1
|
Liu J, Lv S, Mu Y, Tong J, Liu L, He T, Zeng Q, Wei D. Applied research and recent advances in the development of flexible sensing hydrogels from cellulose: A review. Int J Biol Macromol 2024:136100. [PMID: 39448288 DOI: 10.1016/j.ijbiomac.2024.136100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Flexible wearable smart sensing materials have gained immense momentum, and biomass-based hydrogel sensors for renewable and biologically safe wearable sensors have attracted significant attention in order to meet the growing demand for sustainability and ecological friendliness. Cellulose has been widely used in the field of biomass-based hydrogel sensing materials, being the most abundant biomass material in nature. This review mainly focuses on the types of cellulose hydrogels, the preparation methods and their applications in smart flexible sensing materials. The structure-functional properties-application relationship of cellulose hydrogels and the applications of various cellulose hydrogels in flexible sensing are described in detail. Then it focuses on the methods and mechanisms of cellulose hydrogel flexible sensors preparation, and then summarizes the research of cellulose hydrogel sensors for different types of stimulus response mechanisms to pressure, pH, biomolecules, ions, temperature, humidity, and light. The applications of cellulose hydrogels as flexible sensing materials in biomedical sensing, smart wearable and environmental monitoring are further summarized. Finally, the future development trend of cellulose hydrogels is briefly introduced and the future development of cellulose hydrogel sensing materials is envisioned.
Collapse
Affiliation(s)
- Jinru Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yanlu Mu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiahao Tong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Leipeng Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tingxiang He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiao Zeng
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Dequan Wei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
2
|
Singh A, Sharma JJ, Mohanta B, Sood A, Han SS, Sharma A. Synthetic and biopolymers-based antimicrobial hybrid hydrogels: a focused review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:675-716. [PMID: 37943320 DOI: 10.1080/09205063.2023.2278814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
The constantly accelerating occurrence of microbial infections and their antibiotic resistance has spurred advancement in the field of material sciences and has guided the development of novel materials with anti-bacterial properties. To address the clinical exigencies, the material of choice should be biodegradable, biocompatible, and able to offer prolonged antibacterial effects. As an attractive option, hydrogels have been explored globally as a potent biomaterial platform that can furnish essential antibacterial attributes owing to its three-dimensional (3D) hydrophilic polymeric network, adequate biocompatibility, and cellular adhesion. The current review focuses on the utilization of different antimicrobial hydrogels based on their sources (natural and synthetic). Further, the review also highlights the strategies for the generation of hydrogels with their advantages and disadvantages and their applications in different biomedical fields. Finally, the prospects in the development of hydrogels-based antimicrobial biomaterials are discussed along with some key challenges encountered during their development and clinical translation.
Collapse
Affiliation(s)
- Anand Singh
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Janmay Jai Sharma
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Billeswar Mohanta
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Anirudh Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
3
|
Meng S, Wu H, Xiao D, Lan S, Dong A. Recent advances in bacterial cellulose-based antibacterial composites for infected wound therapy. Carbohydr Polym 2023; 316:121082. [PMID: 37321715 DOI: 10.1016/j.carbpol.2023.121082] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Wound infection arising from pathogenic bacteria brought serious trouble to the patient and medical system. Among various wound dressings that are effective in killing pathogenic bacteria, antimicrobial composites based on bacterial cellulose (BC) are becoming the most popular materials due to their success in eliminating pathogenic bacteria, preventing wound infection, and promoting wound healing. However, as an extracellular natural polymer, BC is not inherently antimicrobial, which means that it must be combined with other antimicrobials to be effective against pathogens. BC has many advantages over other polymers, including nano-structure, significant moisture retention, non-adhesion to the wound surface, which has made it superior to other biopolymers. This review introduces the recent advances in BC-based composites for the treatment of wound infection, including the classification and preparation methods of composites, the mechanism of wound treatment, and commercial application. Moreover, their wound therapy applications include hydrogel dressing, surgical sutures, wound healing bandages, and patches are summarized in detail. Finally, the challenges and future prospects of BC-based antibacterial composites for the treatment of infected wounds are discussed.
Collapse
Affiliation(s)
- Suriguga Meng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Douxin Xiao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China.
| | - Shi Lan
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
4
|
Huang YC, Zeng YJ, Lin YW, Tai HC, Don TM. In Situ Encapsulation of Camptothecin by Self-Assembly of Poly(acrylic acid)- b-Poly( N-Isopropylacrylamide) and Chitosan for Controlled Drug Delivery. Polymers (Basel) 2023; 15:polym15112463. [PMID: 37299263 DOI: 10.3390/polym15112463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Camptothecin (CPT) has been shown to exhibit anticancer activity against several cancers. Nevertheless, CPT is very hydrophobic with poor stability, and thus its medical application is limited. Therefore, various drug carriers have been exploited for effectively delivering CPT to the targeted cancer site. In this study, a dual pH/thermo-responsive block copolymer of poly(acrylic acid-b-N-isopropylacrylamide) (PAA-b-PNP) was synthesized and applied to encapsulate CPT. At temperatures above its cloud point, the block copolymer self-assembled to form nanoparticles (NPs) and in situ encapsulate CPT, owing to their hydrophobic interaction as evidenced by fluorescence spectrometry. Chitosan (CS) was further applied on the surface through the formation of a polyelectrolyte complex with PAA for improving biocompatibility. The average particle size and zeta potential of the developed PAA-b-PNP/CPT/CS NPs in a buffer solution were 168 nm and -30.6 mV, respectively. These NPs were still stable at least for 1 month. The PAA-b-PNP/CS NPs exhibited good biocompatibility toward NIH 3T3 cells. Moreover, they could protect the CPT at pH 2.0 with a very slow-release rate. At pH 6.0, these NPs could be internalized by Caco-2 cells, followed by intracellular release of the CPT. They became highly swollen at pH 7.4, and the released CPT was able to diffuse into the cells at higher intensity. Among several cancer cell lines, the highest cytotoxicity was observed for H460 cells. As a result, these environmentally-responsive NPs have the potential to be applied in oral administration.
Collapse
Affiliation(s)
- Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan
| | - Yang-Jie Zeng
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan
| | - Yu-Wei Lin
- Department of Chemical and Materials Engineering, Tamkang University, No. 151 Yingzhuan Rd., Tamsui Dist., New Taipei City 251301, Taiwan
| | - Hung-Chih Tai
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan
| | - Trong-Ming Don
- Department of Chemical and Materials Engineering, Tamkang University, No. 151 Yingzhuan Rd., Tamsui Dist., New Taipei City 251301, Taiwan
| |
Collapse
|
5
|
Jabbari F, Babaeipour V. Bacterial cellulose as a potential biopolymer for wound care. A review. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2167080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Tehran, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Raut MP, Asare E, Syed Mohamed SMD, Amadi EN, Roy I. Bacterial Cellulose-Based Blends and Composites: Versatile Biomaterials for Tissue Engineering Applications. Int J Mol Sci 2023; 24:986. [PMID: 36674505 PMCID: PMC9865793 DOI: 10.3390/ijms24020986] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Cellulose of bacterial origin, known as bacterial cellulose (BC), is one of the most versatile biomaterials that has a huge potential in tissue engineering due to its favourable mechanical properties, high hydrophilicity, crystallinity, and purity. Additional properties such as porous nano-fibrillar 3D structure and a high degree of polymerisation of BC mimic the properties of the native extracellular matrix (ECM), making it an excellent material for the fabrication of composite scaffolds suitable for cell growth and tissue development. Recently, the fabrication of BC-based scaffolds, including composites and blends with nanomaterials, and other biocompatible polymers has received particular attention owing to their desirable properties for tissue engineering. These have proven to be promising advanced materials in hard and soft tissue engineering. This review presents the latest state-of-the-art modified/functionalised BC-based composites and blends as advanced materials in tissue engineering. Their applicability as an ideal biomaterial in targeted tissue repair including bone, cartilage, vascular, skin, nerve, and cardiac tissue has been discussed. Additionally, this review briefly summarises the latest updates on the production strategies and characterisation of BC and its composites and blends. Finally, the challenges in the future development and the direction of future research are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| |
Collapse
|
7
|
Dalei G, Das S. Polyacrylic acid-based drug delivery systems: A comprehensive review on the state-of-art. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Deng Y, Xi J, Meng L, Lou Y, Seidi F, Wu W, Xiao H. Stimuli-Responsive Nanocellulose Hydrogels: An Overview. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
De novo strategy with engineering a multifunctional bacterial cellulose-based dressing for rapid healing of infected wounds. Bioact Mater 2022; 13:212-222. [PMID: 35224303 PMCID: PMC8844193 DOI: 10.1016/j.bioactmat.2021.10.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022] Open
Abstract
The treatment and healing of infected skin lesions is one of the major challenges in surgery. To solve this problem, collagen I (Col-I) and the antibacterial agent hydroxypropyltrimethyl ammonium chloride chitosan (HACC) were composited into the bacterial cellulose (BC) three-dimensional network structure by a novel membrane–liquid interface (MLI) culture, and a Col-I/HACC/BC (CHBC) multifunctional dressing was designed. The water absorption rate and water vapor transmission rate of the obtained CHBC dressing were 35.78 ± 2.45 g/g and 3084 ± 56 g m−2·day−1, respectively. The water retention of the CHBC dressing was significantly improved compared with the BC caused by the introduced Col-I and HACC. In vitro results indicated that the combined advantages of HACC and Col-I confer on CHBC dressings not only have outstanding antibacterial properties against Staphylococcus aureus (S. aureus) compared with BC and CBC, but also exhibit better cytocompatibility than BC and HBC to promote the proliferation and spread of NIH3T3 cells and HUVECs. Most importantly, the results of in vivo animal tests demonstrated that the CHBC dressings fully promoted wound healing for 8 days and exhibited shorter healing times, especially in the case of wound infection. Excellent skin regeneration effects and higher expression levels of collagen during infection were also shown in the CHBC group. We believe that CHBC composites with favorable multifunctionality have potential applications as wound dressings to treat infected wounds. The antibacterial agent HACC and collagen I were introduced into BC structure by a novel membrane–liquid interface culture. CHBC dressing has favorable thermostability, water absorption, water retention rate and WVTRs. CHBC dressing has outstanding antibacterial properties against S. aureus. CHBC dressing promoted the proliferation and spread of NIH3T3 cells and HUVECs. CHBC dressing prevented wound infection caused by S. aureus and accelerated wound healing.
Collapse
|
10
|
Shrivastav P, Pramanik S, Vaidya G, Abdelgawad MA, Ghoneim MM, Singh A, Abualsoud BM, Amaral LS, Abourehab MAS. Bacterial cellulose as a potential biopolymer in biomedical applications: a state-of-the-art review. J Mater Chem B 2022; 10:3199-3241. [PMID: 35445674 DOI: 10.1039/d1tb02709c] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Throughout history, natural biomaterials have benefited society. Nevertheless, in recent years, tailoring natural materials for diverse biomedical applications accompanied with sustainability has become the focus. With the progress in the field of materials science, novel approaches for the production, processing, and functionalization of biomaterials to obtain specific architectures have become achievable. This review highlights an immensely adaptable natural biomaterial, bacterial cellulose (BC). BC is an emerging sustainable biopolymer with immense potential in the biomedical field due to its unique physical properties such as flexibility, high porosity, good water holding capacity, and small size; chemical properties such as high crystallinity, foldability, high purity, high polymerization degree, and easy modification; and biological characteristics such as biodegradability, biocompatibility, excellent biological affinity, and non-biotoxicity. The structure of BC consists of glucose monomer units polymerized via cellulose synthase in β-1-4 glucan chains, creating BC nano fibrillar bundles with a uniaxial orientation. BC-based composites have been extensively investigated for diverse biomedical applications due to their similarity to the extracellular matrix structure. The recent progress in nanotechnology allows the further modification of BC, producing novel BC-based biomaterials for various applications. In this review, we strengthen the existing knowledge on the production of BC and BC composites and their unique properties, and highlight the most recent advances, focusing mainly on the delivery of active pharmaceutical compounds, tissue engineering, and wound healing. Further, we endeavor to present the challenges and prospects for BC-associated composites for their application in the biomedical field.
Collapse
Affiliation(s)
- Prachi Shrivastav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160 062, India.,Bombay College of Pharmacy, Kolivery Village, Mathuradas Colony, Kalina, Vakola, Santacruz East, Mumbai, Maharashtra 400 098, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - Gayatri Vaidya
- Department of Studies in Food Technology, Davangere University, Davangere 577007, Karnataka, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Ajeet Singh
- Department of Pharmaceutical Sciences, J.S. University, Shikohabad, Firozabad, UP 283135, India.
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Larissa Souza Amaral
- Department of Bioengineering (USP ALUMNI), University of São Paulo (USP), Av. Trabalhador São Carlense, 400, 13566590, São Carlos (SP), Brazil
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| |
Collapse
|
11
|
Hernández‐Arriaga AM, Campano C, Rivero‐Buceta V, Prieto MA. When microbial biotechnology meets material engineering. Microb Biotechnol 2022; 15:149-163. [PMID: 34818460 PMCID: PMC8719833 DOI: 10.1111/1751-7915.13975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial biopolymers such as bacterial cellulose (BC), alginate or polyhydroxyalkanotes (PHAs) have aroused the interest of researchers in many fields, for instance biomedicine and packaging, due to their being biodegradable, biocompatible and renewable. Their properties can easily be tuned by means of microbial biotechnology strategies combined with materials science. This provides them with highly diverse properties, conferring them non-native features. Herein we highlight the enormous structural diversity of these macromolecules, how are they produced, as well as their wide range of potential applications in our daily lives. The emergence of new technologies, such as synthetic biology, enables the creation of next-generation-advanced materials presenting smart functional properties, for example the ability to sense and respond to stimuli as well as the capacity for self-repair. All this has given rise to the recent emergence of biohybrid materials, in which a synthetic component is brought to life with living organisms. Two different subfields have recently garnered particular attention: hybrid living materials (HLMs), such as encapsulation or bioprinting, and engineered living materials (ELMs), in which the material is created bottom-up with the use of microbial biotechnology tools. Early studies showed the strong potential of alginate and PHAs as HLMs, whilst BC constituted the most currently promising material for the creation of ELMs.
Collapse
Affiliation(s)
- Ana M. Hernández‐Arriaga
- Polymer Biotechnology Group, Department of Plant and Microbial BiotechnologyBiological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| | - Cristina Campano
- Polymer Biotechnology Group, Department of Plant and Microbial BiotechnologyBiological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| | - Virginia Rivero‐Buceta
- Polymer Biotechnology Group, Department of Plant and Microbial BiotechnologyBiological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| | - M. Auxiliadora Prieto
- Polymer Biotechnology Group, Department of Plant and Microbial BiotechnologyBiological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| |
Collapse
|
12
|
Huang YJ, Huang CL, Lai RY, Zhuang CH, Chiu WH, Lee KM. Microstructure and Biological Properties of Electrospun In Situ Polymerization of Polycaprolactone-Graft-Polyacrylic Acid Nanofibers and Its Composite Nanofiber Dressings. Polymers (Basel) 2021; 13:4246. [PMID: 34883754 PMCID: PMC8659835 DOI: 10.3390/polym13234246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
In this study, polycaprolactone (PCL)- and poly(acrylic acid) (PAA)-based electrospun nanofibers were prepared for the carriers of antimicrobials and designed composite nanofiber mats for chronic wound care. The PCL- and PAA-based electrospun nanofibers were prepared through in situ polymerization starting from PCL and acrylic acid (AA). Different amounts of AA were introduced to improve the hydrophilicity of the PCL electrospun nanofibers. A compatibilizer and a photoinitiator were then added to the electrospinning solution to form a grafted structure composed of PCL and PAA (PCL-g-PAA). The grafted PAA was mainly located on the surface of a PCL nanofiber. The optimization of the composition of PCL, AA, compatibilizer, and photoinitiator was studied, and the PCL-g-PAA electrospun nanofibers were characterized through scanning electron microscopy and 1H-NMR spectroscopy. Results showed that the addition of AA to PCL improved the hydrophilicity of the electrospun PCL nanofibers, and a PCL/AA ratio of 80/20 presented the best composition and had smooth nanofiber morphology. Moreover, poly[2 -(tert-butylaminoethyl) methacrylate]-grafted graphene oxide nanosheets (GO-g-PTA) functioned as an antimicrobial agent and was used as filler for PCL-g-PAA nanofibers in the preparation of composite nanofiber mats, which exerted synergistic effects promoted by the antibacterial properties of GO-g-PTA and the hydrophilicity of PCL-g-PAA electrospun nanofibers. Thus, the composite nanofiber mats had antibacterial properties and absorbed body fluids in the wound healing process, thereby promoting cell proliferation. The biodegradation of the PCL-g-PAA electrospun nanofibers also demonstrated an encouraging result of three-fold weight reduction compared to the neat PCL nanofiber. Our findings may serve as guidelines for the fabrication of electrospun nanofiber composites that can be used mats for chronic wound care.
Collapse
Affiliation(s)
- Yi-Jen Huang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-J.H.); (R.-Y.L.); (C.-H.Z.)
| | - Chien-Lin Huang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-J.H.); (R.-Y.L.); (C.-H.Z.)
| | - Ruo-Yu Lai
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-J.H.); (R.-Y.L.); (C.-H.Z.)
| | - Cheng-Han Zhuang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-J.H.); (R.-Y.L.); (C.-H.Z.)
| | - Wei-Hao Chiu
- Center for Green Technology, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Kun-Mu Lee
- Center for Green Technology, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| |
Collapse
|
13
|
Saddique A, Cheong IW. Recent advances in three-dimensional bioprinted nanocellulose-based hydrogel scaffolds for biomedical applications. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0926-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Herbada RS, Torres-Suárez AI, Otero-Espinar FJ, Fraguas-Sanchez AI, Lopez-Cabarcos E, Rubio-Retama J, Fernández-Carballido A. Matrix tablets based on a novel poly (magnesium acrylate) hydrogel for the treatment of inflammatory bowel diseases. Int J Pharm 2021; 608:121121. [PMID: 34560203 DOI: 10.1016/j.ijpharm.2021.121121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022]
Abstract
The objective of this work was to evaluate the potential use of a new polymer (PAMgA) in the development sustained release matrix tablets for the treatment of bowel inflammatory diseases. For this purpose, budesonide, a highly lipophilic compound, was used as model drug. Tablets with two reticulation grades of PAMgA (PAMgA 5 and 40) and with 9 mg of budesonide were developed and characterized. All the studies were carried out using biorelevant media (FaSSGF and FaSSIF). Swelling and erosion of PAMgA tablets was influenced by the reticulation grade of the polymer and the biorelevant media assayed, being water uptake higher for PAMgA 40 tablets in intestinal fluid, whereas PAMgA 5 showed more intense erosion in this biorelevant medium. Budesonide was released slowly from PAMgA tablets, both in gastric and intestinal environment, following Super case II transport kinetics (relaxation-controlled delivery), with a lag time of around 1-2 h. When the dissolution medium was changed sequentially throughout the trial, 75% of the budesonide dose was released in a sustained manner between 4 and 20 h of testing from PAMgA tablets, showing a more controlled budesonide release than Entocort® and Budenofalk® (commercially available sustained release formulations of budesonide). In conclusion, PAMgA polymer allows controlling the release of highly lipophilic drugs as budesonide, being an useful excipient for the development of sustained release matrix tablets.
Collapse
Affiliation(s)
- Rebeca Simancas Herbada
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco J Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain; Institute of Industrial Pharmacy, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Ana Isabel Fraguas-Sanchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Enrique Lopez-Cabarcos
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jorge Rubio-Retama
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Fernández-Carballido
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
15
|
Bacterial cellulose and its potential for biomedical applications. Biotechnol Adv 2021; 53:107856. [PMID: 34666147 DOI: 10.1016/j.biotechadv.2021.107856] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022]
Abstract
Bacterial cellulose (BC) is an important polysaccharide synthesized by some bacterial species under specific culture conditions, which presents several remarkable features such as microporosity, high water holding capacity, good mechanical properties and good biocompatibility, making it a potential biomaterial for medical applications. Since its discovery, BC has been used for wound dressing, drug delivery, artificial blood vessels, bone tissue engineering, and so forth. Additionally, BC can be simply manipulated to form its derivatives or composites with enhanced physicochemical and functional properties. Several polymers, carbon-based nanomaterials, and metal nanoparticles (NPs) have been introduced into BC by ex situ and in situ methods to design hybrid materials with enhanced functional properties. This review provides comprehensive knowledge and highlights recent advances in BC production strategies, its structural features, various in situ and ex situ modification techniques, and its potential for biomedical applications.
Collapse
|
16
|
Recent Advances in Cellulose-Based Structures as the Wound-Healing Biomaterials: A Clinically Oriented Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Application of wound-healing/dressing biomaterials is amongst the most promising approaches for wound repair through protection from pathogen invasion/contamination, maintaining moisture, absorbing exudates, modulating inflammation, and facilitating the healing process. A wide range of materials are used to fabricate wound-healing/dressing biomaterials. Active wound-healing/dressings are next-generation alternatives for passive biomaterials, which provide a physical barrier and induce different biological activities, such as antibacterial, antioxidant, and proliferative effects. Cellulose-based biomaterials are particularly promising due to their tunable physical, chemical, mechanical, and biological properties, accessibility, low cost, and biocompatibility. A thorough description and analysis of wound-healing/dressing structures fabricated from cellulose-based biomaterials is discussed in this review. We emphasize and highlight the fabrication methods, applied bioactive molecules, and discuss the obtained results from in vitro and in vivo models of cellulose-based wound-healing biomaterials. This review paper revealed that cellulose-based biomaterials have promising potential as the wound-dressing/healing materials and can be integrated with various bioactive agents. Overall, cellulose-based biomaterials are shown to be effective and sophisticated structures for delivery applications, safe and multi-customizable dressings, or grafts for wound-healing applications.
Collapse
|
17
|
pH-Responsive Chitosan/Alginate Polyelectrolyte Complexes on Electrospun PLGA Nanofibers for Controlled Drug Release. NANOMATERIALS 2021; 11:nano11071850. [PMID: 34361236 PMCID: PMC8308421 DOI: 10.3390/nano11071850] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022]
Abstract
The surface functionalization of electrospun nanofibers allows for the introduction of additional functionalities while at the same time retaining the membrane properties of high porosity and surface-to-volume ratio. In this work, we sequentially deposited layers of chitosan and alginate to form a polyelectrolyte complex via layer-by-layer assembly on PLGA nanofibers to introduce pH-responsiveness for the controlled release of ibuprofen. The deposition of the polysaccharides on the surface of the fibers was revealed using spectroscopy techniques and ζ-potential measurements. The presence of polycationic chitosan resulted in a positive surface charge (16.2 ± 4.2 mV, pH 3.0) directly regulating the interactions between a model drug (ibuprofen) loaded within the polyelectrolyte complex and the layer-by-layer coating. The release of ibuprofen was slowed down in acidic pH (1.0) compared to neutral pH as a result of the interactions between the drug and the coating. The provided mesh acts as a promising candidate for the design of drug delivery systems required to bypass the acidic environment of the digestive tract.
Collapse
|
18
|
Blanco FG, Hernández N, Rivero-Buceta V, Maestro B, Sanz JM, Mato A, Hernández-Arriaga AM, Prieto MA. From Residues to Added-Value Bacterial Biopolymers as Nanomaterials for Biomedical Applications. NANOMATERIALS 2021; 11:nano11061492. [PMID: 34200068 PMCID: PMC8228158 DOI: 10.3390/nano11061492] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022]
Abstract
Bacterial biopolymers are naturally occurring materials comprising a wide range of molecules with diverse chemical structures that can be produced from renewable sources following the principles of the circular economy. Over the last decades, they have gained substantial interest in the biomedical field as drug nanocarriers, implantable material coatings, and tissue-regeneration scaffolds or membranes due to their inherent biocompatibility, biodegradability into nonhazardous disintegration products, and their mechanical properties, which are similar to those of human tissues. The present review focuses upon three technologically advanced bacterial biopolymers, namely, bacterial cellulose (BC), polyhydroxyalkanoates (PHA), and γ-polyglutamic acid (PGA), as models of different carbon-backbone structures (polysaccharides, polyesters, and polyamides) produced by bacteria that are suitable for biomedical applications in nanoscale systems. This selection models evidence of the wide versatility of microorganisms to generate biopolymers by diverse metabolic strategies. We highlight the suitability for applied sustainable bioprocesses for the production of BC, PHA, and PGA based on renewable carbon sources and the singularity of each process driven by bacterial machinery. The inherent properties of each polymer can be fine-tuned by means of chemical and biotechnological approaches, such as metabolic engineering and peptide functionalization, to further expand their structural diversity and their applicability as nanomaterials in biomedicine.
Collapse
Affiliation(s)
- Francisco G. Blanco
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Natalia Hernández
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Virginia Rivero-Buceta
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Beatriz Maestro
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Jesús M. Sanz
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Aránzazu Mato
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Ana M. Hernández-Arriaga
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - M. Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
19
|
A pH-sensitive oxidized-dextran based double drug-loaded hydrogel with high antibacterial properties. Int J Biol Macromol 2021; 182:385-393. [PMID: 33798586 DOI: 10.1016/j.ijbiomac.2021.03.169] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/28/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022]
Abstract
Delayed healing or non-healing of wounds caused by bacterial infection is still a difficult medical problem. Nowadays, the topical application of antibiotics is a common treatment for infections. However, subinhibitory concentrations or high dose of antibiotics leads to the antibacterial effect counterproductive. So it's necessary to put forward an on-demand drug delivery to solve this tough issue. In this paper, a pH-responsive hydrogel was prepared by oxidized dextran (Dex-CHO), sulfadiazine (SD) and tobramycin (TOB). The hydrogel was designed by the environment in the early immature stage of biofilm (pH 5.0). Schiff bases can release drugs in slightly acidic environment. The hydrogel showed injectable, pH-sensitive drug release, and great biocompatibility. Released SD and TOB exhibited a synergistic effect therefore the hydrogel showed high antibacterial activity. This study provides an easy and promising strategy to develop smart hydrogels that aim at topical administration of antibiotics and come up with a new treatment of local bacterial infections.
Collapse
|
20
|
Aggregation-Induced Emission Fluorescent Gels: Current Trends and Future Perspectives. Top Curr Chem (Cham) 2021; 379:9. [PMID: 33544283 DOI: 10.1007/s41061-020-00322-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
The development of fluorescent gels, if not the current focus, is at the center of recent efforts devoted to the invention of a new generation of gels. Fluorescent gels have numerous properties that are intrinsic to the gel structure, with additional light-emitting properties making them attractive for different applications. This review focuses on current studies associated with the development of fluorescent gels using aggregation-induced emission fluorophores (AIEgens) to ultimately suggest new directions for future research. Here, we discuss major drawbacks of the methodologies used frequently for the fabrication of fluorescent gels using traditional fluorophores compared to those using AIEgens. The fabrication strategies to develop AIE-based fluorescent gels, including physical mixing, soaking, self-assembly, noncovalent interactions, and permanent chemical reactions, are discussed thoroughly. New and recent findings on developing AIE-active gels are explained. Specifically, physically prepared AIE-based gels including supramolecular, ionic, and chemically prepared AIE-based gels are discussed. In addition, the intrinsic fluorescent properties of natural gels, known as clustering-triggered fluorescent gel, and new and recent relevant findings published in peer-reviewed journals are explained. This review also revealed the biomedical applications of AIE-based fluorescent hydrogels including drug delivery, biosensors, bioimaging, and tissue engineering. In conclusion, the current research situation and future directions are identified.
Collapse
|
21
|
Zeng D, Shen S, Fan D. Molecular design, synthesis strategies and recent advances of hydrogels for wound dressing applications. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Heise K, Kontturi E, Allahverdiyeva Y, Tammelin T, Linder MB, Nonappa, Ikkala O. Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004349. [PMID: 33289188 PMCID: PMC11468234 DOI: 10.1002/adma.202004349] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/01/2020] [Indexed: 06/12/2023]
Abstract
In the effort toward sustainable advanced functional materials, nanocelluloses have attracted extensive recent attention. Nanocelluloses range from rod-like highly crystalline cellulose nanocrystals to longer and more entangled cellulose nanofibers, earlier denoted also as microfibrillated celluloses and bacterial cellulose. In recent years, they have spurred research toward a wide range of applications, ranging from nanocomposites, viscosity modifiers, films, barrier layers, fibers, structural color, gels, aerogels and foams, and energy applications, until filtering membranes, to name a few. Still, nanocelluloses continue to show surprisingly high challenges to master their interactions and tailorability to allow well-controlled assemblies for functional materials. Rather than trying to review the already extensive nanocellulose literature at large, here selected aspects of the recent progress are the focus. Water interactions, which are central for processing for the functional properties, are discussed first. Then advanced hybrid gels toward (multi)stimuli responses, shape-memory materials, self-healing, adhesion and gluing, biological scaffolding, and forensic applications are discussed. Finally, composite fibers are discussed, as well as nanocellulose as a strategy for improvement of photosynthesis-based chemicals production. In summary, selected perspectives toward new directions for sustainable high-tech functional materials science based on nanocelluloses are described.
Collapse
Affiliation(s)
- Katja Heise
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
| | - Eero Kontturi
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
| | - Yagut Allahverdiyeva
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFI‐20014Finland
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland LtdVTT, PO Box 1000FIN‐02044EspooFinland
| | - Markus B. Linder
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
| | - Nonappa
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
- Department of Applied PhysicsAalto UniversityEspooFI‐00076Finland
- Faculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33101Finland
| | - Olli Ikkala
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
- Department of Applied PhysicsAalto UniversityEspooFI‐00076Finland
| |
Collapse
|
23
|
Tavakoli J, Raston CL, Tang Y. Tuning Surface Morphology of Fluorescent Hydrogels Using a Vortex Fluidic Device. Molecules 2020; 25:E3445. [PMID: 32751141 PMCID: PMC7435964 DOI: 10.3390/molecules25153445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
In recent decades, microfluidic techniques have been extensively used to advance hydrogel design and control the architectural features on the micro- and nanoscale. The major challenges with the microfluidic approach are clogging and limited architectural features: notably, the creation of the sphere, core-shell, and fibers. Implementation of batch production is almost impossible with the relatively lengthy time of production, which is another disadvantage. This minireview aims to introduce a new microfluidic platform, a vortex fluidic device (VFD), for one-step fabrication of hydrogels with different architectural features and properties. The application of a VFD in the fabrication of physically crosslinked hydrogels with different surface morphologies, the creation of fluorescent hydrogels with excellent photostability and fluorescence properties, and tuning of the structure-property relationship in hydrogels are discussed. We conceive, on the basis of this minireview, that future studies will provide new opportunities to develop hydrogel nanocomposites with superior properties for different biomedical and engineering applications.
Collapse
Affiliation(s)
- Javad Tavakoli
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo NSW 2007, Australia;
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia;
| | - Colin L. Raston
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia;
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|
24
|
Duceac IA, Verestiuc L, Dimitriu CD, Maier V, Coseri S. Design and Preparation of New Multifunctional Hydrogels Based on Chitosan/Acrylic Polymers for Drug Delivery and Wound Dressing Applications. Polymers (Basel) 2020; 12:E1473. [PMID: 32630040 PMCID: PMC7407571 DOI: 10.3390/polym12071473] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
The dynamic evolution of materials with medical applications, particularly for drug delivery and wound dressing applications, gives impetus to design new proposed materials, among which, hydrogels represent a promising, powerful tool. In this context, multifunctional hydrogels have been obtained from chemically modified chitosan and acrylic polymers as cross-linkers, followed by subsequent conjugation with arginine. The hydrogels were finely tuned considering the variation of the synthetic monomer and the preparation conditions. The advantage of using both natural and synthetic polymers allowed porous networks with superabsorbent behavior, associated with a non-Fickian swelling mechanism. The in vitro release profiles for ibuprofen and the corresponding kinetics were studied, and the results revealed a swelling-controlled release. The biodegradability studies in the presence of lysozyme, along with the hemostatic evaluation and the induced fibroblast and stem cell proliferation, have shown that the prepared hydrogels exhibit characteristics that make them suitable for local drug delivery and wound dressing.
Collapse
Affiliation(s)
- Ioana A. Duceac
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41 A Gr. Ghica Voda Alley, 700487 Iasi, Romania;
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 9-13 M. Kogalniceanu Street, 700454 Iasi, Romania
| | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 9-13 M. Kogalniceanu Street, 700454 Iasi, Romania
| | - Cristina D. Dimitriu
- Department of Morpho-Functional Sciences, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Vasilica Maier
- Department of Textiles and Leather Chemical Engineering, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Sergiu Coseri
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41 A Gr. Ghica Voda Alley, 700487 Iasi, Romania;
| |
Collapse
|
25
|
Pasaribu KM, Gea S, Ilyas S, Tamrin T, Sarumaha AA, Sembiring A, Radecka I. Fabrication and In-Vivo Study of Micro-Colloidal Zanthoxylum acanthopodium-Loaded Bacterial Cellulose as a Burn Wound Dressing. Polymers (Basel) 2020; 12:E1436. [PMID: 32605046 PMCID: PMC7407322 DOI: 10.3390/polym12071436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial cellulose (BC) is a biopolymer commonly used for wound dressing due to its high biocompatible properties either in-vitro or in-vivo. The three-dimensional fiber structure of BC becomes an advantage because it provides a template for the impregnation of materials in order to improve BC's properties as a wound dressing, since BC has not displayed any bioactivity properties. In this study, micro-colloidal Zanthoxylum acanthopodium (MZA) fruit was loaded into BC fibers via an in-situ method. Z. acanthopodium is known to have anti-inflammatory, antioxidant and antimicrobial activities that can support BC to accelerate the wound healing process. The FTIR, XRD and SEM analysis results showed that the loading process of MZA and the composite fabrication were successfully carried out. The TGA test also showed that the presence of MZA in BC fibers decreased Tmax composite from BC, from 357.8 to 334.5 °C for BC-MZA3. Other aspects, i.e., water content, porosity, hemocompatibility and histology studies, also showed that the composite could potentially be used as a wound dressing.
Collapse
Affiliation(s)
- Khatarina Meldawati Pasaribu
- Postgraduate School, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia;
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia; (T.T.); (A.A.S.); (A.S.)
| | - Saharman Gea
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia; (T.T.); (A.A.S.); (A.S.)
| | - Syafruddin Ilyas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia;
| | - Tamrin Tamrin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia; (T.T.); (A.A.S.); (A.S.)
| | - Appealwan Altruistis Sarumaha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia; (T.T.); (A.A.S.); (A.S.)
| | - Ardiansyah Sembiring
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia; (T.T.); (A.A.S.); (A.S.)
| | - Izabela Radecka
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
| |
Collapse
|
26
|
Hodel KVS, Fonseca LMDS, Santos IMDS, Cerqueira JC, dos Santos-Júnior RE, Nunes SB, Barbosa JDV, Machado BAS. Evaluation of Different Methods for Cultivating Gluconacetobacter hansenii for Bacterial Cellulose and Montmorillonite Biocomposite Production: Wound-Dressing Applications. Polymers (Basel) 2020; 12:polym12020267. [PMID: 31991906 PMCID: PMC7077264 DOI: 10.3390/polym12020267] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 11/28/2022] Open
Abstract
Bacterial cellulose (BC) has received considerable attention due to its unique properties, including an ultrafine network structure with high purity, mechanical strength, inherent biodegradability, biocompatibility, high water-holding capacity and high crystallinity. These properties allow BC to be used in biomedical and industrial applications, such as medical product. This research investigated the production of BC by Gluconacetobacter hansenii ATCC 23769 using different carbon sources (glucose, mannitol, sucrose and xylose) at two different concentrations (25 and 50 g∙L−1). The BC produced was used to develop a biocomposite with montmorillonite (MMT), a clay mineral that possesses interesting characteristics for enhancing BC physical-chemical properties, at 0.5, 1, 2 and 3% concentrations. The resulting biocomposites were characterized in terms of their physical and barrier properties, morphologies, water-uptake capacities, and thermal stabilities. Our results show that bacteria presented higher BC yields in media with higher glucose concentrations (50 g∙L−1) after a 14-day incubation period. Additionally, the incorporation of MMT significantly improved the mechanical and thermal properties of the BC membranes. The degradation temperature of the composites was extended, and a decrease in the water holding capacity (WHC) and an improvement in the water release rate (WRR) were noted. Determining a cost-effective medium for the production of BC and the characterization of the produced composites are extremely important for the biomedical applications of BC, such as in wound dressing materials.
Collapse
Affiliation(s)
- Katharine Valéria Saraiva Hodel
- University Center SENAI CIMATEC, National Service of Industrial Learning, Laboratory of Pharmaceutical’s Formulations, Health Institute of Technologies (ITS CIMATEC), Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (J.C.C.); (J.D.V.B.)
| | - Larissa Moraes dos Santos Fonseca
- University Center SENAI CIMATEC, National Service of Industrial Learning, Laboratory of Pharmaceutical’s Formulations, Health Institute of Technologies (ITS CIMATEC), Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (J.C.C.); (J.D.V.B.)
| | - Isa Moreira da Silva Santos
- University Center SENAI CIMATEC, National Service of Industrial Learning, Salvador 41650-010, Brazil; (I.M.d.S.S.); (R.E.d.S.-J.); (S.B.N.)
| | - Jamile Costa Cerqueira
- University Center SENAI CIMATEC, National Service of Industrial Learning, Laboratory of Pharmaceutical’s Formulations, Health Institute of Technologies (ITS CIMATEC), Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (J.C.C.); (J.D.V.B.)
| | | | - Silmar Baptista Nunes
- University Center SENAI CIMATEC, National Service of Industrial Learning, Salvador 41650-010, Brazil; (I.M.d.S.S.); (R.E.d.S.-J.); (S.B.N.)
| | - Josiane Dantas Viana Barbosa
- University Center SENAI CIMATEC, National Service of Industrial Learning, Laboratory of Pharmaceutical’s Formulations, Health Institute of Technologies (ITS CIMATEC), Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (J.C.C.); (J.D.V.B.)
| | - Bruna Aparecida Souza Machado
- University Center SENAI CIMATEC, National Service of Industrial Learning, Laboratory of Pharmaceutical’s Formulations, Health Institute of Technologies (ITS CIMATEC), Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (J.C.C.); (J.D.V.B.)
- Correspondence: ; Tel.: +55-(71)-3879-5624
| |
Collapse
|
27
|
Aydogdu MO, Altun E, Ahmed J, Gunduz O, Edirisinghe M. Fiber Forming Capability of Binary and Ternary Compositions in the Polymer System: Bacterial Cellulose-Polycaprolactone-Polylactic Acid. Polymers (Basel) 2019; 11:E1148. [PMID: 31277438 PMCID: PMC6681128 DOI: 10.3390/polym11071148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Bacterial Cellulose (BC) has over recent decades shown great versatility in wound healing dressings, but is difficult to spin fibers with at high concentrations. An investigation into the preparation of bandage-like fibrous meshes is carried out to determine the optimal blend of polycaprolactone (PCL) and polylactic acid (PLA) as a suitable carrier for BC. Using a simple centrifugal spinning setup, polymer blends of PCL, PLA and BC are investigated as a ternary system to determine the most suitable composition with a focus on achieving maximal BC concentration. It is found that BC content in the fibers above 10 wt % reduced product yield. By creating blends of PLA-PCL fibers, we can create a more suitable system in terms of yield and mechanical properties. The fibrous samples are examined for yield, fiber morphology using scanning electron microscopy, mechanical properties using tensile testing and chemical characteristics using Fourier-transform infrared spectroscopy. A fibrous scaffold with > 30 wt % BC was produced with enhanced mechanical properties owing to the blending of PLA and PCL.
Collapse
Affiliation(s)
- Mehmet Onur Aydogdu
- Centre for Nanotechnology & Biomaterials Research, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Goztepe Campus, 34722 Istanbul, Turkey
| | - Esra Altun
- Centre for Nanotechnology & Biomaterials Research, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Goztepe Campus, 34722 Istanbul, Turkey
| | - Jubair Ahmed
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Oguzhan Gunduz
- Centre for Nanotechnology & Biomaterials Research, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Goztepe Campus, 34722 Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Goztepe Campus, 34722 Istanbul, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.
| |
Collapse
|