1
|
Adipose Tissue-Derived CCL5 Enhances Local Pro-Inflammatory Monocytic MDSCs Accumulation and Inflammation via CCR5 Receptor in High-Fat Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms232214226. [PMID: 36430701 PMCID: PMC9692513 DOI: 10.3390/ijms232214226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The C-C chemokine motif ligand 5 (CCL5) and its receptors have recently been thought to be substantially involved in the development of obesity-associated adipose tissue inflammation and insulin resistance. However, the respective contributions of tissue-derived and myeloid-derived CCL5 to the etiology of obesity-induced adipose tissue inflammation and insulin resistance, and the involvement of monocytic myeloid-derived suppressor cells (MDSCs), remain unclear. This study used CCL5-knockout mice combined with bone marrow transplantation (BMT) and mice with local injections of shCCL5/shCCR5 or CCL5/CCR5 lentivirus into bilateral epididymal white adipose tissue (eWAT). CCL5 gene deletion significantly ameliorated HFD-induced inflammatory reactions in eWAT and protected against the development of obesity and insulin resistance. In addition, tissue (non-hematopoietic) deletion of CCL5 using the BMT method not only ameliorated adipose tissue inflammation by suppressing pro-inflammatory M-MDSC (CD11b+Ly6G-Ly6Chi) accumulation and skewing local M1 macrophage polarization, but also recruited reparative M-MDSCs (CD11b+Ly6G-Ly6Clow) and M2 macrophages to the eWAT of HFD-induced obese mice, as shown by flow cytometry. Furthermore, modulation of tissue-derived CCL5/CCR5 expression by local injection of shCCL5/shCCR5 or CCL5/CCR5 lentivirus substantially impacted the distribution of pro-inflammatory and reparative M-MDSCs as well as macrophage polarization in bilateral eWAT. These findings suggest that an obesity-induced increase in adipose tissue CCL5-mediated signaling is crucial in the recruitment of tissue M-MDSCs and their trans-differentiation to tissue pro-inflammatory macrophages, resulting in adipose tissue inflammation and insulin resistance.
Collapse
|
2
|
Rizzolo D, Kong B, Piekos S, Chen L, Zhong X, Lu J, Shi J, Zhu HJ, Yang Q, Li A, Li L, Wang H, Siemiątkowska A, Park C, Kagan L, Guo GL. Effects of Overexpression of Fibroblast Growth Factor 15/19 on Hepatic Drug Metabolizing Enzymes. Drug Metab Dispos 2022; 50:468-477. [PMID: 34965924 PMCID: PMC11022908 DOI: 10.1124/dmd.121.000416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022] Open
Abstract
Fibroblast growth factors 15 (FGF15) and 19 (FGF19) are endocrine growth factors that play an important role in maintaining bile acid homeostasis. FGF15/19-based therapies are currently being tested in clinical trials for the treatment of nonalcoholic steatohepatitis and cholestatic liver diseases. To determine the physiologic impact of long-term elevations of FGF15/19, a transgenic mouse model with overexpression of Fgf15 (Fgf15 Tg) was used in the current study. The RNA sequencing (RNA-seq) analysis revealed elevations of the expression of several genes encoding phase I drug metabolizing enzymes (DMEs), including Cyp2b10 and Cyp3a11, in Fgf15 Tg mice. We found that the induction of several Cyp2b isoforms resulted in increased function of CYP2B in microsomal metabolism and pharmacokinetics studies. Because the CYP2B family is known to be induced by constitutive androstane receptor (CAR), to determine the role of CAR in the observed inductions, we crossed Fgf15 Tg mice with CAR knockout mice and found that CAR played a minor role in the observed alterations in DME expression. Interestingly, we found that the overexpression of Fgf15 in male mice resulted in a phenotypical switch from the male hepatic expression pattern of DMEs to that of female mice. Differences in secretion of growth hormone (GH) between male and female mice are known to drive sexually dimorphic, STAT5b-dependent expression patterns of hepatic genes. We found that male Fgf15 Tg mice presented with many features similar to GH deficiency, including lowered body length and weight, Igf-1 and Igfals expression, and STAT5 signaling. SIGNIFICANCE STATEMENT: The overexpression of Fgf15 in mice causes an alteration in DMEs at the mRNA, protein, and functional levels, which is not entirely due to CAR activation but associated with lower GH signaling.
Collapse
Affiliation(s)
- Daniel Rizzolo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.R., B.K., G.L.G.), Department of Pharmaceutical Sciences, Ernest Mario School of Pharmacy (A.S., C.P., L.K.), Center of Excellence for Pharmaceutical Translational Research and Education (A.S., C.P., L.K.), and Environmental and Occupational Health Sciences Institute (EOHSI) (D.R., G.L.G.), Rutgers University, Piscataway, New Jersey; Rutgers Center for Lipid Research, Rutgers University-New Brunswick, New Brunswick, New Jersey (D.R., G.L.G.); VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.); Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (S.P., L.C., X.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.L.); Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.); In Vitro ADMET Laboratories, LLC, Columbia, Maryland (Q.Y., A.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (L.L., H.W.); and Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland (A.S.)
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.R., B.K., G.L.G.), Department of Pharmaceutical Sciences, Ernest Mario School of Pharmacy (A.S., C.P., L.K.), Center of Excellence for Pharmaceutical Translational Research and Education (A.S., C.P., L.K.), and Environmental and Occupational Health Sciences Institute (EOHSI) (D.R., G.L.G.), Rutgers University, Piscataway, New Jersey; Rutgers Center for Lipid Research, Rutgers University-New Brunswick, New Brunswick, New Jersey (D.R., G.L.G.); VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.); Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (S.P., L.C., X.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.L.); Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.); In Vitro ADMET Laboratories, LLC, Columbia, Maryland (Q.Y., A.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (L.L., H.W.); and Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland (A.S.)
| | - Stephanie Piekos
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.R., B.K., G.L.G.), Department of Pharmaceutical Sciences, Ernest Mario School of Pharmacy (A.S., C.P., L.K.), Center of Excellence for Pharmaceutical Translational Research and Education (A.S., C.P., L.K.), and Environmental and Occupational Health Sciences Institute (EOHSI) (D.R., G.L.G.), Rutgers University, Piscataway, New Jersey; Rutgers Center for Lipid Research, Rutgers University-New Brunswick, New Brunswick, New Jersey (D.R., G.L.G.); VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.); Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (S.P., L.C., X.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.L.); Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.); In Vitro ADMET Laboratories, LLC, Columbia, Maryland (Q.Y., A.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (L.L., H.W.); and Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland (A.S.)
| | - Liming Chen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.R., B.K., G.L.G.), Department of Pharmaceutical Sciences, Ernest Mario School of Pharmacy (A.S., C.P., L.K.), Center of Excellence for Pharmaceutical Translational Research and Education (A.S., C.P., L.K.), and Environmental and Occupational Health Sciences Institute (EOHSI) (D.R., G.L.G.), Rutgers University, Piscataway, New Jersey; Rutgers Center for Lipid Research, Rutgers University-New Brunswick, New Brunswick, New Jersey (D.R., G.L.G.); VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.); Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (S.P., L.C., X.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.L.); Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.); In Vitro ADMET Laboratories, LLC, Columbia, Maryland (Q.Y., A.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (L.L., H.W.); and Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland (A.S.)
| | - Xiaobo Zhong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.R., B.K., G.L.G.), Department of Pharmaceutical Sciences, Ernest Mario School of Pharmacy (A.S., C.P., L.K.), Center of Excellence for Pharmaceutical Translational Research and Education (A.S., C.P., L.K.), and Environmental and Occupational Health Sciences Institute (EOHSI) (D.R., G.L.G.), Rutgers University, Piscataway, New Jersey; Rutgers Center for Lipid Research, Rutgers University-New Brunswick, New Brunswick, New Jersey (D.R., G.L.G.); VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.); Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (S.P., L.C., X.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.L.); Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.); In Vitro ADMET Laboratories, LLC, Columbia, Maryland (Q.Y., A.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (L.L., H.W.); and Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland (A.S.)
| | - Jie Lu
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.R., B.K., G.L.G.), Department of Pharmaceutical Sciences, Ernest Mario School of Pharmacy (A.S., C.P., L.K.), Center of Excellence for Pharmaceutical Translational Research and Education (A.S., C.P., L.K.), and Environmental and Occupational Health Sciences Institute (EOHSI) (D.R., G.L.G.), Rutgers University, Piscataway, New Jersey; Rutgers Center for Lipid Research, Rutgers University-New Brunswick, New Brunswick, New Jersey (D.R., G.L.G.); VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.); Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (S.P., L.C., X.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.L.); Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.); In Vitro ADMET Laboratories, LLC, Columbia, Maryland (Q.Y., A.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (L.L., H.W.); and Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland (A.S.)
| | - Jian Shi
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.R., B.K., G.L.G.), Department of Pharmaceutical Sciences, Ernest Mario School of Pharmacy (A.S., C.P., L.K.), Center of Excellence for Pharmaceutical Translational Research and Education (A.S., C.P., L.K.), and Environmental and Occupational Health Sciences Institute (EOHSI) (D.R., G.L.G.), Rutgers University, Piscataway, New Jersey; Rutgers Center for Lipid Research, Rutgers University-New Brunswick, New Brunswick, New Jersey (D.R., G.L.G.); VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.); Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (S.P., L.C., X.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.L.); Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.); In Vitro ADMET Laboratories, LLC, Columbia, Maryland (Q.Y., A.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (L.L., H.W.); and Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland (A.S.)
| | - Hao-Jie Zhu
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.R., B.K., G.L.G.), Department of Pharmaceutical Sciences, Ernest Mario School of Pharmacy (A.S., C.P., L.K.), Center of Excellence for Pharmaceutical Translational Research and Education (A.S., C.P., L.K.), and Environmental and Occupational Health Sciences Institute (EOHSI) (D.R., G.L.G.), Rutgers University, Piscataway, New Jersey; Rutgers Center for Lipid Research, Rutgers University-New Brunswick, New Brunswick, New Jersey (D.R., G.L.G.); VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.); Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (S.P., L.C., X.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.L.); Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.); In Vitro ADMET Laboratories, LLC, Columbia, Maryland (Q.Y., A.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (L.L., H.W.); and Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland (A.S.)
| | - Qian Yang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.R., B.K., G.L.G.), Department of Pharmaceutical Sciences, Ernest Mario School of Pharmacy (A.S., C.P., L.K.), Center of Excellence for Pharmaceutical Translational Research and Education (A.S., C.P., L.K.), and Environmental and Occupational Health Sciences Institute (EOHSI) (D.R., G.L.G.), Rutgers University, Piscataway, New Jersey; Rutgers Center for Lipid Research, Rutgers University-New Brunswick, New Brunswick, New Jersey (D.R., G.L.G.); VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.); Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (S.P., L.C., X.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.L.); Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.); In Vitro ADMET Laboratories, LLC, Columbia, Maryland (Q.Y., A.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (L.L., H.W.); and Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland (A.S.)
| | - Albert Li
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.R., B.K., G.L.G.), Department of Pharmaceutical Sciences, Ernest Mario School of Pharmacy (A.S., C.P., L.K.), Center of Excellence for Pharmaceutical Translational Research and Education (A.S., C.P., L.K.), and Environmental and Occupational Health Sciences Institute (EOHSI) (D.R., G.L.G.), Rutgers University, Piscataway, New Jersey; Rutgers Center for Lipid Research, Rutgers University-New Brunswick, New Brunswick, New Jersey (D.R., G.L.G.); VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.); Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (S.P., L.C., X.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.L.); Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.); In Vitro ADMET Laboratories, LLC, Columbia, Maryland (Q.Y., A.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (L.L., H.W.); and Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland (A.S.)
| | - Linhao Li
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.R., B.K., G.L.G.), Department of Pharmaceutical Sciences, Ernest Mario School of Pharmacy (A.S., C.P., L.K.), Center of Excellence for Pharmaceutical Translational Research and Education (A.S., C.P., L.K.), and Environmental and Occupational Health Sciences Institute (EOHSI) (D.R., G.L.G.), Rutgers University, Piscataway, New Jersey; Rutgers Center for Lipid Research, Rutgers University-New Brunswick, New Brunswick, New Jersey (D.R., G.L.G.); VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.); Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (S.P., L.C., X.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.L.); Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.); In Vitro ADMET Laboratories, LLC, Columbia, Maryland (Q.Y., A.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (L.L., H.W.); and Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland (A.S.)
| | - Hongbing Wang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.R., B.K., G.L.G.), Department of Pharmaceutical Sciences, Ernest Mario School of Pharmacy (A.S., C.P., L.K.), Center of Excellence for Pharmaceutical Translational Research and Education (A.S., C.P., L.K.), and Environmental and Occupational Health Sciences Institute (EOHSI) (D.R., G.L.G.), Rutgers University, Piscataway, New Jersey; Rutgers Center for Lipid Research, Rutgers University-New Brunswick, New Brunswick, New Jersey (D.R., G.L.G.); VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.); Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (S.P., L.C., X.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.L.); Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.); In Vitro ADMET Laboratories, LLC, Columbia, Maryland (Q.Y., A.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (L.L., H.W.); and Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland (A.S.)
| | - Anna Siemiątkowska
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.R., B.K., G.L.G.), Department of Pharmaceutical Sciences, Ernest Mario School of Pharmacy (A.S., C.P., L.K.), Center of Excellence for Pharmaceutical Translational Research and Education (A.S., C.P., L.K.), and Environmental and Occupational Health Sciences Institute (EOHSI) (D.R., G.L.G.), Rutgers University, Piscataway, New Jersey; Rutgers Center for Lipid Research, Rutgers University-New Brunswick, New Brunswick, New Jersey (D.R., G.L.G.); VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.); Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (S.P., L.C., X.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.L.); Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.); In Vitro ADMET Laboratories, LLC, Columbia, Maryland (Q.Y., A.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (L.L., H.W.); and Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland (A.S.)
| | - Celine Park
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.R., B.K., G.L.G.), Department of Pharmaceutical Sciences, Ernest Mario School of Pharmacy (A.S., C.P., L.K.), Center of Excellence for Pharmaceutical Translational Research and Education (A.S., C.P., L.K.), and Environmental and Occupational Health Sciences Institute (EOHSI) (D.R., G.L.G.), Rutgers University, Piscataway, New Jersey; Rutgers Center for Lipid Research, Rutgers University-New Brunswick, New Brunswick, New Jersey (D.R., G.L.G.); VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.); Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (S.P., L.C., X.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.L.); Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.); In Vitro ADMET Laboratories, LLC, Columbia, Maryland (Q.Y., A.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (L.L., H.W.); and Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland (A.S.)
| | - Leonid Kagan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.R., B.K., G.L.G.), Department of Pharmaceutical Sciences, Ernest Mario School of Pharmacy (A.S., C.P., L.K.), Center of Excellence for Pharmaceutical Translational Research and Education (A.S., C.P., L.K.), and Environmental and Occupational Health Sciences Institute (EOHSI) (D.R., G.L.G.), Rutgers University, Piscataway, New Jersey; Rutgers Center for Lipid Research, Rutgers University-New Brunswick, New Brunswick, New Jersey (D.R., G.L.G.); VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.); Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (S.P., L.C., X.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.L.); Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.); In Vitro ADMET Laboratories, LLC, Columbia, Maryland (Q.Y., A.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (L.L., H.W.); and Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland (A.S.)
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.R., B.K., G.L.G.), Department of Pharmaceutical Sciences, Ernest Mario School of Pharmacy (A.S., C.P., L.K.), Center of Excellence for Pharmaceutical Translational Research and Education (A.S., C.P., L.K.), and Environmental and Occupational Health Sciences Institute (EOHSI) (D.R., G.L.G.), Rutgers University, Piscataway, New Jersey; Rutgers Center for Lipid Research, Rutgers University-New Brunswick, New Brunswick, New Jersey (D.R., G.L.G.); VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.); Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (S.P., L.C., X.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.L.); Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.); In Vitro ADMET Laboratories, LLC, Columbia, Maryland (Q.Y., A.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (L.L., H.W.); and Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland (A.S.)
| |
Collapse
|
3
|
Wang Y, Ablimit N, Zhang Y, Li J, Wang X, Liu J, Miao T, Wu L, Wang H, Wang Z, Lou H, Jiang W. Novel β-mannanase/GLP-1 fusion peptide high effectively ameliorates obesity in a mouse model by modifying balance of gut microbiota. Int J Biol Macromol 2021; 191:753-763. [PMID: 34592220 DOI: 10.1016/j.ijbiomac.2021.09.150] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022]
Abstract
We constructed a novel β-mannanase/GLP-1 fusion peptide, termed MGLP_1, and evaluated its ability to ameliorate obesity in a high-fat/high-sugar diet (HFSD)-induced mouse model. Eight-wk MGLP_1 treatment notably reduced obesity, as reflected by significant changes of body weight, serum triglyceride level, fatty liver and adipose tissue distribution. Amelioration of HFSD-induced gut dysbiosis by MGLP_1 was evidenced by reduced abundance ratio of bacterial phyla Firmicutes to Bacteroidetes, enhanced abundance of beneficial probiotic genera (Bifidobacterium, Lachnospiraceae, Ileibacterium), and reduced abundance of harmful genera (Clostridium, Romboutsia). Mechanisms of weight loss were investigated by comparing effects of treatment with MGLP_1 vs. prebiotics manno-oligosaccharides (MOS). MGLP_1 ameliorated gut microbiota imbalance by enhancing carbohydrate catabolism, whereas MOS promoted glycan synthesis and metabolism. Our findings, taken together, indicate that MGLP_1 fusion peptide has strong potential for amelioration of obesity by modifying relationships between gut microbiota and lipid and glucose metabolism.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Nuraliya Ablimit
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yunpeng Zhang
- Agricultural Utilization Research Center, Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Jifu Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100193, China
| | - Xinrui Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junquan Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ting Miao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Wu
- Anhui New Simon Biotech Company Limited, Suzhou, Anhui, China
| | - Hui Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zengli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100193, China.
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Wei Jiang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Sex-dependent effects of forced exercise in the body composition of adolescent rats. Sci Rep 2021; 11:10154. [PMID: 33980961 PMCID: PMC8115159 DOI: 10.1038/s41598-021-89584-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
Determining the body composition during adolescence can predict diseases such as obesity, diabetes, and metabolic syndromes later in life; and physical activity became an effective way to restore changes in body composition. However, current available literature assessing the body composition before, during and after adolescence in female and male rodents by in vivo techniques is scarce. Thus, by using computerized tomography, we aimed to define the baseline of the weight and body composition during the adolescence and young adulthood of female and male Sprague-Dawley rats (on P30, P60 and P90) under standard diet. Then, we determined the effect of 18 days of forced exercise on the body weight and composition during the early adolescence (P27-45). The highest percentual increments in weight, body volume and relative adipose contents occurred during the female and male adolescence. Forced running during the early adolescence decreased weight, body volume and relative adipose delta and increment values in males only. The adolescence of rats is a period of drastic body composition changes, where exercise interventions have sex-dependent effects. These results support a model that could open new research windows in the field of adolescent obesity.
Collapse
|
5
|
Jensen VS, Fledelius C, Zachodnik C, Damgaard J, Nygaard H, Tornqvist KS, Kirk RK, Viuff BM, Wulff EM, Lykkesfeldt J, Hvid H. Insulin treatment improves liver histopathology and decreases expression of inflammatory and fibrogenic genes in a hyperglycemic, dyslipidemic hamster model of NAFLD. J Transl Med 2021; 19:80. [PMID: 33596938 PMCID: PMC7890970 DOI: 10.1186/s12967-021-02729-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/29/2021] [Indexed: 11/24/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are highly prevalent comorbidities in patients with Type 2 diabetes. While many of these patients eventually will need treatment with insulin, little is known about the effects of insulin treatment on histopathological parameters and hepatic gene expression in diabetic patients with co-existing NAFLD and NASH. To investigate this further, we evaluated the effects of insulin treatment in NASH diet-fed hamsters with streptozotocin (STZ) -induced hyperglycemia. Methods Forty male Syrian hamsters were randomized into four groups (n = 10/group) receiving either a NASH-inducing (high fat, fructose and cholesterol) or control diet (CTRL) for four weeks, after which they were treated with STZ or sham-injected and from week five treated with either vehicle (CTRL, NASH, NASH-STZ) or human insulin (NASH-STZ-HI) for four weeks by continuous s.c. infusion via osmotic minipumps. Results NASH-STZ hamsters displayed pronounced hyperglycemia, dyslipidemia and more severe liver pathology compared to both CTRL and NASH groups. Insulin treatment attenuated dyslipidemia in NASH-STZ-HI hamsters and liver pathology was considerably improved compared to the NASH-STZ group, with prevention/reversal of hepatic steatosis, hepatic inflammation and stellate cell activation. In addition, expression of inflammatory and fibrotic genes was decreased compared to the NASH-STZ group. Conclusions These results suggest that hyperglycemia is important for development of inflammation and profibrotic processes in the liver, and that insulin administration has beneficial effects on liver pathology and expression of genes related to inflammation and fibrosis in a hyperglycemic, dyslipidemic hamster model of NAFLD.
Collapse
Affiliation(s)
- Victoria Svop Jensen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg, Denmark. .,Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark.
| | - Christian Fledelius
- Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Christina Zachodnik
- Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Jesper Damgaard
- Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Helle Nygaard
- Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | | | - Rikke Kaae Kirk
- Pathology & Imaging, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | | | - Erik Max Wulff
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Jens Lykkesfeldt
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg, Denmark
| | - Henning Hvid
- Pathology & Imaging, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| |
Collapse
|
6
|
Svop Jensen V, Fledelius C, Max Wulff E, Lykkesfeldt J, Hvid H. Temporal Development of Dyslipidemia and Nonalcoholic Fatty Liver Disease (NAFLD) in Syrian Hamsters Fed a High-Fat, High-Fructose, High-Cholesterol Diet. Nutrients 2021; 13:nu13020604. [PMID: 33673227 PMCID: PMC7917647 DOI: 10.3390/nu13020604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
The use of translationally relevant animal models is essential, also within the field of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Compared to frequently used mouse and rat models, the hamster may provide a higher degree of physiological similarity to humans in terms of lipid profile and lipoprotein metabolism. However, the effects in hamsters after long-term exposure to a NASH diet are not known. Male Syrian hamsters were fed either a high-fat, high-fructose, high-cholesterol diet (NASH diet) or control diets for up to 12 months. Plasma parameters were assessed at two weeks, one, four, eight and 12 months and liver histopathology and biochemistry was characterized after four, eight and 12 months on the experimental diets. After two weeks, hamsters on NASH diet had developed marked dyslipidemia, which persisted for the remainder of the study. Hepatic steatosis was present in NASH-fed hamsters after four months, and hepatic stellate cell activation and fibrosis was observed within four to eight months, respectively, in agreement with progression towards NASH. In summary, we demonstrate that hamsters rapidly develop dyslipidemia when fed a high-fat, high-fructose, high-cholesterol diet. Moreover, within four to eight months, the NASH-diet induced hepatic changes with resemblance to human NAFLD.
Collapse
Affiliation(s)
- Victoria Svop Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg, Denmark;
- Diabetes Pharmacology 1, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark;
- Correspondence:
| | - Christian Fledelius
- Diabetes Pharmacology 1, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark;
| | - Erik Max Wulff
- Gubra ApS, Hørsholm Kongevej 11B, DK-2970 Hørsholm, Denmark;
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg, Denmark;
| | - Henning Hvid
- Pathology & Imaging, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark;
| |
Collapse
|
7
|
Steyn FJ, Li R, Kirk SE, Tefera TW, Xie TY, Tracey TJ, Kelk D, Wimberger E, Garton FC, Roberts L, Chapman SE, Coombes JS, Leevy WM, Ferri A, Valle C, René F, Loeffler JP, McCombe PA, Henderson RD, Ngo ST. Altered skeletal muscle glucose-fatty acid flux in amyotrophic lateral sclerosis. Brain Commun 2020; 2:fcaa154. [PMID: 33241210 PMCID: PMC7677608 DOI: 10.1093/braincomms/fcaa154] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/20/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic lateral sclerosis is characterized by the degeneration of upper and lower motor neurons, yet an increasing number of studies in both mouse models and patients with amyotrophic lateral sclerosis suggest that altered metabolic homeostasis is also a feature of disease. Pre-clinical and clinical studies have shown that modulation of energy balance can be beneficial in amyotrophic lateral sclerosis. However, the capacity to target specific metabolic pathways or mechanisms requires detailed understanding of metabolic dysregulation in amyotrophic lateral sclerosis. Here, using the superoxide dismutase 1, glycine to alanine substitution at amino acid 93 (SOD1G93A) mouse model of amyotrophic lateral sclerosis, we demonstrate that an increase in whole-body metabolism occurs at a time when glycolytic muscle exhibits an increased dependence on fatty acid oxidation. Using myotubes derived from muscle of amyotrophic lateral sclerosis patients, we also show that increased dependence on fatty acid oxidation is associated with increased whole-body energy expenditure. In the present study, increased fatty acid oxidation was associated with slower disease progression. However, within the patient cohort, there was considerable heterogeneity in whole-body metabolism and fuel oxidation profiles. Thus, future studies that decipher specific metabolic changes at an individual patient level are essential for the development of treatments that aim to target metabolic pathways in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Frederik J Steyn
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia.,Centre for Clinical Research, The University of Queensland, Herston, Brisbane 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane 4029, Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital, Auchenflower 4066, Australia
| | - Rui Li
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Siobhan E Kirk
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Tesfaye W Tefera
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Teresa Y Xie
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Timothy J Tracey
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Dean Kelk
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Elyse Wimberger
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Fleur C Garton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Llion Roberts
- School of Human Movements and Nutrition Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia.,School of Allied Health Sciences, Griffith University, Southport, Gold Coast 4222, Australia
| | - Sarah E Chapman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jeff S Coombes
- School of Human Movements and Nutrition Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - W Matthew Leevy
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alberto Ferri
- IRCCS Fondazione Santa Lucia, Rome, Italy.,National Research Council, Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Cristiana Valle
- IRCCS Fondazione Santa Lucia, Rome, Italy.,National Research Council, Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Frédérique René
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France.,Université de Strasbourg, UMRS1118, Strasbourg, France
| | - Jean-Philippe Loeffler
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France.,Université de Strasbourg, UMRS1118, Strasbourg, France
| | - Pamela A McCombe
- Centre for Clinical Research, The University of Queensland, Herston, Brisbane 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane 4029, Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital, Auchenflower 4066, Australia
| | - Robert D Henderson
- Centre for Clinical Research, The University of Queensland, Herston, Brisbane 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane 4029, Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital, Auchenflower 4066, Australia
| | - Shyuan T Ngo
- Centre for Clinical Research, The University of Queensland, Herston, Brisbane 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane 4029, Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital, Auchenflower 4066, Australia.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane 4072, Australia
| |
Collapse
|
8
|
Asem M, Young A, Oyama C, ClaureDeLaZerda A, Liu Y, Ravosa MJ, Gupta V, Jewell A, Khabele D, Stack MS. Ascites-induced compression alters the peritoneal microenvironment and promotes metastatic success in ovarian cancer. Sci Rep 2020; 10:11913. [PMID: 32681052 PMCID: PMC7367827 DOI: 10.1038/s41598-020-68639-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
The majority of women with recurrent ovarian cancer (OvCa) develop malignant ascites with volumes that can reach > 2 L. The resulting elevation in intraperitoneal pressure (IPP), from normal values of 5 mmHg to as high as 22 mmHg, causes striking changes in the loading environment in the peritoneal cavity. The effect of ascites-induced changes in IPP on OvCa progression is largely unknown. Herein we model the functional consequences of ascites-induced compression on ovarian tumor cells and components of the peritoneal microenvironment using a panel of in vitro, ex vivo and in vivo assays. Results show that OvCa cell adhesion to the peritoneum was increased under compression. Moreover, compressive loads stimulated remodeling of peritoneal mesothelial cell surface ultrastructure via induction of tunneling nanotubes (TNT). TNT-mediated interaction between peritoneal mesothelial cells and OvCa cells was enhanced under compression and was accompanied by transport of mitochondria from mesothelial cells to OvCa cells. Additionally, peritoneal collagen fibers adopted a more linear anisotropic alignment under compression, a collagen signature commonly correlated with enhanced invasion in solid tumors. Collectively, these findings elucidate a new role for ascites-induced compression in promoting metastatic OvCa progression.
Collapse
Affiliation(s)
- Marwa Asem
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Ave., A200 Harper Hall, South Bend, IN, 46617, USA
| | - Allison Young
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Ave., A200 Harper Hall, South Bend, IN, 46617, USA
| | - Carlysa Oyama
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Ave., A200 Harper Hall, South Bend, IN, 46617, USA
| | - Alejandro ClaureDeLaZerda
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Ave., A200 Harper Hall, South Bend, IN, 46617, USA
| | - Yueying Liu
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Ave., A200 Harper Hall, South Bend, IN, 46617, USA
| | - Matthew J Ravosa
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Ave., A200 Harper Hall, South Bend, IN, 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Vijayalaxmi Gupta
- Department of Obstetrics & Gynecology, Medical Center, University of Kansas, Kansas City, USA
| | - Andrea Jewell
- Department of Obstetrics & Gynecology, Medical Center, University of Kansas, Kansas City, USA
| | - Dineo Khabele
- Department of Obstetrics & Gynecology, Medical Center, University of Kansas, Kansas City, USA
| | - M Sharon Stack
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, USA.
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Ave., A200 Harper Hall, South Bend, IN, 46617, USA.
| |
Collapse
|
9
|
Pedroso JA, Camporez JP, Belpiede LT, Pinto RS, Cipolla-Neto J, Donato J. Evaluation of Hepatic Steatosis in Rodents by Time-Domain Nuclear Magnetic Resonance. Diagnostics (Basel) 2019; 9:diagnostics9040198. [PMID: 31756971 PMCID: PMC6963644 DOI: 10.3390/diagnostics9040198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
Devices that analyze body composition of rodents by time-domain nuclear magnetic resonance (TD-NMR) are becoming popular in research centers that study metabolism. Theoretically, TD-NMR devices can also evaluate lipid content in isolated tissues. However, the accuracy of TD-NMR to determine hepatic steatosis in the liver of small laboratory animals has not been evaluated in detail. We observed that TD-NMR was able to detect increased lipid content in the liver of rats consuming high-fat diet (HFD) for 12 weeks and in genetically obese (Lepob/ob and Leprdb/db) mice. The lipid content determined by TD-NMR showed a positive correlation with triglyceride content measured by colorimetric assays. In contrast, TD-NMR did not detect hepatic steatosis in C57BL/6 mice consuming HFD for 4 or 12 weeks, despite their obesity and increased liver triglyceride content. These findings indicate that tissue mass and the severity of hepatic steatosis affect the sensitivity of TD-NMR to detect liver lipid content.
Collapse
|
10
|
Normalizing Plasma Renin Activity in Experimental Dilated Cardiomyopathy: Effects on Edema, Cachexia, and Survival. Int J Mol Sci 2019; 20:ijms20163886. [PMID: 31404946 PMCID: PMC6720926 DOI: 10.3390/ijms20163886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022] Open
Abstract
Heart failure (HF) patients frequently have elevated plasma renin activity. We examined the significance of elevated plasma renin activity in a translationally-relevant model of dilated cardiomyopathy (DCM), which replicates the progressive stages (A–D) of human HF. Female mice with DCM and elevated plasma renin activity concentrations were treated with a direct renin inhibitor (aliskiren) in a randomized, blinded fashion beginning at Stage B HF. By comparison to controls, aliskiren treatment normalized pathologically elevated plasma renin activity (p < 0.001) and neprilysin levels (p < 0.001), but did not significantly alter pathological changes in plasma aldosterone, angiotensin II, atrial natriuretic peptide, or corin levels. Aliskiren improved cardiac systolic function (ejection fraction, p < 0.05; cardiac output, p < 0.01) and significantly reduced the longitudinal development of edema (extracellular water, p < 0.0001), retarding the transition from Stage B to Stage C HF. The normalization of elevated plasma renin activity reduced the loss of body fat and lean mass (cachexia/sarcopenia), p < 0.001) and prolonged survival (p < 0.05). In summary, the normalization of plasma renin activity retards the progression of experimental HF by improving cardiac systolic function, reducing the development of systemic edema, cachexia/sarcopenia, and mortality. These data suggest that targeting pathologically elevated plasma renin activity may be beneficial in appropriately selected HF patients.
Collapse
|
11
|
Gradel AKJ, Porsgaard T, Brockhoff PB, Seested T, Lykkesfeldt J, Refsgaard HHF. Delayed insulin absorption correlates with alterations in subcutaneous depot kinetics in rats with diet-induced obesity. Obes Sci Pract 2019; 5:281-288. [PMID: 31275602 PMCID: PMC6587326 DOI: 10.1002/osp4.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Obesity is associated with delayed insulin absorption upon subcutaneous (s.c.) dosing in humans. The aim of this study was to investigate whether alterations in depot structure and kinetics of the s.c. injection depot contribute to this delay. METHODS Rats fed a high-fat diet (HFD) and low-fat diet (LFD) were included in a series of insulin pharmacokinetic and imaging studies. Injection depots were visualized with micro X-ray computed tomography imaging upon s.c. administration of insulin aspart mixed with the contrast agent iomeprol, and insulin aspart exposure was measured by means of luminescent oxygen channelling immunoassay. RESULTS Body weight and fat mass were increased in rats fed an HFD vs. LFD (p < 0.05), whereas the lean mass was not. The HFD group exhibited delayed insulin absorption from the s.c. tissue (p < 0.001). This delay was associated with smaller injection depots upon s.c. dosing (p < 0.05) and correlated with a slower depot disappearance from the s.c. tissue (p < 0.05) compared with the LFD group. Depot disappearance from the s.c. tissue was inversely correlated with body fat mass (p < 0.05). CONCLUSIONS Alterations in s.c. injection depot structure and kinetics may play a role in the obesity-associated delay in insulin absorption.
Collapse
Affiliation(s)
- A. K. J. Gradel
- Department of Veterinary and Animal Sciences, Section of Experimental Animal Models, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
- Global Drug Discovery, Novo Nordisk A/SMåløvDenmark
| | - T. Porsgaard
- Global Drug Discovery, Novo Nordisk A/SMåløvDenmark
| | - P. B. Brockhoff
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKgs. LyngbyDenmark
| | - T. Seested
- Global Drug Discovery, Novo Nordisk A/SMåløvDenmark
| | - J. Lykkesfeldt
- Department of Veterinary and Animal Sciences, Section of Experimental Animal Models, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | | |
Collapse
|
12
|
Liu XJ, Duan NN, Liu C, Niu C, Liu XP, Wu J. Characterization of a murine nonalcoholic steatohepatitis model induced by high fat high calorie diet plus fructose and glucose in drinking water. J Transl Med 2018; 98:1184-1199. [PMID: 29959418 DOI: 10.1038/s41374-018-0074-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/20/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023] Open
Abstract
There are varieties of murine models of nonalcoholic steatohepatitis (NASH) with different pathophysiologic characteristics. For preclinical assessment, a standardized model would allow comparisons of various pharmacotherapeutic candidates in efficacy, pharmacokinetics, pharmaco-metabolism, and adverse effects under a same system. The present study aims to characterize murine NASH models by comparing end-points of major abnormalities. NASH was induced by feeding high fructose/glucose in drinking water (HF/G), high-fat/calorie diet (HFCD), and in combination (HFCD-HF/G) in mice for 8 or 16 weeks. HF/G feeding caused a minimal fat accumulation and increase in free fatty acids (FFA). In contrast, HFCD-HF/G feeding resulted in a remarkable increase in body weight, subcutaneous and visceral adipose tissue, macrosteatosis with a nearly seven-fold increase in triglyceride and FFA content, accompanied with marked hepatocellular injury, inflammatory responses, fibrosis, and insulin resistance, and represented as typical NASH in histopathology, metabolic, and adipokine profiles in a progressive manner. Meanwhile, mice fed HFCD displayed significant steatosis, necroptosis, fibrosis, insulin resistance, metabolic, and adipokine profiles, and the extent is less than those fed HFCD-HF/G. Significant MCP-1, CCR-2, and NLRP-1/3 activation were found in mice fed HFCD and HFCD-HF/G for 16 weeks, whereas gene expression of CPT-1 and ACOX-1 was down-regulated in these two groups in comparison to the controls. Nuclear receptors, such as SREBP-1c, FXR, LXR-α, PPAR-α, and PPAR-γ, were strikingly elevated in the HFCD-HF/G group. In conclusion, feeding HFCD-HF/G resulted in a reliable NASH model in mice with remarkable necroptosis, steatosis, fibrosis, and insulin resistance as well as a disordered profile of lipid metabolism and adipokine, and HFCD caused significant NASH features in histopathology and metabolic profiles only at a late stage. Whereas HF/G feeding barely led to minimal fat accumulation, some changes at molecular levels and metabolic disturbance in mice.
Collapse
Affiliation(s)
- Xue-Jing Liu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Na-Na Duan
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Stomatological Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, 215005, China
| | - Chang Liu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen Niu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xiu-Ping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Jian Wu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
13
|
Pedersen C, Porsgaard T, Thomsen M, Rosenkilde MM, Roed NK. Sustained effect of glucagon on body weight and blood glucose: Assessed by continuous glucose monitoring in diabetic rats. PLoS One 2018; 13:e0194468. [PMID: 29558502 PMCID: PMC5860770 DOI: 10.1371/journal.pone.0194468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/02/2018] [Indexed: 11/18/2022] Open
Abstract
Insulin is a vital part of diabetes treatment, whereas glucagon is primarily used to treat insulin-induced hypoglycemia. However, glucagon is suggested to have a central role in the regulation of body weight, which would be beneficial for diabetic patients. Since the glucagon effect on blood glucose is known to be transient, it is relevant to investigate the pharmacodynamics of glucagon after repeated dosing. In the present study, we used telemetry to continuously measure blood glucose in streptozotocin induced diabetic Sprague-Dawley rats. This allowed for a more detailed analysis of glucose regulation compared to intermittent blood sampling. In particular, we evaluated the blood glucose-lowering effect of different insulin doses alone, and in combination with a long acting glucagon analog (LAG). We showed how the effect of the LAG accumulated and persisted over time. Furthermore, we found that addition of the LAG decreased body weight without affecting food intake. In a subsequent study, we focused on the glucagon effect on body weight and food intake during equal glycemic control. In order to obtain comparable maximum blood glucose lowering effect to insulin alone, the insulin dose had to be increased four times in combination with 1 nmol/kg of the LAG. In this set-up the LAG prevented further increase in body weight despite the four times higher insulin-dose. However, the body composition was changed. The insulin group increased both lean and fat mass, whereas the group receiving four times insulin in combination with the LAG only significantly increased the fat mass. No differences were observed in food intake, suggesting a direct effect on energy expenditure by glucagon. Surprisingly, we observed decreased levels of FGF21 in plasma compared to insulin treatment alone. With the combination of insulin and the LAG the blood glucose-lowering effect of insulin was prolonged, which could potentially be beneficial in diabetes treatment.
Collapse
Affiliation(s)
- Christina Pedersen
- Department of GLP-1 & T2D Biology, Novo Nordisk A/S, Maaloev, Denmark
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Trine Porsgaard
- Department of Insulin Pharmacology, Novo Nordisk A/S, Maaloev, Denmark
| | - Maria Thomsen
- Department of Modelling, Novo Nordisk A/S, Maaloev, Denmark
| | - Mette Marie Rosenkilde
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
14
|
Jensen VS, Hvid H, Damgaard J, Nygaard H, Ingvorsen C, Wulff EM, Lykkesfeldt J, Fledelius C. Dietary fat stimulates development of NAFLD more potently than dietary fructose in Sprague-Dawley rats. Diabetol Metab Syndr 2018; 10:4. [PMID: 29410708 PMCID: PMC5781341 DOI: 10.1186/s13098-018-0307-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In humans and animal models, excessive intake of dietary fat, fructose and cholesterol has been linked to the development of non-alcoholic fatty liver disease (NAFLD). However, the individual roles of the dietary components remain unclear. To investigate this further, we compared the effects of a high-fat diet, a high-fructose diet and a combination diet with added cholesterol on the development of NAFLD in rats. METHODS Forty male Sprague-Dawley rats were randomized into four groups receiving either a control-diet (Control: 10% fat); a high-fat diet (HFD: 60% fat, 20% carbohydrate), a high-fructose diet [HFr: 10% fat, 70% carbohydrate (mainly fructose)] or a high-fat/high-fructose/high-cholesterol-diet (NASH: 40% fat, 40% carbohydrate (mainly fructose), 2% cholesterol) for 16 weeks. RESULTS After 16 weeks, liver histology revealed extensive steatosis and inflammation in both NASH- and HFD-fed rats, while hepatic changes in HFr-rats were much more subtle. These findings were corroborated by significantly elevated hepatic triglyceride content in both NASH- (p < 0.01) and HFD-fed rats (p < 0.0001), elevated hepatic cholesterol levels in NASH-fed rats (p < 0.0001), but no changes in HFr-fed rats, compared to Control. On the contrary, only HFr-fed rats developed dyslipidemia as characterized by higher levels of plasma triglycerides compared to all other groups (p < 0.0001). Hepatic dysfunction and inflammation was confirmed in HFD-fed rats by elevated levels of hepatic MCP-1 (p < 0.0001), TNF-alpha (p < 0.001) and plasma β-hydroxybutyrate (p < 0.0001), and in NASH-fed rats by elevated levels of hepatic MCP-1 (p < 0.01), increased hepatic macrophage infiltration (p < 0.001), and higher plasma levels of alanine aminotransferase (p < 0.0001) aspartate aminotransferase (p < 0.05), haptoglobin (p < 0.001) and TIMP-1 (p < 0.01) compared to Control. CONCLUSION These findings show that dietary fat and cholesterol are the primary drivers of NAFLD development and progression in rats, while fructose mostly exerts its effect on the circulating lipid pool.
Collapse
Affiliation(s)
- Victoria Svop Jensen
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark
- Insulin Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Henning Hvid
- Insulin Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Jesper Damgaard
- Insulin Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Helle Nygaard
- Insulin Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Camilla Ingvorsen
- Histology and Imaging, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Erik Max Wulff
- Obesity and Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark
| | - Christian Fledelius
- Insulin Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| |
Collapse
|
15
|
Aubertin G, Sayeh A, Dillenseger JP, Ayme-Dietrich E, Choquet P, Niederhoffer N. Comparison of bioimpedance spectroscopy and X-Ray micro-computed tomography for total fat volume measurement in mice. PLoS One 2017; 12:e0183523. [PMID: 28817729 PMCID: PMC5560854 DOI: 10.1371/journal.pone.0183523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/04/2017] [Indexed: 12/28/2022] Open
Abstract
Obesity and the metabolic syndrome are two pathologies whose prevalence are in a constant increase. Evaluation of the total fat mass but also of the distribution between visceral and subcutaneous adipose tissue are important factors while assessing the pathophysiology of these two pathologies. Computed tomography (CT) and bioimpedance (BIS) are the translational methods the most frequently used in human beings as well as in rodent models in longitudinal studies on adiposity and obesity. Surprisingly, no direct comparison of micro-CT and BIS was reported yet in mice. Therefore, the present study was carried out to evaluate and compare the accuracy and the uncertainty of measurement of micro-CT and BIS in this species. The proportion of fat mass was measured with BIS, micro-CT and direct post-mortem tissue weight, and correlations between the data were established to evaluate the accuracy of the methods but also the uncertainty of BIS and micro-CT. There were significant correlations between weights of fat tissues on scale and proportion of total fat mass determined by BIS or micro-CT (r = 0.81 and 0.86 respectively) but both methods overestimated the total fat mass, especially in the smallest animals; overestimation of fat mass was amplified with BIS compared to micro-CT. In addition BIS and micro-CT were highly correlated (r = 0.94). Test-test reliability showed a greater variability of the BIS with respect to the micro-CT (coefficient of variation = 17.2 vs 5.6% respectively). Hence, as far as subtle differences between groups or changes within one group are awaited, micro-CT may appear as the most reliable method for determination of fat mass in mice. Micro-CT, unlike BIS, will also allow to qualitatively and quantitatively differentiate between subcutaneous and visceral adipose tissues, which is of major importance in studies on adiposity and its complications.
Collapse
Affiliation(s)
- Gaelle Aubertin
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296), Faculté de Médecine, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Amira Sayeh
- Preclinical Imaging Lab, UF 6237, Pôle d’imagerie, Hôpitaux Universitaires de Strasbourg, ICube, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Jean-Philippe Dillenseger
- Preclinical Imaging Lab, UF 6237, Pôle d’imagerie, Hôpitaux Universitaires de Strasbourg, ICube, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Estelle Ayme-Dietrich
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296), Faculté de Médecine, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Philippe Choquet
- Preclinical Imaging Lab, UF 6237, Pôle d’imagerie, Hôpitaux Universitaires de Strasbourg, ICube, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Nathalie Niederhoffer
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296), Faculté de Médecine, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Zhang Y, Xie L, Gunasekar SK, Tong D, Mishra A, Gibson WJ, Wang C, Fidler T, Marthaler B, Klingelhutz A, Abel ED, Samuel I, Smith JK, Cao L, Sah R. SWELL1 is a regulator of adipocyte size, insulin signalling and glucose homeostasis. Nat Cell Biol 2017; 19:504-517. [PMID: 28436964 PMCID: PMC5415409 DOI: 10.1038/ncb3514] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 03/16/2017] [Indexed: 12/15/2022]
Abstract
Adipocytes undergo considerable volumetric expansion in the setting of obesity. It has been proposed that such marked increases in adipocyte size may be sensed via adipocyte-autonomous mechanisms to mediate size-dependent intracellular signalling. Here, we show that SWELL1 (LRRC8a), a member of the Leucine-Rich Repeat Containing protein family, is an essential component of a volume-sensitive ion channel (VRAC) in adipocytes. We find that SWELL1-mediated VRAC is augmented in hypertrophic murine and human adipocytes in the setting of obesity. SWELL1 regulates adipocyte insulin-PI3K-AKT2-GLUT4 signalling, glucose uptake and lipid content via SWELL1 C-terminal leucine-rich repeat domain interactions with GRB2/Cav1. Silencing GRB2 in SWELL1 KO adipocytes rescues insulin-pAKT2 signalling. In vivo, shRNA-mediated SWELL1 knockdown and adipose-targeted SWELL1 knockout reduce adiposity and adipocyte size in obese mice while impairing systemic glycaemia and insulin sensitivity. These studies identify SWELL1 as a cell-autonomous sensor of adipocyte size that regulates adipocyte growth, insulin sensitivity and glucose tolerance.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Litao Xie
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Susheel K. Gunasekar
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Dan Tong
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Anil Mishra
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | | | - Chuansong Wang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Trevor Fidler
- Fraternal Order of the Eagles Diabetes Research Center, Iowa City, IA, 52242
| | - Brodie Marthaler
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Aloysius Klingelhutz
- Department of Microbiology, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - E. Dale Abel
- Fraternal Order of the Eagles Diabetes Research Center, Iowa City, IA, 52242
| | - Isaac Samuel
- Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Jessica K. Smith
- Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Lei Cao
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Rajan Sah
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
- Fraternal Order of the Eagles Diabetes Research Center, Iowa City, IA, 52242
| |
Collapse
|
17
|
Marzola P, Boschi F, Moneta F, Sbarbati A, Zancanaro C. Preclinical In vivo Imaging for Fat Tissue Identification, Quantification, and Functional Characterization. Front Pharmacol 2016; 7:336. [PMID: 27725802 PMCID: PMC5035738 DOI: 10.3389/fphar.2016.00336] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/12/2016] [Indexed: 12/31/2022] Open
Abstract
Localization, differentiation, and quantitative assessment of fat tissues have always collected the interest of researchers. Nowadays, these topics are even more relevant as obesity (the excess of fat tissue) is considered a real pathology requiring in some cases pharmacological and surgical approaches. Several weight loss medications, acting either on the metabolism or on the central nervous system, are currently under preclinical or clinical investigation. Animal models of obesity have been developed and are widely used in pharmaceutical research. The assessment of candidate drugs in animal models requires non-invasive methods for longitudinal assessment of efficacy, the main outcome being the amount of body fat. Fat tissues can be either quantified in the entire animal or localized and measured in selected organs/regions of the body. Fat tissues are characterized by peculiar contrast in several imaging modalities as for example Magnetic Resonance Imaging (MRI) that can distinguish between fat and water protons thank to their different magnetic resonance properties. Since fat tissues have higher carbon/hydrogen content than other soft tissues and bones, they can be easily assessed by Computed Tomography (CT) as well. Interestingly, MRI also discriminates between white and brown adipose tissue (BAT); the latter has long been regarded as a potential target for anti-obesity drugs because of its ability to enhance energy consumption through increased thermogenesis. Positron Emission Tomography (PET) performed with 18F-FDG as glucose analog radiotracer reflects well the metabolic rate in body tissues and consequently is the technique of choice for studies of BAT metabolism. This review will focus on the main, non-invasive imaging techniques (MRI, CT, and PET) that are fundamental for the assessment, quantification and functional characterization of fat deposits in small laboratory animals. The contribution of optical techniques, which are currently regarded with increasing interest, will be also briefly described. For each technique the physical principles of signal detection will be overviewed and some relevant studies will be summarized. Far from being exhaustive, this review has the purpose to highlight some strategies that can be adopted for the in vivo identification, quantification, and functional characterization of adipose tissues mainly from the point of view of biophysics and physiology.
Collapse
Affiliation(s)
- Pasquina Marzola
- Department of Computer Science, University of Verona, VeronaItaly
| | - Federico Boschi
- Department of Computer Science, University of Verona, VeronaItaly
| | - Francesco Moneta
- Preclinical Imaging Division – Bruker BioSpin, Bruker Italia s.r.l, MilanoItaly
| | - Andrea Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, VeronaItaly
| | - Carlo Zancanaro
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, VeronaItaly
| |
Collapse
|
18
|
Jensen VS, Porsgaard T, Lykkesfeldt J, Hvid H. Rodent model choice has major impact on variability of standard preclinical readouts associated with diabetes and obesity research. Am J Transl Res 2016; 8:3574-3584. [PMID: 27648148 PMCID: PMC5009410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/27/2016] [Indexed: 06/06/2023]
Abstract
Laboratory rodents are available as either genetically defined inbred strains or genetically undefined outbred stocks. As outbred rodents are generally thought to display a higher level of phenotypic variation compared to inbred strains, it has been argued that experimental studies should preferentially be performed by using inbred rodents. However, very few studies with adequate sample sizes have in fact compared phenotypic variation between inbred strains and outbred stocks of rodents and moreover, these studies have not reached consistent conclusions. The aim of the present study was to compare the phenotypic variation in commonly used experimental readouts within obesity and diabetes research, for four of the most frequently used mouse strains: inbred C57BL/6 and BALB/c and outbred NMRI and CD-1 mice. The variation for all readouts was examined by calculating the coefficient of variation (CV), i.e., the relative variation, including a 95% confidence interval for the CV. We observed that for the majority of the selected readouts, inbred and outbred mice showed comparable phenotypic variation. The observed variation appeared highly influenced by strain choice and type of readout, which suggests that these collectively would serve as more predictive of the phenotypic variation than the more general classification of mice as inbred or outbred based on genetic heterogeneity.
Collapse
Affiliation(s)
- Victoria S Jensen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of CopenhagenDenmark
- Insulin Pharmacology, Novo Nordisk A/SMåløv, Denmark
| | | | - Jens Lykkesfeldt
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of CopenhagenDenmark
| | - Henning Hvid
- Insulin Pharmacology, Novo Nordisk A/SMåløv, Denmark
| |
Collapse
|
19
|
Hu HH, Chen J, Shen W. Segmentation and quantification of adipose tissue by magnetic resonance imaging. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2015; 29:259-76. [PMID: 26336839 DOI: 10.1007/s10334-015-0498-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/13/2022]
Abstract
In this brief review, introductory concepts in animal and human adipose tissue segmentation using proton magnetic resonance imaging (MRI) and computed tomography are summarized in the context of obesity research. Adipose tissue segmentation and quantification using spin relaxation-based (e.g., T1-weighted, T2-weighted), relaxometry-based (e.g., T1-, T2-, T2*-mapping), chemical-shift selective, and chemical-shift encoded water-fat MRI pulse sequences are briefly discussed. The continuing interest to classify subcutaneous and visceral adipose tissue depots into smaller sub-depot compartments is mentioned. The use of a single slice, a stack of slices across a limited anatomical region, or a whole body protocol is considered. Common image post-processing steps and emerging atlas-based automated segmentation techniques are noted. Finally, the article identifies some directions of future research, including a discussion on the growing topic of brown adipose tissue and related segmentation considerations.
Collapse
Affiliation(s)
- Houchun Harry Hu
- Department of Radiology, Phoenix Children's Hospital, 1919 East Thomas Road, Phoenix, AZ, 85016, USA.
| | - Jun Chen
- Obesity Research Center, Department of Medicine, Columbia University Medical Center, 1150 Saint Nicholas Avenue, New York, NY, 10032, USA
| | - Wei Shen
- Obesity Research Center, Department of Medicine and Institute of Human Nutrition, Columbia University Medical Center, 1150 Saint Nicholas Avenue, New York, NY, 10032, USA
| |
Collapse
|