thingujam D, Pajerowska-Mukhtar KM, Mukhtar MS. Network Biology Analyses and Dynamic Modeling of Gene Regulatory Networks under Drought Stress Reveal Major Transcriptional Regulators in Arabidopsis. Int J Mol Sci 2023; 24:ijms24087349. [PMID: 37108512 PMCID: PMC10139068 DOI: 10.3390/ijms24087349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Drought is one of the most serious abiotic stressors in the environment, restricting agricultural production by reducing plant growth, development, and productivity. To investigate such a complex and multifaceted stressor and its effects on plants, a systems biology-based approach is necessitated, entailing the generation of co-expression networks, identification of high-priority transcription factors (TFs), dynamic mathematical modeling, and computational simulations. Here, we studied a high-resolution drought transcriptome of Arabidopsis. We identified distinct temporal transcriptional signatures and demonstrated the involvement of specific biological pathways. Generation of a large-scale co-expression network followed by network centrality analyses identified 117 TFs that possess critical properties of hubs, bottlenecks, and high clustering coefficient nodes. Dynamic transcriptional regulatory modeling of integrated TF targets and transcriptome datasets uncovered major transcriptional events during the course of drought stress. Mathematical transcriptional simulations allowed us to ascertain the activation status of major TFs, as well as the transcriptional intensity and amplitude of their target genes. Finally, we validated our predictions by providing experimental evidence of gene expression under drought stress for a set of four TFs and their major target genes using qRT-PCR. Taken together, we provided a systems-level perspective on the dynamic transcriptional regulation during drought stress in Arabidopsis and uncovered numerous novel TFs that could potentially be used in future genetic crop engineering programs.
Collapse
Affiliation(s)
- Nilesh Kumar
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Bharat K Mishra
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Jinbao Liu
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Binoop Mohan
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Doni Thingujam
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Karolina M Pajerowska-Mukhtar
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - M Shahid Mukhtar
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Department of Surgery, University of Alabama at Birmingham, 1808 7th Ave S, Birmingham, AL 35294, USA
| |
Collapse
|
14
|
Bhattacharjee B, Hallan V. NF-YB family transcription factors in Arabidopsis: Structure, phylogeny, and expression analysis in biotic and abiotic stresses. Front Microbiol 2023; 13:1067427. [PMID: 36733773 PMCID: PMC9887194 DOI: 10.3389/fmicb.2022.1067427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Nuclear factor-Y (NF-Y) transcription factors (TFs) are conserved heterotrimeric complexes present and widespread across eukaryotes. Three main subunits make up the structural and functional aspect of the NF-Y TFs: NF-YA, NF-YB and NF-YC, which bind to the conserved CCAAT- box of the promoter region of specific genes, while also interacting with each other, thereby forming myriad combinations. The NF-YBs are expressed differentially in various tissues and plant development stages, likely impacting many of the cellular processes constitutively and under stress conditions. In this study, ten members of NF-YB family from Arabidopsis thaliana were identified and expression profiles were mined from microarray data under different biotic and abiotic conditions, revealing key insights into the involvement of this class of proteins in the cellular and biological processes in Arabidopsis. Analysis of cis-acting regulatory elements (CAREs) indicated the presence of abiotic and biotic stress-related transcription factor binding sites (TFBs), shedding light on the multifaceted roles of these TFs. Microarray data analysis inferred distinct patterns of expression in various tissues under differing treatments such as drought, cold and heat stress as well as bacterial, fungal, and viral stress, indicating their likelihood of having an expansive range of regulatory functions under native and stressed conditions; while quantitative real-time PCR (qRT-PCR) based expression analysis revealed that these TFs get real-time-modulated in a stress dependent manner. This study, overall, provides an understanding of the AtNF-YB family of TFs in their regulation and participation in various morphogenetic and defense- related pathways and can provide insights for development of transgenic plants for trait dependent studies.
Collapse
Affiliation(s)
- Bipasha Bhattacharjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Vipin Hallan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India,*Correspondence: Vipin Hallan, ✉
| |
Collapse
|
15
|
Thakur S, Vasudev PG. MYB transcription factors and their role in Medicinal plants. Mol Biol Rep 2022; 49:10995-11008. [PMID: 36074230 DOI: 10.1007/s11033-022-07825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
Transcription factors are multi-domain proteins that regulate gene expression in eukaryotic organisms. They are one of the largest families of proteins, which are structurally and functionally diverse. While there are transcription factors that are plant-specific, such as AP2/ERF, B3, NAC, SBP and WRKY, some transcription factors are present in both plants as well as other eukaryotic organisms. MYB transcription factors are widely distributed among all eukaryotes. In plants, the MYB transcription factors are involved in the regulation of numerous functions such as gene regulation in different metabolic pathways especially secondary metabolic pathways, regulation of different signalling pathways of plant hormones, regulation of genes involved in various developmental and morphological processes etc. Out of the thousands of MYB TFs that have been studied in plants, the majority of them have been studied in the model plants like Arabidopsis thaliana, Oryza sativa etc. The study of MYBs in other plants, especially medicinal plants, has been comparatively limited. But the increasing demand for medicinal plants for the production of biopharmaceuticals and important bioactive compounds has also increased the need to explore more number of these multifaceted transcription factors which play a significant role in the regulation of secondary metabolic pathways. These studies will ultimately contribute to medicinal plants' research and increased production of secondary metabolites, either through transgenic plants or through synthetic biology approaches. This review compiles studies on MYB transcription factors that are involved in the regulation of diverse functions in medicinal plants.
Collapse
Affiliation(s)
- Sudipa Thakur
- Plant Biotechnology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, 226015, Lucknow, India.
| | - Prema G Vasudev
- Plant Biotechnology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, 226015, Lucknow, India
| |
Collapse
|
16
|
Astigueta FH, Baigorria AH, García MN, Delfosse VC, González SA, Pérez de la Torre MC, Moschen S, Lia VV, Heinz RA, Fernández P, Trupkin SA. Characterization and expression analysis of WRKY genes during leaf and corolla senescence of Petunia hybrida plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1765-1784. [PMID: 36387973 PMCID: PMC9636358 DOI: 10.1007/s12298-022-01243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Several families of transcription factors (TFs) control the progression of senescence. Many key TFs belonging to the WRKY family have been described to play crucial roles in the regulation of leaf senescence, mainly in Arabidopsis thaliana. However, little is known about senescence-associated WRKY members in floricultural species. Delay of senescence in leaves and petals of Petunia hybrida, a worldwide ornamental crop are highly appreciated traits. In this work, starting from 28 differentially expressed WRKY genes of A. thaliana during the progression of leaf senescence, we identified the orthologous in P. hybrida and explored the expression profiles of 20 PhWRKY genes during the progression of natural (age-related) leaf and corolla senescence as well as in the corollas of flowers undergoing pollination-induced senescence. Simultaneous visualization showed consistent and similar expression profiles of PhWRKYs during natural leaf and corolla senescence, although weak expression changes were observed during pollination-induced senescence. Comparable expression trends between PhWRKYs and the corresponding genes of A. thaliana were observed during leaf senescence, although more divergence was found in petals of pollinated petunia flowers. Integration of expression data with phylogenetics, conserved motif and cis-regulatory element analyses were used to establish a list of candidates that could regulate more than one senescence process. Our results suggest that several members of the WRKY family of TFs are tightly linked to the regulation of senescence in P. hybrida. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01243-y.
Collapse
Affiliation(s)
- Francisco H. Astigueta
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Escuela de Ciencia Y Tecnología, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires Argentina
| | - Amilcar H. Baigorria
- Escuela de Ciencia Y Tecnología, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires Argentina
| | - Martín N. García
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas Y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| | - Verónica C. Delfosse
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Escuela de Ciencia Y Tecnología, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires Argentina
| | - Sergio A. González
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
| | - Mariana C. Pérez de la Torre
- Instituto de Floricultura, Centro de Investigación de Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| | - Sebastián Moschen
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Famaillá, 4142 Tucumán, Argentina
| | - Verónica V. Lia
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas Y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
- Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Ruth A. Heinz
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas Y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| | - Paula Fernández
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Escuela de Ciencia Y Tecnología, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires Argentina
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas Y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| | - Santiago A. Trupkin
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto de Floricultura, Centro de Investigación de Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| |
Collapse
|
17
|
Biogenic Silver Nanoparticles as a Stress Alleviator in Plants: A Mechanistic Overview. Molecules 2022; 27:molecules27113378. [PMID: 35684312 PMCID: PMC9182038 DOI: 10.3390/molecules27113378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Currently, the growth and yield of crops are restrained due to an increase in the occurrence of ecological stresses globally. Biogenic generation of nanomaterials is an important step in the development of environmentally friendly procedures in the nanotechnology field. Silver-based nanomaterials are significant because of their physical, chemical, and biological features along with their plentiful applications. In addition to useful microbes, the green synthesized Ag nanomaterials are considered to be an ecologically friendly and environmentally biocompatible method for the enhancement of crop yield by easing stresses. In the recent decade, due to regular droughts, infrequent precipitation, salinity, and increased temperature, the climate alternation has changed certain ecological systems. As a result of these environmental changes, crop yield has decreased worldwide. The role of biogenic Ag nanomaterials in enhancing methylglyoxal detoxification, antioxidant defense mechanisms, and generating tolerance to stresses-induced ROS injury has been methodically explained in plants over the past ten years. However, certain studies regarding stress tolerance and metal-based nanomaterials have been directed, but the particulars of silver nanomaterials arbitrated stresses tolerance have not been well-reviewed. Henceforth, there is a need to have a good understanding of plant responses during stressful conditions and to practice the combined literature to enhance tolerance for crops by utilization of Ag nanoparticles. This review article illustrates the mechanistic approach that biogenic Ag nanomaterials in plants adopt to alleviate stresses. Moreover, we have appraised the most significant activities by exogenous use of Ag nanomaterials for improving plant tolerance to salt, low and high temperature, and drought stresses.
Collapse
|
18
|
Behera TK, Krishna R, Ansari WA, Aamir M, Kumar P, Kashyap SP, Pandey S, Kole C. Approaches Involved in the Vegetable Crops Salt Stress Tolerance Improvement: Present Status and Way Ahead. FRONTIERS IN PLANT SCIENCE 2022; 12:787292. [PMID: 35281697 PMCID: PMC8916085 DOI: 10.3389/fpls.2021.787292] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 05/12/2023]
Abstract
Salt stress is one of the most important abiotic stresses as it persists throughout the plant life cycle. The productivity of crops is prominently affected by soil salinization due to faulty agricultural practices, increasing human activities, and natural processes. Approximately 10% of the total land area (950 Mha) and 50% of the total irrigated area (230 Mha) in the world are under salt stress. As a consequence, an annual loss of 12 billion US$ is estimated because of reduction in agriculture production inflicted by salt stress. The severity of salt stress will increase in the upcoming years with the increasing world population, and hence the forced use of poor-quality soil and irrigation water. Unfortunately, majority of the vegetable crops, such as bean, carrot, celery, eggplant, lettuce, muskmelon, okra, pea, pepper, potato, spinach, and tomato, have very low salinity threshold (ECt, which ranged from 1 to 2.5 dS m-1 in saturated soil). These crops used almost every part of the world and lakes' novel salt tolerance gene within their gene pool. Salt stress severely affects the yield and quality of these crops. To resolve this issue, novel genes governing salt tolerance under extreme salt stress were identified and transferred to the vegetable crops. The vegetable improvement for salt tolerance will require not only the yield influencing trait but also target those characters or traits that directly influence the salt stress to the crop developmental stage. Genetic engineering and grafting is the potential tool which can improve salt tolerance in vegetable crop regardless of species barriers. In the present review, an updated detail of the various physio-biochemical and molecular aspects involved in salt stress have been explored.
Collapse
Affiliation(s)
| | - Ram Krishna
- ICAR-Directorate of Onion and Garlic Research, Pune, India
| | | | - Mohd Aamir
- ICAR-Indian Institute of Vegetable Research, Varanasi, Varanasi, India
| | - Pradeep Kumar
- ICAR-Central Arid Zone Research Institute, Jodhpur, India
| | | | - Sudhakar Pandey
- ICAR-Indian Institute of Vegetable Research, Varanasi, Varanasi, India
| | | |
Collapse
|
19
|
Kashyap AS, Manzar N, Nebapure SM, Rajawat MVS, Deo MM, Singh JP, Kesharwani AK, Singh RP, Dubey SC, Singh D. Unraveling Microbial Volatile Elicitors Using a Transparent Methodology for Induction of Systemic Resistance and Regulation of Antioxidant Genes at Expression Levels in Chili against Bacterial Wilt Disease. Antioxidants (Basel) 2022; 11:antiox11020404. [PMID: 35204287 PMCID: PMC8869530 DOI: 10.3390/antiox11020404] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
Microbial volatiles benefit the agricultural ecological system by promoting plant growth and systemic resistance against diseases without harming the environment. To explore the plant growth-promoting efficiency of VOCs produced by Pseudomonas fluorescens PDS1 and Bacillus subtilis KA9 in terms of chili plant growth and its biocontrol efficiency against Ralstonia solanacearum, experiments were conducted both in vitro and in vivo. A closure assembly was designed using a half-inverted plastic bottle to demonstrate plant–microbial interactions via volatile compounds. The most common volatile organic compounds were identified and reported; they promoted plant development and induced systemic resistance (ISR) against wilt pathogen R. solanacearum. The PDS1 and KA9 VOCs significantly increased defensive enzyme activity and overexpressed the antioxidant genes PAL, POD, SOD, WRKYa, PAL1, DEF-1, CAT-2, WRKY40, HSFC1, LOX2, and NPR1 related to plant defense. The overall gene expression was greater in root tissue as compared to leaf tissue in chili plant. Our findings shed light on the relationship among rhizobacteria, pathogen, and host plants, resulting in plant growth promotion, disease suppression, systemic resistance-inducing potential, and antioxidant response with related gene expression in the leaf and root tissue of chili.
Collapse
Affiliation(s)
- Abhijeet Shankar Kashyap
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
- Correspondence: (A.S.K.); (D.S.)
| | - Nazia Manzar
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
| | | | - Mahendra Vikram Singh Rajawat
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
| | - Man Mohan Deo
- Farm Machinery and Power, ICAR-Indian Institute of Pulses Research, Kanpur 208024, India;
| | - Jyoti Prakash Singh
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Amit Kumar Kesharwani
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
| | - Ravinder Pal Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
| | - S. C. Dubey
- Division of Plant Quarantine, ICAR-NBPGR, New Delhi 110012, India;
- Krishi Bhawan, Indian Council of Agricultural Research, New Delhi 110001, India
| | - Dinesh Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
- Correspondence: (A.S.K.); (D.S.)
| |
Collapse
|
20
|
Hajibarat Z, Saidi A, Zeinalabedini M, Gorji AM, Ghaffari MR, Shariati V, Ahmadvand R. Genome-wide identification of StU-box gene family and assessment of their expression in developmental stages of Solanum tuberosum. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2022; 20:25. [PMID: 35147812 PMCID: PMC8837765 DOI: 10.1186/s43141-022-00306-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Background The Plant U-box (PUB), ubiquitin ligase gene, has a highly conserved domain in potato. However, little information is available about U-box genes in potato (Solanum tuberosum). In this study, 62 U-box genes were detected in the potato genome using bioinformatics methods. Further, motif analysis, gene structure, gene expression, TFBS, and synteny analysis were performed on the U-box genes. Results Based on in silico analysis, most of StU-boxs included a U-box domain; however, some of them lacked harbored domain the ARM, Pkinase_Tyr, and other domains. Based on their phylogenetic relationships, the StU-box family members were categorized into four classes. Analysis of transcription factor binding sites (TFBS) in the promoter region of StU-box genes revealed that StU-box genes had the highest and the lowest number of TFBS in MYB and CSD, respectively. Moreover, based on in silico and gene expression data, variable frequencies of TFBS in StU-box genes could indicate that these genes control different developmental stages and are involved in complex regulatory mechanisms. The number of exons in U-box genes ranged from one to sixteen. For most U-box genes, the exon–intron compositions and conserved motifs composition in most proteins in each group were similar. The intron–exon patterns and the composition of conserved motifs validated the U-box genes phylogenetic classification. Based on the results of genome distribution, StU-box genes were distributed unevenly on the 12 S. tuberosum chromosomes. The results showed that gene duplication may possess a significant role in genome expansion of S. tuberosum. Furthermore, genome evolution of S. tuberosum was surveyed using identification of orthologous and paralogous. We identified 40 orthologous gene pairs between S. tuberosum with Solanum lycopersicum, Oryza sativa, Triticum aestivum, Gossypium hirsutum, Zea maize, Coriaria mytifolia, and Arabidopsis thaliana as well as eight duplicated genes (paralogous) in S. tuberosum. StU-box 51 gene is one of the important gene among other StU-boxes in S. tuberosum under drought stress which was expressed in tuber and leaf under drought stress. Furthermore, StU-box 51 gene has the highest expression levels in four tissue-specific (stem, root, leaf, and tuber) in potato as well as it had the highest number of TFBS in promoter region. Based on our results, StU-box 51 can introduce to researcher to utilize in breeding program and genetic engineering in potato. Conclusions The results of this survey will be useful for further investigation of the probable role and molecular mechanisms of U-box genes in response to different stresses. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00306-7.
Collapse
Affiliation(s)
- Zahra Hajibarat
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Saidi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mehrshad Zeinalabedini
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran.,Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ahmad Mosuapour Gorji
- Department of Vegetable Research, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran.,Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Vahid Shariati
- NIGEB Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Rahim Ahmadvand
- Department of Vegetable Research, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
21
|
Overdominance at the Gene Expression Level Plays a Critical Role in the Hybrid Root Growth of Brassica napus. Int J Mol Sci 2021; 22:ijms22179246. [PMID: 34502153 PMCID: PMC8431428 DOI: 10.3390/ijms22179246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/12/2023] Open
Abstract
Despite heterosis contributing to genetic improvements in crops, root growth heterosis in rapeseed plants is poorly understood at the molecular level. The current study was performed to discover key differentially expressed genes (DEGs) related to heterosis in two hybrids with contrasting root growth performance (FO; high hybrid and FV; low hybrid) based on analysis of the root heterosis effect. Based on comparative transcriptomic analysis, we believe that the overdominance at the gene expression level plays a critical role in hybrid roots’ early biomass heterosis. Our findings imply that a considerable increase in up-regulation of gene expression underpins heterosis. In the FO hybrid, high expression of DEGs overdominant in the starch/sucrose and galactose metabolic pathways revealed a link between hybrid vigor and root growth. DEGs linked to auxin, cytokinin, brassinosteroids, ethylene, and abscisic acid were also specified, showing that these hormones may enhance mechanisms of root growth and the development in the FO hybrid. Moreover, transcription factors such as MYB, ERF, bHLH, NAC, bZIP, and WRKY are thought to control downstream genes involved in root growth. Overall, this is the first study to provide a better understanding related to the regulation of the molecular mechanism of heterosis, which assists in rapeseed growth and yield improvement.
Collapse
|
22
|
Portieles R, Xu H, Yue Q, Zhao L, Zhang D, Du L, Gao X, Gao J, Portal Gonzalez N, Santos Bermudez R, Borrás-Hidalgo O. Heat-killed endophytic bacterium induces robust plant defense responses against important pathogens. Sci Rep 2021; 11:12182. [PMID: 34108579 PMCID: PMC8190079 DOI: 10.1038/s41598-021-91837-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Stress caused by pathogens strongly damages plants. Developing products to control plant disease is an important challenge in sustainable agriculture. In this study, a heat-killed endophytic bacterium (HKEB), Bacillus aryabhattai, is used to induce plant defense against fungal and bacterial pathogens, and the main defense pathways used by the HKEB to activate plant defense are revealed. The HKEB induced high protection against different pathogens through the salicylic and jasmonic acid pathways. We report the presence of gentisic acid in the HKEB for the first time. These results show that HKEBs may be a useful tool for the management of plant diseases.
Collapse
Affiliation(s)
- Roxana Portieles
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Hongli Xu
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academic of Science), Jinan, People's Republic of China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academic of Science), Jinan, People's Republic of China
| | - Dening Zhang
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Lihua Du
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Xiangyou Gao
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Jingyao Gao
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Nayanci Portal Gonzalez
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, 250022, Shandong, People's Republic of China
| | - Ramon Santos Bermudez
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, 250022, Shandong, People's Republic of China.
| | - Orlando Borrás-Hidalgo
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China.
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academic of Science), Jinan, People's Republic of China.
| |
Collapse
|
23
|
Bapatla RB, Saini D, Aswani V, Rajsheel P, Sunil B, Timm S, Raghavendra AS. Modulation of Photorespiratory Enzymes by Oxidative and Photo-Oxidative Stress Induced by Menadione in Leaves of Pea ( Pisum sativum). PLANTS 2021; 10:plants10050987. [PMID: 34063541 PMCID: PMC8156035 DOI: 10.3390/plants10050987] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/11/2023]
Abstract
Photorespiration, an essential component of plant metabolism, is concerted across four subcellular compartments, namely, chloroplast, peroxisome, mitochondrion, and the cytoplasm. It is unclear how the pathway located in different subcellular compartments respond to stress occurring exclusively in one of those. We attempted to assess the inter-organelle interaction during the photorespiratory pathway. For that purpose, we induced oxidative stress by menadione (MD) in mitochondria and photo-oxidative stress (high light) in chloroplasts. Subsequently, we examined the changes in selected photorespiratory enzymes, known to be located in other subcellular compartments. The presence of MD upregulated the transcript and protein levels of five chosen photorespiratory enzymes in both normal and high light. Peroxisomal glycolate oxidase and catalase activities increased by 50% and 25%, respectively, while chloroplastic glycerate kinase and phosphoglycolate phosphatase increased by ~30%. The effect of MD was maximum in high light, indicating photo-oxidative stress was an influential factor to regulate photorespiration. Oxidative stress created in mitochondria caused a coordinative upregulation of photorespiration in other organelles. We provided evidence that reactive oxygen species are important signals for inter-organelle communication during photorespiration. Thus, MD can be a valuable tool to modulate the redox state in plant cells to study the metabolic consequences across membranes.
Collapse
Affiliation(s)
- Ramesh B. Bapatla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (R.B.B.); (D.S.); (V.A.); (P.R.); (B.S.)
| | - Deepak Saini
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (R.B.B.); (D.S.); (V.A.); (P.R.); (B.S.)
| | - Vetcha Aswani
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (R.B.B.); (D.S.); (V.A.); (P.R.); (B.S.)
| | - Pidakala Rajsheel
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (R.B.B.); (D.S.); (V.A.); (P.R.); (B.S.)
| | - Bobba Sunil
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (R.B.B.); (D.S.); (V.A.); (P.R.); (B.S.)
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany;
| | - Agepati S. Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (R.B.B.); (D.S.); (V.A.); (P.R.); (B.S.)
- Correspondence: or
| |
Collapse
|
24
|
Shahzad R, Jamil S, Ahmad S, Nisar A, Amina Z, Saleem S, Zaffar Iqbal M, Muhammad Atif R, Wang X. Harnessing the potential of plant transcription factors in developing climate resilient crops to improve global food security: Current and future perspectives. Saudi J Biol Sci 2021; 28:2323-2341. [PMID: 33911947 PMCID: PMC8071895 DOI: 10.1016/j.sjbs.2021.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Crop plants should be resilient to climatic factors in order to feed ever-increasing populations. Plants have developed stress-responsive mechanisms by changing their metabolic pathways and switching the stress-responsive genes. The discovery of plant transcriptional factors (TFs), as key regulators of different biotic and abiotic stresses, has opened up new horizons for plant scientists. TFs perceive the signal and switch certain stress-responsive genes on and off by binding to different cis-regulatory elements. More than 50 families of plant TFs have been reported in nature. Among them, DREB, bZIP, MYB, NAC, Zinc-finger, HSF, Dof, WRKY, and NF-Y are important with respect to biotic and abiotic stresses, but the potential of many TFs in the improvement of crops is untapped. In this review, we summarize the role of different stress-responsive TFs with respect to biotic and abiotic stresses. Further, challenges and future opportunities linked with TFs for developing climate-resilient crops are also elaborated.
Collapse
Affiliation(s)
- Rahil Shahzad
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Shakra Jamil
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Shakeel Ahmad
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Amina Nisar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zarmaha Amina
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shazmina Saleem
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Zaffar Iqbal
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad, University Road, 38040, Faisalabad, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an 716000, China
| |
Collapse
|
25
|
Chen Q, Lu X, Guo X, Xu M, Tang Z. A source-sink model explains the difference in the metabolic mechanism of mechanical damage to young and senescing leaves in Catharanthus roseus. BMC PLANT BIOLOGY 2021; 21:154. [PMID: 33771114 PMCID: PMC7995597 DOI: 10.1186/s12870-021-02934-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 03/18/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Mechanical damage is an unavoidable threat to the growth and survival of plants. Although a wound to senescing (lower) leaves improves plant vitality, a wound to younger (upper) leaves often causes damage to or death of the whole plant. Source-sink models are often used to explain how plants respond to biotic or abiotic stresses. In this study, a source-sink model was used to explain the difference in the metabolic mechanism of mechanical damage to young and senescing leaves of Catharanthus roseus. RESULTS In our study, GC-MS and LC-QTOF-MS metabolomics techniques were used to explore the differences in source-sink allocation and metabolic regulation in different organs of Catharanthus roseus after mechanical damage to the upper/lower leaves (WUL/WLL). Compared with that of the control group, the energy supplies of the WUL and WLL groups were increased and delivered to the secondary metabolic pathway through the TCA cycle. The two treatment groups adopted different secondary metabolic response strategies. The WLL group increased the input to the defense response after damage by increasing the accumulation of phenolics. A source-sink model was applied to the defensive responses to local (damaged leaves) and systemic (whole plant) damage. In the WUL group, the number of sinks increased due to damage to young leaves, and the tolerance response was emphasized. CONCLUSION The accumulation of primary and secondary metabolites was significantly different between the two mechanical damage treatments. Catharanthus roseus uses different trade-offs between tolerance (repair) and defense to respond to mechanical damage. Repairing damage and chemical defenses are thought to be more energetically expensive than growth development, confirming the trade-offs and allocation of resources seen in this source-sink model.
Collapse
Affiliation(s)
- Qi Chen
- School of Life Sciences Nantong University, Nantong, 226010, P. R. China
| | - Xueyan Lu
- Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xiaorui Guo
- Northeast Forestry University, Harbin, 150040, P. R. China
| | - Mingyuan Xu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, P. R. China.
| | - Zhonghua Tang
- Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
26
|
Genetic Analysis of Root-to-Shoot Signaling and Rootstock-Mediated Tolerance to Water Deficit in Tomato. Genes (Basel) 2020; 12:genes12010010. [PMID: 33374834 PMCID: PMC7823420 DOI: 10.3390/genes12010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 12/31/2022] Open
Abstract
Developing drought-tolerant crops is an important strategy to mitigate climate change impacts. Modulating root system function provides opportunities to improve crop yield under biotic and abiotic stresses. With this aim, a commercial hybrid tomato variety was grafted on a genotyped population of 123 recombinant inbred lines (RILs) derived from Solanum pimpinellifolium, and compared with self- and non-grafted controls, under contrasting watering treatments (100% vs. 70% of crop evapotranspiration). Drought tolerance was genetically analyzed for vegetative and flowering traits, and root xylem sap phytohormone and nutrient composition. Under water deficit, around 25% of RILs conferred larger total shoot dry weight than controls. Reproductive and vegetative traits under water deficit were highly and positively correlated to the shoot water content. This association was genetically supported by linkage of quantitative trait loci (QTL) controlling these traits within four genomic regions. From a total of 83 significant QTLs, most were irrigation-regime specific. The gene contents of 8 out of 12 genomic regions containing 46 QTLs were found significantly enriched at certain GO terms and some candidate genes from diverse gene families were identified. Thus, grafting commercial varieties onto selected rootstocks derived from S. pimpinellifolium provides a viable strategy to enhance drought tolerance in tomato.
Collapse
|
27
|
Xiong C, Zhao S, Yu X, Sun Y, Li H, Ruan C, Li J. Yellowhorn drought-induced transcription factor XsWRKY20 acts as a positive regulator in drought stress through ROS homeostasis and ABA signaling pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:187-195. [PMID: 32771930 DOI: 10.1016/j.plaphy.2020.06.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 05/11/2023]
Abstract
Yellowhorn (Xanthoceras sorbifolium) is a peculiar woody edible oil-bearing tree in China. WRKY transcription factors have specific roles in plant multiple abiotic stress responses. However, it is still not clear that the molecular mechanisms of WRKYs involve in drought tolerance in yellowhorn. In this study, we isolated a drought-induced group I WRKY gene from yellowhorn, designated as XsWRKY20. Expression of XsWRKY20 was strongly induced by PEG6000, NaCl, ABA and SA. Virus-induced gene silencing (VIGS) of XsWRKY20 reduced tolerance to drought stress in yellowhorn, as determined through physiological analyses of POD activity, SOD activity and proline content. This susceptibility was coupled with decreased expression of stress-related genes. In contrast, overexpression of XsWRKY20 in tobacco notably improved drought tolerance. Compared with the WT plants, the XsWRKY20-transgenic lines exhibited lower ROS and MDA content and higher antioxidant enzyme activity and proline content after drought treatment. Moreover, overexpression of XsWRKY20 enhanced the expression of several genes associated with encoding these antioxidant enzymes, proline biosynthesis and ABA signaling pathway. Taken together, XsWRKY20 functions as a positive regulator contributing to drought stress tolerance through either ROS homeostasis by antioxidant systems or ABA-dependent/independent gene expression pathway.
Collapse
Affiliation(s)
- Chaowei Xiong
- Key Laboratory of Biotechnology and Bioresources Utilization-Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, PR China
| | - Shang Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization-Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, PR China
| | - Xue Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Ying Sun
- Key Laboratory of Biotechnology and Bioresources Utilization-Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, PR China
| | - He Li
- Key Laboratory of Biotechnology and Bioresources Utilization-Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, PR China
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization-Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, PR China
| | - Jingbin Li
- Key Laboratory of Biotechnology and Bioresources Utilization-Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, PR China; Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
28
|
Ritonga FN, Chen S. Physiological and Molecular Mechanism Involved in Cold Stress Tolerance in Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E560. [PMID: 32353940 PMCID: PMC7284489 DOI: 10.3390/plants9050560] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 01/26/2023]
Abstract
Previous studies have reported that low temperature (LT) constrains plant growth and restricts productivity in temperate regions. However, the underlying mechanisms are complex and not well understood. Over the past ten years, research on the process of adaptation and tolerance of plants during cold stress has been carried out. In molecular terms, researchers prioritize research into the field of the ICE-CBF-COR signaling pathway which is believed to be the important key to the cold acclimation process. Inducer of CBF Expression (ICE) is a pioneer of cold acclimation and plays a central role in C-repeat binding (CBF) cold induction. CBFs activate the expression of COR genes via binding to cis-elements in the promoter of COR genes. An ICE-CBF-COR signaling pathway activates the appropriate expression of downstream genes, which encodes osmoregulation substances. In this review, we summarize the recent progress of cold stress tolerance in plants from molecular and physiological perspectives and other factors, such as hormones, light, and circadian clock. Understanding the process of cold stress tolerance and the genes involved in the signaling network for cold stress is essential for improving plants, especially crops.
Collapse
Affiliation(s)
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|