1
|
Zhang M, Wang C, Pan J, Wang M, Cui H, Zhao X. Preparation and evaluation of oral insulin nanocapsule delivery systems. Int J Biol Macromol 2024; 290:138727. [PMID: 39672446 DOI: 10.1016/j.ijbiomac.2024.138727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Insulin therapy is essential for regulating blood sugar levels. Conventional subcutaneous injection is prone to psychological stress, local tissue damage and severe blood glucose fluctuations, and thus the development of oral insulin technology has become an alternative therapy. However, oral insulin faces challenges such as difficult absorption, poor adhesion, low bioavailability, and short duration of action, due to the large molecular weight, low permeability, and easily degradable by enzymes and gastric acids. In this study, oral insulin nanocapsule delivery systems (Orl-Ins-NPs) were developed by using polylactic acid-co-glycolic acid (PLGA) as the encapsulation material for insulin loading. After preparation, optimization and characterization, the mean size of Orl-Ins-NPs was 140.08 nm, the encapsulation efficiency of the system was 54.3 %, and the loading capacity of insulin was 2.2 %. In addition, cationic modification with chitosan/ polyethyleneimine promoted adhesion and permeation of the intestinal mucus layer, and surface coating with pH-responsive methyl methacrylate trimethylamine ethyl chloride copolymer achieved 100 % gastric protection. The results of rat blood glucose test showed that, subcutaneous injection of the control group reduced blood glucose concentrations within 1 h and returned to initial levels within 4 h, while Orl-Ins-NPs slowly reduced blood glucose concentration to 51.3 % of the initial level and maintains stability within 10 h. Orl-Ins-NPs exhibited good physicochemical stabilities, sustained release property, improved in vitro acid resistance, as well as long-term in vivo hypoglycemic effect. This system demonstrates its potential clinical application in oral insulin and other protein drugs delivery.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junqian Pan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengjie Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Seyam S, Choukaife H, Al Rahal O, Alfatama M. Colonic targeting insulin-loaded trimethyl chitosan nanoparticles coated pectin for oral delivery: In vitro and In vivo studies. Int J Biol Macromol 2024; 281:136549. [PMID: 39401622 DOI: 10.1016/j.ijbiomac.2024.136549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Colon-targeted delivery offers several benefits for oral protein delivery, such as low proteolytic enzyme activity, a natural pH environment, and extended residence time, which improve the bioavailability of the encapsulated protein. Therefore, we hypothesize that developing a novel colonic nanocarrier system, featuring modified chitosan that is soluble at physiological pH and coated with a colon-degradable polymer, will provide an effective delivery system for oral insulin. This study aims to synthesize insulin-loaded pectin-trimethyl chitosan nanoparticles (Ins-P-TMC-NPs) as an oral insulin delivery system and to evaluate its efficacy both in vitro and in vivo. N-trimethyl chitosan (TMC), synthesized via a methylation method, was used to prepare insulin-TMC nanoparticles coated with pectin via the ionic gelation method. The nanoparticles were characterized for their physicochemical properties, cumulative release profile, and surface morphology. The in vitro biological cytotoxicity and cellular uptake of the nanoparticles were evaluated against HT-29 cells. The in vivo blood glucose-lowering effect and histological toxicity were assessed in diabetic male Sprague-Dawley rats. The results showed that Ins-P-TMC-NPs were spherical, with an average size of 379.40 ± 40.26 nm, a polydispersity index of 24.10 ± 1.03 %, a zeta potential of +17.20 ± 0.52 mV, and a loading efficiency of 83.21 ± 1.23 %. Compared to uncoated TMC nanoparticles, Ins-P-TMC-NPs reduced insulin loss in simulated gastrointestinal fluid by approximately 67.23 ± 0.97 % and provided controlled insulin release in simulated colonic fluid. In vitro bioactivity studies revealed that Ins-P-TMC-NPs were non-toxic, with cell viability of 91.12 ± 0.91 % after 24 h of treatment, and exhibited high cellular uptake in the HT-29 cell line with a fluorescence intensity of 37.80 ± 2.40 after 4 h of incubation. Furthermore, the in vivo study demonstrated a sustained reduction in blood glucose levels after oral administration of Ins-P-TMC-NPs, peaking after 8 h with a blood glucose reduction of 87 ± 1.03 %. Histological sections showed no signs of toxicity when compared to those of healthy rats. Overall, the developed colon-targeted oral insulin delivery system exhibits strong potential as a candidate for effective oral insulin administration.
Collapse
Affiliation(s)
- Salma Seyam
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia; Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia
| | - Okba Al Rahal
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia.
| |
Collapse
|
3
|
Bayrami S, Chamani M, JamaliMoghadamSiahkali S, SeyedAlinaghi S, Shirmard LR, Bayrami S, Javar HA, Ghahremani MH, Amini M, Tehrani MR, Shahsavari S, Dorkoosh FA. Preparation, Characterization and In vitro Evaluation of Insulin-PHBV Nanoparticles/Alginate Hydrogel Composite System for Prolonged Delivery of Insulin. J Pharm Sci 2024; 113:2552-2559. [PMID: 38508339 DOI: 10.1016/j.xphs.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE In the present study, biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles (NPs) containing insulin were loaded in sodium alginate/jeffamine (ALG/jeff) hydrogel for prolonged delivery of insulin. The main aim of this work was to fabricate an efficient insulin delivery system to improve patient adherence by decreasing the repetition of injections. METHODS Swelling and morphological properties and crosslinking efficiency of ALG/jeff hydrogel were assessed. The composite hydrogel was prepared by adding PHBV NPs to ALG/jeff hydrogel concurrently with crosslinking process. The morphology and loading capacity of composite hydrogel were analyzed. RESULTS Circular dichroism measurement demonstrated that insulin remains stable following fabrication process. The release profile exhibited 54.6 % insulin release from composite hydrogel within 31 days with minor initial burst release equated to nanoparticles and hydrogels. MTT cell viability analysis was performed by applying L-929 cell line and no cytotoxic effect was observed. CONCLUSIONS Favorable results clearly introduced fabricated composite hydrogel as an excellent candidate for drug delivery systems and also paves the route for prolonged delivery systems of other proteins.
Collapse
Affiliation(s)
- Samane Bayrami
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Chamani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Rezaie Shirmard
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sepide Bayrami
- Islamic Azad University, North Tehran Branch, Faculty of Bioscience, Tehran, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Rafiee Tehrani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadab Shahsavari
- Chemical Engineering Department, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran 14399-56131, Iran.
| |
Collapse
|
4
|
Bokatyi AN, Dubashynskaya NV, Skorik YA. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydr Polym 2024; 337:122145. [PMID: 38710553 DOI: 10.1016/j.carbpol.2024.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Hyaluronic acid (HA) has emerged as a promising biopolymer for various biomedical applications due to its biocompatibility, biodegradability, and intrinsic ability to interact with cell surface receptors, making it an attractive candidate for drug delivery systems and tissue engineering. Chemical modification of HA has opened up versatile possibilities to tailor its properties, enabling the development of advanced drug delivery systems and biomaterials with enhanced functionalities and targeted applications. This review analyzes the strategies and applications of chemically modified HA in the field of drug delivery and biomaterial development. The first part of the review focuses on the different methods and functional groups used for the chemical modification of HA, highlighting the impact of these modifications on its physicochemical properties, degradation behavior and interactions with drugs. The second part of the review evaluates the use of chemically modified HA in the development of advanced biomedical materials including nano- and microparticles, hydrogels and mucoadhesive materials with tailored drug release profiles, site-specific targeting and stimuli-responsive behavior. Thus, the review consolidates the current advances and future perspectives in the field of chemical modification of HA, underscoring its immense potential to drive the development of advanced drug delivery systems and biomaterials with diverse biomedical applications.
Collapse
Affiliation(s)
- Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
5
|
Caturano A, Nilo R, Nilo D, Russo V, Santonastaso E, Galiero R, Rinaldi L, Monda M, Sardu C, Marfella R, Sasso FC. Advances in Nanomedicine for Precision Insulin Delivery. Pharmaceuticals (Basel) 2024; 17:945. [PMID: 39065795 PMCID: PMC11279564 DOI: 10.3390/ph17070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus, which comprises a group of metabolic disorders affecting carbohydrate metabolism, is characterized by improper glucose utilization and excessive production, leading to hyperglycemia. The global prevalence of diabetes is rising, with projections indicating it will affect 783.2 million people by 2045. Insulin treatment is crucial, especially for type 1 diabetes, due to the lack of β-cell function. Intensive insulin therapy, involving multiple daily injections or continuous subcutaneous insulin infusion, has proven effective in reducing microvascular complications but poses a higher risk of severe hypoglycemia. Recent advancements in insulin formulations and delivery methods, such as ultra-rapid-acting analogs and inhaled insulin, offer potential benefits in terms of reducing hypoglycemia and improving glycemic control. However, the traditional subcutaneous injection method has drawbacks, including patient compliance issues and associated complications. Nanomedicine presents innovative solutions to these challenges, offering promising avenues for overcoming current drug limitations, enhancing cellular uptake, and improving pharmacokinetics and pharmacodynamics. Various nanocarriers, including liposomes, chitosan, and PLGA, provide protection against enzymatic degradation, improving drug stability and controlled release. These nanocarriers offer unique advantages, ranging from enhanced bioavailability and sustained release to specific targeting capabilities. While oral insulin delivery is being explored for better patient adherence and cost-effectiveness, other nanomedicine-based methods also show promise in improving delivery efficiency and patient outcomes. Safety concerns, including potential toxicity and immunogenicity issues, must be addressed, with the FDA providing guidance for the safe development of nanotechnology-based products. Future directions in nanomedicine will focus on creating next-generation nanocarriers with precise targeting, real-time monitoring, and stimuli-responsive features to optimize diabetes treatment outcomes and patient safety. This review delves into the current state of nanomedicine for insulin delivery, examining various types of nanocarriers and their mechanisms of action, and discussing the challenges and future directions in developing safe and effective nanomedicine-based therapies for diabetes management.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Roberto Nilo
- Data Collection G-STeP Research Core Facility, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | | | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
6
|
Dou J, Yu S, Zhang Y. A facile and scalable method to synthesize PEGylated PDMAEMA for gene delivery. Biopolymers 2024; 115:e23584. [PMID: 38695839 DOI: 10.1002/bip.23584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
In recent years, cationic polymer vectors have been viewed as a promising method for delivering nucleic acids. With the advancement of synthetic polymer chemistry, we can control chemical structures and properties to enhance the efficacy of gene delivery. Herein, a facile, cost-effective, and scalable method was developed to synthesize PEGylated PDMAEMA polymers (PEO-PDMAEMA-PEO), where PEGylation could enable prolonged polyplexes circulation time in the blood stream. Two polymers of different molecular weights were synthesized, and polymer/eGFP polyplexes were prepared and characterized. The correlation between polymers' molecular weight and physicochemical properties (size and zeta potential) of polyplexes was investigated. Lipofectamine 2000, a commercial non-viral transfection reagent, was used as a standard control. PEO-PDMAEMA-PEO with higher molecular weight exhibited slightly better transfection efficiency than Lipofectamine 2000, and the cytotoxicity study proved that it could function as a safe gene vector. We believe that PEO-PDMAEMA-PEO could serve as a model to investigate more potential in the gene delivery area.
Collapse
Affiliation(s)
- Jie Dou
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Shupei Yu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Yuanwei Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
7
|
Nguyen HX, Kipping T, Banga AK. Polymeric Microneedles Enhance Transdermal Delivery of Therapeutics. Pharmaceutics 2024; 16:845. [PMID: 39065542 PMCID: PMC11280287 DOI: 10.3390/pharmaceutics16070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
This research presents the efficacy of polymeric microneedles in improving the transdermal permeation of methotrexate across human skin. These microneedles were fabricated from PLGA Expansorb® 50-2A and 50-8A and subjected to comprehensive characterization via scanning electron microscopy, Fourier-transform infrared spectroscopy, and mechanical analysis. We developed and assessed a methotrexate hydrogel for physicochemical and rheological properties. Dye binding, histological examinations, and assessments of skin integrity demonstrated the effective microporation of the skin by PLGA microneedles. We measured the dimensions of microchannels in the skin using scanning electron microscopy, pore uniformity analysis, and confocal microscopy. The skin permeation and disposition of methotrexate were researched in vitro. PLGA 50-8A microneedles appeared significantly longer, sharper, and more mechanically uniform than PLGA 50-2A needles. PLGA 50-8A needles generated substantially more microchannels, as well as deeper, larger, and more uniform channels in the skin than PLGA 50-2A needles. Microneedle insertion substantially reduced skin electrical resistance, accompanied by an elevation in transepidermal water loss values. PLGA 50-8A microneedle treatment provided a significantly higher cumulative delivery, flux, diffusion coefficient, permeability coefficient, and predicted steady-state plasma concentration; however, there was a shorter lag time than for PLGA 50-2A needles, base-treated, and untreated groups (p < 0.05). Conclusively, skin microporation using polymeric microneedles significantly improved the transdermal delivery of methotrexate.
Collapse
Affiliation(s)
- Hiep X. Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam;
| | - Thomas Kipping
- MilliporeSigma, a Business of Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Ajay K. Banga
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| |
Collapse
|
8
|
Jadhav V, Roy A, Kaur K, Roy A, Sharma K, Verma R, Rustagi S, Malik S. Current advancements in functional nanomaterials for drug delivery systems. NANO-STRUCTURES & NANO-OBJECTS 2024; 38:101177. [DOI: 10.1016/j.nanoso.2024.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
|
9
|
Shapira-Furman T, Domb AJ. Insulin Extended Release from PLA-PEG Stereocomplex Nanoparticles. Macromol Biosci 2024; 24:e2300497. [PMID: 38029318 DOI: 10.1002/mabi.202300497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Indexed: 12/01/2023]
Abstract
This report addresses the challenges of controlled drug delivery for peptide and protein therapeutics by introducing a novel approach of nano formulation fabricated in aqueous media applying stereo-interaction mechanism with poly(D-lactide)-polyethylene glycol (D-PLA-PEG). To overcome the inherent poor stability of peptide and protein therapeutics, stereocomplexation of the peptide, insulin, is applied, onto D-PLA-PEG in aqueous media. Nanoparticles of ≈400 nm are spontaneously formed when water-soluble D configured PLA-PEG diblock copolymer and L- configured insulin interlock into a stereocomplex, owing to their concave convex fitness. In vitro release of insulin from stereocomplex in phosphate buffer solution (PBS) pH 7.4 solution shows sustained release for 14 weeks. The therapeutic efficacy of the PLA-insulin stereocomplex nanoparticles are evaluated in diabetic Akita mice. Blood glucose levels and body weight are closely monitored for a period of 17 weeks, revealing a significant reduction in glucose levels of the Akita mice treated with insulin stereocomplex, as well as normal body weight gain. These findings suggest that the stereocomplex nanoparticles of insulin-D-PLA-PEG present a promising and effective sustained and extended release platform for insulin. Notably, the use of water-soluble D-PLA-PEG for stereocomplexation in water expands the applicability of this approach to fabricate controlled delivery systems for peptide and protein therapeutics.
Collapse
Affiliation(s)
- Tovi Shapira-Furman
- The Hebrew University of Jerusalem, Faculty of Medicine, School of Pharmacy, Jerusalem, 91120, Israel
| | - Abraham J Domb
- The Hebrew University of Jerusalem, Faculty of Medicine, School of Pharmacy, Jerusalem, 91120, Israel
| |
Collapse
|
10
|
Nair M, Chandra A, Krishnan A, Chandra A, Basha R, Orimoloye H, Raut S, Gayathri V, Mudgapalli VV, Vishwanatha JK. Protein and peptide nanoparticles for drug delivery applications. NANOSTRUCTURED MATERIALS FOR BIOMEDICAL APPLICATIONS 2024:339-404. [DOI: 10.1016/b978-0-323-90838-2.00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Sarangi M, Padhi S, Rath G. Non-Invasive Delivery of Insulin for Breaching Hindrances against Diabetes. Crit Rev Ther Drug Carrier Syst 2024; 41:1-64. [PMID: 38608132 DOI: 10.1615/critrevtherdrugcarriersyst.2023048197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Insulin is recognized as a crucial weapon in managing diabetes. Subcutaneous (s.c.) injections are the traditional approach for insulin administration, which usually have many limitations. Numerous alternative (non-invasive) slants through different routes have been explored by the researchers for making needle-free delivery of insulin for attaining its augmented absorption as well as bioavailability. The current review delineating numerous pros and cons of several novel approaches of non-invasive insulin delivery by overcoming many of their hurdles. Primary information on the topic was gathered by searching scholarly articles from PubMed added with extraction of data from auxiliary manuscripts. Many approaches (discussed in the article) are meant for the delivery of a safe, effective, stable, and patient friendly administration of insulin via buccal, oral, inhalational, transdermal, intranasal, ocular, vaginal and rectal routes. Few of them have proven their clinical efficacy for maintaining the glycemic levels, whereas others are under the investigational pipe line. The developed products are comprising of many advanced micro/nano composite technologies and few of them might be entering into the market in near future, thereby garnishing the hopes of millions of diabetics who are under the network of s.c. insulin injections.
Collapse
Affiliation(s)
| | - Sasmita Padhi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, Pin-201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar-751030, Odisha, India
| |
Collapse
|
12
|
Bácskay I, Papp B, Pártos P, Budai I, Pető Á, Fehér P, Ujhelyi Z, Kósa D. Formulation and Evaluation of Insulin-Loaded Sodium-Alginate Microparticles for Oral Administration. Pharmaceutics 2023; 16:46. [PMID: 38258057 PMCID: PMC10819542 DOI: 10.3390/pharmaceutics16010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
The development of oral insulin drug delivery systems is still an ongoing challenge for pharmaceutical technology researchers, as the formulation process has to overcome a number of obstacles due to the adverse characteristics of peptides. The aim of this study was to formulate different sodium-alginate microparticles as a possible method for oral insulin administration. In our previous studies, the method has been successfully optimized using a small model peptide. The incorporation of insulin into alginate carriers containing nonionic surfactants has not been described yet. In order to enhance the absorption of insulin through biological barriers, Labrasol ALF and Labrafil M 2125 CS were selected as permeation-enhancing excipients. They were applied at a concentration of 0.10% (v/v%), along with various combinations of the two, to increase oral bioavailability. Encapsulation efficiency showed sufficient drug incorporation, as it resulted in over 80% in each composition. In vitro dissolution and enzymatic stability test results proved that, as a pH-responsive polymer, alginate bead swelling and drug release occur at higher pH, thus protecting insulin against the harsh environment of the gastrointestinal tract. The remaining insulin content was 66% due to SIF degradation after 120 min. Permeability experiments revealed the impact of permeation enhancers and natural polymers on drug absorption, as they enhanced drug transport significantly through Caco-2 cells in the case of alginate microparticle formulations, as opposed to the control insulin solution. These results suggest that these formulations are able to improve the oral bioavailability of insulin.
Collapse
Affiliation(s)
- Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, 4032 Debrecen, Hungary (P.F.); (Z.U.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, 4032 Debrecen, Hungary
| | - Boglárka Papp
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, 4032 Debrecen, Hungary (P.F.); (Z.U.)
| | - Péter Pártos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, 4032 Debrecen, Hungary (P.F.); (Z.U.)
| | - István Budai
- Faculty of Engineering, University of Debrecen, Ótemető Utca 2-4, 4028 Debrecen, Hungary;
| | - Ágota Pető
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, 4032 Debrecen, Hungary (P.F.); (Z.U.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, 4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, 4032 Debrecen, Hungary (P.F.); (Z.U.)
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, 4032 Debrecen, Hungary (P.F.); (Z.U.)
| | - Dóra Kósa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, 4032 Debrecen, Hungary (P.F.); (Z.U.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, 4032 Debrecen, Hungary
| |
Collapse
|
13
|
López-Iglesias C, Klinger D. Rational Design and Development of Polymeric Nanogels as Protein Carriers. Macromol Biosci 2023; 23:e2300256. [PMID: 37551821 DOI: 10.1002/mabi.202300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Proteins have gained significant attention as potential therapeutic agents owing to their high specificity and reduced toxicity. Nevertheless, their clinical utility is hindered by inherent challenges associated with stability during storage and after in vivo administration. To overcome these limitations, polymeric nanogels (NGs) have emerged as promising carriers. These colloidal systems are capable of efficient encapsulation and stabilization of protein cargoes while improving their bioavailability and targeted delivery. The design of such delivery systems requires a comprehensive understanding of how the synthesis and formulation processes affect the final performance of the protein. This review highlights critical aspects involved in the development of NGs for protein delivery, with specific emphasis on loading strategies and evaluation techniques. For example, factors influencing loading efficiency and release kinetics are discussed, along with strategies to optimize protein encapsulation through protein-carrier interactions to achieve the desired therapeutic outcomes. The discussion is based on recent literature examples and aims to provide valuable insights for researchers working toward the advancement of protein-based therapeutics.
Collapse
Affiliation(s)
- Clara López-Iglesias
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Straße 2-4, 14195, Berlin, Germany
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela, 15782, Spain
| | - Daniel Klinger
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Straße 2-4, 14195, Berlin, Germany
| |
Collapse
|
14
|
Chauhan P, Paliwal H, Chauhan CS, Paliwal A. PLGA-based microspheres loaded with metformin hydrochloride: Modified double emulsion method preparation, optimization, characterization, and in vitro evaluation. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:997-1006. [PMID: 37708992 DOI: 10.1016/j.pharma.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The modified solvent removal method was used to encapsulate metformin hydrochloride (MH) within poly(lactic-co-glycolic acid) (PLGA) microspheres. The study investigated the effect of varying polymer concentrations on the loading and release of the drug from the microspheres. The encapsulation process involved using a double emulsion method, resulting in microspheres with particle diameters ranging from approximately 4.4μm to 2.7μm. The study achieved high encapsulation efficiencies, ranging from 81% to 90%, with drug loadings ranging from 18% to 11%. The release of the drug from the microspheres followed a biphasic pattern over 24 days, with nearly complete release by the end of the study period. Fourier transform infrared spectroscopy (FTIR) analysis indicated that there were no notable differences between PLGA and MH-loaded microspheres, suggesting minimal interactions between MH and PLGA. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques were used to investigate the state of the MH within the microspheres. The results suggested that the MH was dispersed at a molecular level within the spheres and existed in an amorphous state. This amorphous state of the drug may explain the slow and prolonged release observed in the study.
Collapse
Affiliation(s)
- Priyanka Chauhan
- Faculty of Pharmacy, Bhupal Nobles' University, Udaipur, Rajasthan, India
| | - Himanshu Paliwal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India
| | | | - Ankit Paliwal
- Pacific College of Pharmacy, Pacific University, Udaipur, Rajasthan, India
| |
Collapse
|
15
|
Malek-Khatabi A, Sadat Razavi M, Abdollahi A, Rahimzadeghan M, Moammeri F, Sheikhi M, Tavakoli M, Rad-Malekshahi M, Faraji Rad Z. Recent progress in PLGA-based microneedle-mediated transdermal drug and vaccine delivery. Biomater Sci 2023; 11:5390-5409. [PMID: 37387317 DOI: 10.1039/d3bm00795b] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Microneedles (MNs) have recently been found to have applications in drug, vitamin, protein and vaccine delivery. Polymeric MN arrays continue to attract increasing attention due to their capability to bypass the skin's stratum corneum (SC) barrier with minimal invasiveness. These carriers can achieve the targeted intradermal delivery of drugs and vaccines and improve their transdermal delivery level. As a nontoxic FDA-approved copolymer, polylactic glycolic acid (PLGA) has good biocompatibility and biodegradability. Currently, PLGA-based MNs have a noticeable tendency to be utilized as a delivery system. This study focuses on the most recent advances in PLGA-based MNs. Both PLGA nanoparticle-based MNs and PLGA matrix-based MNs, created for the delivery of vaccines, drugs, proteins and other therapeutic agents, are discussed. The paper also discusses the various types of MNs and their potential applications. Finally, the prospects and challenges of PLGA-based MNs are reviewed.
Collapse
Affiliation(s)
- Atefeh Malek-Khatabi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Sadat Razavi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alyeh Abdollahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Rahimzadeghan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moammeri
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Sheikhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamadreza Tavakoli
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Faraji Rad
- School of Engineering, University of Southern Queensland, Springfield, QLD 4300, Australia.
| |
Collapse
|
16
|
de Lemos Vasconcelos Silva E, de Jesus Oliveira AC, de Carvalho Moreira LMC, Silva-Filho EC, Wanderley AG, de La Roca Soares MF, Soares-Sobrinho JL. Insulin-loaded nanoparticles based on acetylated cashew gum/chitosan complexes for oral administration and diabetes treatment. Int J Biol Macromol 2023; 242:124737. [PMID: 37148931 DOI: 10.1016/j.ijbiomac.2023.124737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Insulin is one of the most important drugs in the clinical treatment of diabetes. There is growing interest in oral insulin administration as it mimics the physiological pathway and potentially reduces side effects associated with subcutaneous injection. In this study, a nanoparticulate system was developed using acetylated cashew gum (ACG) and chitosan by the polyelectrolyte complexation method, for oral administration of insulin. The nanoparticles were characterized by size, zeta potential and encapsulation efficiency (EE%). And they had a particle size of 460 ± 11.0 nm, PDI of 0.2 ± 0.021, zeta potential of 30.6 ± 0.48 mV, and an EE% of 52.5 %. Cytotoxicity assays were performed for HT-29 cell lines. It was observed that ACG and nanoparticles did not have a significant effect on cell viability, verifying their biocompatibility. Hypoglycemic effects of the formulation were analyzed in vivo, noting that the nanoparticles reduced blood glucose by 51.0 % of baseline levels after 12 h, not inducing signs of toxicity or death. Biochemical and hematological profiles were not clinically modified. Histological study indicated no signs of toxicity. Results showed that the nanostructured system presented itself as a potential vehicle for oral insulin release.
Collapse
Affiliation(s)
- Eliadna de Lemos Vasconcelos Silva
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Antônia Carla de Jesus Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Edson C Silva-Filho
- Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil
| | | | - Monica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
17
|
Behzadifar S, Barras A, Plaisance V, Pawlowski V, Szunerits S, Abderrahmani A, Boukherroub R. Polymer-Based Nanostructures for Pancreatic Beta-Cell Imaging and Non-Invasive Treatment of Diabetes. Pharmaceutics 2023; 15:pharmaceutics15041215. [PMID: 37111699 PMCID: PMC10143373 DOI: 10.3390/pharmaceutics15041215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes poses major economic, social, and public health challenges in all countries worldwide. Besides cardiovascular disease and microangiopathy, diabetes is a leading cause of foot ulcers and lower limb amputations. With the continued rise of diabetes prevalence, it is expected that the future burden of diabetes complications, early mortality, and disabilities will increase. The diabetes epidemic is partly caused by the current lack of clinical imaging diagnostic tools, the timely monitoring of insulin secretion and insulin-expressing cell mass (beta (β)-cells), and the lack of patients' adherence to treatment, because some drugs are not tolerated or invasively administrated. In addition to this, there is a lack of efficient topical treatment capable of stopping the progression of disabilities, in particular for treating foot ulcers. In this context, polymer-based nanostructures garnered significant interest due to their tunable physicochemical characteristics, rich diversity, and biocompatibility. This review article emphasizes the last advances and discusses the prospects in the use of polymeric materials as nanocarriers for β-cell imaging and non-invasive drug delivery of insulin and antidiabetic drugs in the management of blood glucose and foot ulcers.
Collapse
Affiliation(s)
- Shakila Behzadifar
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Plaisance
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| |
Collapse
|
18
|
Liu K, Chen Y, Yang Z, Jin J. Preparation and characterization of CS/γ-PGA/PC complex nanoparticles for insulin oral delivery. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
19
|
Zhang Q, Li S, He L, Feng X. A brief review of polysialic acid-based drug delivery systems. Int J Biol Macromol 2023; 230:123151. [PMID: 36610578 DOI: 10.1016/j.ijbiomac.2023.123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Polysialic acid (PSA) is a straight-chain homoglycan linked by N-acetylneuraminic acid monomers via α-2, 8- or α-2, 9-glycosidic bonds. As a negatively charged non-glycosaminoglycan, PSA has the remarkable characteristics of non-immunogenicity and biodegradation. Although different in class, PSA is similar to poly(ethylene glycol), and was originally used to increase the stability of the delivery system in circulation to prolong the half-life. As research continues, PSA's application potential in the pharmaceutical field becomes increasingly prominent. It can be used as a biomaterial for protein polysialylation and tissue engineering, and it can be used alone or with other materials to develop multifunctional drug delivery systems. In this article, the results of the bioproduction and biofunction of PSA are introduced, the common strategies for chemical modification of PSA are summarized, and the application progress of PSA-based drug delivery systems is reviewed.
Collapse
Affiliation(s)
- Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610000, China
| | - Lin He
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xueting Feng
- College of Pharmacy, Southwest Minzu University, Chengdu 610000, China
| |
Collapse
|
20
|
The recent advancement in the PLGA-based thermo-sensitive hydrogel for smart drug delivery. Int J Pharm 2023; 631:122484. [PMID: 36509221 DOI: 10.1016/j.ijpharm.2022.122484] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
To date, hydrogels have opened new prospects for potential applications for drug delivery. The thermo-sensitive hydrogels have the great potential to provide more effective and controllable release of therapeutic/bioactive agents in response to changes in temperature. PLGA is a safe FDA-approved copolymer with good biocompatibility and biodegradability. Recently, PLGA-based formulation have attracted a lot of interest for thermo-sensitive hydrogels. Thermo-sensitive PLGA-based hydrogels provide the delivery system with good spatial and temporal control, and have been widely applied in drug delivery. This review is focused on the recent progression of the thermo-sensitive and biodegradable PLGA-based hydrogels that have been reported for smart drug delivery to the different organs. Eventually, future perspectives and challenges of thermo-sensitive PLGA-based hydrogels are discussed briefly.
Collapse
|
21
|
Neves AR, Biswas S, Sousa Â, Costa D. Nanoconjugates and nanoconjugate formulations for improving drug delivery and therapeutic efficacy. ADVANCED NANOFORMULATIONS 2023:397-430. [DOI: 10.1016/b978-0-323-85785-7.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Mohammadpour F, Kamali H, Gholami L, McCloskey AP, Kesharwani P, Sahebkar A. Solid lipid nanoparticles: a promising tool for insulin delivery. Expert Opin Drug Deliv 2022; 19:1577-1595. [PMID: 36287584 DOI: 10.1080/17425247.2022.2138328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Insulin plays a critical role in metabolism modulation including carbohydrate, lipid, and protein metabolism. There is room to improve insulin delivery but optimizing the best carrier remains challenging. Traditional and conventional approaches for insulin delivery do not emulate the normal fate of insulin release in the body. Despite extensive research attempts to overcome this and other challenges, the goal of achieving optimal insulin delivery that emulates the natural system remains unresolved. AREAS COVERED Solid Lipid Nanoparticles (SLNs) may provide a solution, because they are nontoxic, biocompatible, and straightforward to formulate thus providing a promising platform for achieving targeted and controlled delivery of various therapeutic agents. This review aims to provide an overview on the suitability and application of SLNs for insulin delivery. A special emphasis is placed on the biopharmaceutical aspects of insulin loaded SLNs which have not been explored in detail to date. EXPERT OPINION SLNs have proven to be safe and versatile drug delivery systems suitable for insulin delivery and capable of improving the efficacy and pharmacokinetic profile of encapsulated insulin. There is still some work to be done to fully explore SLNs' true potential as drug delivery and specifically insulin delivery vehicles suitable for clinical use.
Collapse
Affiliation(s)
- Fatemeh Mohammadpour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Gholami
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alice P McCloskey
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, 110062, Jamia Hamdard, India.,Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical science, Chennai, India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Sakunpongpitiporn P, Naeowong W, Sirivat A. Enhanced transdermal insulin basal release from silk fibroin (SF) hydrogels via iontophoresis. Drug Deliv 2022; 29:2234-2244. [PMID: 35848994 PMCID: PMC9848418 DOI: 10.1080/10717544.2022.2096717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023] Open
Abstract
Insulin is the peptide hormone used to treat the diabetes patient. The hormone is normally taken by injection. The transdermal drug delivery system (TDDS) is an alternative route. The silk fibroin (SF) hydrogels were fabricated via solution casting as the insulin matrix. The release and release-permeation experiments of the insulin loaded SF hydrogels were carried out using a modified Franz-diffusion cell at 37 °C for 36 h, under the effects of SF concentrations, pH, and electric field. The release-permeation mechanism through the pig skin was from the Case-II transport with the constant release rate. The diffusion coefficient (D) increased with decreasing SF concentration due to a larger mesh size, and with increasing electric field due to the electroreplusive forces between the insulin and the SF hydrogels against the negatively-charged electrode, and the induced SF hydrogel expansion. The rate and amount of insulin release-permeation became relatively lower as it required a longer time to generate aqueous pathways through the pig skin. The present SF hydrogels are demonstrated here deliver insulin with the required constant release rate, and the suitable amount within a prescribed duration.
Collapse
Affiliation(s)
- Phimchanok Sakunpongpitiporn
- The Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| | - Witthawat Naeowong
- Division of Perioperative and Ambulatory Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anuvat Sirivat
- The Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
24
|
Muñoz-Galán H, Molina BG, Bertran O, Pérez-Madrigal MM, Alemán C. Combining rapid and sustained insulin release from conducting hydrogels for glycemic control. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Dahan WM, Mohammad F, Ezzat AO, Atta AM, Al-Tilasi HH, Al-Lohedan HA. Enhanced Delivery of Insulin through Acrylamide-Modified Chitosan Containing Smart Carrier System. Gels 2022; 8:701. [PMID: 36354609 PMCID: PMC9689140 DOI: 10.3390/gels8110701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/13/2023] Open
Abstract
The present study develops on insulin-release studies from the chitosan-amide-modified stimuli-responsive polymers formed from various fatty acids including stearic acid, oleic acid, linoleic acid, and linolenic acid. This is the continuation of an earlier reported study that investigates the insulin-release profiles of chitosan-modified fatty acid amides (without stimuli responsive polymers). Following the synthesis and characterization of many different fatty acid amides with a varying amount of unsaturation, the insulin drug loading and release effects were compared among N-isopropylacrylamide (NIPAm), a thermo-responsive polymer, and 2-acrylamide-2-methylpropane sulfonic acid (AMPS), a pH-responsive polymer-modified hydrogel that is expected to enhance environmental response and the controllability of release. Finally, drug release effects were studied to investigate the drug release mechanisms with the help of five different pharmacokinetic models including the zero-order, first-order, Higuchi, Korsmeyers-Peppas, and Hixson models. The results indicate that the Higuchi and Hixson models are valid in terms of the operation of the NIPAm and AMPS matrices during the delivery of insulin.
Collapse
Affiliation(s)
| | | | | | | | | | - Hamad A. Al-Lohedan
- Surfactants Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
26
|
Murakami Y, Inoue K, Akiyama R, Orita Y, Shimoyama Y. LipTube: Liposome Formation in the Tube Process Using Supercritical CO 2. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuya Murakami
- Department of Industrial Chemistry, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo125-8585, Japan
| | - Keita Inoue
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1 S1-33, Meguro-ku, Tokyo152-8550, Japan
| | - Ryunosuke Akiyama
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1 S1-33, Meguro-ku, Tokyo152-8550, Japan
| | - Yasuhiko Orita
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1 S1-33, Meguro-ku, Tokyo152-8550, Japan
| | - Yusuke Shimoyama
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1 S1-33, Meguro-ku, Tokyo152-8550, Japan
| |
Collapse
|
27
|
Bozzer S, Dal Bo M, Grimaldi MC, Toffoli G, Macor P. Nanocarriers as a Delivery Platform for Anticancer Treatment: Biological Limits and Perspectives in B-Cell Malignancies. Pharmaceutics 2022; 14:1965. [PMID: 36145713 PMCID: PMC9502742 DOI: 10.3390/pharmaceutics14091965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Nanoparticle-based therapies have been proposed in oncology research using various delivery methods to increase selectivity toward tumor tissues. Enhanced drug delivery through nanoparticle-based therapies could improve anti-tumor efficacy and also prevent drug resistance. However, there are still problems to overcome, such as the main biological interactions of nanocarriers. Among the various nanostructures for drug delivery, drug delivery based on polymeric nanoparticles has numerous advantages for controlling the release of biological factors, such as the ability to add a selective targeting mechanism, controlled release, protection of administered drugs, and prolonging the circulation time in the body. In addition, the functionalization of nanoparticles helps to achieve the best possible outcome. One of the most promising applications for nanoparticle-based drug delivery is in the field of onco-hematology, where there are many already approved targeted therapies, such as immunotherapies with monoclonal antibodies targeting specific tumor-associated antigens; however, several patients have experienced relapsed or refractory disease. This review describes the major nanocarriers proposed as new treatments for hematologic cancer, describing the main biological interactions of these nanocarriers and the related limitations of their use as drug delivery strategies.
Collapse
Affiliation(s)
- Sara Bozzer
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | | | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
28
|
Hameedat F, Pizarroso NA, Teixeira N, Pinto S, Sarmento B. Functionalized FcRn-targeted nanosystems for oral drug delivery: A new approach to colorectal cancer treatment. Eur J Pharm Sci 2022; 176:106259. [PMID: 35842140 DOI: 10.1016/j.ejps.2022.106259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 01/17/2023]
Abstract
Colorectal cancer (CRC) is the second type of cancer with the highest lethality rate. The current chemotherapy to treat CRC causes systemic toxicity, unsatisfying response rate, and low tumor-specific selectivity, which is mainly administered by invasive routes. The chronic and aggressive nature of cancers may require long-term regimens. Thus, the oral route is preferred. However, the orally administered drugs still need to surpass the harsh environment of the gastrointestinal tract and the biological barriers. Nanotechnology is a promising strategy to overcome the oral route limitations. Targeted nanoparticle systems decorated with functional groups can enhance the delivery of anticancer agents to tumor sites. It is described in the literature that the neonatal Fc receptor (FcRn) is expressed in cancer tissue and overexpressed in CRC epithelial cells. However, the impact of FcRn-targeted nanosystems in the treatment of CRC has been poorly investigated. This review article discusses the current knowledge on the involvement of the FcRn in CRC, as well as to critically assess its relevance as a target for further localization of oral nanocarriers in CRC tumor cells. Finally, a brief overview of cancer therapeutics, strategies to design the nanoparticles of anticancer drugs and a review of decorated nanoparticles with FcRn moieties are explored.
Collapse
Affiliation(s)
- Fatima Hameedat
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; NANOMED EMJMD, Pharmacy School, Faculty of Health, University of Angers, France; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal
| | - Nuria A Pizarroso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal
| | - Natália Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Soraia Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto 4150-180, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; CESPU - IUCS, Rua Central de Gandra 1317, Gandra 4585-116, Portugal.
| |
Collapse
|
29
|
Natural Polysaccharide-Based Nanodrug Delivery Systems for Treatment of Diabetes. Polymers (Basel) 2022; 14:polym14153217. [PMID: 35956731 PMCID: PMC9370904 DOI: 10.3390/polym14153217] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years, natural polysaccharides have been considered as the ideal candidates for novel drug delivery systems because of their good biocompatibility, biodegradation, low immunogenicity, renewable source and easy modification. These natural polymers are widely used in the designing of nanocarriers, which possess wide applications in therapeutics, diagnostics, delivery and protection of bioactive compounds or drugs. A great deal of studies could be focused on developing polysaccharide nanoparticles and promoting their application in various fields, especially in biomedicine. In this review, a variety of polysaccharide-based nanocarriers were introduced, including nanoliposomes, nanoparticles, nanomicelles, nanoemulsions and nanohydrogels, focusing on the latest research progress of these nanocarriers in the treatment of diabetes and the possible strategies for further study of polysaccharide nanocarriers.
Collapse
|
30
|
Gülfen M, Özdemir A. Monitoring Cu(II)-insulin and Mn(II)-insulin complexes using potentiometric, chromatographic, UV–vis absorption and fluorescence emission spectroscopic techniques. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Li Y, Zhang W, Zhao R, Zhang X. Advances in oral peptide drug nanoparticles for diabetes mellitus treatment. Bioact Mater 2022; 15:392-408. [PMID: 35386357 PMCID: PMC8958389 DOI: 10.1016/j.bioactmat.2022.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
Peptide drugs play an important role in diabetes mellitus treatment. Oral administration of peptide drugs is a promising strategy for diabetes mellitus because of its convenience and high patient compliance compared to parenteral administration routes. However, there are a series of formidable unfavorable conditions present in the gastrointestinal (GI) tract after oral administration, which result in the low oral bioavailability of these peptide drugs. To overcome these challenges, various nanoparticles (NPs) have been developed to improve the oral absorption of peptide drugs due to their unique in vivo properties and high design flexibility. This review discusses the unfavorable conditions present in the GI tract and provides the corresponding strategies to overcome these challenges. The review provides a comprehensive overview on the NPs that have been constructed for oral peptide drug delivery in diabetes mellitus treatment. Finally, we will discuss the rational application and give some suggestions that can be utilized for the development of oral peptide drug NPs. Our aim is to provide a systemic and comprehensive review of oral peptide drug NPs that can overcome the challenges in GI tract for efficient treatment of diabetes mellitus. •Oral administration of peptide drugs is a promising strategy for diabetes mellitus treatment •A series of formidable unfavorable conditions in gastrointestinal tract result in the low oral bioavailability of peptide drugs •Nanoparticles can improve the oral bioavailability of peptide drugs
Collapse
Affiliation(s)
- Yan Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Wen Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Ruichen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| |
Collapse
|
32
|
Adeyemi SA, Choonara YE. Current advances in cell therapeutics: A biomacromolecules application perspective. Expert Opin Drug Deliv 2022; 19:521-538. [PMID: 35395914 DOI: 10.1080/17425247.2022.2064844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Many chronic diseases have evolved and to circumvent the limitations of using conventional drug therapies, smart cell encapsulating delivery systems have been explored to customize the treatment with alignment to disease longevity. Cell therapeutics has advanced in tandem with improvements in biomaterials that can suitably deliver therapeutic cells to achieve targeted therapy. Among the promising biomacromolecules for cell delivery are those that share bio-relevant architecture with the extracellular matrix and display extraordinary compatibility in the presence of therapeutic cells. Interestingly, many biomacromolecules that fulfil these tenets occur naturally and can form hydrogels. AREAS COVERED This review provides a concise incursion into the paradigm shift to cell therapeutics using biomacromolecules. Advances in the design and use of biomacromolecules to assemble smart therapeutic cell carriers is discussed in light of their pivotal role in enhancing cell encapsulation and delivery. In addition, the principles that govern the application of cell therapeutics in diabetes, neuronal disorders, cancers and cardiovascular disease are outlined. EXPERT OPINION Cell therapeutics promises to revolutionize the treatment of various secretory cell dysfunctions. Current and future advances in designing functional biomacromolecules will be critical to ensure that optimal delivery of therapeutic cells is achieved with desired biosafety and potency.
Collapse
Affiliation(s)
- Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
33
|
Allawadhi P, Singh V, Govindaraj K, Khurana I, Sarode LP, Navik U, Banothu AK, Weiskirchen R, Bharani KK, Khurana A. Biomedical applications of polysaccharide nanoparticles for chronic inflammatory disorders: Focus on rheumatoid arthritis, diabetes and organ fibrosis. Carbohydr Polym 2022; 281:118923. [PMID: 35074100 DOI: 10.1016/j.carbpol.2021.118923] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022]
Abstract
Polysaccharides are biopolymers distinguished by their complex secondary structures executing various roles in microorganisms, plants, and animals. They are made up of long monomers of similar type or as a combination of other monomeric chains. Polysaccharides are considered superior as compared to other polymers due to their diversity in charge and size, biodegradability, abundance, bio-compatibility, and less toxicity. These natural polymers are widely used in designing of nanoparticles (NPs) which possess wide applications in therapeutics, diagnostics, delivery and protection of bioactive compounds or drugs. The side chain reactive groups of polysaccharides are advantageous for functionalization with nanoparticle-based conjugates or therapeutic agents such as small molecules, proteins, peptides and nucleic acids. Polysaccharide NPs show excellent pharmacokinetic and drug delivery properties, facilitate improved oral absorption, control the release of drugs, increases in vivo retention capability, targeted delivery, and exert synergistic effects. This review updates the usage of polysaccharides based NPs particularly cellulose, chitosan, hyaluronic acid, alginate, dextran, starch, cyclodextrins, pullulan, and their combinations with promising applications in diabetes, organ fibrosis and arthritis.
Collapse
Affiliation(s)
- Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Kannan Govindaraj
- Department of Developmental BioEngineering, Technical Medicine Centre, University of Twente, Enschede, the Netherlands
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, Maharashtra, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India.
| | - Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
34
|
Vardaxi A, Kafetzi M, Pispas S. Polymeric Nanostructures Containing Proteins and Peptides for Pharmaceutical Applications. Polymers (Basel) 2022; 14:777. [PMID: 35215689 PMCID: PMC8877994 DOI: 10.3390/polym14040777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Over the last three decades, proteins and peptides have attracted great interest as drugs of choice for combating a broad spectrum of diseases, including diabetes mellitus, cancer, and infectious and neurological diseases. However, the delivery of therapeutic proteins to target sites should take into account the obstacles and limitations related to their intrinsic sensitivity to different environmental conditions, fragile tertiary structures, and short half-life. Polymeric nanostructures have emerged as competent vehicles for protein delivery, as they are multifunctional and can be tailored according to their peculiarities. Thus, the enhanced bioavailability and biocompatibility, the adjustable control of physicochemical features, and the colloidal stability of polymer-based nanostructures further enable either the embedding or conjugation of hydrophobic or hydrophilic bioactive molecules, which are some of the features of paramount importance that they possess and which contribute to their selection as vehicles. The present review aims to discuss the prevalent nanostructures composed of block copolymers from the viewpoint of efficient protein hospitality and administration, as well as the up-to-date scientific publications and anticipated applications of polymeric nanovehicles containing proteins and peptides.
Collapse
Affiliation(s)
| | | | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.V.); (M.K.)
| |
Collapse
|
35
|
Vlassi E, Papagiannopoulos A, Pispas S. Star Polyelectrolytes with Mixed Arms of PDMAEMA and POEGMA: Self‐assembly and Co‐assembly with Insulin. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eleni Vlassi
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| |
Collapse
|
36
|
Sabbagh F, Muhamad II, Niazmand R, Dikshit PK, Kim BS. Recent progress in polymeric non-invasive insulin delivery. Int J Biol Macromol 2022; 203:222-243. [PMID: 35101478 DOI: 10.1016/j.ijbiomac.2022.01.134] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
The design of carriers for insulin delivery has recently attracted major research attentions in the biomedical field. In general, the release of drug from polymers is driven via a variety of polymers. Several mechanisms such as matrix release, leaching of drug, swelling, and diffusion are usually adopted for the release of drug through polymers. Insulin is one of the most predominant therapeutic drugs for the treatment of both diabetes mellitus; type-I (insulin-dependent) and type II (insulin-independent). Currently, insulin is administered subcutaneously, which makes the patient feel discomfort, pain, hyperinsulinemia, allergic responses, lipodystrophy surrounding the injection area, and occurrence of miscarried glycemic control. Therefore, significant research interest has been focused on designing and developing new insulin delivery technologies to control blood glucose levels and time, which can enhance the patient compliance simultaneously through alternative routes as non-invasive insulin delivery. The aim of this review is to emphasize various non-invasive insulin delivery mechanisms including oral, transdermal, rectal, vaginal, ocular, and nasal. In addition, this review highlights different smart stimuli-responsive insulin delivery systems including glucose, pH, enzymes, near-infrared, ultrasound, magnetic and electric fields, and the application of various polymers as insulin carriers. Finally, the advantages, limitations, and the effect of each non-invasive route on insulin delivery are discussed in detail.
Collapse
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ida Idayu Muhamad
- Universiti Teknologi Malaysia, Department of Chemical Engineering, 81310, Johor, Malaysia
| | - Razieh Niazmand
- Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran
| | - Pritam Kumar Dikshit
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522 502, Andhra Pradesh, India
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
37
|
Bahman F, Butt AM, Ashi L, Mohd Amin MCI, Greish K. Polymeric micelles for oral drug delivery. POLYMERIC MICELLES FOR DRUG DELIVERY 2022:89-113. [DOI: 10.1016/b978-0-323-89868-3.00015-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
38
|
Abdel-Moneim A, Ramadan H. Novel strategies to oral delivery of insulin: Current progress of nanocarriers for diabetes management. Drug Dev Res 2021; 83:301-316. [PMID: 34859477 DOI: 10.1002/ddr.21903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/30/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus is one of the most serious public health problems in the world. Repeated daily injections of subcutaneous insulin is the standard treatment for patients with type 1 diabetes mellitus; however, subcutaneous insulin injections can potentially cause local discomfort, patient noncompliance, hypoglycemia, failure to regulate glucose homeostasis, infections, and fat deposits at the injection sites. In recent years, numerous attempts have been made to produce safe and efficient nanoparticles for oral insulin delivery. Oral administration is considered the most effective alternative route to insulin injection, but it is accompanied by several challenges related to enzymatic proteolysis, digestive breakdown, and absorption barriers. A number of natural and synthetic polymeric, lipid-based, and inorganic nanoparticles have been investigated for use. Although improvements have recently been made in potential oral insulin delivery systems, these require further investigation before clinical trials are conducted. In this review, new approaches to oral insulin delivery for diabetes treatment are discussed, including polymeric, lipid-based, and inorganic nanoparticles, as well as the clinical trials performed for this purpose.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hanaa Ramadan
- Histology and Molecular Cytology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
39
|
Dholakia J, Prabhakar B, Shende P. Strategies for the delivery of antidiabetic drugs via intranasal route. Int J Pharm 2021; 608:121068. [PMID: 34481011 DOI: 10.1016/j.ijpharm.2021.121068] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022]
Abstract
Diabetes is a metabolic disorder defined by higher blood glucose levels in the body generally controlled by antidiabetic agents (oral) and insulin (subcutaneous). To avoid the limitations of the conventional routes such as lower bioavailability and pain at the site of injection in case of parenteral route modified delivery systems are proposed like transdermal, pulmonary and inhalation delivery and among the other delivery systems nasal drug delivery system that shows the advantages such as reduced frequency of dose, higher patient compliance, safety, ease of administration, prolonged residence time, improved absorption of drug in the body, higher bioavailability and stability. This review article discusses the strategies adopted for the delivery of antidiabetic drugs by the intranasal delivery system. The insulin and glucagon-like peptides on experimentation show results of improved therapeutic levels and patient compliance. The drugs are transported by the paracellular route and absorbed through the epithelial tight junctions successfully by utilising different strategies. The limitations of the nasal delivery such as irritation or burning on administration, degradation by the enzymes, mucociliary clearance, lesser volume of the nasal cavity and permeation through the nasal mucosa. To overcome the challenges different strategies for the nasal administration are studied such as polymers, particulate delivery systems, complexation with peptides and smart delivery using glucose-responsive systems. A vast scope of intranasal preparations exists for antidiabetic drugs in the future for the management of diabetes and more clinical studies are the requirement for the societal impact to battle against diabetes.
Collapse
Affiliation(s)
- Jheel Dholakia
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
40
|
Profiro de Oliveira JH, Arruda IES, Izak Ribeiro de Araújo J, Chaves LL, de La Rocca Soares MF, Soares-Sobrinho JL. Why do few drug delivery systems to combat neglected tropical diseases reach the market? An analysis from the technology's stages. Expert Opin Ther Pat 2021; 32:89-114. [PMID: 34424127 DOI: 10.1080/13543776.2021.1970746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Many drugs used to combat schistosomiasis, Chagas disease, and leishmaniasis (SCL) have clinical limitations such as: high toxicity to the liver, kidneys and spleen; reproductive, gastrointestinal, and heart disorders; teratogenicity. In this sense, drug delivery systems (DDSs) have been described in the literature as a viable option for overcoming the limitations of these drugs. An analysis of the level of development (TRL) of patents can help in determine the steps that must be taken for promising technologies to reach the market. AREAS COVERED This study aimed to analyze the stage of development of DDSs for the treatment of SCL described in patents. In addition, we try to understand the main reasons why many DDSs do not reach the market. In this study, we examined DDSs for drugs indicated by WHO and treatment of SCL, by performing a search for patents. EXPERT OPINION In this present work we provide arguments that support the hypothesis that there is a lack of integration between academia and industry to finance and continue research, especially the development of clinical studies. We cite the translational research consortia as the potential alternative for developing DDSs to combat NTDs.
Collapse
Affiliation(s)
| | | | | | - Luise Lopes Chaves
- Department of Pharmacy, Federal University of Pernambuco, Recife, Recife-Pernambuco
| | | | | |
Collapse
|
41
|
Azevedo C, Pinto S, Benjakul S, Nilsen J, Santos HA, Traverso G, Andersen JT, Sarmento B. Prevention of diabetes-associated fibrosis: Strategies in FcRn-targeted nanosystems for oral drug delivery. Adv Drug Deliv Rev 2021; 175:113778. [PMID: 33887405 DOI: 10.1016/j.addr.2021.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus is a chronic disease with an elevated risk of micro- and macrovascular complications, such as fibrosis. To prevent diabetes-associated fibrosis, the symptomatology of diabetes must be controlled, which is commonly done by subcutaneous injection of antidiabetic peptides. To minimize the pain and distress associated with such injections, there is an urgent need for non-invasive oral transmucosal drug delivery strategies. However, orally administered peptide-based drugs are exposed to harsh conditions in the gastrointestinal tract and poorly cross the selective intestinal epithelium. Thus, targeting of drugs to receptors expressed in epithelial cells, such as the neonatal Fc receptor (FcRn), may therefore enhance uptake and transport through mucosal barriers. This review compiles how in-depth studies of FcRn biology and engineering of receptor-binding molecules may pave the way for design of new classes of FcRn-targeted nanosystems. Tailored strategies may open new avenues for oral drug delivery and provide better treatment options for diabetes and, consequently, fibrosis prevention.
Collapse
|
42
|
Lori MS, Ohadi M, Estabragh MAR, Afsharipour S, Banat IM, Dehghannoudeh G. pH-sensitive polymer-based carriers as a useful approach for oral delivery of therapeutic protein: A review. Protein Pept Lett 2021; 28:1230-1237. [PMID: 34303327 DOI: 10.2174/0929866528666210720142841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
There are many proteins and enzymes in the human body, and their dysfunction can lead to disease. The use of proteins as a drug is common in various diseases such as diabetes. Proteins are hydrophilic molecules whose spatial structure is critical to their correct function. There are different ways to the administration of proteins. Protein structures are degraded by gastric acid and enzymes in the gastrointestinal tract and have a slight ability to permeation from the gastrointestinal epithelium due to their large hydrophilic nature. Therefore, their oral use has limitations. Since the oral use of drugs is one of the best and easiest routes for patients, many studies have been done to increase the stability, penetration and ultimately increase the bioavailability of proteins through oral administration. One of the studied strategies for oral delivery of protein is the use of pH-sensitive polymer-based carriers. These carriers use different pH-sensitive polymers such as eudragit®, chitosan, dextran, and alginate. The use of pH-sensitive polymer-based carriers by protecting the protein from stomach acid (low pH) and degrading enzymes, increasing permeability, and maintaining the spatial structure of the protein leads to increased bioavailability. In this review, we focus on the various polymers used to prepare pH-sensitive polymer-based carriers for the oral delivery of proteins.
Collapse
Affiliation(s)
- Maryam Shamseddini Lori
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Sepehr Afsharipour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, United Kingdom
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
43
|
de la Harpe KM, Kondiah PPD, Marimuthu T, Choonara YE. Advances in carbohydrate-based polymers for the design of suture materials: A review. Carbohydr Polym 2021; 261:117860. [PMID: 33766349 DOI: 10.1016/j.carbpol.2021.117860] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022]
Abstract
Suture materials constitute one of the largest biomedical material groups with a huge global market of $ 1.3 billion annually and employment in over 12 million procedures per year. Suture materials have radically evolved over the years, from basic strips of linen to more advanced synthetic polymer sutures. Yet, the journey to the ideal suture material is far from over and we now stand on the brink of a new era of improved suture materials with greater safety and efficacy. This next step in the evolutionary timeline of suture materials, involves the use of natural, carbohydrate polymers that have, until recent years, never before been considered for suture material applications. This review exposes the latest and most important advancements in suture material development while digging deep into how natural, carbohydrate polymers can serve to advance this field.
Collapse
Affiliation(s)
- Kara M de la Harpe
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa.
| |
Collapse
|
44
|
Nadia Ahmad NF, Nik Ghazali NN, Wong YH. Wearable patch delivery system for artificial pancreas health diagnostic-therapeutic application: A review. Biosens Bioelectron 2021; 189:113384. [PMID: 34090154 DOI: 10.1016/j.bios.2021.113384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
The advanced stimuli-responsive approaches for on-demand drug delivery systems have received tremendous attention as they have great potential to be integrated with sensing and multi-functional electronics on a flexible and stretchable single platform (all-in-one concept) in order to develop skin-integration with close-loop sensation for personalized diagnostic and therapeutic application. The wearable patch pumps have evolved from reservoir-based to matrix patch and drug-in-adhesive (single-layer or multi-layer) type. In this review, we presented the basic requirements of an artificial pancreas, surveyed the design and technologies used in commercial patch pumps available on the market and provided general information about the latest wearable patch pump. We summarized the various advanced delivery strategies with their mechanisms that have been developed to date and representative examples. Mechanical, electrical, light, thermal, acoustic and glucose-responsive approaches on patch form have been successfully utilized in the controllable transdermal drug delivery manner. We highlighted key challenges associated with wearable transdermal delivery systems, their research direction and future development trends.
Collapse
Affiliation(s)
- Nur Farrahain Nadia Ahmad
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Nik Nazri Nik Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yew Hoong Wong
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
45
|
Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective. Molecules 2021; 26:molecules26092518. [PMID: 33925886 PMCID: PMC8123515 DOI: 10.3390/molecules26092518] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering is known to encompass multiple aspects of science, medicine and engineering. The development of systems which are able to promote the growth of new cells and tissue components are vital in the treatment of severe tissue injury and damage. This can be done through a variety of different biofabrication strategies including the use of hydrogels, 3D bioprinted scaffolds and nanotechnology. The incorporation of stem cells into these systems and the advantage of this is also discussed. Biopolymers, those which have a natural original, have been particularly advantageous in tissue engineering systems as they are often found within the extracellular matrix of the human body. The utilization of biopolymers has become increasing popular as they are biocompatible, biodegradable and do not illicit an immune response when placed into the body. Tissue engineering systems for use with the eye are also discussed. This is of particular interest as the eye is known as an immune privileged site resulting in an extremely limited ability for natural cell regeneration.
Collapse
|
46
|
Li Y, Ji W, Peng H, Zhao R, Zhang T, Lu Z, Yang J, Liu R, Zhang X. Charge-switchable zwitterionic polycarboxybetaine particle as an intestinal permeation enhancer for efficient oral insulin delivery. Am J Cancer Res 2021; 11:4452-4466. [PMID: 33754071 PMCID: PMC7977443 DOI: 10.7150/thno.54176] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Insulin, a peptide hormone, is one of the most common and effective antidiabetic drugs. Although oral administration is considered to be the most convenient and safe choice for patients, the oral bioavailability of insulin is very low due to the poor oral absorption into blood circulation. Intestinal epithelium is a major barrier for the oral absorption of insulin. Therefore, it is vital to develop intestinal permeation enhancer to increase the antidiabetic efficacy of insulin after oral administration. Methods: Charge-switchable zwitterionic polycarboxybetaine (PCB) was used to load insulin to form PCB/insulin (PCB/INS) particles through the electrostatic interaction between positively charged PCB in pH 5.0 and negatively charged insulin in 0.01 M NaOH. The opening effect of PCB/INS particles on intestinal epithelium was evaluated by detecting the changes of claudin-4 (CLDN4) protein and transepithelial electrical resistance (TEER) after incubation or removal. The mechanism was further elucidated based on the results of Western blot and fluorescence images. The PCB/INS particles were then used for type 1 diabetes mellitus therapy after oral administration. Results: PCB could load insulin with the loading efficiency above 86% at weight ratio of 8:1. PCB/INS particles achieved sustained release of insulin at pH 7.4 due to their charge-switchable ability. Surprisingly, PCB/INS particles induced the open of the tight junctions of intestinal epithelium in endocytosis-mediated lysosomal degradation pathway, which resulted in increased intestinal permeability of insulin. Additionally, the opening effect of PCB/INS particles was reversible, and the decreased expression of CLDN4 protein and TEER values were gradually recovered after particles removal. In streptozotocin-induced type 1 diabetic rats, oral administration of PCB/INS particles with diameter sub-200 nm, especially in capsules, significantly enhanced the bioavailability of insulin and achieved longer duration of hypoglycemic effect than the subcutaneously injected insulin. Importantly, there was no endotoxin and pathological change during treatment, indicating that PCB/INS particles were safe enough for in vivo application. Conclusion: These findings indicate that this system can provide a platform for oral insulin and other protein drugs delivery.
Collapse
|
47
|
Aflori M. Smart Nanomaterials for Biomedical Applications-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:396. [PMID: 33557177 PMCID: PMC7913901 DOI: 10.3390/nano11020396] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
Recent advances in nanotechnology have forced the obtaining of new materials with multiple functionalities. Due to their reduced dimensions, nanomaterials exhibit outstanding physio-chemical functionalities: increased absorption and reactivity, higher surface area, molar extinction coefficients, tunable plasmonic properties, quantum effects, and magnetic and photo properties. However, in the biomedical field, it is still difficult to use tools made of nanomaterials for better therapeutics due to their limitations (including non-biocompatible, poor photostabilities, low targeting capacity, rapid renal clearance, side effects on other organs, insufficient cellular uptake, and small blood retention), so other types with controlled abilities must be developed, called "smart" nanomaterials. In this context, the modern scientific community developed a kind of nanomaterial which undergoes large reversible changes in its physical, chemical, or biological properties as a consequence of small environmental variations. This systematic mini-review is intended to provide an overview of the newest research on nanosized materials responding to various stimuli, including their up-to-date application in the biomedical field.
Collapse
Affiliation(s)
- Magdalena Aflori
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
48
|
Wang Z, Wang J, Kahkoska AR, Buse JB, Gu Z. Developing Insulin Delivery Devices with Glucose Responsiveness. Trends Pharmacol Sci 2021; 42:31-44. [PMID: 33250274 PMCID: PMC7758938 DOI: 10.1016/j.tips.2020.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022]
Abstract
Individuals with type 1 and advanced type 2 diabetes require daily insulin therapy to maintain blood glucose levels in normoglycemic ranges to prevent associated morbidity and mortality. Optimal insulin delivery should offer both precise dosing in response to real-time blood glucose levels as well as a feasible and low-burden administration route to promote long-term adherence. A series of glucose-responsive insulin delivery mechanisms and devices have been reported to increase patient compliance while mitigating the risk of hypoglycemia. This review discusses currently available insulin delivery devices, overviews recent developments towards the generation of glucose-responsive delivery systems, and provides commentary on the opportunities and barriers ahead regarding the integration and translation of current glucose-responsive insulin delivery designs.
Collapse
Affiliation(s)
- Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | - Jinqiang Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA; College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Anna R Kahkoska
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA; College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
49
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
50
|
dos Santos Ramos MA, dos Santos KC, da Silva PB, de Toledo LG, Marena GD, Rodero CF, de Camargo BAF, Fortunato GC, Bauab TM, Chorilli M. Nanotechnological strategies for systemic microbial infections treatment: A review. Int J Pharm 2020; 589:119780. [PMID: 32860856 PMCID: PMC7449125 DOI: 10.1016/j.ijpharm.2020.119780] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Systemic infections is one of the major causes of mortality worldwide, and a shortage of drug approaches applied for the rapid and necessary treatment contribute to increase the levels of death in affected patients. Several drug delivery systems based in nanotechnology such as metallic nanoparticles, liposomes, nanoemulsion, microemulsion, polymeric nanoparticles, solid lipid nanoparticles, dendrimers, hydrogels and liquid crystals can contribute in the biological performance of active substances for the treatment of microbial diseases triggered by fungi, bacteria, virus and parasites. In the presentation of these statements, this review article present and demonstrate the effectiveness of these drug delivery systems for the treatment of systemic diseases caused by several microorganisms, through a review of studies on scientific literature worldwide that contributes to better information for the most diverse professionals from the areas of health sciences. The studies demonstrated that the drug delivery systems described can contribute to the therapeutic scenario of these diseases, being classified as safe, active platforms and with therapeutic versatility.
Collapse
Affiliation(s)
- Matheus Aparecido dos Santos Ramos
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil,Corresponding authors
| | - Karen Cristina dos Santos
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Patrícia Bento da Silva
- Department of Genetic and Morphology, Brasília University (UNB), Institute of Biological Sciences, Zip Code: 70735100, Brazil
| | - Luciani Gaspar de Toledo
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Gabriel Davi Marena
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Camila Fernanda Rodero
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Bruna Almeida Furquim de Camargo
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Giovanna Capaldi Fortunato
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil.
| |
Collapse
|