1
|
Abdelaal K, Alaskar A, Hafez Y. Effect of arbuscular mycorrhizal fungi on physiological, bio-chemical and yield characters of wheat plants (Triticum aestivum L.) under drought stress conditions. BMC PLANT BIOLOGY 2024; 24:1119. [PMID: 39581979 PMCID: PMC11587776 DOI: 10.1186/s12870-024-05824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
This experiment was conducted to study the effect of inoculation with arbuscular mycorrhizal fungi (AMF) as an ecofriendly strategy on physiological, biochemical and yield characters of wheat plants. Our results showed a significant decrease in chlorophyll a and b as well as the maximum quantum efficiency of PSII (Fv/Fm) in wheat plants under drought conditions compared to control in the two seasons. Drought stress significantly reduced relative water content (RWC%) in the stressed plants compared with the control. Additionally, 1000 grain weight (g) and biological yield (t h- 1) were reduced significantly under drought stress. Furthermore, hydrogen peroxide (H2O2), Superoxide (O2-), electrolyte leakage (EL%), lipid peroxidation (MDA) and total phenolic compounds were increased significantly in the stressed plants under drought conditions. However, wheat plants treated with AMF displayed a significant increase in chlorophyll concentrations and the maximum quantum efficiency of PSII as well as RWC% in the stressed wheat plants when compared with the stressed untreated plants. Our findings also indicated that application of AMF led to regulate the antioxidant enzymes activity, proline content and decrease hydrogen peroxide (H2O2), Superoxide (O2-), electrolyte leakage (EL%) and lipid peroxidation (MDA) levels in the drought stressed wheat plants. Eventually, application of AMF as ecofriendly approach can improve wheat growth and grain yield of wheat plants by mitigating the adverse effects of drought stress. These results provide evidence for the important role of AMF in agricultural production and maximizing wheat grain yield.
Collapse
Affiliation(s)
- Khaled Abdelaal
- EPCRS Excellence Center, Plant Pathology and Biotechnology Laboratory, Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh, 33516, Egypt.
| | - Abdulaziz Alaskar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Yaser Hafez
- Department of Pathophysiology, Plant Protection Institute, Central for Agricultural Research, Budapest, Hungary
| |
Collapse
|
2
|
Tian X, Hu M, Yang J, Yin Y, Fang W. Ultraviolet-B Radiation Stimulates Flavonoid Biosynthesis and Antioxidant Systems in Buckwheat Sprouts. Foods 2024; 13:3650. [PMID: 39594066 PMCID: PMC11594177 DOI: 10.3390/foods13223650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Abiotic stress not only elevates the synthesis of secondary metabolites in plant sprouts but also boosts their antioxidant capacity. In this study, the mechanisms of flavonoid biosynthesis and antioxidant systems in buckwheat sprouts exposed to ultraviolet-B (UV-B) radiation were investigated. The findings revealed that UV-B treatment significantly increased flavonoid content in buckwheat sprouts, with 3-day-old sprouts exhibiting a flavonoid content 1.73 times greater than that of the control treatment. UV-B radiation significantly increased the activities of key enzymes involved in flavonoid biosynthesis (phenylalanine ammonia-lyase, 4-coumarate-CoA ligase, cinnamate 4-hydroxylase, and chalcone synthase) and the relative expression levels of the corresponding genes. Although UV-B radiation caused damage to the cell membranes of buckwheat sprouts, promoting increases in hydrogen peroxide and malondialdehyde content and inhibiting the growth of sprouts, importantly, UV-B radiation also significantly increased the activities of catalase, peroxidase, and superoxide dismutase as well as the relative expression levels of the corresponding genes, thus enhancing the antioxidant system of buckwheat sprouts. This enhancement was corroborated by a notable increase in ABTS, DPPH, and FRAP radical scavenging activities in 3-day-old sprouts subjected to UV-B radiation. Additionally, UV-B radiation significantly increased chlorophyll a and chlorophyll b contents in sprouts. These results suggest that UV-B radiation is advantageous for cultivating buckwheat sprouts with increased flavonoid content and enhanced antioxidant capacity.
Collapse
Affiliation(s)
- Xin Tian
- College of Food Science and Engerning, Yangzhou University, Yangzhou 210095, China; (X.T.); (M.H.); (Y.Y.)
| | - Meixia Hu
- College of Food Science and Engerning, Yangzhou University, Yangzhou 210095, China; (X.T.); (M.H.); (Y.Y.)
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou 225009, China;
| | - Yongqi Yin
- College of Food Science and Engerning, Yangzhou University, Yangzhou 210095, China; (X.T.); (M.H.); (Y.Y.)
| | - Weiming Fang
- College of Food Science and Engerning, Yangzhou University, Yangzhou 210095, China; (X.T.); (M.H.); (Y.Y.)
| |
Collapse
|
3
|
Altaf MA, Shahid R, Naz S, Ahmad R, Manzoor MA, Alsahli AA, Altaf MM, Ahmad P. Vanadium toxicity was alleviated by supplementation of silicon in tomato seedlings: Upregulating antioxidative enzymes and glyoxalase system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108809. [PMID: 38875778 DOI: 10.1016/j.plaphy.2024.108809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/06/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
The primary goal of this research is to investigate the mitigating effect of silicon (Si; 2 mM) on the growth of tomato seedlings under vanadium (V; 40 mg) stress. V stress caused higher V uptake in leaf, and enhanced concentration of leaf anthocyanin, H2O2, O2•-, and MDA, but a decreased in plant biomass, root architecture system, leaf pigments content, mineral elements, and Fv/Fm (PSII maximum efficiency). Si application increased the concentrations of crucial antioxidant molecules such as AsA and GSH, as well as the action of key antioxidant enzymes comprising APX, GR, DHAR, and MDHAR. Importantly, oxidative damage was remarkably alleviated by upregulation of these antioxidant enzymes genes. Moreover, Si application enhanced the accumulation of secondary metabolites as well as the expression their related-genes, and these secondary metabolites may restricted the excessive accumulation of H2O2. In addition, Si rescued tomato plants against the damaging effects of MG by boosting the Gly enzymes activity. The results confirmed that spraying Si to plants might diminish the V accessibility to plants, along with promotion of V stress resistance.
Collapse
Affiliation(s)
- Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
| | - Rabia Shahid
- Management School of Hainan University, Haikou, 570228, China
| | - Safina Naz
- Department of Horticulture, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Riaz Ahmad
- Department of Horticulture, The University of Agriculture, Dera Ismail Khan, 29220, Pakistan
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, Jammu and Kashmir, 192301, India.
| |
Collapse
|
4
|
Al-Shammari WB, Abdulkreem Al-Huquil A, Alshammery K, Lotfi S, Altamimi H, Alshammari A, Al-Harbi NA, Rashed AA, Abdelaal K. Alleviation of drought stress damages by melatonin and Bacillus thuringiensis associated with adjusting photosynthetic efficiency, antioxidative system, and anatomical structure of Glycine max (L.). Heliyon 2024; 10:e34754. [PMID: 39149001 PMCID: PMC11325389 DOI: 10.1016/j.heliyon.2024.e34754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
These experiments were performed to study the effect of exogenous treatment with melatonin at 100 μM and seed treatment with Bacillus thuringiensis (106-8 CFU/cm3) on growth, physio-biochemical characters, antioxidant enzymes, and anatomical features of soybean plants cv. Giza 111 under drought conditions. The findings showed that leaves number, nodules number, branches number, relative water content (RWC), chlorophyll content, and maximum quantum efficiency of PSII (Fv/Fm) were significantly reduced in soybean under drought stress. In addition, anatomical structure of stems and leaves were negatively affected in stressed plants. Moreover, proline, electrolyte leakage (EL%) lipid peroxidation (MDA), superoxide (O2 ·-), hydrogen peroxide (H2O2), and antioxidant enzymes, such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), were significantly increased under drought stress. However, application of melatonin or Bacillus caused an improvement in growth characters, such as branches number, and increased chlorophyll a and b content, RWC as well as Fv/Fm in drought stressed soybean plants. Furthermore, melatonin and Bacillus treatments showed a significant decrease in EL%, MDA, O2 ·- and H2O2, besides regulating the activity of antioxidant enzymes under drought stress. The stems and leaves anatomical structure, such as lamina thickness, lower and upper epidermis thickness, number of xylem vessels/bundle, stem diameter, xylem vessels diameter, and phloem thickness, were improved under drought conditions with melatonin and Bacillus treatments. Therefore, the outcomes of this investigation recommended the use of melatonin as foliar spray and Bacillus thuringiensis as seed treatment, which could regulate a number of stress-responsive mechanisms to protect the stressed soybean plants, improve their growth under drought stress.
Collapse
Affiliation(s)
- Wasimah B Al-Shammari
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, 55476, Saudi Arabia
| | - Arwa Abdulkreem Al-Huquil
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Kholoud Alshammery
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, 55476, Saudi Arabia
| | - Salwa Lotfi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, 55476, Saudi Arabia
| | - Haya Altamimi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, 55476, Saudi Arabia
| | - Abeer Alshammari
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, 55476, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, P.O. Box 741, Tabuk, Saudi Arabia
| | - Afaf Abdullah Rashed
- Biology Department, College of Applied Sciences, Umm Al-Qura University, Makkah, 24382, Saudi Arabia
| | - Khaled Abdelaal
- EPCRS Excellence Center, Plant Pathology and Biotechnology Lab., Faculty of Agriculture, Kafrelsheikh University, 33516, Egypt
| |
Collapse
|
5
|
Song J, Yang J, Jeong BR. Synergistic Effects of Silicon and Aspartic Acid on the Alleviation of Salt Stress in Celery ( Apium graveliens L.) "Si Ji Xiao Xiang Qin". PLANTS (BASEL, SWITZERLAND) 2024; 13:2072. [PMID: 39124189 PMCID: PMC11314570 DOI: 10.3390/plants13152072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Salinity is one of the primary abiotic stresses that seriously hampers plant quality and productivity. It is feasible to reduce or reverse the negative effects of salt through the supplementation of silicon (Si) and aspartic acid (Asp). However, the question of how exogenous Si and Asp induce salt tolerance in celery remains incipient. Thus, this study was performed to determine the synergistic effects of Si and Asp on the alleviation of salt stress in celery. To this end, the celery plants were cultivated in a controlled regime (light for 14 h at 22 °C; darkness for 10 h at 16 °C) and treated with one of five treatments (CK, 100 mM NaCl, 100 mM NaCl + 75 mg/L Si, 100 mM NaCl + 100 mg/L Asp, and 100 mM NaCl + 75 mg/L Si + 100 mg/L Asp). Results showed that solely NaCl-treated celery plants developed salt toxicity, as characterized by decreased growth, declined photosynthetic ability, disturbed nutritious status and internal ion balance, and a boosted antioxidant defense system (Improved antioxidant enzymes and reduced ROS accumulation). In contrast, these adverse effects of NaCl were ameliorated by the additions of Si and Asp, regardless of Si, Asp, or both. Moreover, the mitigatory impacts of the co-application of Si and Asp on salt stress were more pronounced compared to when one of them was solely applied. Collectively, exogenous Si and Asp alleviate the degree of salt stress and thereby improve the salt tolerance of celery.
Collapse
Affiliation(s)
- Jinnan Song
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang 262700, China;
| | - Jingli Yang
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang 262700, China;
| | - Byoung Ryong Jeong
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
6
|
Bounaouara F, Hidri R, Falouti M, Rabhi M, Abdelly C, Zorrig W, Slama I. Silicon mitigates salinity effects on sorghum-sudangrass ( Sorghum bicolor × Sorghum sudanense) by enhancing growth and photosynthetic efficiency. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24029. [PMID: 38902905 DOI: 10.1071/fp24029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024]
Abstract
The aim of this study was to investigate whether silicon (Si) supply was able to alleviate the harmful effects caused by salinity stress on sorghum-sudangrass (Sorghum bicolor ×Sorghum sudanense ), a species of grass raised for forage and grain. Plants were grown in the presence or absence of 150mM NaCl, supplemented or not with Si (0.5mM Si). Biomass production, water and mineral status, photosynthetic pigment contents, and gas exchange parameters were investigated. Special focus was accorded to evaluating the PSI and PSII. Salinity stress significantly reduced plant growth and tissue hydration, and led to a significant decrease in all other studied parameters. Si supply enhanced whole plant biomass production by 50%, improved water status, decreased Na+ and Cl- accumulation, and even restored chlorophyll a , chlorophyll b , and carotenoid contents. Interestingly, both photosystem activities (PSI and PSII) were enhanced with Si addition. However, a more pronounced enhancement was noted in PSI compared with PSII, with a greater oxidation state upon Si supply. Our findings confirm that Si mitigated the adverse effects of salinity on sorghum-sudangrass throughout adverse approaches. Application of Si in sorghum appears to be an efficient key solution for managing salt-damaging effects on plants.
Collapse
Affiliation(s)
- Farah Bounaouara
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, P. O. Box 901, Hammam-Lif 2050, Tunisia
| | - Rabaa Hidri
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, P. O. Box 901, Hammam-Lif 2050, Tunisia
| | - Mohammed Falouti
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, P. O. Box 901, Hammam-Lif 2050, Tunisia
| | - Mokded Rabhi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, P. O. Box 901, Hammam-Lif 2050, Tunisia; and Department of Plant Production, College of Agriculture and Food, Qassim University, Buraydah, Saudi Arabia
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, P. O. Box 901, Hammam-Lif 2050, Tunisia
| | - Walid Zorrig
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, P. O. Box 901, Hammam-Lif 2050, Tunisia
| | - Inès Slama
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, P. O. Box 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
7
|
Rachappanavar V, Kumar M, Negi N, Chowdhury S, Kapoor M, Singh S, Rustagi S, Rai AK, Shreaz S, Negi R, Yadav AN. Silicon derived benefits to combat biotic and abiotic stresses in fruit crops: Current research and future challenges. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108680. [PMID: 38701606 DOI: 10.1016/j.plaphy.2024.108680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Fruit crops are frequently subjected to biotic and abiotic stresses that can significantly reduce the absorption and translocation of essential elements, ultimately leading to a decrease in crop yield. It is imperative to grow fruits and vegetables in areas prone to drought, salinity, and extreme high, and low temperatures to meet the world's minimum nutrient demand. The use of integrated approaches, including supplementation of beneficial elements like silicon (Si), can enhance plant resilience under various stresses. Silicon is the second most abundant element on the earth crust, following oxygen, which plays a significant role in development and promote plant growth. Extensive efforts have been made to explore the advantages of Si supplementation in fruit crops. The application of Si to plants reinforces the cell wall, providing additional support through enhancing a mechanical and biochemical processes, thereby improving the stress tolerance capacity of crops. In this review, the molecular and physiological mechanisms that explain the beneficial effects of Si supplementation in horticultural crop species have been discussed. The review describes the role of Si and its transporters in mitigation of abiotic stress conditions in horticultural plants.
Collapse
Affiliation(s)
- Vinaykumar Rachappanavar
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India; Department of Seed Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India.
| | - Manish Kumar
- Department of Seed Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| | - Narender Negi
- ICAR-National Bureau of Plant Genetic Resources-Regional Station, Shimla, Phagli Shimla, Himachal Pradesh, India
| | - Sohini Chowdhury
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Monit Kapoor
- Centre of Research Impact and Outcome, University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sheikh Shreaz
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, 13109, Safat, Kuwait
| | - Rajeshwari Negi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India.
| |
Collapse
|
8
|
Alshammari WB, Alshammery K, Lotfi S, Altamimi H, Alshammari A, Al-Harbi NA, Jakovljević D, Alharbi MH, Moustapha ME, Abd El-Moneim D, Abdelaal K. Improvement of morphophysiological and anatomical attributes of plants under abiotic stress conditions using plant growth-promoting bacteria and safety treatments. PeerJ 2024; 12:e17286. [PMID: 38708356 PMCID: PMC11067897 DOI: 10.7717/peerj.17286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
Drought and salinity are the major abiotic stress factors negatively affecting the morphophysiological, biochemical, and anatomical characteristics of numerous plant species worldwide. The detrimental effects of these environmental factors can be seen in leaf and stem anatomical structures including the decrease in thickness of cell walls, palisade and spongy tissue, phloem and xylem tissue. Also, the disintegration of grana staking, and an increase in the size of mitochondria were observed under salinity and drought conditions. Drought and salt stresses can significantly decrease plant height, number of leaves and branches, leaf area, fresh and dry weight, or plant relative water content (RWC%) and concentration of photosynthetic pigments. On the other hand, stress-induced lipid peroxidation and malondialdehyde (MDA) production, electrolyte leakage (EL%), and production of reactive oxygen species (ROS) can increase under salinity and drought conditions. Antioxidant defense systems such as catalase, peroxidase, glutathione reductase, ascorbic acid, and gamma-aminobutyric acid are essential components under drought and salt stresses to protect the plant organelles from oxidative damage caused by ROS. The application of safe and eco-friendly treatments is a very important strategy to overcome the adverse effects of drought and salinity on the growth characteristics and yield of plants. It is shown that treatments with plant growth-promoting bacteria (PGPB) can improve morphoanatomical characteristics under salinity and drought stress. It is also shown that yeast extract, mannitol, proline, melatonin, silicon, chitosan, α-Tocopherols (vitamin E), and biochar alleviate the negative effects of drought and salinity stresses through the ROS scavenging resulting in the improvement of plant attributes and yield of the stressed plants. This review discusses the role of safety and eco-friendly treatments in alleviating the harmful effects of salinity and drought associated with the improvement of the anatomical, morphophysiological, and biochemical features in plants.
Collapse
Affiliation(s)
| | - Kholoud Alshammery
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Salwa Lotfi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Haya Altamimi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abeer Alshammari
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, Tabuk, Saudi Arabia
| | - Dragana Jakovljević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragu-jevac, Serbia
| | - Mona Hajed Alharbi
- Department of Biology, College of Scince and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Moustapha Eid Moustapha
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Khaled Abdelaal
- EPCRS Excellence Center, Plant Pathology and Biotechnology Lab, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
9
|
Sieprawska A, Rudolphi-Szydło E, Skórka M, Telk A, Filek M. Assessment of the oxidative stress intensity and the integrity of cell membranes under the manganese nanoparticles toxicity in wheat seedlings. Sci Rep 2024; 14:3121. [PMID: 38326390 PMCID: PMC10850514 DOI: 10.1038/s41598-024-53697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
A response to manganese nanoparticles was studied in seedlings of two wheat cultivars and a model system of plant cell membranes. Nanoparticles at concentrations of 125 and 250 mg/ml were applied foliar. The application of NPs enhanced the content of Mn in plant cells, indicating its penetration through the leaf surface. The stressful effect in the plant cells was estimated based on changes in the activity of antioxidant enzymes, content of chlorophylls and starch. MnNPs evoked no significant changes in the leaf morphology, however, an increase in enzyme activity, starch accumulation, and a decrease in chlorophyll synthesis indicated the stress occurrence. Moreover, a rise in the electrokinetic potential of the chloroplast membrane surface and the reconstruction of their hydrophobic parts toward an increase in fatty acid saturation was found.
Collapse
Affiliation(s)
- Apolonia Sieprawska
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorążych 2, 30-084, Krakow, Poland.
| | - Elżbieta Rudolphi-Szydło
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorążych 2, 30-084, Krakow, Poland
| | - Magdalena Skórka
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorążych 2, 30-084, Krakow, Poland
| | - Anna Telk
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Maria Filek
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorążych 2, 30-084, Krakow, Poland
| |
Collapse
|
10
|
Khan I, Awan SA, Rizwan M, Huizhi W, Ulhassan Z, Xie W. Silicon nanoparticles improved the osmolyte production, antioxidant defense system, and phytohormone regulation in Elymus sibiricus (L.) under drought and salt stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8985-8999. [PMID: 38183551 DOI: 10.1007/s11356-023-31730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Drought and salt stress negatively influence the growth and development of various plant species. Thus, it is crucial to overcome these stresses for sustainable agricultural production and the global food chain. Therefore, the present study investigated the potential effects of exogenous silicon nanoparticles (SiNPs) on the physiological and biochemical parameters, and endogenous phytohormone contents of Elymus sibiricus under drought and salt stress. Drought stress was given as 45% water holding capacity, and salt stress was given as 120 mM NaCl. The seed priming was done with different SiNP concentrations: SiNP1 (50 mg L-1), SiNP2 (100 mg L-1), SiNP3 (150 mg L-1), SiNP4 (200 mg L-1), and SiNP5 (250 mg L-1). Both stresses imposed harmful impacts on the analyzed parameters of plants. However, SiNP5 increased the chlorophylls and osmolyte accumulation such as total proteins by 96% and 110% under drought and salt stress, respectively. The SiNP5 significantly decreased the oxidative damage and improved the activities of SOD, CAT, POD, and APX by 10%, 54%, 104%, and 211% under drought and 42%, 75%, 72%, and 215% under salt stress, respectively. The SiNPs at all concentrations considerably improved the level of different phytohormones to respond to drought and salt stress and increased the tolerance of Elymus plants. Moreover, SiNPs decreased the Na+ and increased K+ concentrations in Elymus suggesting the reduction in salt ion accumulation under salinity stress. Overall, exogenous application (seed priming/dipping) of SiNPs considerably enhanced the physio-biochemical and metabolic responses, resulting in an increased tolerance to drought and salt stresses. Therefore, this study could be used as a reference to further explore the impacts of SiNPs at molecular and genetic level to mitigate abiotic stresses in forages and related plant species.
Collapse
Affiliation(s)
- Imran Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Samrah Afzal Awan
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Wang Huizhi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Wengang Xie
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
11
|
Iqbal S, Hussain M, Sadiq S, Seleiman MF, Sarkhosh A, Chater JM, Shahid MA. Silicon nanoparticles confer hypoxia tolerance in citrus rootstocks by modulating antioxidant activities and carbohydrate metabolism. Heliyon 2024; 10:e22960. [PMID: 38163208 PMCID: PMC10756966 DOI: 10.1016/j.heliyon.2023.e22960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
Citrus is a remarkable fruit crop, extremely sensitive to flooding conditions, which frequently trigger hypoxia stress and cause severe damage to citrus plants. Silicon nanoparticles (SiNPs) are beneficial and have the potential to overcome this problem. Therefore, the present study aimed to investigate the effect of silicon nanoparticles to overcome hypoxia stress through modulating antioxidant enzyme activity and carbohydrate metabolism. Three citrus rootstocks (Carrizo citrange, Roubidoux, and Rich 16-6) were exposed to flooding (with and without oxygen) through different SiNP treatments via foliar and root zone. SiNPs applied treatment plants showed a significant increase in photosynthesis, leaf greenness, antioxidant enzymes, and carbohydrate metabolic activities, besides the higher accumulation of proline and glycine betaine. The rate of lipid peroxidation was drastically higher in flooded plants; however, SiNPs application reduced it significantly, ultimately reducing oxidative damage. Overall, Rich16-6 rootstock showed good performance via root zone application compared to other rootstocks, possibly due to genotypical variation in silicon uptake. Our outcomes demonstrate that SiNPs significantly affect plant growth during hypoxia stress conditions, and their use is an optimal strategy to overcome this issue. This study laid the foundation for future research to use at the commercial level to overcome hypoxia stress and a potential platform for future research.
Collapse
Affiliation(s)
- Shahid Iqbal
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL, 32351, USA
| | - Mujahid Hussain
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL, 32351, USA
| | - Saleha Sadiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Mahmoud F. Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O.Box 2460, Riyadh, 11451, Saudi Arabia
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - John M. Chater
- Horticultural Science Department, Citrus Research and Education Center, University of Florida/IFAS, Lake Alfred, FL, 33850, USA
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL, 32351, USA
| |
Collapse
|
12
|
Abbasi RP, Rafiq K, Fatima S, Javed MT, Azeem M, Akram MS. In vitro silicon supplementation enhanced acclimatisation and growth of sugarcane ( Saccharum officinarum) via improved antioxidant and nutrient acquisition patterns in saline soil. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 37980713 DOI: 10.1071/fp22275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 10/25/2023] [Indexed: 11/21/2023]
Abstract
Salinity affects crop growth by modulating cellular ionic concentrations and generation of reactive oxygen species. Application of silicon (Si) has proved beneficial in ameliorating salinity-triggered plant growth and yield retardations. Leaf roll explants of three sugarcane (Saccharum officinarum ) genotypes (HSF-240, CPF-246, CPF-250) were cultured in Murashige and Skoog (MS) medium supplemented with K2 SiO3 . In vitro regenerated plantlets were acclimatised and grown in natural saline soil. In absence of Si, cv. CPF-246 exhibited better salt tolerance as indicted by maximum chlorophyll a and chlorophyll b contents, rate of photosynthesis and root K+ uptake along with less cellular hydrogen peroxide content. Silicon restricted root Na+ uptake but assisted in K+ , Ca2+ , Mg2+ and Fe2+ accretion in roots and their translocation towards shoots. Cv. HSF-240 and cv. CPF-250 exhibited more increase in photosynthetic pigment content, stomatal conductance and photosynthetic rate after addition of 25 or 50mgL-1 Si than control group. Optimum phenolic content and antioxidant enzyme activity along with decreased lipid peroxidation and hydrogen peroxide content were recorded in all three sugarcane genotypes raised in presence of 25 or 50mgL-1 Si. These findings signify Si supplementation (50mgL-1 ) in tissue culture medium and plant adaptation in saline soil. Further in vitro studies involving Si-mediated gene expression modulations in sugarcane protoplasts shall assist in deciphering cross-talk between Si uptake and cellular responses. The application of Si can further be tested for other plant species to devise strategies for improved crop growth and utilisation of saline areas for crop cultivation.
Collapse
Affiliation(s)
- Raheel Parvez Abbasi
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Khadija Rafiq
- Department of Botany, University of Gujrat, Gujrat, Pakistan
| | - Sijal Fatima
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Azeem
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan; and Department of Biology, College of Science, University of Bahrain, Sakhir, The Kingdom of Bahrain
| | - Muhammad Sohail Akram
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
13
|
Altaf MA, Behera B, Mangal V, Singhal RK, Kumar R, More S, Naz S, Mandal S, Dey A, Saqib M, Kishan G, Kumar A, Singh B, Tiwari RK, Lal MK. Tolerance and adaptation mechanism of Solanaceous crops under salinity stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 36356932 DOI: 10.1071/fp22158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Solanaceous crops act as a source of food, nutrition and medicine for humans. Soil salinity is a damaging environmental stress, causing significant reductions in cultivated land area, crop productivity and quality, especially under climate change. Solanaceous crops are extremely vulnerable to salinity stress due to high water requirements during the reproductive stage and the succulent nature of fruits and tubers. Salinity stress impedes morphological and anatomical development, which ultimately affect the production and productivity of the economic part of these crops. The morpho-physiological parameters such as root-to-shoot ratio, leaf area, biomass production, photosynthesis, hormonal balance, leaf water content are disturbed under salinity stress in Solanaceous crops. Moreover, the synthesis and signalling of reactive oxygen species, reactive nitrogen species, accumulation of compatible solutes, and osmoprotectant are significant under salinity stress which might be responsible for providing tolerance in these crops. The regulation at the molecular level is mediated by different genes, transcription factors, and proteins, which are vital in the tolerance mechanism. The present review aims to redraw the attention of the researchers to explore the mechanistic understanding and potential mitigation strategies against salinity stress in Solanaceous crops, which is an often-neglected commodity.
Collapse
Affiliation(s)
| | | | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rajesh Kumar Singhal
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh, India
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Sanket More
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala, India
| | - Safina Naz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Sayanti Mandal
- Institute of Bioinformatics Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Pune, Maharashtra, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073, India
| | - Muhammad Saqib
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Gopi Kishan
- ICAR-Indian Institute of Seed Science, Mau, Uttar Pradesh, India
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India; and ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India; and ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
14
|
Gholami F, Amerian MR, Asghari HR, Ebrahimi A. Assessing the effects of 24-epibrassinolide and yeast extract at various levels on cowpea's morphophysiological and biochemical responses under water deficit stress. BMC PLANT BIOLOGY 2023; 23:593. [PMID: 38008746 PMCID: PMC10680335 DOI: 10.1186/s12870-023-04548-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/19/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Due to the factor of water deficit, which has placed human food security at risk by causing a 20% annual reduction in agricultural products, addressing this growing peril necessitates the adoption of inventive strategies aimed at enhancing plant tolerance. One such promising approach is employing elicitors such as 24-epibrassinolide (EBR) and yeast extract, which are potent agents capable of triggering robust defense responses in plants. By employing these elicitors, crops can develop enhanced adaptive mechanisms to combat water deficit and improve their ability to withstand drought condition. This study investigates the impact of different levels of EBR (0, 5, 10 µm) and yeast extract (0 and 12 g/l) on enhancing the tolerance of cowpea to water deficit stress over two growing seasons. RESULTS The findings of this study demonstrate that, the combined application of EBR (especially 10 µm) and yeast extract (12 g/l) can increase seed yield (18%), 20-pod weight (16%), the number of pods per plant (18%), total chlorophyll content (90%), and decrease malondialdehyde content (45%) in cowpea, compared to plants grown under water deficit stress without these treatments. Upon implementing these treatments, impressive results were obtained, with the highest recorded values observed for the seed yield (1867.55 kg/ha), 20-pod weight (16.29 g), pods number per plant (9), and total chlorophyll content (19.88 mg g-1 FW). The correlation analysis indicated a significant relationship between the seed yield, and total chlorophyll (0.74**), carotenoids (0.82**), weight of 20 seeds (0.67**), and number of pods (0.90**). These traits should be prioritized in cowpea breeding programs focusing on water deficit stress. CONCLUSIONS The comprehensive exploration of the effects of EBR and yeast extract across various levels on cowpea plants facing water deficit stress presents a pivotal contribution to the agricultural domain. This research illuminates a promising trajectory for future agricultural practices and users seeking sustainable solutions to enhance crops tolerance. Overall, the implications drawn from this study contribute significantly towards advancing our understanding of plant responses to water deficit stress while providing actionable recommendations for optimizing crop production under challenging environmental conditions.
Collapse
Affiliation(s)
- Faride Gholami
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Mohamad Reza Amerian
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| | - Hamid Reza Asghari
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| |
Collapse
|
15
|
Ding Y, Zhao W, Zhu G, Wang Q, Zhang P, Rui Y. Recent Trends in Foliar Nanofertilizers: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2906. [PMID: 37947750 PMCID: PMC10650792 DOI: 10.3390/nano13212906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
It is estimated that 40-70%, 80-90% and 50-90% of the conventional macronutrients N, P and K applied to the soil are lost, respectively, resulting in considerable loss of resources. Compared to conventional fertilizers, nanofertilizers have the advantages of controlled release, high nutrient utilization, low cost and relatively low environmental pollution due to their small size (1-100 nm) and high specific surface area. The application of nanofertilizers is an up-and-coming field of agricultural research and is an attractive and economical substitute for common fertilizers which can boost global food productivity sustainably. Foliar fertilization is a popular way to satisfy the needs of higher plants. Because of its small application dose, faster nutrient uptake than soil application and relatively less environmental pollution, foliar fertilization is more popular among plants. It can be seen that nanofertilizers and foliar fertilization are the hotspots of attention at present and that current research on the foliar application of nanofertilizers is not as extensive as that on soil application. Based on this background, this paper provides an overview of various applications of foliar spraying of nanofertilizers in agriculture, including applications in improving crop yield and quality as well as mitigating heavy metal stress, salt stress and drought stress.
Collapse
Affiliation(s)
- Yanru Ding
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.D.); (W.Z.); (G.Z.); (Q.W.)
| | - Weichen Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.D.); (W.Z.); (G.Z.); (Q.W.)
| | - Guikai Zhu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.D.); (W.Z.); (G.Z.); (Q.W.)
| | - Quanlong Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.D.); (W.Z.); (G.Z.); (Q.W.)
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yukui Rui
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.D.); (W.Z.); (G.Z.); (Q.W.)
| |
Collapse
|
16
|
Cruzado-Tafur E, Orzoł A, Gołębiowski A, Pomastowski P, Cichorek M, Olszewski J, Walczak-Skierska J, Buszewski B, Szultka-Młyńska M, Głowacka K. Metal tolerance and Cd phytoremoval ability in Pisum sativum grown in spiked nutrient solution. JOURNAL OF PLANT RESEARCH 2023; 136:931-945. [PMID: 37676608 PMCID: PMC10587304 DOI: 10.1007/s10265-023-01493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
In the presented study, the effects of cadmium (Cd) stress and silicon (Si) supplementation on the pea plant (Pisum sativum L.) were investigated. The tendency to accumulate cadmium in the relevant morphological parts of the plant (roots and shoots respectively)-bioaccumulation, the transfer of this element in the plant (translocation) and the physiological parameters of the plant through indicators of oxidative stress were determined. Model studies were carried out at pH values 6.0 and 5.0 plant growth conditions in the hydroponic cultivation. It was shown that Cd accumulates mostly in plant roots at both pH levels. However, the Cd content is higher in the plants grown at lower pH. The Cd translocation factor was below 1.0, which indicates that the pea is an excluder plant. The contamination of the plant growth environment with Cd causes the increased antioxidant stress by the growing parameters of the total phenolic content (TPC), polyphenol oxidase activity (PPO), the malondialdehyde (MDA) and lipid peroxidation (LP). The results obtained showed that the supplementation with Si reduces these parameters, thus lowering the oxidative stress of the plant. Moreover, supplementation with Si leads to a lower content of Cd in the roots and reduces bioaccumulation of Cd in shoots and roots of pea plants.
Collapse
Affiliation(s)
- Edith Cruzado-Tafur
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, 10-719, Olsztyn, Poland
| | - Aleksandra Orzoł
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
| | - Adrian Gołębiowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Mateusz Cichorek
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, 10-719, Olsztyn, Poland
| | - Jacek Olszewski
- Experimental Education Unit, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-721, Olsztyn, Poland
| | - Justyna Walczak-Skierska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
| | - Katarzyna Głowacka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, 10-719, Olsztyn, Poland.
| |
Collapse
|
17
|
Singh A, Rajput VD, Sharma R, Ghazaryan K, Minkina T. Salinity stress and nanoparticles: Insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. ENVIRONMENTAL RESEARCH 2023; 235:116585. [PMID: 37437867 DOI: 10.1016/j.envres.2023.116585] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Salinized land is slowly spreading across the world. Reduced crop yields and quality due to salt stress threaten the ability to feed a growing population. We discussed the mechanisms behind nano-enabled antioxidant enzyme-mediated plant tolerance, such as maintaining reactive oxygen species (ROS) homeostasis, enhancing the capacity of plants to retain K+ and eliminate Na+, increasing the production of nitric oxide, involving signaling pathways, and lowering lipoxygenase activities to lessen oxidative damage to membranes. Frequently used techniques were highlighted like protecting cells from oxidative stress and keeping balance in ionic state. Salt tolerance in plants enabled by nanotechnology is also discussed, along with the potential role of physiobiochemical and molecular mechanisms. As a whole, the goal of this review is meant to aid researchers in fields as diverse as plant science and nanoscience in better-comprehending potential with novel solutions to addressing salinity issues for sustainable agriculture.
Collapse
Affiliation(s)
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | | | | | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
18
|
Anand V, Pandey A. Synthesis and characterization of CeO 2 and SiO 2 nanoparticles and their effect on growth parameters and the antioxidant defense system in Vigna mungo L. Hepper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100814-100827. [PMID: 37644264 DOI: 10.1007/s11356-023-29415-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Engineered nanoparticles (NPs) have recently attracted a lot of attention after being tested in various agricultural plants. This paper reports the green synthesis of CeO2 NPs and SiO2 NPs from leaf extracts of Nyctanthes arbor-tristis. The physical characteristics of the produced nanoparticles were then determined using UV-visible spectroscopy, transmission electron microscopy (TEM), fluorescence spectroscopy, and Fourier transform infrared spectroscopy (FTIR). Furthermore, the interaction effects of cerium oxide NPs (C1, C2, and C3) and silicon dioxide NPs (S1, S2, and S3) at 10 mg/L on blackgram (Vigna mungo L.) were evaluated. CeO2 and SiO2 NPs treatments enhanced the growth performance of the plants by causing a decrease in superoxide radical (SOR) and H2O2 via improving antioxidant enzymes. These findings imply that the size and shape of CeO2 and SiO2 NPs provide defense against oxidative damage to the blackgram.
Collapse
Affiliation(s)
- Vandita Anand
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, India
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, India.
| |
Collapse
|
19
|
Halawani RF, AbdElgawad H, Aloufi FA, Balkhyour MA, Zrig A, Hassan AH. Synergistic effect of carbon nanoparticles with mild salinity for improving chemical composition and antioxidant activities of radish sprouts. FRONTIERS IN PLANT SCIENCE 2023; 14:1158031. [PMID: 37324721 PMCID: PMC10264676 DOI: 10.3389/fpls.2023.1158031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023]
Abstract
The demand for healthy foods with high functional value has progressively increased. Carbon nanoparticles (CNPs) have a promising application in agriculture including the enhancement of plant growth. However, there are few studies on the interactive effects of CNPs and mild salinity on radish seed sprouting. To this end, the effect of radish seed priming with 80mM CNPs on biomass, anthocyanin, proline and polyamine metabolism, and antioxidant defense system under mild salinity growth condition (25 mM NaCl). The results indicated that seed nanopriming with CNPs along with mild salinity stress enhanced radish seed sprouting and its antioxidant capacity. Priming boosted the antioxidant capacity by increasing antioxidant metabolites such as (polyphenols, flavonoids, polyamines, anthocyanin, and proline). To understand the bases of these increases, precursors and key biosynthetic enzymes of anthocyanin [phenylalanine, cinnamic acid, coumaric acid, naringenin, phenylalanine ammonia lyase, chalcone synthase (CHS), cinnamate-4-hydroxylase (C4H) and 4-coumarate: CoA ligase (4CL)], proline [pyrroline-5-carboxylate synthase (P5CS), proline dehydrogenase (PRODH), Sucrose, Sucrose P synthase, invertase) and polyamines [putrescine, spermine, spermidine, total polyamines, arginine decarboxylase, orinthnine decarboxylase, S-adenosyl-L-methionine decarboxylase, spermidine synthase, spermine synthase] were analyzed. In conclusion, seed priming with CNPs has the potential to further stimulate mild salinity-induced bioactive compound accumulation in radish sprouts.
Collapse
Affiliation(s)
- Riyadh F. Halawani
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Fahed A. Aloufi
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mansour A. Balkhyour
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahlem Zrig
- Higher Institute of Preparatory Studies in Biology and Geology, University of Carthage, Tunis, Tunisia
- Laboratory of Engineering Processes and Industrial Systems, Chemical Engineering Department, National School of Engineers of Gabes, University of Gabes, Gabès, Tunisia
| | - Abdelrahim H.A. Hassan
- School of Biotechnology, Nile University, Giza, Egypt
- Department of Food Safety and Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
20
|
Zayed BA, Ghazy HA, Negm ME, Bassiouni SM, Hadifa AA, El-Sharnobi DE, Abdelhamed MM, Abo-Marzoka EA, Okasha AM, Elsayed S, Farooque AA, Yaseen ZM. Response of varied rice genotypes on cell membrane stability, defense system, physio-morphological traits and yield under transplanting and aerobic cultivation. Sci Rep 2023; 13:5765. [PMID: 37031264 PMCID: PMC10082820 DOI: 10.1038/s41598-023-32191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/23/2023] [Indexed: 04/10/2023] Open
Abstract
Aerobic rice cultivation progresses water productivity, and it can save almost 50% of irrigation water compared to lowland rice with the appropriate development of genotypes and management practices. Two field trials were conducted during 2020, and 2021 seasons to determine the validation of different rice varieties under aerobic cultivation based on their plant defense system, physio-morphological traits, stress indices, grain yield, and water productivity. The experiments were designed in a split-plot design with four replications. Two planting methods, transplanting and aerobic cultivation, were denoted as the main plots, and ten rice genotypes were distributed in the subplots. The results revealed that the planting method varied significantly in all measured parameters. The transplanting method with well watering had the highest value of all measured parameters except leaf rolling, membrane stability index, antioxidant, proline, and the number of unfilled grains. EHR1, Giza179 and GZ9399 as well as A22 genotypes a chief more antioxidant defense system that operated under aerobic conditions. Giza179, EHR1, GZ9399, and Giza178 showed high cell membrane stability and subsequently high validation under such conditions, and also showed efficiency in decreasing water consumption and improving water use efficiency. In conclusion, this study proves that Giza179, EHR1, GZ9399, Giza178, and A22 are valid genotypes for aerobic conditions.
Collapse
Affiliation(s)
- Bassiouni A Zayed
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Kafr El-Sheikh, 33717, Egypt
| | - Hasnaa A Ghazy
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Kafr El-Sheikh, 33717, Egypt
| | - Mahrous E Negm
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Kafr El-Sheikh, 33717, Egypt
| | - Sherif M Bassiouni
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Kafr El-Sheikh, 33717, Egypt
| | - Adel A Hadifa
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Kafr El-Sheikh, 33717, Egypt
| | - Dalia E El-Sharnobi
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Kafr El-Sheikh, 33717, Egypt
| | - Mohamed M Abdelhamed
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Kafr El-Sheikh, 33717, Egypt
| | - Elsayed A Abo-Marzoka
- Crop Physiology Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Amira M Okasha
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Kafr El-Sheikh, 33717, Egypt
| | - Salah Elsayed
- Evaluation of Natural Resources Department, Environmental Studies and Research Institute, University of Sadat City, Minufiya, 32897, Egypt
- New era and Development in Civil Engineering Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, 64001, Baghdad, Iraq
| | - Aitazaz A Farooque
- Canadian Center for Climate Change and Adaptation University of Prince Edward Island, St Peter's Bay, PE, Canada.
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE, Canada.
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
21
|
Alam P, Balawi TA, Qadir SU, Ahmad P. Gibberellic Acid and Silicon Ameliorate NaCl Toxicity in Brassica juncea: Possible Involvement of Antioxidant System and Ascorbate-Glutathione Cycle. PLANTS (BASEL, SWITZERLAND) 2023; 12:1210. [PMID: 36986898 PMCID: PMC10058815 DOI: 10.3390/plants12061210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
This work was carried out to observe the combined impact of exogenous applications of Gibberellic acid (GA3) and Silicon (Si) on Brassica juncea under salt (NaCl) stress. Application of GA3 and Si enhanced the antioxidant enzyme activities of (APX, CAT, GR, SOD) in B. juncea seedlings under NaCl toxicity. The exogenous Si application decreased Na+ uptake and enhanced the K+ and Ca2+ in salt stressed B. juncea. Moreover, chlorophyll-a (Chl-a), Chlorophyll-b (Chl-b), total chlorophyll (T-Chl), carotenoids and relative water content (RWC) in the leaves declined under salt stress, which were ameorialated after GA3 and Si supplementation individually and in combination. Further, the introduction of Si to NaCl treated B. juncea help in alleviating the negative effects of NaCl toxicity on biomass and biochemical activities. The levels of hydrogen peroxide (H2O2) increase significantly with NaCl treatments, subsequently resulting in enhanced peroxidation of membrane lipids (MDA) and electrolyte leakage (EL). The reduced levels of H2O2 and enhanced antioxidantactivities in Si and GA3 supplemented plants demonstrated the stress mitigating efficiency. In conclusion, it was observed that Si and GA3 application alleviated NaCl toxicity in B. juncea plants through enhanced production of different osmolytes and an antioxidant defence mechanism.
Collapse
Affiliation(s)
- Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Thamer Al Balawi
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami Ullah Qadir
- Department of Environmental Sciences Government, College for Women, Udhampur 182101, India
| | - Parvaiz Ahmad
- Department of Botany, Government Degree College, Jammu and Kashmir, Pulwama 192301, India
| |
Collapse
|
22
|
Gohari G, Panahirad S, Mohammadi A, Kulak M, Dadpour MR, Lighvan ZM, Sharifi S, Eftekhari-Sis B, Szafert S, Fotopoulos V, Akbari A. Characterization of Octa-aminopropyl polyhedral oligomeric silsesquioxanes (OA-POSS) nanoparticles and their effect on sweet basil (Ocimum basilicum L.) response to salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:89-102. [PMID: 36706695 DOI: 10.1016/j.plaphy.2023.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/26/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Salt stress is of the most detrimental abiotic stress factors on either crop or non-crop species. Of the strategies employed to boost the performance of the plants against harmful impacts of salt stress; application of novel nano-engineered particles have recently gained great attention as a promising tool. Octa-aminopropyl polyhedral oligomeric silsesquioxanes nanoparticles (OA-POSS NPs) were synthesized and then a foliar-application of OA-POSS NPs were carried out on sweet basil plants subjected to the salt stress. In that context, interactive effects of OA-POSS NPs (25, 50 and 100 mg L-1) and salinity stress (50 and 100 mM NaCl) were assayed by estimating a series of agronomic, physiological, biochemical and analytical parameters. OA-POSS NPs decreased the harmful effects of salinity by increasing photosynthetic pigment content, adjusting chlorophyll fluorescence, and triggering non-enzymatic (phenolic content) and enzymatic antioxidant components. The findings suggested that 25 mg L-1 OA-POSS NPs is the optimum concentration for sweet basil grown under salt stress. Considering the essential oil profile, estragole was the predominant compound with a percentage higher than 50% depending on the treatment. In comparison to the control group, 50 mM NaCl did not significantly affect estragole content, whilst 100 mM NaCl caused a substantial increase in estragole content. Regarding OA-POSS NPs treatments, increments by 16.8%, 11.8% and 17.5% were observed following application with 25, 50 and 100 mg L-1, respectively. Taken together, the current study provides evidence that POSS NPs can be employed as novel, 'green' growth promoting agents in combating salt stress in sweet basil.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran; Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus.
| | - Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Asghar Mohammadi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Turkiye
| | - Mohamad Reza Dadpour
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Zohreh Mehri Lighvan
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran
| | - Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - Sławomir Szafert
- Faculty of Chemistry, University of Wrocław, F. Joliot Curie 14, 50383 Wrocław, Poland
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
23
|
Mukarram M, Khan MMA, Kurjak D, Lux A, Corpas FJ. Silicon nanoparticles (SiNPs) restore photosynthesis and essential oil content by upgrading enzymatic antioxidant metabolism in lemongrass ( Cymbopogon flexuosus) under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1116769. [PMID: 36875580 PMCID: PMC9981966 DOI: 10.3389/fpls.2023.1116769] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Lemongrass (Cymbopogon flexuosus) has great relevance considering the substantial commercial potential of its essential oil. Nevertheless, the increasing soil salinity poses an imminent threat to lemongrass cultivation given its moderate salt-sensitivity. For this, we used silicon nanoparticles (SiNPs) to stimulate salt tolerance in lemongrass considering SiNPs special relevance to stress settings. Five foliar sprays of SiNPs 150 mg L-1 were applied weekly to NaCl 160 and 240 mM-stressed plants. The data indicated that SiNPs minimised oxidative stress markers (lipid peroxidation, H2O2 content) while triggering a general activation of growth, photosynthetic performance, enzymatic antioxidant system including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), and osmolyte proline (PRO). SiNPs amplified stomatal conductance and photosynthetic CO2 assimilation rate by about 24% and 21% in NaCl 160 mM-stressed plants. Associated benefits contributed to pronounced plant phenotype over their stressed counterparts, as we found. Foliar SiNPs sprays assuaged plant height by 30% and 64%, dry weight by 31% and 59%, and leaf area by 31% and 50% under NaCl 160 and 240 mM concentrations, respectively. SiNPs relieved enzymatic antioxidants (SOD, CAT, POD) and osmolyte (PRO) in lemongrass plants stressed with NaCl 160 mM (9%, 11%, 9%, and 12%, respectively) and NaCl 240 mM (13%, 18%, 15%, and 23%, respectively). The same treatment supported the oil biosynthesis improving essential oil content by 22% and 44% during 160 and 240 mM salt stress, respectively. We found SiNPs can completely overcome NaCl 160 mM stress while significantly palliating NaCl 240 mM stress. Thus, we propose that SiNPs can be a useful biotechnological tool to palliate salinity stress in lemongrass and related crops.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Francisco J. Corpas
- Department of Stress, Development and Signaling in Plants, Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
24
|
Luís Oliveira Cunha M, de Mello Prado R. Synergy of Selenium and Silicon to Mitigate Abiotic Stresses: a Review. GESUNDE PFLANZEN 2023; 75:1-14. [PMID: 38625279 PMCID: PMC9838374 DOI: 10.1007/s10343-022-00826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/19/2022] [Indexed: 04/17/2024]
Abstract
It is evident the increase in the occurrence of different stresses that impact agriculture and so there has been an increase in research to study stress mitigators including silicon (Si) and selenium (Se). However, the great challenge to be answered would be to assess whether it is possible to maximize these benefits by combining these two elements. Therefore, this review focused on discussing the feasibility of combining Se and Si in mitigating abiotic stresses and also measuring gains in yield and quality of agricultural products. These are the main challenges of plant mineral nutrition with these two elements for sustainable cultivation, ensuring food security with the possibility of improving human health. As the mode of application of an element can change absorption and assimilation processes and consequently the plant's response, it is important to consider research with supply of these elements via the foliar and root route. Thus, we highlighted the potential of the combined application of Se and Si and whether or not they are relevant to overcome the individual application in stress mitigation or even in plants without stress. In addition, we pointed out new directions for research on this topic in order to reinforce the combined use of stress relievers and their potential benefit to crop plants.
Collapse
Affiliation(s)
- Matheus Luís Oliveira Cunha
- São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane S/n, 14884-900 Jaboticabal-SP, Brazil
| | - Renato de Mello Prado
- São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane S/n, 14884-900 Jaboticabal-SP, Brazil
| |
Collapse
|
25
|
Tobiasz-Salach R, Mazurek M, Jacek B. Physiological, Biochemical, and Epigenetic Reaction of Maize ( Zea mays L.) to Cultivation in Conditions of Varying Soil Salinity and Foliar Application of Silicon. Int J Mol Sci 2023; 24:ijms24021141. [PMID: 36674673 PMCID: PMC9861071 DOI: 10.3390/ijms24021141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Soil salinity is one of the basic factors causing physiological, biochemical and epigenetic changes in plants. The negative effects of salt in the soil environment can be reduced by foliar application of silicon (Si). The study showed some positive effects of Si on maize plants (Zea mays L.) grown in various salinity conditions. At high soil salinity (300 and 400 mM NaCl), higher CCI content was demonstrated following the application of 0.2 and 0.3% Si. Chlorophyll fluorescence parameters (PI, FV/F0, Fv/Fm and RC/ABS) were higher after spraying at 0.3 and 0.4% Si, and plant gas exchange (Ci, PN, gs, E) was higher after spraying from 0.1 to 0.4% Si. Soil salinity determined by the level of chlorophyll a and b, and carotenoid pigments caused the accumulation of free proline in plant leaves. To detect changes in DNA methylation under salt stress and in combination with Si treatment of maize plants, the methylation-sensitive amplified polymorphism (MSAP) technique was used. The overall DNA methylation level within the 3'CCGG 5' sequence varied among groups of plants differentially treated. Results obtained indicated alterations of DNA methylation in plants as a response to salt stress, and the effects of NaCl + Si were dose-dependent. These changes may suggest mechanisms for plant adaptation under salt stress.
Collapse
Affiliation(s)
- Renata Tobiasz-Salach
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
- Correspondence:
| | - Marzena Mazurek
- Department of Physiology and Plant Biotechnology, University of Rzeszow, Ćwiklińskiej 2, 35-601 Rzeszow, Poland
| | - Beata Jacek
- Department of Physiology and Plant Biotechnology, University of Rzeszow, Ćwiklińskiej 2, 35-601 Rzeszow, Poland
| |
Collapse
|
26
|
Li Y, Xi K, Liu X, Han S, Han X, Li G, Yang L, Ma D, Fang Z, Gong S, Yin J, Zhu Y. Silica nanoparticles promote wheat growth by mediating hormones and sugar metabolism. J Nanobiotechnology 2023; 21:2. [PMID: 36593514 PMCID: PMC9808955 DOI: 10.1186/s12951-022-01753-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Silica nanoparticles (SiNPs) have been demonstrated to have beneficial effects on plant growth and development, especially under biotic and abiotic stresses. However, the mechanisms of SiNPs-mediated plant growth strengthening are still unclear, especially under field condition. In this study, we evaluated the effect of SiNPs on the growth and sugar and hormone metabolisms of wheat in the field. RESULTS SiNPs increased tillers and elongated internodes by 66.7% and 27.4%, respectively, resulting in a larger biomass. SiNPs can increase the net photosynthetic rate by increasing total chlorophyll contents. We speculated that SiNPs can regulate the growth of leaves and stems, partly by regulating the metabolisms of plant hormones and soluble sugar. Specifically, SiNPs can increase auxin (IAA) and fructose contents, which can promote wheat growth directly or indirectly. Furthermore, SiNPs increased the expression levels of key pathway genes related to soluble sugars (SPS, SUS, and α-glucosidase), chlorophyll (CHLH, CAO, and POR), IAA (TIR1), and abscisic acid (ABA) (PYR/PYL, PP2C, SnRK2, and ABF), whereas the expression levels of genes related to CTKs (IPT) was decreased after SiNPs treatment. CONCLUSIONS This study shows that SiNPs can promote wheat growth and provides a theoretical foundation for the application of SiNPs in field conditions.
Collapse
Affiliation(s)
- Yiting Li
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| | - Keyong Xi
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| | - Xi Liu
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| | - Shuo Han
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| | - Xiaowen Han
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| | - Gang Li
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| | - Lijun Yang
- grid.410632.20000 0004 1758 5180Key Laboratory of Integrated Pest Management of Crops in Central China, Ministry of Agriculture/Hubei Key Laboratory of Crop Diseases, Institute of Plant Protection and Soil Science, Insect Pests and Weeds Control, Hubei Academy of Agricultural Sciences, Wuhan, 430064 Hubei China
| | - Dongfang Ma
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| | - Zhengwu Fang
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| | - Shuangjun Gong
- grid.410632.20000 0004 1758 5180Key Laboratory of Integrated Pest Management of Crops in Central China, Ministry of Agriculture/Hubei Key Laboratory of Crop Diseases, Institute of Plant Protection and Soil Science, Insect Pests and Weeds Control, Hubei Academy of Agricultural Sciences, Wuhan, 430064 Hubei China
| | - Junliang Yin
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| | - Yongxing Zhu
- grid.410654.20000 0000 8880 6009MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025 Hubei China
| |
Collapse
|
27
|
Sarkar MM, Mukherjee S, Mathur P, Roy S. Exogenous nano-silicon application improves ion homeostasis, osmolyte accumulation and palliates oxidative stress in Lens culinaris under NaCl stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:143-161. [PMID: 36242906 DOI: 10.1016/j.plaphy.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/01/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Lentil is one of the highly nutritious legumes but is highly susceptible to salinity stress. Silicon has been known to reduce the effect of various environmental stresses including salinity. Moreover, silicon when applied in its nano-form is expected to augment the beneficial attributes of silicon. However, very little is known regarding the prospect of nano-silicon (nSi) application for alleviating the effect of salinity stress in non-silicified plants like lentil. In this study, the primary objective was to evaluate the efficacy of nSi in the alleviation of NaCl stress during germination and early vegetative stages. In this context, different concentrations of nSi (0, 1, 5, 10 g L-1) was applied along with four different concentrations of NaCl (0, 100, 200, 300 mM). The results indicated the uptake of nSi which was confirmed by the better accumulation of silica in the plant tissues. Most importantly, the enhanced accumulation of silica increased the K+/Na+ ratio of the NaCl-stressed seedlings. Moreover, nSi efficiently improved germination, growth, photosynthetic pigments, and osmotic balance. On the other hand, the relatively reduced activities of antioxidative enzymes were surmounted by the higher activity of non-enzymatic antioxidants which mainly scavenged the increased ROS. Reduced ROS accumulation in return ensured better membrane integrity and reduced electrolyte leakage up on nSi application. Therefore, it can be concluded that the application of nSi (more specifically at 10 g L-1) facilitated the uptake of silica and improved the K+/Na+ ratio to reclaim the growth and physiological status of NaCl-stressed seedlings.
Collapse
Affiliation(s)
- Mahima Misti Sarkar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, Kalyani University, West Bengal, 742213, India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
28
|
Niu Y, Liu L, Wang F, Liu X, Huang Z, Zhao H, Qi B, Zhang G. Exogenous silicon enhances resistance to 1,2,4-trichlorobenzene in rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157248. [PMID: 35820528 DOI: 10.1016/j.scitotenv.2022.157248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Environmental contamination with 1,2,4-trichlorobenzene (TCB) is a threat to rice growth, and ultimately, to human health. Silicon (Si) plays an important role in plants' stress responses. However, little is known about the effects of Si on the TCB tolerance of rice plants. We investigated the effects of Si on the morphological, physiological, and molecular characteristics of rice plants under TCB stress. First, we compared the TCB tolerance of 13 rice cultivars by measuring seven growth-related and 13 physiological indices across four treatments. Then, six cultivars with contrasting TCB tolerance were selected to study the expression of Si transport and detoxification related genes. Compared with the control, the TCB treatment resulted in decreased growth indices, chlorophyll content, and antioxidant enzyme activities, and increased the superoxide anion content and root electrical conductivity. Application of Si improved rice growth, chlorophyll content and alleviated oxidative damage caused by TCB. The alleviating effect of Si ranged from 4.1 % to 56.72 % among the cultivars, with the strongest alleviating effect on Wuyujing 36. The transcript levels of genes encoding Si transporters and detoxification enzymes were higher in tolerant cultivars than in sensitive cultivars. The TCB treatment induced the expression of GST and Lsi2 in roots and HO-1 in leaves; these genes as well as Lsi1 were differentially expressed in roots and/or leaves in the TCB + Si treatment. Lsi1 played a key role in Si-mediated TCB tolerance in Wuyujing 36. The joint analysis of gene transcript levels in TCB and TCB + Si treatments confirmed that all six genes were associated with TCB tolerance, especially Lsi1 and Lsi2 in roots and GST and CuZn-SOD in leaves. Si can increase rice plants' resistance to TCB stress by improving growth and enhancing superoxide dismutase (SOD) activity and chlorophyll content, and by up-regulating genes involved in Si transport and detoxification.
Collapse
Affiliation(s)
- Yuan Niu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Le Liu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Fang Wang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xinhai Liu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhiwei Huang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Hongliang Zhao
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Bo Qi
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Guoliang Zhang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China; State Key Laboratory of soil and agricultural sustainable development, Nanjing 210008, China; Jiangsu Key Laboratory of Attapulgite Clay Resource Utilization, Huai'an 223003, China.
| |
Collapse
|
29
|
Mukarram M, Petrik P, Mushtaq Z, Khan MMA, Gulfishan M, Lux A. Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119855. [PMID: 35940485 DOI: 10.1016/j.envpol.2022.119855] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/06/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Silicon is absorbed as uncharged mono-silicic acid by plant roots through passive absorption of Lsi1, an influx transporter belonging to the aquaporin protein family. Lsi2 then actively effluxes silicon from root cells towards the xylem from where it is exported by Lsi6 for silicon distribution and accumulation to other parts. Recently, it was proposed that silicon nanoparticles (SiNPs) might share a similar route for their uptake and transport. SiNPs then initiate a cascade of morphophysiological adjustments that improve the plant physiology through regulating the expression of many photosynthetic genes and proteins along with photosystem I (PSI) and PSII assemblies. Subsequent improvement in photosynthetic performance and stomatal behaviour correspond to higher growth, development, and productivity. On many occasions, SiNPs have demonstrated a protective role during stressful environments by improving plant-water status, source-sink potential, reactive oxygen species (ROS) metabolism, and enzymatic profile. The present review comprehensively discusses the crop improvement potential of SiNPs stretching their role during optimal and abiotic stress conditions including salinity, drought, temperature, heavy metals, and ultraviolet (UV) radiation. Moreover, in the later section of this review, we offered the understanding that most of these upgrades can be explained by SiNPs intricate correspondence with phytohormones, antioxidants, and signalling molecules. SiNPs can modulate the endogenous phytohormones level such as abscisic acid (ABA), auxins (IAAs), cytokinins (CKs), ethylene (ET), gibberellins (GAs), and jasmonic acid (JA). Altered phytohormones level affects plant growth, development, and productivity at various organ and tissue levels. Similarly, SiNPs regulate the activities of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and ascorbate-glutathione (AsA-GSH) cycle leading to an upgraded defence system. At the cellular and subcellular levels, SiNPs crosstalk with various signalling molecules such as Ca2+, K+, Na+, nitric oxide (NO), ROS, soluble sugars, and transcription factors (TFs) was also explained.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India; Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001, Zvolen, Slovakia.
| | - Peter Petrik
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Zeenat Mushtaq
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Masroor A Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Gulfishan
- Glocal School of Agricultural Science, Glocal University, Saharanpur, 247121, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Bratislava, Slovakia; Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, Slovakia
| |
Collapse
|
30
|
Silicon Supplementation Alleviates the Salinity Stress in Wheat Plants by Enhancing the Plant Water Status, Photosynthetic Pigments, Proline Content and Antioxidant Enzyme Activities. PLANTS 2022; 11:plants11192525. [PMID: 36235391 PMCID: PMC9572231 DOI: 10.3390/plants11192525] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023]
Abstract
Silicon (Si) is the most abundant element on earth after oxygen and is very important for plant growth under stress conditions. In the present study, we inspected the role of Si in the mitigation of the negative effect of salt stress at three concentrations (40 mM, 80 mM, and 120 mM NaCl) in two wheat varieties (KRL-210 and WH-1105) with or without Si (0 mM and 2 mM) treatment. Our results showed that photosynthetic pigments, chlorophyll stability index, relative water content, protein content, and carbohydrate content were reduced at all three salt stress concentrations in both wheat varieties. Moreover, lipid peroxidation, proline content, phenol content, and electrolyte leakage significantly increased under salinity stress. The antioxidant enzyme activities, like catalase and peroxidase, were significantly enhanced under salinity in both leaves and roots; however, SOD activity was drastically decreased under salt stress in both leaves and roots. These negative effects of salinity were more pronounced in WH-1105, as KRL-210 is a salt-tolerant wheat variety. On the other hand, supplementation of Si improved the photosynthetic pigments, relative water, protein, and carbohydrate contents in both varieties. In addition, proline content, MDA content, and electrolyte leakage were shown to decline following Si application under salt stress. It was found that applying Si enhanced the antioxidant enzyme activities under stress conditions. Si showed better results in WH-1105 than in KRL-210. Furthermore, Si was found to be more effective at a salt concentration of 120 mM compared to low salt concentrations (40 mM, 80 mM), indicating that it significantly improved plant growth under stressed conditions. Our experimental findings will open a new area of research in Si application for the identification and implication of novel genes involved in enhancing salinity tolerance.
Collapse
|
31
|
Falouti M, Ellouzi H, Bounaouara F, Farhat N, Aggag A, Debez A, Rabhi M, Abdelly C, Slama I, Zorrig W. Higher activity of PSI compared to PSII accounts for the beneficial effect of silicon on barley ( Hordeum vulgare L.) plants challenged with salinity. PHOTOSYNTHETICA 2022; 60:508-520. [PMID: 39649392 PMCID: PMC11558587 DOI: 10.32615/ps.2022.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2024]
Abstract
This study was conducted to assess whether silicon (Si) supply can alleviate the harmful effects of severe salinity in barley (Hordeum vulgare). Plants were grown on non-saline (0 mM NaCl) or saline (200 mM NaCl) nutrient media supplemented or not with 0.5 mM Si. Salinity impacted plant morphology and induced sodium and chloride accumulation within plant tissues. It significantly affected almost all measured parameters. Interestingly, Si supply alleviated salt stress effects on plant morphology, growth (up to +59%), water status (up to +74%), membrane integrity (up to +35%), pigment contents (up to +121%), and the activity of the two photosystems (PSI and PSII) by improving their yields, and by reducing their energy dissipation. Si beneficial effect was more pronounced on PSI as compared to PSII. As a whole, data inferred from the present study further confirmed that silicon application is an effective approach to cope with salinity.
Collapse
Affiliation(s)
- M. Falouti
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - H. Ellouzi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - F. Bounaouara
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - N. Farhat
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - A.M. Aggag
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Natural Resources and Agricultural Engineering, Faculty of Agriculture, Damanhour University, Egypt
| | - A. Debez
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - M. Rabhi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - C. Abdelly
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - I. Slama
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - W. Zorrig
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
32
|
Zulfiqar F, Nafees M, Chen J, Darras A, Ferrante A, Hancock JT, Ashraf M, Zaid A, Latif N, Corpas FJ, Altaf MA, Siddique KHM. Chemical priming enhances plant tolerance to salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:946922. [PMID: 36160964 PMCID: PMC9490053 DOI: 10.3389/fpls.2022.946922] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/25/2022] [Indexed: 05/10/2023]
Abstract
Salt stress severely limits the productivity of crop plants worldwide and its detrimental effects are aggravated by climate change. Due to a significant world population growth, agriculture has expanded to marginal and salinized regions, which usually render low crop yield. In this context, finding methods and strategies to improve plant tolerance against salt stress is of utmost importance to fulfill food security challenges under the scenario of the ever-increasing human population. Plant priming, at different stages of plant development, such as seed or seedling, has gained significant attention for its marked implication in crop salt-stress management. It is a promising field relying on the applications of specific chemical agents which could effectively improve plant salt-stress tolerance. Currently, a variety of chemicals, both inorganic and organic, which can efficiently promote plant growth and crop yield are available in the market. This review summarizes our current knowledge of the promising roles of diverse molecules/compounds, such as hydrogen sulfide (H2S), molecular hydrogen, nitric oxide (NO), hydrogen peroxide (H2O2), melatonin, chitosan, silicon, ascorbic acid (AsA), tocopherols, and trehalose (Tre) as potential primers that enhance the salinity tolerance of crop plants.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Anastasios Darras
- Department of Agriculture, University of the Peloponnese, Kalamata, Greece
| | - Antonio Ferrante
- Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Milano, Italy
| | - John T. Hancock
- Department of Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Nadeem Latif
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Francisco J. Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | |
Collapse
|
33
|
Altaf MM, Diao XP, Altaf MA, Ur Rehman A, Shakoor A, Khan LU, Jan BL, Ahmad P. Silicon-mediated metabolic upregulation of ascorbate glutathione (AsA-GSH) and glyoxalase reduces the toxic effects of vanadium in rice. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129145. [PMID: 35739696 DOI: 10.1016/j.jhazmat.2022.129145] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Although beneficial metalloid silicon (Si) has been proven to reduce the toxicity of several heavy metals, there is a lack of understanding regarding Si potential function in mitigating phytotoxicity induced by vanadium (V). In this study, effect of Si (1.5 mM) on growth, biomass production, V uptake, reactive oxygen species (ROS), methylglyoxal (MG) formation, selected antioxidants enzymes activities, glyoxalase enzymes under V stress (35 mg L-1) was investigated in hydroponic experiment. The results showed that V stress reduced rice growth, caused V accumulation in rice. Addition of Si to the nutritional medium increased plant growth, biomass yield, root length, root diameter, chlorophyll parameters, photosynthetic assimilation, ion leakage, antioxidant enzymes activities under V stress. Notably, Si sustained V-homeostasis and alleviated V caused oxidative stress by boosting ascorbate (AsA) levels and the activity of antioxidant enzymes in V stressed rice plants. Furthermore, Si protected rice seedlings against the harmful effects of methylglyoxal by increasing the activity of glyoxalase enzymes. Additionally, Si increased the expression of numerous genes involved in the detoxification of reactive oxygen species (e.g., OsCuZnSOD1, OsCaTB, OsGPX1, OsAPX1, OsGR2, and OsGSTU37) and methylglyoxal (e.g., OsGLYI-1 and OsGLYII-2). The findings supported that Si can be applied to plants to minimize the V availability to plant, and also induced V stress tolerance.
Collapse
Affiliation(s)
- Muhammad Mohsin Altaf
- College of Ecology and Environment, Hainan University, Haikou 570228, PR China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Xiao-Ping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China; School of Biology, Hainan Normal University, Haikou 571158, PR China.
| | | | - Atique Ur Rehman
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, Lleida 25198, Spain
| | - Latif Ullah Khan
- College of Tropical Crops, Hainan University, Haikou 570228, PR China
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Jammu and Kashmir 192301, India
| |
Collapse
|
34
|
Lyu J, Jin N, Meng X, Jin L, Wang S, Xiao X, Liu Z, Tang Z, Yu J. Exogenous silicon alleviates the adverse effects of cinnamic acid-induced autotoxicity stress on cucumber seedling growth. FRONTIERS IN PLANT SCIENCE 2022; 13:968514. [PMID: 36035700 PMCID: PMC9399776 DOI: 10.3389/fpls.2022.968514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Autotoxicity is a key factor that leads to obstacles in continuous cropping systems. Although Si is known to improve plant resistance to biotic and abiotic stresses, little is known about its role in regulating leaf water status, mineral nutrients, nitrogen metabolism, and root morphology of cucumber under autotoxicity stress. Here, we used cucumber seeds (Cucumis sativus L. cv. "Xinchun No. 4") to evaluate how exogenous Si (1 mmol L-1) affected the leaf water status, mineral nutrient uptake, N metabolism-related enzyme activities, root morphology, and shoot growth of cucumber seedlings under 0.8 mmol L-1 CA-induced autotoxicity stress. We found that CA-induced autotoxicity significantly reduced the relative water content and water potential of leaves and increase their cell sap concentration. CA-induced stress also inhibited the absorption of major (N, P, K, Ca, Mg) and trace elements (Fe, Mn, Zn). However, exogenous Si significantly improved the leaf water status (relative water content and water potential) of cucumber leaves under CA-induced stress. Exogenous Si also promoted the absorption of mineral elements by seedlings under CA-induced stress and alleviated the CA-induced inhibition of N metabolism-related enzyme activities (including nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, glutamate dehydrogenase). Moreover, exogenous Si improved N uptake and utilization, promoted root morphogenesis, and increased the growth indexes of cucumber seedlings under CA-induced stress. Our findings have far-reaching implications for overcoming the obstacles to continuous cropping in cucumber cultivation.
Collapse
Affiliation(s)
- Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xin Meng
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Li Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shuya Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
35
|
Shen Z, Cheng X, Li X, Deng X, Dong X, Wang S, Pu X. Effects of silicon application on leaf structure and physiological characteristics of Glycyrrhiza uralensis Fisch. and Glycyrrhiza inflata Bat. under salt treatment. BMC PLANT BIOLOGY 2022; 22:390. [PMID: 35922748 PMCID: PMC9351143 DOI: 10.1186/s12870-022-03783-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Soil salinization leads to a significant decline in crop yield and quality, including licorice, an important medicinal cash crop. Studies have proofed that the application of exogenous silicon can significantly improve the ability of licorice to resist salt stress, however, few studies concentrated on the effects of foliar silicon application on the morphology, physiological characteristics, and anatomical structure of licorice leaves under salt stress. In this study, the effects of Si (K2SiO3) on the structural and physiological characteristics of Glycyrrhiza uralensis Fisch. and G. inflata Bat. leaves under different salt concentrations (medium- and high-salt) were studied. RESULTS Compared with the control (without salt), the plant height, total dry weight, leaf area, leaf number, relative water content, xylem area, phloem area, ratio of palisade to spongy tissue, gas exchange parameters, and photosynthetic pigment content of both licorice varieties were significantly reduced under high-salt (12S) conditions. However, the thickness of the leaf, palisade tissue, and spongy tissue increased significantly. Applying Si to the leaf surface increased the area of the vascular bundle, xylem, and parenchyma of the leaf's main vein, promoted water transportation, enhanced the relative leaf water content, and reduced the decomposition of photosynthetic pigments. These changes extended the area of photosynthesis and promoted the production and transportation of organic matter. G. uralensis had a better response to Si application than did G. inflata. CONCLUSIONS In conclusion, foliar application of Si can improve water absorption, enhance photosynthesis, improve photosynthetic capacity and transpiration efficiency, promote growth and yield, and alleviate the adverse effects of salt stress on the leaf structure of the two kinds of licorice investigated.
Collapse
Affiliation(s)
- Zihui Shen
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xiaojiao Cheng
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xiao Li
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xianya Deng
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xiuxiu Dong
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Shaoming Wang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xiaozhen Pu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China.
- Pharmacy School, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
36
|
Kumari VV, Banerjee P, Verma VC, Sukumaran S, Chandran MAS, Gopinath KA, Venkatesh G, Yadav SK, Singh VK, Awasthi NK. Plant Nutrition: An Effective Way to Alleviate Abiotic Stress in Agricultural Crops. Int J Mol Sci 2022; 23:8519. [PMID: 35955651 PMCID: PMC9368943 DOI: 10.3390/ijms23158519] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
By the year 2050, the world's population is predicted to have grown to around 9-10 billion people. The food demand in many countries continues to increase with population growth. Various abiotic stresses such as temperature, soil salinity and moisture all have an impact on plant growth and development at all levels of plant growth, including the overall plant, tissue cell, and even sub-cellular level. These abiotic stresses directly harm plants by causing protein denaturation and aggregation as well as increased fluidity of membrane lipids. In addition to direct effects, indirect damage also includes protein synthesis inhibition, protein breakdown, and membranous loss in chloroplasts and mitochondria. Abiotic stress during the reproductive stage results in flower drop, pollen sterility, pollen tube deformation, ovule abortion, and reduced yield. Plant nutrition is one of the most effective ways of reducing abiotic stress in agricultural crops. In this paper, we have discussed the effectiveness of different nutrients for alleviating abiotic stress. The roles of primary nutrients (nitrogen, phosphorous and potassium), secondary nutrients (calcium, magnesium and sulphur), micronutrients (zinc, boron, iron and copper), and beneficial nutrients (cobalt, selenium and silicon) in alleviating abiotic stress in crop plants are discussed.
Collapse
Affiliation(s)
- Venugopalan Visha Kumari
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Purabi Banerjee
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Vishwavidyala, Mohanpur 741251, India;
| | - Vivek Chandra Verma
- Department of Biochemistry, College of Basic Science and Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar 263145, India;
| | - Suvana Sukumaran
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Malamal Alickal Sarath Chandran
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Kodigal A. Gopinath
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Govindarajan Venkatesh
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Sushil Kumar Yadav
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Vinod Kumar Singh
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | | |
Collapse
|
37
|
Assessing Silicon-Mediated Growth Performances in Contrasting Rice Cultivars under Salt Stress. PLANTS 2022; 11:plants11141831. [PMID: 35890465 PMCID: PMC9324038 DOI: 10.3390/plants11141831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Silicon (Si) application has great potential to improve salt tolerance in a variety of crop plants. However, it is unclear how Si influences the responses of contrasting rice cultivars when exposed to excessive salt. Here, we investigated the functions of Si in alleviating the negative effects of salt stress on two contrasting rice cultivars, namely BRRI dhan48 (salt-sensitive) and Binadhan-10 (salt-tolerant). Rice seedlings was pre-treated with three doses of Si (as silicic acid; 0, 1 and 2 mM) for 14 days at one-day interval before being exposed to salt stress (10 dSm−1) in a sustained water bath system. The results demonstrated that the seedlings of BRRI dhan48 and Binadhan-10, respectively exhibited substantial reductions in shoot height (16 and 9%), shoot fresh weight (64 and 43%) and shoot dry weight (50 and 39%) under salinity. Intriguingly, BRRI dhan48 pre-treated with 1 and 2 mM Si, respectively, showed a higher increase in shoot height (SH) (by 25.90 and 26.08%) as compared with Binadhan-10 (by 3 and 8%) under salt stress compared with their respective controls. Data revealed that a comparatively higher improvement in the growth performances of the salt-induced Si pre-treated BRRI dhan48 than that of Binadhan-10. For example, 1 and 2 mM of Si treatments significantly attributed to elevated leaf relative water content (RWC) (13 and 22%), proline (138 and 165%), chlorophyll a (42 and 44%), chlorophyll b (91 and 72%), total chlorophyll (58 and 53%) and carotenoids (33 and 29%), and recovery in the reductions of electrolyte leakage (13 and 21%), malondialdehyde content (23 and 30%) and shoot Na+/K+ ratio (22 and 52%) in BRRI dhan48 compared with Si-untreated control plants under salt stress. In addition, we found salt-tolerant Binadhan-10 also had enhanced RWC (9 and 19%), proline (12 and 26%) with pre-treatment with 1 and 2 mM of Si, respectively, under salt stress, while no significant differences were noticed in the case of photosynthetic pigments and Na+/K+ ratio. Our results showed that Si supplementation potentiated higher salt-tolerance ability in the salt-sensitive BRRI dhan48 as compared with salt-tolerant Binadhan-10. Thus, Si application could be highly beneficial in the growth recovery of the salinity-affected salt-sensitive high yielding rice cultivars in the saline-prone areas.
Collapse
|
38
|
Al Murad M, Muneer S. Silicon Supplementation Modulates Physiochemical Characteristics to Balance and Ameliorate Salinity Stress in Mung Bean. FRONTIERS IN PLANT SCIENCE 2022; 13:810991. [PMID: 35665146 PMCID: PMC9158508 DOI: 10.3389/fpls.2022.810991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/12/2022] [Indexed: 05/25/2023]
Abstract
Mung bean is a low-cost high-protein legume that is sensitive to salinity. Salt stress has been demonstrated to be mitigated by silicon (Si). In legumes, the potential for silicon (Si)-mediated abiotic stress reduction has mainly been ignored. Moreover, there is little information on the specific role of comparable Si (sodium silicate) concentrations in salinity stress reduction. As a result, the current study investigated the impact of two distinct Si concentrations (1 and 5 mM) on the physiochemical features of the "mung bean," one of the most extensively cultivated legumes, when exposed to salinity (10, 20, and 50 mM NaCl). Salinity stress reduced growth variables such as biomass, nodule formation, plant length, height, and photosynthetic measures, which were mitigated by silicon supplementation at 5 mM sodium silicate. The inclusion of silicon increased the expression of photosynthetic proteins such as PSI, PSII, and LHCs under salt stress. Salinity stress also caused oxidative damage in the mung bean in the form of hydrogen peroxide (H2O2) and superoxide radical (O2 -), leading in increased lipid peroxidation (MDA) and electrolyte leakage. In contrast, 5 mM sodium silicate tends to scavenge free radicals, reducing lipid peroxidation (MDA) and electrolyte loss. This was linked to significant silica deposition in the leaf epidermis, which eventually functioned as a mechanical barrier in mitigating the deleterious effects of salt stress. Si supplementation also decreased Na+ uptake while increasing K+ uptake. Silicon, specifically 5 mM sodium silicate, was found to minimize salinity stress in mung bean by altering physio-chemical parameters such as photosynthetic machinery, Na+/K+ homeostasis, mechanical barriers, osmolyte production, and oxidative stress.
Collapse
Affiliation(s)
- Musa Al Murad
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
39
|
Kovács S, Kutasy E, Csajbók J. The Multiple Role of Silicon Nutrition in Alleviating Environmental Stresses in Sustainable Crop Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:1223. [PMID: 35567224 PMCID: PMC9104186 DOI: 10.3390/plants11091223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 05/25/2023]
Abstract
In addition to the application of macronutrients (N, P, K), there has been an increasing interest in studying the effects of different micronutrients on growth and development in plant populations under abiotic and biotic stresses. Experimental results have demonstrated the role of silicon in mitigating environmental stresses on plants (especially in silicon accumulating plant species). Furthermore, as the silicon content of soils available to plants can vary greatly depending on soil type, the many positive results have led to increased interest in silicon as a nutrient in sustainable agriculture over the last decade. The grouping of plant species according to silicon accumulation is constantly changing as a result of new findings. There are also many new research results on the formation of phytoliths and their role in the plants. The use of silicon as a nutrient is becoming more widespread in crop production practices based on research results reporting beneficial effects. Controversial results have also been obtained on the use of different Si-containing materials as fertilizers. Many questions remain to be clarified about the uptake, transport, and role of silicon in plant life processes, such as stress management. Future research is needed to address these issues. This review discusses the role and beneficial effects of silicon in plants as a valuable tool for regulating biological and abiotic stresses. Our aim was to provide an overview of recent research on the role and importance of silicon in sustainable crop production and to highlight possible directions for further research.
Collapse
|
40
|
Li Y, Wang K, Kong Y, Lv Y, Xu K. Toxicity and tissue accumulation characteristics of the herbicide pendimethalin under silicon application in ginger (Zingiber officinale Roscoe). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25263-25275. [PMID: 34839461 DOI: 10.1007/s11356-021-17740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Environmental health and food safety issues potentially caused by the dinitroaniline herbicide pendimethalin (PM) are a worldwide concern. The toxicity response of ginger and tissue accumulation effects of PM on ginger biomass were studied by utilizing PM (CK (clean water), PM1 (0.4%), PM2 (0.67%), PM3 (1.0%), and PM4 (1.67%)) in a dose-response study. It significantly reduced the biomass of ginger under PM4, which is attributed to root damage. The net photosynthetic rate of ginger under PM4 was 11.37% lower than that of CK, which is mainly caused by stomatal limitation. In addition, the ultrastructure of chloroplasts has changed. PM4 caused the accumulation of reactive oxygen species (ROS) in ginger. The activity of superoxide dismutase (SOD) and peroxidase (POD) increased accordingly, maintaining the dynamic balance of ROS content. PM had no significant effect on the expression of ginger α-tubulin genes. PM was significantly accumulated in ginger roots, but not rhizomes. Si increased the productivity of ginger under PM4, which is mainly related to the increase of root development (root application of silicon) and photosynthetic efficiency (foliar application of silicon). Si reduced the ROS content due to the increase in SOD, POD, and catalase (CAT) activity and photosynthetic efficiency.
Collapse
Affiliation(s)
- Yanyan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Kai Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Yuwen Kong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China.
- Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China.
- State Key Laboratory of Crop Biology, Taian, 271018, China.
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China.
- Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China.
- State Key Laboratory of Crop Biology, Taian, 271018, China.
| |
Collapse
|
41
|
The Effective Role of Nano-Silicon Application in Improving the Productivity and Quality of Grafted Tomato Grown under Salinity Stress. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study aims to determine the influence of grafting and nano-silicon fertilizer on the growth and production of tomatoes (Solanumlycopersicum L.) under salinity conditions. A commercial tomato hybrid (cv. Strain B) was used as a scion and two tomato phenotypes were used as rootstocks: S. pimpinellifolium and Edkawy. The rootstock effect was evaluated by growing plants at two NaCl concentrations plus the control (0, 4000, and 8000 ppm NaCl). Nano-silicon foliar application (0.5 ppm) after 20, 28, and 36 days from transplanting was also used to mitigate salinity stress. Antioxidants, hormones, and proline were evaluated for a better understanding of the physiological changes induced by salinity and grafting. The results showed that grafting either on S. pimpinellifolium or Edkawy combined with nano-silicon application enhanced shoot and root growth, fruit yield, and fruit quality. The Edkawy rootstock was more effective than the S. pimpinellifolium rootstock in terms of counteracting the negative effect of salinity. Higher levels of mineral contents, GA3, ABA, and proline were detected in shoots that were subjected to grafting and nano-silicon application compared to the control treatment. This study indicates that grafting and nano-silicon application hold potential as alternative techniques to mitigate salt stress in commercial tomato cultivars.
Collapse
|
42
|
Hajihashemi S, Kazemi S. The potential of foliar application of nano-chitosan-encapsulated nano-silicon donor in amelioration the adverse effect of salinity in the wheat plant. BMC PLANT BIOLOGY 2022; 22:148. [PMID: 35346042 PMCID: PMC8961914 DOI: 10.1186/s12870-022-03531-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Nano-materials ameliorate the adverse effect of salinity stress on the physiological and biochemical processes in plants. The present investigation was designed to evaluate the physiological mechanisms through which a nano-chitosan-encapsulated nano-silicon fertilizer (NC-NS) can ameliorate the adverse effect of salinity stress on the wheat plants, and compare it with nano-chitosan (NC) and nano-silicon (NS) application. Nano-silicon was encapsulated with a chitosan-tripolyphosphate (TPP) nano-matrix by ionic gelation method for its slow release. The wheat plants were exposed to foliar application of distilled water, NC, NS, and NC-NS with two NaCl irrigation levels at 0 (distilled water) and 100 mM. RESULTS The foliar application of NC, NS, and NC-NS induced a significant increase in the function of enzymatic and non-enzymatic antioxidant systems of the wheat plants to equilibrate cellular redox homeostasis by balancing H2O2 content in the leaves and roots, as compared with salt-stressed plants without treatment. The plant's foliar-sprayed with NC, NS, and NC-NS solution exhibited a significant increase in the molecules with osmotic adjustment potentials such as proline, free amino acids, glycine betaine, and sugars to protect cells against osmotic stress-induced by salinity. The observed increase in the antioxidant power and osmoregulatory at NC, NS, and NC-NS application was accompanied by the protection of lipid membrane, proteins and photosynthetic apparatus against salinity stress. CONCLUSION In the present study, the beneficial role of NC, NS, and NC-NS application, particularly NC-NS, in alleviating the adverse effect of salinity stress on antioxidant systems and osmotic adjustment in wheat is well documented. An overview of the result of present study assists researchers in providing a potential solution for this increasing salinization threat in crops.
Collapse
Affiliation(s)
- Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, 63616-63973, Khuzestan, Iran.
| | - Shadi Kazemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, 63616-63973, Khuzestan, Iran
| |
Collapse
|
43
|
Mir RA, Bhat BA, Yousuf H, Islam ST, Raza A, Rizvi MA, Charagh S, Albaqami M, Sofi PA, Zargar SM. Multidimensional Role of Silicon to Activate Resilient Plant Growth and to Mitigate Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:819658. [PMID: 35401625 PMCID: PMC8984490 DOI: 10.3389/fpls.2022.819658] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/31/2022] [Indexed: 05/16/2023]
Abstract
Sustainable agricultural production is critically antagonistic by fluctuating unfavorable environmental conditions. The introduction of mineral elements emerged as the most exciting and magical aspect, apart from the novel intervention of traditional and applied strategies to defend the abiotic stress conditions. The silicon (Si) has ameliorating impacts by regulating diverse functionalities on enhancing the growth and development of crop plants. Si is categorized as a non-essential element since crop plants accumulate less during normal environmental conditions. Studies on the application of Si in plants highlight the beneficial role of Si during extreme stressful conditions through modulation of several metabolites during abiotic stress conditions. Phytohormones are primary plant metabolites positively regulated by Si during abiotic stress conditions. Phytohormones play a pivotal role in crop plants' broad-spectrum biochemical and physiological aspects during normal and extreme environmental conditions. Frontline phytohormones include auxin, cytokinin, ethylene, gibberellin, salicylic acid, abscisic acid, brassinosteroids, and jasmonic acid. These phytohormones are internally correlated with Si in regulating abiotic stress tolerance mechanisms. This review explores insights into the role of Si in enhancing the phytohormone metabolism and its role in maintaining the physiological and biochemical well-being of crop plants during diverse abiotic stresses. Moreover, in-depth information about Si's pivotal role in inducing abiotic stress tolerance in crop plants through metabolic and molecular modulations is elaborated. Furthermore, the potential of various high throughput technologies has also been discussed in improving Si-induced multiple stress tolerance. In addition, a special emphasis is engrossed in the role of Si in achieving sustainable agricultural growth and global food security.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Henan Yousuf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | | | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | | | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, India
| |
Collapse
|
44
|
Stadnik B, Tobiasz-Salach R, Mazurek M. Physiological and Epigenetic Reaction of Barley ( Hordeum vulgare L.) to the Foliar Application of Silicon under Soil Salinity Conditions. Int J Mol Sci 2022; 23:ijms23031149. [PMID: 35163073 PMCID: PMC8835728 DOI: 10.3390/ijms23031149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/27/2023] Open
Abstract
Soil salinity is an important environmental factor affecting physiological processes in plants. It is possible to limit the negative effects of salt through the exogenous application of microelements. Silicon (Si) is widely recognized as an element improving plant resistance to abiotic and biotic stresses. The aim of the research was to determine the impact of foliar application of Si on the photosynthetic apparatus, gas exchange and DNA methylation of barley (Hordeum vulgare L.) grown under salt stress. Plants grown under controlled pot experiment were exposed to sodium chloride (NaCl) in the soil at a concentration of 200 mM, and two foliar applications of Si were made at three concentrations (0.05%, 0.1% and 0.2%). Measurements were made of relative chlorophyll content in leaves (CCl), gas exchange parameters (Ci, E, gs, and PN), and selected chlorophyll fluorescence parameters (Fv/Fm, Fv/F0, PI and RC/ABS). Additionally, DNA methylation level based on cytosine methylation within the 3′CCGG 5′ sequence was analyzed. Salinity had a negative effect on the values of the parameters examined. Exogenous application of Si by spraying leaves increased the values of the measured parameters in plants. Plants treated with NaCl in combination with the moderate (0.1%) and highest (0.2%) dose of Si indicated the lowest methylation level. Decrease of methylation implicated with activation of gene expression resulted in better physiological parameters observed in this group of barley plants.
Collapse
Affiliation(s)
- Barbara Stadnik
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
- Correspondence:
| | - Renata Tobiasz-Salach
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
| | - Marzena Mazurek
- Department of Physiology and Plant Biotechnology, University of Rzeszow, Ćwiklińskiej 2, 35-601 Rzeszow, Poland;
| |
Collapse
|
45
|
Nanopotassium, Nanosilicon, and Biochar Applications Improve Potato Salt Tolerance by Modulating Photosynthesis, Water Status, and Biochemical Constituents. SUSTAINABILITY 2022. [DOI: 10.3390/su14020723] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Salinity is one of the main environmental stresses, and it affects potato growth and productivity in arid and semiarid regions by disturbing physiological process, such as the photosynthesis rate, the absorption of essential nutrients and water, plant hormonal functions, and vital metabolic pathways. Few studies are available on the application of combined nanomaterials to mitigate salinity stress on potato plants (Solanum tuberosum L. cv. Diamont). In order to assess the effects of the sole or combined application of silicon (Si) and potassium (K) nanoparticles and biochar (Bc) on the agro-physiological properties and biochemical constituents of potato plants grown in saline soil, two open-field experiments were executed on a randomized complete block design (RCBD), with five replicates. The results show that the biochar application and nanoelements (n-K and n-Si) significantly improved the plant heights, the fresh and dry plant biomasses, the numbers of stems/plant, the leaf relative water content, the leaf chlorophyll content, the photosynthetic rate (Pn), the leaf stomatal conductance (Gc), and the tuber yields, compared to the untreated potato plants (CT). Moreover, the nanoelements and biochar improved the content of the endogenous elements of the plant tissues (N, P, K, Mg, Fe, Mn, and B), the leaf proline, and the leaf gibberellic acid (GA3), in addition to reducing the leaf abscisic acid content (ABA), the activity of catalase (CAT), and the peroxidase (POD) and polyphenol oxidase (PPO) in the leaves of salt-stressed potato plants. The combined treatment achieved maximum plant growth parameters, physiological parameters, and nutrient concentrations, and minimum transpiration rates (Tr), leaf abscisic acid content (ABA), and activities of the leaf antioxidant enzymes (CAT, POD, and PPO). Furthermore, the combined treatment also showed the highest tuber yield and tuber quality, including the contents of carbohydrates, proteins, and the endogenous nutrients of the tuber tissues (N, P, and K), and the lowest starch content. Moreover, Pearson’s correlation showed that the plant growth and the tuber yields of potato plants significantly and positively correlated with the photosynthesis rate, the internal CO2 concentration, the relative water content, the proline, the chlorophyll content, and the GA3, and that they were negatively correlated with the leaf Na content, PPO, CAT, ABA, MDA, and Tr. It might be concluded that nanoelement (n-K and n-Si) and biochar applications are a promising method to enhance the plant growth and crop productivity of potato plants grown under salinity conditions.
Collapse
|
46
|
Gupta K, Srivastava S, Saxena G, Kumar A. Application of Pteris vittata L. for phytoremediation of arsenic and biomonitoring of the process through cyto-genetic biomarkers of Trigonella foenum-graecum L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:91-106. [PMID: 35221574 PMCID: PMC8847651 DOI: 10.1007/s12298-022-01124-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The arsenic (As) contamination demands its remediation from the environment which is naturally possible by the application of Pteris vittata L. However, biomonitoring of phytoremediation potential of P. vittata at chromosomal and DNA level is still meager. The present study was designed to biomonitor the phytoremediation efficiency of P. vittata through phytotoxic and cyto-genotoxic biomarkers assessment using Trigonella foenum-graecum L. (Fenugreek; Methi) as test system. Study revealed hyperaccumulation potential of P. vittata which extracted arsenic in its tissues. Biomonitoring evaluation depicted that phytotoxic damage was reduced in Trigonella exposed to remediated soil, which was revealed through reduced electrolyte leakage, hydrogen peroxide and MDA content. Moreover, cyto-genetic endpoints like mitotic depression (44.03%), relative abnormality rate (16.6%) and chromosomal abnormality frequency (1.06%) were also lesser in test plants grown in remediated soil compared to those grown in non-remediated soil. Along with this various chromosomal aberrations like stickiness, breaks, laggards, bridges, fragmentations and micronuclei were also augmented in test plants exposed to non-remediated arsenic enriched soil. It was evident that arsenic enriched soil caused toxicity to plants in dose-dependent manner that was assessable through the analysis of biochemical parameters and cyto-genetic biomarkers. The cyto-genetic biomarkers are very efficient, simple and non-expensive tools to biomonitor arsenic toxicity at chromosomal as well as DNA level to assess the remediation potential of P. vittata in field conditions.
Collapse
Affiliation(s)
- Kiran Gupta
- Department of Botany, Lucknow University, Lucknow, 226007 India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005 India
| | - Gauri Saxena
- Department of Botany, Lucknow University, Lucknow, 226007 India
| | - Amit Kumar
- Department of Botany, Lucknow University, Lucknow, 226007 India
| |
Collapse
|
47
|
Bello AS, Ben-Hamadou R, Hamdi H, Saadaoui I, Ahmed T. Application of Cyanobacteria ( Roholtiella sp.) Liquid Extract for the Alleviation of Salt Stress in Bell Pepper ( Capsicum annuum L.) Plants Grown in a Soilless System. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010104. [PMID: 35009109 PMCID: PMC8747557 DOI: 10.3390/plants11010104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 05/17/2023]
Abstract
Salinity is one of the abiotic stresses that affect crop growth and productivity in arid and semi-arid regions. Unfortunately, there are few known methods to mitigate the deleterious impacts of salt stress on the development and yield of vegetable crops. Blue-green algae (cyanobacteria) are endowed with the potential to curb the negative impacts of salt stress as they are characterized by biostimulant properties. The present work aimed to investigate the effects of Roholtiella sp. as a foliar extract on the growth characteristics, physiological and biochemical responses of bell pepper (Capsicum annuum L.) plants under varying levels of salinity conditions. A soilless water experiment was carried out in a greenhouse where bell pepper seedlings were grown under five salt concentrations (0, 50, 200, 150, and 200 mM of NaCl). Growth characteristics, pigments content, relative water content, and antioxidant activity (CAT) were determined. Our results showed that growth parameters, relative water content (RWC), chlorophyll a & b concentrations under salinity conditions were negatively affected at the highest concentration (200 mM). Interestingly, the application of Roholtiella sp. foliar extract enhanced the plant growth characteristics as shoot length increased by 17.014%, fresh weight by 39.15%, dry and weight by 31.02%, at various salt treatments. Moreover, chlorophyll a and b increased significantly compared with seedlings sprayed with water. Similarly, RWC exhibited a significant increase (92.05%) compared with plants sprayed with water. In addition, antioxidants activities and accumulation of proline were improved in Roholtella sp. extract foliar sprayed seedlings compared to the plants foliar sprayed with water. Conclusively, at the expiration of our study, the Rohotiella sp. extract-treated plants were found to be more efficient in mitigating the deleterious effects caused by the salinity conditions which is an indication of an enhancement potential of tolerating salt-stressed plants when compared to the control group.
Collapse
Affiliation(s)
- Adewale Suraj Bello
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.B.); (R.B.-H.)
| | - Radhouane Ben-Hamadou
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.B.); (R.B.-H.)
| | - Helmi Hamdi
- Center for Sustainable Development, Qatar University, Doha P.O. Box 2713, Qatar; (H.H.); (I.S.)
| | - Imen Saadaoui
- Center for Sustainable Development, Qatar University, Doha P.O. Box 2713, Qatar; (H.H.); (I.S.)
| | - Talaat Ahmed
- Environmental Science Centre, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: ; Tel.: +974-44034563
| |
Collapse
|
48
|
Mitigation of Drought Damages by Exogenous Chitosan and Yeast Extract with Modulating the Photosynthetic Pigments, Antioxidant Defense System and Improving the Productivity of Garlic Plants. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Garlic is an important vegetable in terms of its economic value and also as a medicinal plant. In this study, chitosan (300 mM) and yeast extract (8 g/L) were used individually or in combination to improve the yields of garlic plants under drought conditions (i.e., 75% and 50% of the water they would normally receive from irrigation) for two seasons. Significant decreases in numbers of leaves per plant and plant height, plant dry weight, relative water content, and chlorophyll a and b concentrations were found in stressed garlic plants in both seasons. The greatest reductions in these characters were recorded in plants that received only 50% of the normal irrigation in both seasons. Levels of hydrogen peroxide, products of lipid peroxidation such as malondialdehyde, and superoxide, as well as percentages of electrolyte leakage, were elevated considerably and were signals of oxidative damage. The application of the yeast extract (8 g/L) or chitosan (300 mM) individually or in combination led to a remarkable increase in the most studied characters of the stressed garlic plants. The combination of yeast extract (8 g/L) plus chitosan (300 mM) led to increase plant height (44%), ascorbic acid levels (30.2%), and relative water content (36.8%), as well as the chlorophyll a (50.7%) and b concentrations (79%), regulated the proline content and levels of antioxidant enzymes in stressed garlic plants that received 75% of the normal irrigation, and this decreased the signs of oxidative stress (i.e., percentage of electrolyte leakage and levels of malondialdehyde, hydrogen peroxide, and superoxide).
Collapse
|
49
|
El Moukhtari A, Carol P, Mouradi M, Savoure A, Farissi M. Silicon improves physiological, biochemical, and morphological adaptations of alfalfa (Medicago sativa L.) during salinity stress. Symbiosis 2021. [DOI: 10.1007/s13199-021-00814-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Seed Priming Boost Adaptation in Pea Plants under Drought Stress. PLANTS 2021; 10:plants10102201. [PMID: 34686010 PMCID: PMC8541019 DOI: 10.3390/plants10102201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022]
Abstract
In the present investigation, we study the effect of Bacillus thuringiensis MH161336 (106–8 CFU/cm3), silicon (25 mL L−1), and carrot extract (75 mL L−1) as seed primers, individually or in combination, on morphological, physio-biochemical and yield components of drought-stressed pea plants (Master B) during 2019/2020 and 2020/2021 seasons. Our results indicated that drought causes a remarkable reduction in plant height, leaf area, number of leaves per plant, and number of flowers per plant in stressed pea plants during two seasons. Likewise, number of pods, pod length, seeds weight of 10 dried plants, and dry weight of 100 seeds were decreased significantly in drought-stressed pea plants. Nevertheless, seed priming with the individual treatments or in combination boosted the morphological, physio-biochemical, and yield characters of pea plants. The best results were obtained with the Bacillus thuringiensis + carrot extract treatment, which led to a remarkable increase in the number of leaves per plant, leaf area, plant height, and number of flowers per plant in stressed pea plants in both seasons. Moreover, pod length, number of seeds per pod, seeds weight of 10 dried plants, and dry weight of 100 seeds were significantly increased as well. Bacillus thuringiensis + carrot extract treatment led to improved biochemical and physiological characters, such as relative water content, chlorophyll a, chlorophyll b, regulated the up-regulation of antioxidant enzymes, increased seed yield, and decreased lipid peroxidation and reactive oxygen species, mainly superoxide and hydrogen peroxide, in drought-stressed pea plants.
Collapse
|