1
|
Li J, Ishii T, Yoshioka M, Hino Y, Nomoto M, Tada Y, Yoshioka H, Takahashi H, Yamauchi T, Nakazono M. CDPK5 and CDPK13 play key roles in acclimation to low oxygen through the control of RBOH-mediated ROS production in rice. PLANT PHYSIOLOGY 2024; 197:kiae293. [PMID: 38849987 PMCID: PMC11663579 DOI: 10.1093/plphys/kiae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/26/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
CALCIUM-DEPENDENT PROTEIN KINASE (CDPK) stimulates reactive oxygen species (ROS)-dependent signaling by activating RESPIRATORY BURST OXIDASE HOMOLOG (RBOH). The lysigenous aerenchyma is a gas space created by cortical cell death that facilitates oxygen diffusion from the shoot to the root tips. Previously, we showed that RBOHH is indispensable for the induction of aerenchyma formation in rice (Oryza sativa) roots under low-oxygen conditions. Here, we showed that CDPK5 and CDPK13 localize to the plasma membrane where RBOHH functions. Mutation analysis of the serine at residues 92 and 107 of RBOHH revealed that these residues are required for CDPK5- and CDPK13-mediated activation of ROS production. The requirement of Ca2+ for CDPK5 and CDPK13 function was confirmed using in vitro kinase assays. CRISPR/Cas9-based mutagenesis of CDPK5 and/or CDPK13 revealed that the double knockout almost completely suppressed inducible aerenchyma formation, whereas the effects were limited in the single knockout of either CDPK5 or CDPK13. Interestingly, the double knockout almost suppressed the induction of adventitious root formation, which is widely conserved in vascular plants, under low-oxygen conditions. Our results suggest that CDPKs are essential for the acclimation of rice to low-oxygen conditions and also for many other plant species conserving CDPK-targeted phosphorylation sites in RBOH homologs.
Collapse
Affiliation(s)
- Jingxia Li
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Takahiro Ishii
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Miki Yoshioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Yuta Hino
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Mika Nomoto
- Graduate School of Science, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
- Center for Gene Research, Nagoya University, Furo-cho Chikusa, Nagoya 464-8602, Japan
| | - Yasuomi Tada
- Graduate School of Science, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
- Center for Gene Research, Nagoya University, Furo-cho Chikusa, Nagoya 464-8602, Japan
| | - Hirofumi Yoshioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
- The UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
2
|
Basit F, Khalid M, El-Keblawy A, Sheteiwy MS, Sulieman S, Josko I, Zulfiqar F. Hypoxia stress: plant's sensing, responses, and tolerance mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63458-63472. [PMID: 39489890 DOI: 10.1007/s11356-024-35439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Oxygen (O2) is an inhibiting factor for plant growth and development in submerged and flooding environments. Plants experience different O2 concentrations, such as normoxia, hypoxia, and anoxia, which can change over space and time. Plants have evolved various morphological, physiological, and biochemical adaptations to withstand low O2 stress, many of which have been well investigated. This review provides a detailed analysis of how plants respond to hypoxia, a significant stress factor primarily caused by flooding. Hypoxia affects plants at various cellular, developmental, and environmental levels. This review highlights genetic, molecular, and metabolic adaptations crops employ to cope with O2 deficiency. The roles of various transcription factors (TFs) and gene regulation mechanisms in enabling plants to modulate their physiological responses under hypoxic conditions are notable. The review also identifies a significant gap in research on plant responses during reoxygenation, the phase of returning to normal O2 levels, especially under natural lighting conditions. This transition poses ROS generation and photoinhibition challenges, affecting plant recovery post-hypoxia. We discuss various strategies to enhance plant hypoxia tolerance, including traditional breeding, genetic modification, and grafting techniques. It emphasizes integrating these approaches with a comprehensive understanding of hypoxia sensing and response mechanisms. We underscore the complexity of plant adaptations to hypoxia and the need for continued research in this field, especially in the face of global climate change. This is vital for developing sustainable agricultural practices and ensuring future food security.
Collapse
Affiliation(s)
- Farwa Basit
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, 325060, China.
| | - Muhammad Khalid
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Saad Sulieman
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, 13314, Shambat, Khartoum North, Sudan
| | - Izabela Josko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
3
|
Manna M, Rengasamy B, Sinha AK. Nutrient and Water Availability Influence Rice Physiology, Root Architecture and Ionomic Balance via Auxin Signalling. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39315660 DOI: 10.1111/pce.15171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Water and soil nutrients are the vital ingredients of crop production, and their efficient uptake is essentially dependent on root development, majorly regulated by auxin. For a water-loving crop like rice, how water availability regulates nutrient acquisition, additionally, how ambient nutrient level modulates water uptake, and the role of auxin therein is not well studied. While investigating the cross-talks among these components, we found water to be essential for auxin re-distribution in roots and shaping the root architecture. We also found that supplementing rice seedlings with moderate concentrations of mineral nutrients facilitated faster water uptake and greater nutrient enrichment in leaves compared to adequate nutrient supplementation. Additionally, moderate nutrient availability favoured greater stomatal density, stomatal conductance, photosynthesis, transpiration rate and water use efficiency when water was not limiting. Further, auxin supplementation enhanced root formation in rice, while affecting their water uptake ability, photosynthesis and transpiration causing differential mineral-specific uptake trends. The present study uncovers the existence of an intricate crosstalk among water, nutrients and auxin signalling the knowledge of which will enable optimizing the growth conditions for speed breeding of rice and harnessing the components of auxin signalling to improve water and nutrient use efficiency of rice.
Collapse
Affiliation(s)
- Mrinalini Manna
- National Institute of Plant Genome Research, New Delhi, India
| | | | | |
Collapse
|
4
|
Xu Q, Wu M, Zhang L, Chen X, Zhou M, Jiang B, Jia Y, Yong X, Tang S, Mou L, Jia Z, Shabala S, Pan Y. Unraveling Key Factors for Hypoxia Tolerance in Contrasting Varieties of Cotton Rose by Comparative Morpho-physiological and Transcriptome Analysis. PHYSIOLOGIA PLANTARUM 2024; 176:e14317. [PMID: 38686568 DOI: 10.1111/ppl.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
The cotton rose (Hibiscus mutabilis) is a plant species commonly found in tropical and subtropical regions. It is remarkably resilient to waterlogging stress; however, the underlying mechanism behind this trait is yet unknown. This study used hypoxia-tolerant "Danbanhong" (DBH) and more hypoxia-sensitive "Yurui" (YR) genotypes and compared their morpho-physiological and transcriptional responses to hypoxic conditions. Notably, DBH had a higher number of adventitious roots (20.3) compared to YR (10.0), with longer adventitious roots in DBH (18.3 cm) than in YR (11.2 cm). Furthermore, the formation of aerenchyma was 3-fold greater in DBH compared to YR. Transcriptomic analysis revealed that DBH had more rapid transcriptional responses to hypoxia than YR. Identification of a greater number of differentially expressed genes (DEGs) for aerenchyma, adventitious root formation and development, and energy metabolism in DBH supported that DBH had better morphological and transcriptional adaptation than YR. DEG functional enrichment analysis indicated the involvement of variety-specific biological processes in adaption to hypoxia. Plant hormone signaling transduction, MAPK signaling pathway and carbon metabolism played more pronounced roles in DBH, whereas the ribosome genes were specifically induced in YR. These results show that effective multilevel coordination of adventitious root development and aerenchyma, in conjunction with plant hormone signaling and carbon metabolism, is required for increased hypoxia tolerance. This study provides new insights into the characterization of morpho-physiological and transcriptional responses to hypoxia in H. mutabilis, shedding light on the molecular mechanisms of its adaptation to hypoxic environments.
Collapse
Affiliation(s)
- Qian Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lu Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xi Chen
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Mei Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xue Yong
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | | | - Lisha Mou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zhishi Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Sergey Shabala
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Yuanzhi Pan
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Shikha, Pandey DK, Upadhyay S, Phukan UJ, Shukla RK. Transcriptome analysis of waterlogging-induced adventitious root and control taproot of Mentha arvensis. PLANT CELL REPORTS 2024; 43:104. [PMID: 38507094 DOI: 10.1007/s00299-024-03182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
KEY MESSAGE The present study reports differentially expressed transcripts in the waterlogging-induced adventitious root (AR) of Mentha arvensis; the identified transcripts will help to understand AR development and improve waterlogging stress response. Waterlogging notably hampers plant growth in areas facing waterlogged soil conditions. In our previous findings, Mentha arvensis was shown to adapt better in waterlogging conditions by initiating the early onset of adventitious root development. In the present study, we compared the transcriptome analysis of adventitious root induced after the waterlogging treatment with the control taproot. The biochemical parameters of total carbohydrate, total protein content, nitric oxide (NO) scavenging activity and antioxidant enzymes, such as catalase activity (CAT) and superoxide dismutase (SOD) activity, were enhanced in the adventitious root compared with control taproot. Analysis of differentially expressed genes (DEGs) in adventitious root compared with the control taproot were grouped into four functional categories, i.e., carbohydrate metabolism, antioxidant activity, hormonal regulation, and transcription factors that could be majorly involved in the development of adventitious roots. Differential expression of the upregulated and uniquely expressing thirty-five transcripts in adventitious roots was validated using qRT-PCR. This study has generated the resource of differentially and uniquely expressing transcripts in the waterlogging-induced adventitious roots. Further functional characterization of these transcripts will be helpful to understand the development of adventitious roots, leading to the resistance towards waterlogging stress in Mentha arvensis.
Collapse
Affiliation(s)
- Shikha
- Plant Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, CSIR-CIMAP) PO CIMAP (A laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Durgesh Kumar Pandey
- Plant Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, CSIR-CIMAP) PO CIMAP (A laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Swati Upadhyay
- Plant Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, CSIR-CIMAP) PO CIMAP (A laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Ujjal J Phukan
- Plant Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, CSIR-CIMAP) PO CIMAP (A laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Rakesh Kumar Shukla
- Plant Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, CSIR-CIMAP) PO CIMAP (A laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Yamauchi T, Sumi K, Morishita H, Nomura Y. Root anatomical plasticity contributes to the different adaptive responses of two Phragmites species to water-deficit and low-oxygen conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23231. [PMID: 38479793 DOI: 10.1071/fp23231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The runner reed (Phragmites japonica ) is the dominant species on riverbanks, whereas the common reed (Phragmites australis ) thrives in continuously flooded areas. Here, we aimed to identify the key root anatomical traits that determine the different adaptative responses of the two Phragmites species to water-deficit and low-oxygen conditions. Growth measurements revealed that P . japonica tolerated high osmotic conditions, whereas P . australis preferred low-oxygen conditions. Root anatomical analysis revealed that the ratios of the cortex to stele area and aerenchyma (gas space) to cortex area in both species increased under low-oxygen conditions. However, a higher ratio of cortex to stele area in P . australis resulted in a higher ratio of aerenchyma to stele, which includes xylem vessels that are essential for water and nutrient uptakes. In contrast, a lower ratio of cortex to stele area in P . japonica could be advantageous for efficient water uptake under high-osmotic conditions. In addition to the ratio of root tissue areas, rigid outer apoplastic barriers composed of a suberised exodermis may contribute to the adaptation of P . japonica and P . australis to water-deficit and low-oxygen conditions, respectively. Our results suggested that root anatomical plasticity is essential for plants to adapt and respond to different soil moisture levels.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, Japan
| | - Kurumi Sumi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hiromitsu Morishita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | | |
Collapse
|
7
|
Qin H, Xiao M, Li Y, Huang R. Ethylene Modulates Rice Root Plasticity under Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:432. [PMID: 38337965 PMCID: PMC10857340 DOI: 10.3390/plants13030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Plants live in constantly changing environments that are often unfavorable or stressful. Root development strongly affects plant growth and productivity, and the developmental plasticity of roots helps plants to survive under abiotic stress conditions. This review summarizes the progress being made in understanding the regulation of the phtyohormone ethylene in rice root development in response to abiotic stresses, highlighting the complexity associated with the integration of ethylene synthesis and signaling in root development under adverse environments. Understanding the molecular mechanisms of ethylene in regulating root architecture and response to environmental signals can contribute to the genetic improvement of crop root systems, enhancing their adaptation to stressful environmental conditions.
Collapse
Affiliation(s)
- Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (R.H.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Minggang Xiao
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China;
| | - Yuxiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (R.H.)
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (R.H.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| |
Collapse
|
8
|
Moreno S, Bedada G, Rahimi Y, Ingvarsson PK, Westerbergh A, Lundquist PO. Response to Waterlogging Stress in Wild and Domesticated Accessions of Timothy ( Phleum pratense) and Its Relatives P. alpinum and P. nodosum. PLANTS (BASEL, SWITZERLAND) 2023; 12:4033. [PMID: 38068669 PMCID: PMC10708118 DOI: 10.3390/plants12234033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2024]
Abstract
Timothy (Phleum pratense) is a cool-season perennial forage grass widely grown for silage and hay production in northern regions. Climate change scenarios predict an increase in extreme weather events with fluctuating periods of high rainfall, requiring new varieties adapted to waterlogging (WL). Wild accessions could serve as germplasm for breeding, and we evaluated the responses of 11 wild and 8 domesticated accessions of timothy, P. nodosum and P. alpinum from different locations in northern Europe. Young plants at tillering stage were exposed to WL for 21 days in a greenhouse, and responses in growth allocation and root anatomy were studied. All accessions produced adventitious roots and changed allocation of growth between shoot and root as a response to WL, but the magnitude of these responses varied among species and among accessions. P. pratense responded less in these traits in response to WL than the other two species. The ability to form aerenchyma in the root cortex in response to WL was found for all species and also varied among species and among accessions, with the highest induction in P. pratense. Interestingly, some accessions were able to maintain and even increase root growth, producing more leaves and tillers, while others showed a reduction in the root system. Shoot dry weight (SDW) was not significantly affected by WL, but some accessions showed different and significant responses in the rate of production of leaves and tillers. Overall correlations between SDW and aerenchyma and between SDW and adventitious root formation were found. This study identified two wild timothy accessions and one wild P. nodosum accession based on shoot and root system growth, aerenchyma formation and having a root anatomy considered to be favorable for WL tolerance. These accessions are interesting genetic resources and candidates for development of climate-resilient timothy varieties.
Collapse
Affiliation(s)
| | | | | | | | | | - Per-Olof Lundquist
- Linnean Centre for Plant Biology, Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (S.M.); (G.B.); (Y.R.); (P.K.I.); (A.W.)
| |
Collapse
|
9
|
Aslam A, Mahmood A, Ur-Rehman H, Li C, Liang X, Shao J, Negm S, Moustafa M, Aamer M, Hassan MU. Plant Adaptation to Flooding Stress under Changing Climate Conditions: Ongoing Breakthroughs and Future Challenges. PLANTS (BASEL, SWITZERLAND) 2023; 12:3824. [PMID: 38005721 PMCID: PMC10675391 DOI: 10.3390/plants12223824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
Climate-change-induced variations in temperature and rainfall patterns are a serious threat across the globe. Flooding is the foremost challenge to agricultural productivity, and it is believed to become more intense under a changing climate. Flooding is a serious form of stress that significantly reduces crop yields, and future climatic anomalies are predicted to make the problem even worse in many areas of the world. To cope with the prevailing flooding stress, plants have developed different morphological and anatomical adaptations in their roots, aerenchyma cells, and leaves. Therefore, researchers are paying more attention to identifying developed and adopted molecular-based plant mechanisms with the objective of obtaining flooding-resistant cultivars. In this review, we discuss the various physiological, anatomical, and morphological adaptations (aerenchyma cells, ROL barriers (redial O2 loss), and adventitious roots) and the phytohormonal regulation in plants under flooding stress. This review comprises ongoing innovations and strategies to mitigate flooding stress, and it also provides new insights into how this knowledge can be used to improve productivity in the scenario of a rapidly changing climate and increasing flood intensity.
Collapse
Affiliation(s)
- Amna Aslam
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (A.A.); (H.U.-R.)
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Hafeez Ur-Rehman
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (A.A.); (H.U.-R.)
| | - Cunwu Li
- Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Institute of Water Resources Research, Nanning 530023, China; (C.L.); (J.S.)
| | - Xuewen Liang
- Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Institute of Water Resources Research, Nanning 530023, China; (C.L.); (J.S.)
| | - Jinhua Shao
- Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Institute of Water Resources Research, Nanning 530023, China; (C.L.); (J.S.)
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia;
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 61421, Saudi Arabia;
| | - Muhammad Aamer
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.)
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.)
| |
Collapse
|
10
|
Feng F, Wang Q, Jiang K, Lei D, Huang S, Wu H, Yue G, Wang B. Transcriptome analysis reveals ZmERF055 contributes to waterlogging tolerance in sweetcorn. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108087. [PMID: 37847974 DOI: 10.1016/j.plaphy.2023.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Waterlogging is a major disaster damaging crop production. However, most sweetcorn cultivars are not tolerant to waterlogging, which severely threatens their production. In order to understand the genetic mechanisms underlying waterlogging tolerance in sweetcorn, this study conducted a comprehensive investigation of sweetcorn waterlogging tolerance at the levels of physiology, biochemistry, and transcriptome in two sweetcorn CSSLs (chromosome segment substitution lines), D120 and D81. We found that D120 showed increased plant height, root length, root area, adventitious root numbers, antioxidant enzyme activities, and aerenchyma area ratio compared to D81. The transcriptome results showed that 2492 and 2351 differentially expressed genes (DEGs) were obtained at 4 h and 8 h of waterlogging treatment, respectively. Genes involved in reactive oxygen species (ROS) homeostasis, photosynthesis, and alcohol fermentation are sensitive in the waterlogging tolerant genotype D120, resulting in enhanced ROS scavenging ability, adventitious roots, and aerenchyma formation. Additionally, ethylene-, auxin-, and ABA-related genes exhibited different responses to waterlogging stress in sweetcorn. We integrated transcriptome and differential chromosomal fragments data and identified that ZmERF055 on chromosome 9 was directly involved in waterlogging stress. ZmERF055-overexpressing plants consistently exhibited significantly increased waterlogging tolerance and ROS homeostasis in Arabidopsis. These results offer a network of plant hormone signaling, ROS homeostasis, and energy metabolism co-modulating waterlogging tolerance in sweetcorn. Additionally, the findings support ZmERF055 as a potential ideal target gene in crop breeding to improve plant waterlogging tolerance.
Collapse
Affiliation(s)
- Faqiang Feng
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Kerui Jiang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Dan Lei
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shilin Huang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Huichao Wu
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Gaohong Yue
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, 325006, China.
| | - Bo Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Ning J, Yamauchi T, Takahashi H, Omori F, Mano Y, Nakazono M. Asymmetric auxin distribution establishes a contrasting pattern of aerenchyma formation in the nodal roots of Zea nicaraguensis during gravistimulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1133009. [PMID: 37152158 PMCID: PMC10154625 DOI: 10.3389/fpls.2023.1133009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/28/2023] [Indexed: 05/09/2023]
Abstract
Auxin distribution is essential for determining root developmental patterns. The formation of lateral roots and constitutive aerenchyma, which is a gas space developed through cell death, is regulated by auxin in rice (Oryza sativa). However, it is unclear whether the involvement of auxin in constitutive aerenchyma formation is conserved in other species. In this study, we found that constitutive aerenchyma formation was regulated by auxin in the nodal roots of Zea nicaraguensis, a wild relative of maize (Zea mays ssp. mays) grown naturally on frequently flooded coastal plains. Subsequent gravistimulation (root rotation) experiments showed opposite patterns of aerenchyma and lateral root formation. Lateral root formation on the convex side of rotated roots is known to be stimulated by a transient increase in auxin level in the pericycle. We found that aerenchyma formation was accelerated in the cortex on the concave side of the rotated nodal roots of Z. nicaraguensis. A cortex-specific expression analysis of auxin-responsive genes suggested that the auxin level was higher on the concave side than on the convex side. These results suggest that asymmetric auxin distribution underlies the regulation of aerenchyma and lateral root formation in the nodal roots of Z. nicaraguensis. As aerenchyma reduces the respiratory cost of the roots, constitutive aerenchyma on the concave side of the nodal root may balance resource allocation, thereby contributing to the uptake of water and nutrients by newly formed lateral roots. Our study provides insights into auxin-dependent asymmetric root patterning such as that of gravistimulation and hydropatterning response.
Collapse
Affiliation(s)
- Jiayang Ning
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, Japan
| | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Fumie Omori
- Division of Feed and Livestock Research, National Agriculture and Food Research Organization (NARO) Institute of Livestock and Grassland Science, Nasushiobara, Tochigi, Japan
| | - Yoshiro Mano
- Division of Feed and Livestock Research, National Agriculture and Food Research Organization (NARO) Institute of Livestock and Grassland Science, Nasushiobara, Tochigi, Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
- The University of Western Australia (UWA) School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
12
|
Plant–Microbe Interactions under the Action of Heavy Metals and under the Conditions of Flooding. DIVERSITY 2023. [DOI: 10.3390/d15020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heavy metals and flooding are among the primary environmental factors affecting plants and microorganisms. This review separately considers the impact of heavy metal contamination of soils on microorganisms and plants, on plant and microbial biodiversity, and on plant–microorganism interactions. The use of beneficial microorganisms is considered one of the most promising methods of increasing stress tolerance since plant-associated microbes reduce metal accumulation, so the review focuses on plant–microorganism interactions and their practical application in phytoremediation. The impact of flooding as an adverse environmental factor is outlined. It has been shown that plants and bacteria under flooding conditions primarily suffer from a lack of oxygen and activation of anaerobic microflora. The combined effects of heavy metals and flooding on microorganisms and plants are also discussed. In conclusion, we summarize the combined effects of heavy metals and flooding on microorganisms and plants.
Collapse
|
13
|
Nitrate–Nitrite–Nitric Oxide Pathway: A Mechanism of Hypoxia and Anoxia Tolerance in Plants. Int J Mol Sci 2022; 23:ijms231911522. [PMID: 36232819 PMCID: PMC9569746 DOI: 10.3390/ijms231911522] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O2 deprivation, leading to hypoxia and anoxia in plant tissues. To survive under hypoxia and/or anoxia, plants deploy various mechanisms such as fermentation paths, reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant enzymes, aerenchyma, and adventitious root formation, while nitrate (NO3−), nitrite (NO2−), and nitric oxide (NO) have shown numerous beneficial roles through modulating these mechanisms. Therefore, in this review, we highlight the role of reductive pathways of NO formation which lessen the deleterious effects of oxidative damages and increase the adaptation capacity of plants during hypoxia and anoxia. Meanwhile, the overproduction of NO through reductive pathways during hypoxia and anoxia leads to cellular dysfunction and cell death. Thus, its scavenging or inhibition is equally important for plant survival. As plants are also reported to produce a potent greenhouse gas nitrous oxide (N2O) when supplied with NO3− and NO2−, resembling bacterial denitrification, its role during hypoxia and anoxia tolerance is discussed here. We point out that NO reduction to N2O along with the phytoglobin-NO cycle could be the most important NO-scavenging mechanism that would reduce nitro-oxidative stress, thus enhancing plants’ survival during O2-limited conditions. Hence, understanding the molecular mechanisms involved in reducing NO toxicity would not only provide insight into its role in plant physiology, but also address the uncertainties seen in the global N2O budget.
Collapse
|
14
|
Identification of Functional Genetic Variations Underlying Flooding Tolerance in Brazilian Soybean Genotypes. Int J Mol Sci 2022; 23:ijms231810611. [PMID: 36142529 PMCID: PMC9502317 DOI: 10.3390/ijms231810611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Flooding is a frequent environmental stress that reduces soybean (Glycine max) growth and grain yield in many producing areas in the world, such as, e.g., in the United States, Southeast Asia and Southern Brazil. In these regions, soybean is frequently cultivated in lowland areas by rotating with rice (Oryza sativa), which provides numerous technical, economic and environmental benefits. Given these realities, this work aimed to characterize physiological responses, identify genes differentially expressed under flooding stress in Brazilian soybean genotypes with contrasting flooding tolerance, and select SNPs with potential use for marker-assisted selection. Soybean cultivars TECIRGA 6070 (flooding tolerant) and FUNDACEP 62 (flooding sensitive) were grown up to the V6 growth stage and then flooding stress was imposed. Total RNA was extracted from leaves 24 h after the stress was imposed and sequenced. In total, 421 induced and 291 repressed genes were identified in both genotypes. TECIRGA 6070 presented 284 and 460 genes up- and down-regulated, respectively, under flooding conditions. Of those, 100 and 148 genes were exclusively up- and down-regulated, respectively, in the tolerant genotype. Based on the RNA sequencing data, SNPs in differentially expressed genes in response to flooding stress were identified. Finally, 38 SNPs, located in genes with functional annotation for response to abiotic stresses, were found in TECIRGA 6070 and absent in FUNDACEP 62. To validate them, 22 SNPs were selected for designing KASP assays that were used to genotype a panel of 11 contrasting genotypes with known phenotypes. In addition, the phenotypic and grain yield impacts were analyzed in four field experiments using a panel of 166 Brazilian soybean genotypes. Five SNPs possibly related to flooding tolerance in Brazilian soybean genotypes were identified. The information generated from this research will be useful to develop soybean genotypes adapted to poorly drained soils or areas subject to flooding.
Collapse
|
15
|
Waterlogging Stress Induces Antioxidant Defense Responses, Aerenchyma Formation and Alters Metabolisms of Banana Plants. PLANTS 2022; 11:plants11152052. [PMID: 35956531 PMCID: PMC9370344 DOI: 10.3390/plants11152052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Flooding caused or exacerbated by climate change has threatened plant growth and food production worldwide. The lack of knowledge on how crops respond and adapt to flooding stress imposes a major barrier to enhancing their productivity. Hence, understanding the flooding-responsive mechanisms of crops is indispensable for developing new flooding-tolerant varieties. Here, we examined the banana (Musa acuminata cv. Berangan) responses to soil waterlogging for 1, 3, 5, 7, 14, and 24 days. After waterlogging stress, banana root samples were analyzed for their molecular and biochemical changes. We found that waterlogging treatment induced the formation of adventitious roots and aerenchyma with conspicuous gas spaces. In addition, the antioxidant activities, hydrogen peroxide, and malondialdehyde contents of the waterlogged bananas increased in response to waterlogging stress. To assess the initial response of bananas toward waterlogging stress, we analyzed the transcriptome changes of banana roots. A total of 3508 unigenes were differentially expressed under 1-day waterlogging conditions. These unigenes comprise abiotic stress-related transcription factors, such as ethylene response factors, basic helix-loop-helix, myeloblastosis, plant signal transduction, and carbohydrate metabolisms. The findings of the study provide insight into the complex molecular events of bananas in response to waterlogging stress, which could later help develop waterlogging resilient crops for the future climate.
Collapse
|
16
|
Yamauchi T, Nakazono M. Modeling-based age-dependent analysis reveals the net patterns of ethylene-dependent and -independent aerenchyma formation in rice and maize roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111340. [PMID: 35696932 DOI: 10.1016/j.plantsci.2022.111340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/16/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Plants require oxygen for the functioning of roots, and thus the establishment of a long-distance diffusion path from above-water tissues to the submerged roots is essential to survive flooding. Rice (Oryza sativa) constitutively forms aerenchyma (gas spaces) under aerobic conditions, and induces its formation in response to low-oxygen conditions. Constitutive aerenchyma formation in rice roots is regulated by the phytohormone auxin, whereas ethylene stimulates inducible aerenchyma formation. However, the net patterns of the ethylene-dependent and -independent (auxin-dependent) aerenchyma formation remain unclear. In the present study, we used a modeling approach to determine age-dependent aerenchyma formation in the wild-type rice and reduced culm number 1 mutant, in which ethylene production is reduced, to reveal the net patterns of ethylene-dependent and -independent aerenchyma formation. Subsequent comparison of age-dependent aerenchyma formation between rice and maize roots suggested that more rapid induction of ethylene-dependent aerenchyma formation and more aerenchyma in rice roots are essential to achieve efficient oxygen diffusion under low-oxygen conditions. Moreover, rice roots showed rapid increase in the expression levels of ethylene biosynthesis and responsive genes, suggesting that the local ethylene production at an early time point after root-cell emergence contributes to the rapid induction of the ethylene-dependent aerenchyma formation in rice. DATA AVAILABILITY: All data included in this study are available upon request by contact with the corresponding author.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
17
|
Wang X, Komatsu S. The Role of Phytohormones in Plant Response to Flooding. Int J Mol Sci 2022; 23:6383. [PMID: 35742828 PMCID: PMC9223812 DOI: 10.3390/ijms23126383] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
Climatic variations influence the morphological, physiological, biological, and biochemical states of plants. Plant responses to abiotic stress include biochemical adjustments, regulation of proteins, molecular mechanisms, and alteration of post-translational modifications, as well as signal transduction. Among the various abiotic stresses, flooding stress adversely affects the growth of plants, including various economically important crops. Biochemical and biological techniques, including proteomic techniques, provide a thorough understanding of the molecular mechanisms during flooding conditions. In particular, plants can cope with flooding conditions by embracing an orchestrated set of morphological adaptations and physiological adjustments that are regulated by an elaborate hormonal signaling network. With the help of these findings, the main objective is to identify plant responses to flooding and utilize that information for the development of flood-tolerant plants. This review provides an insight into the role of phytohormones in plant response mechanisms to flooding stress, as well as different mitigation strategies that can be successfully administered to improve plant growth during stress exposure. Ultimately, this review will expedite marker-assisted genetic enhancement studies in crops for developing high-yield lines or varieties with flood tolerance.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
18
|
Chen H, Wu Q, Ni M, Chen C, Han C, Yu F. Transcriptome Analysis of Endogenous Hormone Response Mechanism in Roots of Styrax tonkinensis Under Waterlogging. FRONTIERS IN PLANT SCIENCE 2022; 13:896850. [PMID: 35734248 PMCID: PMC9208659 DOI: 10.3389/fpls.2022.896850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 06/02/2023]
Abstract
As a promising oil species, Styrax tonkinensis has great potential as a biofuel due to an excellent fatty acid composition. However, frequent flooding caused by global warming and the low tolerance of the species to waterlogging largely halted its expansion in waterlogged areas. To explore endogenous hormones and phytohormone-related molecular response mechanism of S. tonkinensis under waterlogging, we determined 1-aminocyclopropane-1-carboxylic acid (ACC) and three phytohormone content (ABA, abscisic acid; SA, salicylic acid; IAA, indole-3-acetic acid) and analyzed the transcriptome of its seedlings under waterlogged condition of 3-5 cm. The sample collecting time was 0, 9, 24, and 72 h, respectively. It was concluded that ACC presented an upward trend, but other plant hormones showed a downward trend from 0 to 72 h under waterlogging stress. A total of 84,601 unigenes were assembled with a total length of 81,389,823 bp through transcriptome analysis. The GO enrichment analysis of total differentially expressed genes (DEGs) revealed that 4,637 DEGs, 8,238 DEGs, and 7,146 DEGs were assigned into three main GO functional categories in 9 vs. 0 h, 24 vs. 0 h, and 72 vs. 0 h, respectively. We also discovered several DEGs involved in phytohormone synthesis pathway and plant hormone signaling pathway. It was concluded that the decreased transcription of PYL resulted in the weak ABA signal transduction pathway. Moreover, decreased SA content caused by the low-expressed PAL might impact the resistance of S. tonkinensis seedlings under waterlogging stress. Our research may provide a scientific basis for the understanding of the endogenous hormone response mechanism of S. tonkinensis to waterlogging and lay a foundation for further exploration of the waterlogging defect resistance genes of S. tonkinensis and improving its resistance to waterlogging stress.
Collapse
Affiliation(s)
- Hong Chen
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Qikui Wu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Ming Ni
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Chen Chen
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Chao Han
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Fangyuan Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| |
Collapse
|
19
|
Su S, Zhu T, Su J, Li J, Zhao Q, Kang X, Zheng R. Transcriptome analysis of gibberellins and abscisic acid during the flooding response in Fokienia hodginsii. PLoS One 2022; 17:e0263530. [PMID: 35148337 PMCID: PMC8836328 DOI: 10.1371/journal.pone.0263530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/21/2022] [Indexed: 11/19/2022] Open
Abstract
Flooding is one of the main abiotic stresses suffered by plants. Plants respond to flooding stress through regulating their morphological structure, endogenous hormone biosynthesis, and genetic signaling transduction. We previously found that Fokienia hodginsii varieties originating from Gutian exhibited typical flooding tolerance traits compared to three other provenances (Yongzhou, Sanming, Nanping), expressed as increased height, longer diameter at breast height (DBH), and smaller branch angle. Herein, the changes in endogenous gibberellins (GA) and abscisic acid (ABA) contents were measured under flooding stress in F. hodginsii, and ABA was found to decrease, whereas GA increased with time. Furthermore, the GA and ABA contents of the varieties originating from Gutian and the three other provenances were measured, and the results indicated that F. hodginsii from Gutian could respond more rapidly to flooding stress. The transcriptomes of the varieties originating from Gutian and the other three provenances were compared using RNA sequencing to explore the underlying genetic mechanisms of the flood-resistant phenotypes in F. hodginsii. The results indicated that two flood-stress response genes (TRINITY_DN142_c0_g2 and TRINITY_DN7657_c0_g1) were highly related to both the ABA and GA response in F. hodginsii.
Collapse
Affiliation(s)
- Shunde Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China Key Laboratory of Forest Culture and Forest Product Processing Utilization of Fujian Province, Fuzhou, China
| | - Tengfei Zhu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangyang Kang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Renhua Zheng
- Key Laboratory of Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China Key Laboratory of Forest Culture and Forest Product Processing Utilization of Fujian Province, Fuzhou, China
| |
Collapse
|
20
|
Huang X, Shabala L, Zhang X, Zhou M, Voesenek LACJ, Hartman S, Yu M, Shabala S. Cation transporters in cell fate determination and plant adaptive responses to a low-oxygen environment. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:636-645. [PMID: 34718542 DOI: 10.1093/jxb/erab480] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Soil flooding creates low-oxygen environments in root zones and thus severely affects plant growth and productivity. Plants adapt to low-oxygen environments by a suite of orchestrated metabolic and anatomical alterations. Of these, formation of aerenchyma and development of adventitious roots are considered very critical to enable plant performance in waterlogged soils. Both traits have been firmly associated with stress-induced increases in ethylene levels in root tissues that operate upstream of signalling pathways. Recently, we used a bioinformatic approach to demonstrate that several Ca2+ and K+ -permeable channels from KCO, AKT, and TPC families could also operate in low oxygen sensing in Arabidopsis. Here we argue that low-oxygen-induced changes to cellular ion homeostasis and operation of membrane transporters may be critical for cell fate determination and formation of the lysigenous aerenchyma in plant roots and shaping the root architecture and adventitious root development in grasses. We summarize the existing evidence for a causal link between tissue-specific changes in oxygen concentration, intracellular Ca2+ and K+ homeostasis, and reactive oxygen species levels, and their role in conferring those two major traits enabling plant adaptation to a low-oxygen environment. We conclude that, for efficient operation, plants may rely on several complementary signalling pathway mechanisms that operate in concert and 'fine-tune' each other. A better understanding of this interaction may create additional and previously unexplored opportunities to crop breeders to improve cereal crop yield losses to soil flooding.
Collapse
Affiliation(s)
- Xin Huang
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528041, China
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001, Australia
| | - Xuechen Zhang
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001, Australia
| | | | - Sjon Hartman
- Plant Ecophysiology, Utrecht University, 3584 CH Utrecht, The Netherlands
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528041, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528041, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001, Australia
| |
Collapse
|
21
|
Yamauchi T, Nakazono M. Mechanisms of lysigenous aerenchyma formation under abiotic stress. TRENDS IN PLANT SCIENCE 2022; 27:13-15. [PMID: 34810105 DOI: 10.1016/j.tplants.2021.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 05/25/2023]
Abstract
Lysigenous aerenchyma is a gas space created by cortical cell death that enables efficient oxygen diffusion within plants and reduces the energy costs associated with root cells. Recent studies have demonstrated the benefits of aerenchyma formation under flooding, drought, and nutrient deficiency, although further studies will be necessary to understand the mechanisms involved.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Japan.
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan; School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, Australia.
| |
Collapse
|
22
|
Sharma S, Bhatt U, Sharma J, Darkalt A, Mojski J, Soni V. Effect of different waterlogging periods on biochemistry, growth, and chlorophyll a fluorescence of Arachis hypogaea L. FRONTIERS IN PLANT SCIENCE 2022; 13:1006258. [PMID: 36438100 PMCID: PMC9686000 DOI: 10.3389/fpls.2022.1006258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 05/16/2023]
Abstract
Peanut is among the main oil crops in India with huge economic importance. The unpredictable rainy season during the growing time of peanuts causes waterlogging in peanut fields. Waterlogging triggers major environmental limitations that negatively affect the growth, physiology, and development of peanuts. Thus, the export and production of peanuts are severely affected by waterlogging. Therefore, the understanding of metabolic mechanisms under waterlogging is important to future water-stress tolerance breeding in peanuts. This study aimed to evaluate how peanuts responded to various waterlogging conditions in terms of their development, metabolic processes, and chlorophyll fluorescence characteristics. The evaluations were carried out at different stages of peanut variety DH-86 treated with waterlogging. The peanut plants were subjected to different waterlogging periods of 20, 40, 60, 80, and 100 days. The growth parameters including total dry mass, total leaf area, and total leaves number were calculated in all treatments. The phenomenological and specific energy fluxes and maximum photosystem II efficiency (FV/Fm) were also determined. The measurements were done statistically using PCA, G-Means clustering, and correlation analysis to explore the interaction between different physiological parameters. The waterlogging for 100 days caused a significant reduction in the total number of leaves, dry mass, and total leaf area. The most sensitive parameters are specific and phenomenological energy fluxes and Fv/Fm, which notably decreased as waterlogging duration increased. The results indicated the growth and physiological performance of the peanut cv. DH-86 was affected significantly due to waterlogging and the interaction between all these parameters in waterlogging. This research focused on how peanuts respond to waterlogging stress and provides the basis for future plant breeding efforts to improve peanut waterlogging tolerance, especially in rainy regions. This will improve the sustainability of the entire peanut industry.
Collapse
Affiliation(s)
- Shubhangani Sharma
- Plant Bioenergetics and Biotechnology Laboratory, Mohanlal Sukhadia University, Udaipur, India
| | - Upma Bhatt
- Plant Bioenergetics and Biotechnology Laboratory, Mohanlal Sukhadia University, Udaipur, India
| | - Jyotshana Sharma
- Plant Bioenergetics and Biotechnology Laboratory, Mohanlal Sukhadia University, Udaipur, India
| | - Ahmad Darkalt
- Department of Renewable Natural Resources & Ecology, Engineering Agricultural Faculty, Aleppo University, Aleppo, Syria
| | - Jacek Mojski
- Twój Swiat Jacek Mojski, Lukow, Poland
- Fundacja Zielona Infrastruktura, Lukow, Poland
| | - Vineet Soni
- Plant Bioenergetics and Biotechnology Laboratory, Mohanlal Sukhadia University, Udaipur, India
- *Correspondence: Vineet Soni
| |
Collapse
|
23
|
Chen H, Bullock DA, Alonso JM, Stepanova AN. To Fight or to Grow: The Balancing Role of Ethylene in Plant Abiotic Stress Responses. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010033. [PMID: 35009037 PMCID: PMC8747122 DOI: 10.3390/plants11010033] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 05/04/2023]
Abstract
Plants often live in adverse environmental conditions and are exposed to various stresses, such as heat, cold, heavy metals, salt, radiation, poor lighting, nutrient deficiency, drought, or flooding. To adapt to unfavorable environments, plants have evolved specialized molecular mechanisms that serve to balance the trade-off between abiotic stress responses and growth. These mechanisms enable plants to continue to develop and reproduce even under adverse conditions. Ethylene, as a key growth regulator, is leveraged by plants to mitigate the negative effects of some of these stresses on plant development and growth. By cooperating with other hormones, such as jasmonic acid (JA), abscisic acid (ABA), brassinosteroids (BR), auxin, gibberellic acid (GA), salicylic acid (SA), and cytokinin (CK), ethylene triggers defense and survival mechanisms thereby coordinating plant growth and development in response to abiotic stresses. This review describes the crosstalk between ethylene and other plant hormones in tipping the balance between plant growth and abiotic stress responses.
Collapse
|
24
|
Karlova R, Boer D, Hayes S, Testerink C. Root plasticity under abiotic stress. PLANT PHYSIOLOGY 2021; 187:1057-1070. [PMID: 34734279 PMCID: PMC8566202 DOI: 10.1093/plphys/kiab392] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/25/2021] [Indexed: 05/08/2023]
Abstract
Abiotic stresses increasingly threaten existing ecological and agricultural systems across the globe. Plant roots perceive these stresses in the soil and adapt their architecture accordingly. This review provides insights into recent discoveries showing the importance of root system architecture (RSA) and plasticity for the survival and development of plants under heat, cold, drought, salt, and flooding stress. In addition, we review the molecular regulation and hormonal pathways involved in controlling RSA plasticity, main root growth, branching and lateral root growth, root hair development, and formation of adventitious roots. Several stresses affect root anatomy by causing aerenchyma formation, lignin and suberin deposition, and Casparian strip modulation. Roots can also actively grow toward favorable soil conditions and avoid environments detrimental to their development. Recent advances in understanding the cellular mechanisms behind these different root tropisms are discussed. Understanding root plasticity will be instrumental for the development of crops that are resilient in the face of abiotic stress.
Collapse
Affiliation(s)
- Rumyana Karlova
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Damian Boer
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Scott Hayes
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Author for communication:
| |
Collapse
|
25
|
Leftley N, Banda J, Pandey B, Bennett M, Voß U. Uncovering How Auxin Optimizes Root Systems Architecture in Response to Environmental Stresses. Cold Spring Harb Perspect Biol 2021; 13:a040014. [PMID: 33903159 PMCID: PMC8559545 DOI: 10.1101/cshperspect.a040014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since colonizing land, plants have developed mechanisms to tolerate a broad range of abiotic stresses that include flooding, drought, high salinity, and nutrient limitation. Roots play a key role acclimating plants to these as their developmental plasticity enables them to grow toward more favorable conditions and away from limiting or harmful stresses. The phytohormone auxin plays a key role translating these environmental signals into developmental outputs. This is achieved by modulating auxin levels and/or signaling, often through cross talk with other hormone signals like abscisic acid (ABA) or ethylene. In our review, we discuss how auxin controls root responses to water, osmotic and nutrient-related stresses, and describe how the synthesis, degradation, transport, and response of this key signaling hormone helps optimize root architecture to maximize resource acquisition while limiting the impact of abiotic stresses.
Collapse
Affiliation(s)
- Nicola Leftley
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Jason Banda
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Bipin Pandey
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Malcolm Bennett
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Ute Voß
- Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom
| |
Collapse
|
26
|
Kacprzyk J, Burke R, Schwarze J, McCabe PF. Plant programmed cell death meets auxin signalling. FEBS J 2021; 289:1731-1745. [PMID: 34543510 DOI: 10.1111/febs.16210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022]
Abstract
Both auxin signalling and programmed cell death (PCD) are essential components of a normally functioning plant. Auxin underpins plant growth and development, as well as regulating plant defences against environmental stresses. PCD, a genetically controlled pathway for selective elimination of redundant, damaged or infected cells, is also a key element of many developmental processes and stress response mechanisms in plants. An increasing body of evidence suggests that auxin signalling and PCD regulation are often connected. While generally auxin appears to suppress cell death, it has also been shown to promote PCD events, most likely via stimulation of ethylene biosynthesis. Intriguingly, certain cells undergoing PCD have also been suggested to control the distribution of auxin in plant tissues, by either releasing a burst of auxin or creating an anatomical barrier to auxin transport and distribution. These recent findings indicate novel roles of localized PCD events in the context of plant development such as control of root architecture, or tissue regeneration following injury, and suggest exciting possibilities for incorporation of this knowledge into crop improvement strategies.
Collapse
Affiliation(s)
- Joanna Kacprzyk
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| | - Rory Burke
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| | - Johanna Schwarze
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| | - Paul F McCabe
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Kawakatsu T, Teramoto S, Takayasu S, Maruyama N, Nishijima R, Kitomi Y, Uga Y. The transcriptomic landscapes of rice cultivars with diverse root system architectures grown in upland field conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1177-1190. [PMID: 33751672 DOI: 10.1101/2020.12.11.421685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 05/26/2023]
Abstract
Root system architecture affects plant drought resistance and other key agronomic traits such as lodging. However, although phenotypic and genomic variation has been extensively analyzed, few field studies have integrated phenotypic and transcriptomic information, particularly for below-ground traits such as root system architecture. Here, we report the phenotypic and transcriptomic landscape of 61 rice (Oryza sativa) accessions with highly diverse below-ground traits grown in an upland field. We found that four principal components explained the phenotypic variation and that accessions could be classified into four subpopulations (indica, aus, japonica and admixed) based on their tiller numbers and crown root diameters. Transcriptome analysis revealed that differentially expressed genes associated with specific subpopulations were enriched with stress response-related genes, suggesting that subpopulations have distinct stress response mechanisms. Root growth was negatively correlated with auxin-inducible genes, suggesting an association between auxin signaling and upland field conditions. A negative correlation between crown root diameter and stress response-related genes suggested that thicker crown root diameter is associated with resistance to mild drought stress. Finally, co-expression network analysis implemented with DNA affinity purification followed by sequencing analysis identified phytohormone signaling networks and key transcription factors negatively regulating crown root diameter. Our datasets provide a useful resource for understanding the genomic and transcriptomic basis of phenotypic variation under upland field conditions.
Collapse
Affiliation(s)
- Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture & Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
| | - Shota Teramoto
- Institute of Crop Sciences, National Agriculture & Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - Satoko Takayasu
- Institute of Crop Sciences, National Agriculture & Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - Natsuko Maruyama
- Institute of Crop Sciences, National Agriculture & Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
- Department of Anatomy and Structural Biology, Faculty of Medicine Graduate School, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Ryo Nishijima
- Institute of Agrobiological Sciences, National Agriculture & Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
| | - Yuka Kitomi
- Institute of Crop Sciences, National Agriculture & Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yusaku Uga
- Institute of Crop Sciences, National Agriculture & Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
28
|
Kawakatsu T, Teramoto S, Takayasu S, Maruyama N, Nishijima R, Kitomi Y, Uga Y. The transcriptomic landscapes of rice cultivars with diverse root system architectures grown in upland field conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1177-1190. [PMID: 33751672 DOI: 10.1111/tpj.15226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Root system architecture affects plant drought resistance and other key agronomic traits such as lodging. However, although phenotypic and genomic variation has been extensively analyzed, few field studies have integrated phenotypic and transcriptomic information, particularly for below-ground traits such as root system architecture. Here, we report the phenotypic and transcriptomic landscape of 61 rice (Oryza sativa) accessions with highly diverse below-ground traits grown in an upland field. We found that four principal components explained the phenotypic variation and that accessions could be classified into four subpopulations (indica, aus, japonica and admixed) based on their tiller numbers and crown root diameters. Transcriptome analysis revealed that differentially expressed genes associated with specific subpopulations were enriched with stress response-related genes, suggesting that subpopulations have distinct stress response mechanisms. Root growth was negatively correlated with auxin-inducible genes, suggesting an association between auxin signaling and upland field conditions. A negative correlation between crown root diameter and stress response-related genes suggested that thicker crown root diameter is associated with resistance to mild drought stress. Finally, co-expression network analysis implemented with DNA affinity purification followed by sequencing analysis identified phytohormone signaling networks and key transcription factors negatively regulating crown root diameter. Our datasets provide a useful resource for understanding the genomic and transcriptomic basis of phenotypic variation under upland field conditions.
Collapse
Affiliation(s)
- Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture & Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
| | - Shota Teramoto
- Institute of Crop Sciences, National Agriculture & Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - Satoko Takayasu
- Institute of Crop Sciences, National Agriculture & Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - Natsuko Maruyama
- Institute of Crop Sciences, National Agriculture & Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
- Department of Anatomy and Structural Biology, Faculty of Medicine Graduate School, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Ryo Nishijima
- Institute of Agrobiological Sciences, National Agriculture & Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
| | - Yuka Kitomi
- Institute of Crop Sciences, National Agriculture & Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yusaku Uga
- Institute of Crop Sciences, National Agriculture & Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
29
|
Transcriptome analysis of upland cotton revealed novel pathways to scavenge reactive oxygen species (ROS) responding to Na 2SO 4 tolerance. Sci Rep 2021; 11:8670. [PMID: 33883626 PMCID: PMC8060397 DOI: 10.1038/s41598-021-87999-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
Salinity is an extensive and adverse environmental stress to crop plants across the globe, and a major abiotic constraint responsible for limited crop production threatening the crop security. Soil salinization is a widespread problem across the globe, threatening the crop production and food security. Salinity impairs plant growth and development via reduction in osmotic potential, cytotoxicity due to excessive uptake of ions such as sodium (Na+) and chloride (Cl-), and nutritional imbalance. Cotton, being the most cultivated crop on saline-alkaline soils, it is of great importance to elucidate the mechanisms involved in Na2SO4 tolerance which is still lacking in upland cotton. Zhong 9835, a Na2SO4 resistant cultivar was screened for transcriptomic studies through various levels of Na2SO4 treatments, which results into identification of 3329 differentially expressed genes (DEGs) in roots, stems and leave at 300 mM Na2SO4 stress till 12 h in compared to control. According to gene functional annotation analysis, genes involved in reactive oxygen species (ROS) scavenging system including osmotic stress and ion toxicity were significantly up-regulated, especially GST (glutathione transferase). In addition, analysis for sulfur metabolism, results in to identification of two rate limiting enzymes [APR (Gh_D05G1637) and OASTL (Gh_A13G0863)] during synthesis of GSH from SO42-. Furthermore, we also observed a crosstalk of the hormones and TFs (transcription factors) enriched in hormone signal transduction pathway. Genes related to IAA exceeds the rest of hormones followed by ubiquitin related genes which are greater than TFs. The analysis of the expression profiles of diverse tissues under Na2SO4 stress and identification of relevant key hub genes in a network crosstalk will provide a strong foundation and valuable clues for genetic improvements of cotton in response to various salt stresses.
Collapse
|
30
|
Yamauchi T, Noshita K, Tsutsumi N. Climate-smart crops: key root anatomical traits that confer flooding tolerance. BREEDING SCIENCE 2021; 71:51-61. [PMID: 33762876 PMCID: PMC7973492 DOI: 10.1270/jsbbs.20119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/14/2020] [Indexed: 05/05/2023]
Abstract
Plants require water, but a deficit or excess of water can negatively impact their growth and functioning. Soil flooding, in which root-zone is filled with excess water, restricts oxygen diffusion into the soil. Global climate change is increasing the risk of crop yield loss caused by flooding, and the development of flooding tolerant crops is urgently needed. Root anatomical traits are essential for plants to adapt to drought and flooding, as they determine the balance between the rates of water and oxygen transport. The stele contains xylem and the cortex contains aerenchyma (gas spaces), which respectively contribute to water uptake from the soil and oxygen supply to the roots; this implies that there is a trade-off between the ratio of cortex and stele sizes with respect to adaptation to drought or flooding. In this review, we analyze recent advances in the understanding of root anatomical traits that confer drought and/or flooding tolerance to plants and illustrate the trade-off between cortex and stele sizes. Moreover, we introduce the progress that has been made in modelling and fully automated analyses of root anatomical traits and discuss how key root anatomical traits can be used to improve crop tolerance to soil flooding.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Koji Noshita
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
- Department of Biology, Kyushu University, Fukuoka, Fukuoka 819–0395, Japan
- Plant Frontier Research Center, Kyushu University, Fukuoka, Fukuoka 819–0395, Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
31
|
Loreti E, Striker GG. Plant Responses to Hypoxia: Signaling and Adaptation. PLANTS 2020; 9:plants9121704. [PMID: 33287421 PMCID: PMC7761823 DOI: 10.3390/plants9121704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
Molecular oxygen deficiency leads to altered cellular metabolism and can dramatically reduce crop productivity. Nearly all crops are negatively affected by lack of oxygen (hypoxia) due to adverse environmental conditions such as excessive rain and soil waterlogging. Extensive efforts to fully understand how plants sense oxygen deficiency and their ability to respond using different strategies are crucial to increase hypoxia tolerance. It was estimated that 57% of crop losses are due to floods [1]. Progress in our understanding has been significant in the last years. This topic deserved more attention from the academic community; therefore, we have compiled a Special Issue including four reviews and thirteen research articles reflecting the advancements made thus far.[...].
Collapse
Affiliation(s)
- Elena Loreti
- Institute of Agricultural Biology and Biotechnology, CNR, National Research Council, Via Moruzzi, 56124 Pisa, Italy
- Correspondence: (E.L.); (G.G.S.)
| | - Gustavo G. Striker
- IFEVA, CONICET, Cátedra de Fisiología Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
- Correspondence: (E.L.); (G.G.S.)
| |
Collapse
|
32
|
Loreti E, Perata P. The Many Facets of Hypoxia in Plants. PLANTS 2020; 9:plants9060745. [PMID: 32545707 PMCID: PMC7356549 DOI: 10.3390/plants9060745] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Plants are aerobic organisms that require oxygen for their respiration. Hypoxia arises due to the insufficient availability of oxygen, and is sensed by plants, which adapt their growth and metabolism accordingly. Plant hypoxia can occur as a result of excessive rain and soil waterlogging, thus constraining plant growth. Increasing research on hypoxia has led to the discovery of the mechanisms that enable rice to be productive even when partly submerged. The identification of Ethylene Response Factors (ERFs) as the transcription factors that enable rice to survive submergence has paved the way to the discovery of oxygen sensing in plants. This, in turn has extended the study of hypoxia to plant development and plant–microbe interaction. In this review, we highlight the many facets of plant hypoxia, encompassing stress physiology, developmental biology and plant pathology.
Collapse
Affiliation(s)
- Elena Loreti
- Institute of Agricultural Biology and Biotechnology, CNR, National Research Council, Via Moruzzi, 56124 Pisa, Italy
- Correspondence: (E.L.); (P.P.)
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Giudiccioni 10, 56010 San Giuliano Terme, 56124 Pisa, Italy
- Correspondence: (E.L.); (P.P.)
| |
Collapse
|
33
|
Pan J, Sharif R, Xu X, Chen X. Mechanisms of Waterlogging Tolerance in Plants: Research Progress and Prospects. FRONTIERS IN PLANT SCIENCE 2020; 11:627331. [PMID: 33643336 PMCID: PMC7902513 DOI: 10.3389/fpls.2020.627331] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/30/2020] [Indexed: 05/19/2023]
Abstract
Waterlogging is one of the main abiotic stresses suffered by plants. Inhibition of aerobic respiration during waterlogging limits energy metabolism and restricts growth and a wide range of developmental processes, from seed germination to vegetative growth and further reproductive growth. Plants respond to waterlogging stress by regulating their morphological structure, energy metabolism, endogenous hormone biosynthesis, and signaling processes. In this updated review, we systematically summarize the changes in morphological structure, photosynthesis, respiration, reactive oxygen species damage, plant hormone synthesis, and signaling cascades after plants were subjected to waterlogging stress. Finally, we propose future challenges and research directions in this field.
Collapse
Affiliation(s)
- Jiawei Pan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Rahat Sharif
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- *Correspondence: Xuehao Chen,
| |
Collapse
|