1
|
Avanu AE, Dodi G. Wear Your Heart on Your Sleeve: Smart Textile ECG Wearables for Comfort, Integration, Signal Quality and Continuous Monitoring in Paroxysmal Atrial Fibrillation. SENSORS (BASEL, SWITZERLAND) 2025; 25:676. [PMID: 39943314 PMCID: PMC11820156 DOI: 10.3390/s25030676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Atrial fibrillation (AF), a prevalent cardiac arrhythmia and a major contributor to stroke risk, is anticipated to increase in incidence with the aging global population. For effective AF management, particularly for paroxysmal AF (PAF), long-term and accurate monitoring is essential. However, traditional monitoring methods, including Holter ECGs and implantable cardiac monitors (ICMs), present limitations in comfort, compliance and extended monitoring capabilities. Recent advancements in wearable technology have introduced smart textile-based ECG devices, which incorporate electrochemical sensors into fabrics, enabling non-invasive, continuous monitoring while enhancing user comfort. This review evaluates textile-based ECG devices by comparing their performance-assessed through AF detection rates, signal-to-noise ratio (SNR) and total analysis time-against conventional Holter monitoring and the 12-lead ECG. Furthermore, this review examines user acceptability factors, including patient-reported comfort, usability during resting and physical activities and skin-related adverse effects. The findings aim to provide insights for future device development and facilitate their integration into clinical practice.
Collapse
Affiliation(s)
- Alexandra E. Avanu
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Gianina Dodi
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania;
| |
Collapse
|
2
|
Veske-Lepp P, Van Steenkiste G, Thienpondt S, Cools J, De Pauw H, Bossuyt F. Development of 3D-Formed Textile-Based Electrodes with Flexible Interconnect Ribbon. SENSORS (BASEL, SWITZERLAND) 2025; 25:414. [PMID: 39860784 PMCID: PMC11769503 DOI: 10.3390/s25020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
The integration of electronics into textiles has gained considerable attention in recent years, due to the development and high demand of wearable and flexible electronics. One of the promising fields is healthcare, which often involves the utilization of textile-based electrodes. These electrodes often offer advantages such as conformability, breathability, and comfort. This article presents the development of 3D-formed textile-based electrodes together with a narrow fabric-based interconnect system. This study showcases the methods and materials for the fabrication of the textile-based electrodes and the interconnect system, including a durability assessment, by performing standardized washing (ISO 6330-2012) and user tests. The results demonstrated that the developed 3D-formed textile-based electrodes and stretchable interconnect system are durable and effective for wearable applications, maintaining performance under extensive washing.
Collapse
Affiliation(s)
- Paula Veske-Lepp
- Centre for Microsystems Technology (CMST), IMEC and Ghent University, 9050 Zwijnaarde-Gent, Belgium; (P.V.-L.); (H.D.P.)
| | - Glenn Van Steenkiste
- Equine CardioTeam, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Svea Thienpondt
- Fashion and Textiles Innovation Lab (FTILab+), HOGENT University of Applied Sciences and Arts, 9051 Ghent, Belgium; (S.T.); (J.C.)
| | - Joris Cools
- Fashion and Textiles Innovation Lab (FTILab+), HOGENT University of Applied Sciences and Arts, 9051 Ghent, Belgium; (S.T.); (J.C.)
| | - Herbert De Pauw
- Centre for Microsystems Technology (CMST), IMEC and Ghent University, 9050 Zwijnaarde-Gent, Belgium; (P.V.-L.); (H.D.P.)
| | - Frederick Bossuyt
- Centre for Microsystems Technology (CMST), IMEC and Ghent University, 9050 Zwijnaarde-Gent, Belgium; (P.V.-L.); (H.D.P.)
| |
Collapse
|
3
|
Hong S, Coté G. Minimization of Parasitic Capacitance between Skin and Ag/AgCl Dry Electrodes. MICROMACHINES 2024; 15:907. [PMID: 39064418 PMCID: PMC11278634 DOI: 10.3390/mi15070907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Conventional dry electrodes often yield unstable results due to the presence of parasitic capacitance between the flat electrode surface and the non-uniform skin interface. To address this issue, a gel is typically placed between the electrodes to minimize parasitic capacitance. However, this approach has the drawbacks of being unsuitable for repeated use, limited lifetime due to gel evaporation, and the possibility of developing skin irritation. This is particularly problematic in underserved areas since, due to the cost of disposable wet electrodes, they often sterilize and reuse dry electrodes. In this study, we propose a method to neutralize the effects of parasitic capacitance by attaching high-value capacitors to the electrodes in parallel, specifically when applied to pulse wave monitoring through bioimpedance. Skin capacitance can also be mitigated due to the serial connection, enabling stable reception of arterial pulse signals through bioimpedance circuits. A high-frequency structure simulator (HFSS) was first used to simulate the capacitance when injection currents flow into the arteries through the bioimpedance circuits. We also used the simulation to investigate the effects of add-on capacitors. Lastly, we conducted preliminary comparative analyses between wet electrodes and dry electrodes in vivo with added capacitance values ranging from 100 pF to 1 μF, altering capacitance magnitudes by factors of 100. As a result, we obtained a signal-to-noise ratio (SNR) that was 8.2 dB higher than that of dry electrodes. Performance was also shown to be comparable to wet electrodes, with a reduction of only 0.4 dB using 1 μF. The comparative results demonstrate that the addition of capacitors to the electrodes has the potential to allow for performance similar to that of wet electrodes for bioimpedance pulse rate monitoring and could potentially be used for other applications of dry electrodes.
Collapse
Affiliation(s)
- Sungcheol Hong
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Gerard Coté
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA;
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Fogleman BM, Goldman M, Holland AB, Dyess G, Patel A. Charting Tomorrow's Healthcare: A Traditional Literature Review for an Artificial Intelligence-Driven Future. Cureus 2024; 16:e58032. [PMID: 38738104 PMCID: PMC11088287 DOI: 10.7759/cureus.58032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Electronic health record (EHR) systems have developed over time in parallel with general advancements in mainstream technology. As artificially intelligent (AI) systems rapidly impact multiple societal sectors, it has become apparent that medicine is not immune from the influences of this powerful technology. Particularly appealing is how AI may aid in improving healthcare efficiency with note-writing automation. This literature review explores the current state of EHR technologies in healthcare, specifically focusing on possibilities for addressing EHR challenges through the automation of dictation and note-writing processes with AI integration. This review offers a broad understanding of existing capabilities and potential advancements, emphasizing innovations such as voice-to-text dictation, wearable devices, and AI-assisted procedure note dictation. The primary objective is to provide researchers with valuable insights, enabling them to generate new technologies and advancements within the healthcare landscape. By exploring the benefits, challenges, and future of AI integration, this review encourages the development of innovative solutions, with the goal of enhancing patient care and healthcare delivery efficiency.
Collapse
Affiliation(s)
- Brody M Fogleman
- Internal Medicine, Edward Via College of Osteopathic Medicine - Carolinas, Spartanburg, USA
| | - Matthew Goldman
- Neurological Surgery, Houston Methodist Hospital, Houston, USA
| | - Alexander B Holland
- General Surgery, Edward Via College of Osteopathic Medicine - Carolinas, Spartanburg, USA
| | - Garrett Dyess
- Medicine, University of South Alabama College of Medicine, Mobile, USA
| | - Aashay Patel
- Neurological Surgery, University of Florida College of Medicine, Gainesville, USA
| |
Collapse
|
5
|
Song K, Hirose K, Niitsu K, Sui T, Kojima H, Fujie T, Umezu S. A combination of logical judging circuit and water-resistant ultrathin film PEDOT: PSS electrode for noninvasive ECG measurement. DISCOVER NANO 2024; 19:45. [PMID: 38483679 PMCID: PMC10940549 DOI: 10.1186/s11671-024-03988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Heart disease-related deaths have increased in recent decades, with most patients dying of sudden cardiac arrest. In such instances, the effect of regular electrocardiogram (ECG) measurements is minimal. Therefore, long-term ECG monitoring has become increasingly important. In this paper, we report a non-adhesive high accuracy ECG monitoring system that can be used in various scenarios without interfering with daily activities. The ECG ultra-thin film electrode is made by water-resistant material based on poly(3,4-ethylenedioxythiophene) poly(4-styrenesulfonate) (PEDOT: PSS) electrode doped with ethylene glycol (EG) and xylitol, to improve the noise signal caused by sweat. The optimal ratio of the three ingredients of PEDOT: PSS/xylitol/EG was determined experimentally to accommodate the ECG monitoring. By using the proposed selectively closed multi-channel single-lead logic circuit, the noise of ECG signal received from the proposed film electrode can be successfully reduced during broad-area electrode measurements, thus to improve ECG measurement accuracy.
Collapse
Affiliation(s)
- Kewei Song
- Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Kayo Hirose
- Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kioto Niitsu
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Tsubasa Sui
- Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Hiroto Kojima
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Toshinori Fujie
- School of Life Science and Technology, Tokyo Institute of Technology, B-50, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, 226-8501, Japan.
| | - Shinjiro Umezu
- Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
6
|
Vidhya CM, Maithani Y, Singh JP. Recent Advances and Challenges in Textile Electrodes for Wearable Biopotential Signal Monitoring: A Comprehensive Review. BIOSENSORS 2023; 13:679. [PMID: 37504078 PMCID: PMC10377545 DOI: 10.3390/bios13070679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
The technology of wearable medical equipment has advanced to the point where it is now possible to monitor the electrocardiogram and electromyogram comfortably at home. The transition from wet Ag/AgCl electrodes to various types of gel-free dry electrodes has made it possible to continuously and accurately monitor the biopotential signals. Fabrics or textiles, which were once meant to protect the human body, have undergone significant development and are now employed as intelligent textile materials for healthcare monitoring. The conductive textile electrodes provide the benefit of being breathable and comfortable. In recent years, there has been a significant advancement in the fabrication of wearable conductive textile electrodes for monitoring biopotential signals. This review paper provides a comprehensive overview of the advances in wearable conductive textile electrodes for biopotential signal monitoring. The paper covers various aspects of the technology, including the electrode design, various manufacturing techniques utilised to fabricate wearable smart fabrics, and performance characteristics. The advantages and limitations of various types of textile electrodes are discussed, and key challenges and future research directions are identified. This will allow them to be used to their fullest potential for signal gathering during physical activities such as running, swimming, and other exercises while being linked into wireless portable health monitoring systems.
Collapse
Affiliation(s)
- C M Vidhya
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Yogita Maithani
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jitendra P Singh
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
7
|
Rêgo ADS, Furtado GE, Bernardes RA, Santos-Costa P, Dias RA, Alves FS, Ainla A, Arruda LM, Moreira IP, Bessa J, Fangueiro R, Gomes F, Henriques M, Sousa-Silva M, Pinto AC, Bouçanova M, Sousa VIF, Tavares CJ, Barboza R, Carvalho M, Filipe L, Sousa LB, Apóstolo JA, Parreira P, Salgueiro-Oliveira A. Development of Smart Clothing to Prevent Pressure Injuries in Bedridden Persons and/or with Severely Impaired Mobility: 4NoPressure Research Protocol. Healthcare (Basel) 2023; 11:1361. [PMID: 37239647 PMCID: PMC10218695 DOI: 10.3390/healthcare11101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Pressure injuries (PIs) are a major public health problem and can be used as quality-of-care indicators. An incipient development in the field of medical devices takes the form of Smart Health Textiles, which can possess innovative properties such as thermoregulation, sensing, and antibacterial control. This protocol aims to describe the process for the development of a new type of smart clothing for individuals with reduced mobility and/or who are bedridden in order to prevent PIs. This paper's main purpose is to present the eight phases of the project, each consisting of tasks in specific phases: (i) product and process requirements and specifications; (ii and iii) study of the fibrous structure technology, textiles, and design; (iv and v) investigation of the sensor technology with respect to pressure, temperature, humidity, and bioactive properties; (vi and vii) production layout and adaptations in the manufacturing process; (viii) clinical trial. This project will introduce a new structural system and design for smart clothing to prevent PIs. New materials and architectures will be studied that provide better pressure relief, thermo-physiological control of the cutaneous microclimate, and personalisation of care.
Collapse
Affiliation(s)
- Anderson da Silva Rêgo
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal; (G.E.F.); (R.A.B.); (P.S.-C.); (L.F.); (L.B.S.); (J.A.A.); (P.P.); (A.S.-O.)
| | - Guilherme Eustáquio Furtado
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal; (G.E.F.); (R.A.B.); (P.S.-C.); (L.F.); (L.B.S.); (J.A.A.); (P.P.); (A.S.-O.)
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços–S. Martinho do Bispo, 3045-093 Coimbra, Portugal
| | - Rafael A. Bernardes
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal; (G.E.F.); (R.A.B.); (P.S.-C.); (L.F.); (L.B.S.); (J.A.A.); (P.P.); (A.S.-O.)
| | - Paulo Santos-Costa
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal; (G.E.F.); (R.A.B.); (P.S.-C.); (L.F.); (L.B.S.); (J.A.A.); (P.P.); (A.S.-O.)
| | - Rosana A. Dias
- International Iberian Laboratory of Nanotechnology (INL), 4715-330 Braga, Portugal; (R.A.D.); (F.S.A.); (A.A.)
| | - Filipe S. Alves
- International Iberian Laboratory of Nanotechnology (INL), 4715-330 Braga, Portugal; (R.A.D.); (F.S.A.); (A.A.)
| | - Alar Ainla
- International Iberian Laboratory of Nanotechnology (INL), 4715-330 Braga, Portugal; (R.A.D.); (F.S.A.); (A.A.)
| | - Luisa M. Arruda
- Fibrenamics, Institute of Innovation on Fibre-Based Materials and Composites, University of Minho, 4800-058 Guimaraes, Portugal; (L.M.A.); (I.P.M.); (J.B.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimaraes, Portugal; (R.B.); (M.C.)
| | - Inês P. Moreira
- Fibrenamics, Institute of Innovation on Fibre-Based Materials and Composites, University of Minho, 4800-058 Guimaraes, Portugal; (L.M.A.); (I.P.M.); (J.B.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimaraes, Portugal; (R.B.); (M.C.)
| | - João Bessa
- Fibrenamics, Institute of Innovation on Fibre-Based Materials and Composites, University of Minho, 4800-058 Guimaraes, Portugal; (L.M.A.); (I.P.M.); (J.B.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimaraes, Portugal; (R.B.); (M.C.)
| | - Raul Fangueiro
- Fibrenamics, Institute of Innovation on Fibre-Based Materials and Composites, University of Minho, 4800-058 Guimaraes, Portugal; (L.M.A.); (I.P.M.); (J.B.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimaraes, Portugal; (R.B.); (M.C.)
| | - Fernanda Gomes
- CEB—Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (F.G.); (M.H.); (M.S.-S.); (A.C.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Mariana Henriques
- CEB—Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (F.G.); (M.H.); (M.S.-S.); (A.C.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Maria Sousa-Silva
- CEB—Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (F.G.); (M.H.); (M.S.-S.); (A.C.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Alexandra C. Pinto
- CEB—Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (F.G.); (M.H.); (M.S.-S.); (A.C.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Maria Bouçanova
- Impetus Portugal-Têxteis Sa (IMPETUS), 4740-696 Barcelos, Portugal;
| | - Vânia Isabel Fernande Sousa
- Physics Center of Minho and Porto Universities (CF-UM-PT), Campus of Azurém, University of Minho, 4804-533 Guimarães, Portugal; (V.I.F.S.); (C.J.T.)
| | - Carlos José Tavares
- Physics Center of Minho and Porto Universities (CF-UM-PT), Campus of Azurém, University of Minho, 4804-533 Guimarães, Portugal; (V.I.F.S.); (C.J.T.)
| | - Rochelne Barboza
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimaraes, Portugal; (R.B.); (M.C.)
| | - Miguel Carvalho
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimaraes, Portugal; (R.B.); (M.C.)
| | - Luísa Filipe
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal; (G.E.F.); (R.A.B.); (P.S.-C.); (L.F.); (L.B.S.); (J.A.A.); (P.P.); (A.S.-O.)
| | - Liliana B. Sousa
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal; (G.E.F.); (R.A.B.); (P.S.-C.); (L.F.); (L.B.S.); (J.A.A.); (P.P.); (A.S.-O.)
| | - João A. Apóstolo
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal; (G.E.F.); (R.A.B.); (P.S.-C.); (L.F.); (L.B.S.); (J.A.A.); (P.P.); (A.S.-O.)
| | - Pedro Parreira
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal; (G.E.F.); (R.A.B.); (P.S.-C.); (L.F.); (L.B.S.); (J.A.A.); (P.P.); (A.S.-O.)
| | - Anabela Salgueiro-Oliveira
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal; (G.E.F.); (R.A.B.); (P.S.-C.); (L.F.); (L.B.S.); (J.A.A.); (P.P.); (A.S.-O.)
| |
Collapse
|
8
|
Sriraam N, Srinivasulu A, Prakash VS. Wireless CardioS framework for continuous ECG acquisition. J Med Eng Technol 2023; 47:201-216. [PMID: 37910047 DOI: 10.1080/03091902.2023.2267116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/30/2023] [Indexed: 11/03/2023]
Abstract
A first-level textile-based electrocardiogram (ECG) monitoring system referred to as "CardioS" (cardiac sensor) for continuous health monitoring applications is proposed in this study to address the demand for resource-constrained environments. and the signal quality assessment of a wireless CardioS was studied. The CardioS consists of a Lead-I ECG signal recorded wirelessly using silver-plated nylon woven (Ag-NyW) dry textile electrodes to compare the results of wired wearable Ag-NyW textile electrode-based ECG acquisition system and CardioS. The effect of prolonged usage of Ag-NyW dry electrodes on electrode impedance was tested in the current work. In addition, electrode half-cell potential was measured to validate the range of Ag-NyW dry electrodes for ECG signal acquisition. Further, the quality of signals recorded by the proposed wireless CardioS framework was evaluated and compared with clinical disposable (Ag-AgCl Gel) electrodes. The signal quality was assessed in terms of mean magnitude coherence spectra, signal cross-correlation, signal-to-noise-band ratio (Sband/Nband), crest factor, low and high band powers and power spectral density. The experimental results showed that the impedance was increased by 2.5-54.6% after six weeks of continuous usage. This increased impedance was less than 1 MΩ/cm2, as reported in the literature. The half-cell potential of the Ag-NyW textile electrode obtained was 80 mV, sufficient to acquire the ECG signal from the human body. All the fidelity parameters measured by Ag-NyW textile electrodes were correlated with standard disposable electrodes. The cardiologists validated all the measurements and confirmed that the proposed framework exhibited good performance for ECG signal acquisition from the five healthy subjects. As a result of its low-cost architecture, the proposed CardioS framework can be used in resource-constrained environments for ECG monitoring.
Collapse
Affiliation(s)
- N Sriraam
- Center for Medical Electronics and Computing, MS Ramaiah Institute of Technology, Bangalore, India
- Department of Medical Electronics Engineering, MS Ramaiah Institute of Technology, Bangalore, India
| | | | - V S Prakash
- Department of Cardiology, M.S. Ramaiah Medical College and Hospitals, Bangalore, India
| |
Collapse
|
9
|
Brehm PJ, Anderson AP. Modeling the Design Characteristics of Woven Textile Electrodes for long-Term ECG Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:598. [PMID: 36679395 PMCID: PMC9864099 DOI: 10.3390/s23020598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
An electrocardiograph records the periodic voltage generated by the heart over time. There is growing demand to continuously monitor the ECG for proactive health care and human performance optimization. To meet this demand, new conductive textile electrodes are being developed which offer an attractive alternative to adhesive gel electrodes but they come with their own challenges. The key challenge with textile electrodes is that the relationship between the manufacturing parameters and the ECG measurement is not well understood, making design an iterative process without the ability to prospectively develop woven electrodes with optimized performance. Here we address this challenge by applying the traditional skin-electrode interface circuit model to woven electrodes by constructing a parameterized model of the ECG system. Then the unknown parameters of the system are solved for with an iterative MATLAB optimizer using measured data captured with the woven electrodes. The results of this novel analysis confirm that yarn conductivity and total conductive area reduce skin electrode impedance. The results also indicate that electrode skin pressure and moisture require further investigation. By closing this gap in development, textile electrodes can be better designed and manufactured to meet the demands of long-term ECG capture.
Collapse
|
10
|
Hu CL, Lin ZY, Hu SY, Cheng IC, Huang CH, Li YH, Li CJ, Lin CW. Compensation for Electrode Detachment in Electrical Impedance Tomography with Wearable Textile Electrodes. SENSORS (BASEL, SWITZERLAND) 2022; 22:9575. [PMID: 36559943 PMCID: PMC9782024 DOI: 10.3390/s22249575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Electrical impedance tomography (EIT) is a radiation-free and noninvasive medical image reconstruction technique in which a current is injected and the reflected voltage is received through electrodes. EIT electrodes require good connection with the skin for data acquisition and image reconstruction. However, detached electrodes are a common occurrence and cause measurement errors in EIT clinical applications. To address these issues, in this study, we proposed a method for detecting faulty electrodes using the differential voltage value of the detached electrode in an EIT system. Additionally, we proposed the voltage-replace and voltage-shift methods to compensate for invalid data from the faulty electrodes. In this study, we present the simulation, experimental, and in vivo chest results of our proposed methods to verify and evaluate the feasibility of this approach.
Collapse
Affiliation(s)
- Chang-Lin Hu
- Industrial Technology Research Institute, Hsinchu 310, Taiwan
| | - Zong-Yan Lin
- Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Yun Hu
- College of Law, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - I-Cheng Cheng
- Industrial Technology Research Institute, Hsinchu 310, Taiwan
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chih-Hsien Huang
- Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Hao Li
- Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chien-Ju Li
- Industrial Technology Research Institute, Hsinchu 310, Taiwan
| | - Chii-Wann Lin
- Industrial Technology Research Institute, Hsinchu 310, Taiwan
- Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
11
|
Hashimoto Y, Sato R, Takagahara K, Ishihara T, Watanabe K, Togo H. Validation of Wearable Device Consisting of a Smart Shirt with Built-In Bioelectrodes and a Wireless Transmitter for Heart Rate Monitoring in Light to Moderate Physical Work. SENSORS (BASEL, SWITZERLAND) 2022; 22:9241. [PMID: 36501948 PMCID: PMC9738079 DOI: 10.3390/s22239241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Real-time monitoring of heart rate is useful for monitoring workers. Wearable heart rate monitors worn on the upper body are less susceptible to artefacts caused by arm and wrist movements than popular wristband-type sensors using the photoplethysmography method. Therefore, they are considered suitable for stable and accurate measurement for various movements. In this study, we conducted an experiment to verify the accuracy of our developed and commercially available wearable heart rate monitor consisting of a smart shirt with bioelectrodes and a transmitter, assuming a real-world work environment with physical loads. An exercise protocol was designed to light to moderate intensity according to international standards because no standard exercise protocol for the validation simulating these works has been reported. This protocol includes worker-specific movements such as applying external vibration and lifting and lowering loads. In the experiment, we simultaneously measured the instantaneous heart rate with the above wearable device and a Holter monitor as a reference to evaluate mean absolute percentage error (MAPE). The MAPE was 0.92% or less for all exercise protocols conducted. This value indicates that the accuracy of the wearable device is high enough for use in real-world cases of physical load in light to moderate intensity tasks such as those in our experimental protocol. In addition, the experimental protocol and measurement data devised in this study can be used as a benchmark for other wearable heart rate monitors for use for similar purposes.
Collapse
|
12
|
Busnatu ȘS, Niculescu AG, Bolocan A, Andronic O, Pantea Stoian AM, Scafa-Udriște A, Stănescu AMA, Păduraru DN, Nicolescu MI, Grumezescu AM, Jinga V. A Review of Digital Health and Biotelemetry: Modern Approaches towards Personalized Medicine and Remote Health Assessment. J Pers Med 2022; 12:1656. [PMID: 36294795 PMCID: PMC9604784 DOI: 10.3390/jpm12101656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
With the prevalence of digitalization in all aspects of modern society, health assessment is becoming digital too. Taking advantage of the most recent technological advances and approaching medicine from an interdisciplinary perspective has allowed for important progress in healthcare services. Digital health technologies and biotelemetry devices have been more extensively employed for preventing, detecting, diagnosing, monitoring, and predicting the evolution of various diseases, without requiring wires, invasive procedures, or face-to-face interaction with medical personnel. This paper aims to review the concepts correlated to digital health, classify and describe biotelemetry devices, and present the potential of digitalization for remote health assessment, the transition to personalized medicine, and the streamlining of clinical trials.
Collapse
Affiliation(s)
- Ștefan Sebastian Busnatu
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Bolocan
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Octavian Andronic
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | | | - Alexandru Scafa-Udriște
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | | | - Dan Nicolae Păduraru
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Mihnea Ioan Nicolescu
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Viorel Jinga
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
13
|
Lee DH, Park T, Yoo H. Biodegradable Polymer Composites for Electrophysiological Signal Sensing. Polymers (Basel) 2022; 14:polym14142875. [PMID: 35890650 PMCID: PMC9323782 DOI: 10.3390/polym14142875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 12/23/2022] Open
Abstract
Electrophysiological signals are collected to characterize human health and applied in various fields, such as medicine, engineering, and pharmaceuticals. Studies of electrophysiological signals have focused on accurate signal acquisition, real-time monitoring, and signal interpretation. Furthermore, the development of electronic devices consisting of biodegradable and biocompatible materials has been attracting attention over the last decade. In this regard, this review presents a timely overview of electrophysiological signals collected with biodegradable polymer electrodes. Candidate polymers that can constitute biodegradable polymer electrodes are systemically classified by their essential properties for collecting electrophysiological signals. Moreover, electrophysiological signals, such as electrocardiograms, electromyograms, and electroencephalograms subdivided with human organs, are discussed. In addition, the evaluation of the biodegradability of various electrodes with an electrophysiology signal collection purpose is comprehensively revisited.
Collapse
Affiliation(s)
- Dong Hyun Lee
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea;
| | - Taehyun Park
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea;
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea;
- Correspondence:
| |
Collapse
|
14
|
Machino T, Aonuma K, Komatsu Y, Yamasaki H, Igarashi M, Nogami A, Ieda M. Dry textile electrode for ambulatory monitoring after catheter ablation of atrial fibrillation: A pilot study of simultaneous comparison to the Holter electrocardiogram. F1000Res 2022; 11:97. [PMID: 35860478 PMCID: PMC9263574 DOI: 10.12688/f1000research.75712.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background:
Holter electrocardiogram (ECG) is the gold standard for ambulatory monitoring of atrial fibrillation (AF) but it is insufficient because of its limited recording time. Although several consumer ECG devices provide longer recording time, they generally do not undergo the regulatory process for medical use. Furthermore, current medical-grade devices for longer ECG monitoring are not continuous or too invasive for AF monitoring. A wearable ECG with a medical-grade dry textile electrode is a promising technology to remedy this limitation.
This pilot study aimed to simultaneously compare the wearable and Holter ECGs for ambulatory monitoring in a clinical setting. Methods: This prospective observational study enrolled 18 patients who underwent AF ablation. One day after AF ablation, ambulatory ECG was obtained for three hours simultaneously using both the wearable and Holter ECG devices. Automatic ECG interpretations between devices were compared with correlation and agreement analyses. Results: Simultaneous ECG monitoring demonstrated a comparable analysis time and total heart beats between the two devices. Almost complete correlation and agreement were also demonstrated in all clinically relevant testing aspects except in R-wave amplitude (r = 0.743, p < .001). AF was detected in three patients. AF duration was the same in both ECG devices in two patients with continuous AF. In the remaining patient with intermittent AF, AF duration was shortened by 0.6% with the wearable ECG as compared to that with the Holter ECG. Conclusions: Simultaneous ECG comparison revealed a high consistency between the wearable and Holter ECG devices. The results of this study warrant further clinical studies for long-term monitoring of ambulatory ECG after AF ablation.
Collapse
Affiliation(s)
- Takeshi Machino
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
- Department of Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Kazutaka Aonuma
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Yuki Komatsu
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Hiro Yamasaki
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Miyako Igarashi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Akihiko Nogami
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| |
Collapse
|
15
|
Yu Y, Anand G, Lowe A, Zhang H, Kalra A. Towards Estimating Arterial Diameter Using Bioimpedance Spectroscopy: A Computational Simulation and Tissue Phantom Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 22:4736. [PMID: 35808233 PMCID: PMC9268936 DOI: 10.3390/s22134736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
This paper improves the accuracy of quantification in the arterial diameter-dependent impedance variance by altering the electrode configuration. The finite element analysis was implemented with a 3D human wrist fragment using ANSYS Electronics Desktop, containing fat, muscle, and a blood-filled radial artery. Then, the skin layer and bones were stepwise added, helping to understand the dielectric response of multi-tissues and blood flow from 1 kHz to 1 MHz, the current distribution throughout the wrist, and the optimisation of electrode configurations for arterial pulse sensing. Moreover, a low-cost wrist phantom was fabricated, containing two components: the surrounding tissue simulant (20 wt % gelatine power and 0.017 M sodium chloride (NaCl) solution) and the blood simulant (0.08 M NaCl solution). The blood-filled artery was constricted using a desktop injection pump, and the impedance change was measured by the Multi-frequency Impedance Analyser (MFIA). The simulation revealed the promising capabilities of band electrodes to generate a more uniform current distribution than the traditional spot electrodes. Both simulation and phantom experimental results indicated that a longer spacing between current-carrying (CC) electrodes with shorter spacing between pick-up (PU) electrodes in the middle could sense a more uniform electric field, engendering a more accurate arterial diameter estimation. This work provided an improved electrode configuration for more accurate arterial diameter estimation from the numerical simulation and tissue phantom perspectives.
Collapse
|
16
|
Zhou Y, Myant C, Stewart R. Multifunctional and stretchable graphene/textile composite sensor for human motion monitoring. J Appl Polym Sci 2022. [DOI: 10.1002/app.52755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yi Zhou
- Dyson School of Design Engineering Imperial College London London
| | - Connor Myant
- Dyson School of Design Engineering Imperial College London London
| | - Rebecca Stewart
- Dyson School of Design Engineering Imperial College London London
| |
Collapse
|
17
|
Cho S, Chang T, Yu T, Lee CH. Smart Electronic Textiles for Wearable Sensing and Display. BIOSENSORS 2022; 12:bios12040222. [PMID: 35448282 PMCID: PMC9029731 DOI: 10.3390/bios12040222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/13/2023]
Abstract
Increasing demand of using everyday clothing in wearable sensing and display has synergistically advanced the field of electronic textiles, or e-textiles. A variety of types of e-textiles have been formed into stretchy fabrics in a manner that can maintain their intrinsic properties of stretchability, breathability, and wearability to fit comfortably across different sizes and shapes of the human body. These unique features have been leveraged to ensure accuracy in capturing physical, chemical, and electrophysiological signals from the skin under ambulatory conditions, while also displaying the sensing data or other immediate information in daily life. Here, we review the emerging trends and recent advances in e-textiles in wearable sensing and display, with a focus on their materials, constructions, and implementations. We also describe perspectives on the remaining challenges of e-textiles to guide future research directions toward wider adoption in practice.
Collapse
Affiliation(s)
- Seungse Cho
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Taehoo Chang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA;
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
18
|
Marutani Y, Konda S, Ogasawara I, Yamasaki K, Yokoyama T, Maeshima E, Nakata K. An Experimental Feasibility Study Evaluating the Adequacy of a Sportswear-Type Wearable for Recording Exercise Intensity. SENSORS (BASEL, SWITZERLAND) 2022; 22:2577. [PMID: 35408192 PMCID: PMC9003462 DOI: 10.3390/s22072577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
Abstract
Sportswear-type wearables with integrated inertial sensors and electrocardiogram (ECG) electrodes have been commercially developed. We evaluated the feasibility of using a sportswear-type wearable with integrated inertial sensors and electrocardiogram (ECG) electrodes for evaluating exercise intensity within a controlled laboratory setting. Six male college athletes were asked to wear a sportswear-type wearable while performing a treadmill test that reached up to 20 km/h. The magnitude of the filtered tri-axial acceleration signal, recorded by the inertial sensor, was used to calculate the acceleration index. The R-R intervals of the ECG were used to determine heart rate; the external validity of the heart rate was then evaluated according to oxygen uptake, which is the gold standard for physiological exercise intensity. Single regression analysis between treadmill speed and the acceleration index in each participant showed that the slope of the regression line was significantly greater than zero with a high coefficient of determination (walking, 0.95; jogging, 0.96; running, 0.90). Another single regression analysis between heart rate and oxygen uptake showed that the slope of the regression line was significantly greater than zero, with a high coefficient of determination (0.96). Together, these results indicate that the sportswear-type wearable evaluated in this study is a feasible technology for evaluating physical and physiological exercise intensity across a wide range of physical activities and sport performances.
Collapse
Affiliation(s)
- Yoshihiro Marutani
- Graduate School of Sport and Exercise Sciences, Osaka University of Health and Sport Sciences, Kumatori 590-0496, Osaka, Japan; (Y.M.); (E.M.)
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, Toyonaka 560-0043, Osaka, Japan; (S.K.); (I.O.); (K.Y.); (T.Y.)
| | - Shoji Konda
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, Toyonaka 560-0043, Osaka, Japan; (S.K.); (I.O.); (K.Y.); (T.Y.)
- Department of Sports Medical Biomechanics, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Issei Ogasawara
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, Toyonaka 560-0043, Osaka, Japan; (S.K.); (I.O.); (K.Y.); (T.Y.)
- Department of Sports Medical Biomechanics, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Keita Yamasaki
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, Toyonaka 560-0043, Osaka, Japan; (S.K.); (I.O.); (K.Y.); (T.Y.)
| | - Teruki Yokoyama
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, Toyonaka 560-0043, Osaka, Japan; (S.K.); (I.O.); (K.Y.); (T.Y.)
| | - Etsuko Maeshima
- Graduate School of Sport and Exercise Sciences, Osaka University of Health and Sport Sciences, Kumatori 590-0496, Osaka, Japan; (Y.M.); (E.M.)
| | - Ken Nakata
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, Toyonaka 560-0043, Osaka, Japan; (S.K.); (I.O.); (K.Y.); (T.Y.)
| |
Collapse
|
19
|
Wearable Sensing Systems for Monitoring Mental Health. SENSORS 2022; 22:s22030994. [PMID: 35161738 PMCID: PMC8839602 DOI: 10.3390/s22030994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023]
Abstract
Wearable systems for monitoring biological signals have opened the door to personalized healthcare and have advanced a great deal over the past decade with the development of flexible electronics, efficient energy storage, wireless data transmission, and information processing technologies. As there are cumulative understanding of mechanisms underlying the mental processes and increasing desire for lifetime mental wellbeing, various wearable sensors have been devised to monitor the mental status from physiological activities, physical movements, and biochemical profiles in body fluids. This review summarizes the recent progress in wearable healthcare monitoring systems that can be utilized in mental healthcare, especially focusing on the biochemical sensors (i.e., biomarkers associated with mental status, sensing modalities, and device materials) and discussing their promises and challenges.
Collapse
|
20
|
Arpaia P, Crauso F, De Benedetto E, Duraccio L, Improta G, Serino F. Soft Transducer for Patient's Vitals Telemonitoring with Deep Learning-Based Personalized Anomaly Detection. SENSORS 2022; 22:s22020536. [PMID: 35062496 PMCID: PMC8777728 DOI: 10.3390/s22020536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/25/2022]
Abstract
This work addresses the design, development and implementation of a 4.0-based wearable soft transducer for patient-centered vitals telemonitoring. In particular, first, the soft transducer measures hypertension-related vitals (heart rate, oxygen saturation and systolic/diastolic pressure) and sends the data to a remote database (which can be easily consulted both by the patient and the physician). In addition to this, a dedicated deep learning algorithm, based on a Long-Short-Term-Memory Autoencoder, was designed, implemented and tested for providing an alert when the patient’s vitals exceed certain thresholds, which are automatically personalized for the specific patient. Furthermore, a mobile application (EcO2u) was developed to manage the entire data flow and facilitate the data fruition; this application also implements an innovative face-detection algorithm that ensures the identity of the patient. The robustness of the proposed soft transducer was validated experimentally on five individuals, who used the system for 30 days. The experimental results demonstrated an accuracy in anomaly detection greater than 93%, with a true positive rate of more than 94%.
Collapse
Affiliation(s)
- Pasquale Arpaia
- Interdepartmental Research Center in Health Management and Innovation in Healthcare (CIRMIS), University of Naples Federico II, 80125 Naples, Italy;
- Department of Information Technology and Electrical Engineering (DIETI), University of Naples Federico II, 80125 Naples, Italy
| | - Federica Crauso
- Department of Public Health, University of Naples Federico II, 80125 Naples, Italy; (F.C.); (G.I.)
| | - Egidio De Benedetto
- Department of Information Technology and Electrical Engineering (DIETI), University of Naples Federico II, 80125 Naples, Italy
- Correspondence:
| | - Luigi Duraccio
- Department of Electronics and Telecommunications, Polytechnic University of Turin, 10129 Turin, Italy;
| | - Giovanni Improta
- Department of Public Health, University of Naples Federico II, 80125 Naples, Italy; (F.C.); (G.I.)
| | | |
Collapse
|
21
|
Abstract
E-textiles is a new hybrid field developed with the help of the integration of electronic components into our daily usage of textile products. These wearable e-textiles provide user-defined applications as well as normal textile clothing. The medical field is one of the major leading areas where these new hybrid products are being implemented, and relatively mature products can be observed in the laboratory as well as in commercial markets. These products are developed for continuous patient monitoring in large-scale hospital centers as well as for customized patient requirements. Meanwhile, these products are also being used for complex medical treatments and the replacement of conventional methods. This review manuscript contains a basic overview of e-textile systems, their components, applications, and usages in the field of medical innovations. E-textile systems, integrated into customized products for medical needs, are discussed with their proposed properties and limitations. Finally, some recommendations to enhance the e-textile system’s integration into the medical field are argued.
Collapse
|
22
|
Cesarelli G, Donisi L, Coccia A, Amitrano F, D’Addio G, Ricciardi C. The E-Textile for Biomedical Applications: A Systematic Review of Literature. Diagnostics (Basel) 2021; 11:diagnostics11122263. [PMID: 34943500 PMCID: PMC8700039 DOI: 10.3390/diagnostics11122263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/10/2021] [Accepted: 11/29/2021] [Indexed: 01/24/2023] Open
Abstract
The use of e-textile technologies spread out in the scientific research with several applications in both medical and nonmedical world. In particular, wearable technologies and miniature electronics devices were implemented and tested for medical research purposes. In this paper, a systematic review regarding the use of e-textile for clinical applications was conducted: the Scopus and Pubmed databases were investigate by considering research studies from 2010 to 2020. Overall, 262 papers were found, and 71 of them were included in the systematic review. Of the included studies, 63.4% focused on information and communication technology studies, while the other 36.6% focused on industrial bioengineering applications. Overall, 56.3% of the research was published as an article, while the remainder were conference papers. Papers included in the review were grouped by main aim into cardiological, muscular, physical medicine and orthopaedic, respiratory, and miscellaneous applications. The systematic review showed that there are several types of applications regarding e-textile in medicine and several devices were implemented as well; nevertheless, there is still a lack of validation studies on larger cohorts of subjects since the majority of the research only focuses on developing and testing the new device without considering a further extended validation.
Collapse
Affiliation(s)
- Giuseppe Cesarelli
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, 80125 Naples, Italy;
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Pavia, Italy; (L.D.); (A.C.); (G.D.); (C.R.)
| | - Leandro Donisi
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Pavia, Italy; (L.D.); (A.C.); (G.D.); (C.R.)
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Armando Coccia
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Pavia, Italy; (L.D.); (A.C.); (G.D.); (C.R.)
- Department of Electrical Engineering and Information Technologies, University of Naples “Federico II”, 80125 Naples, Italy
| | - Federica Amitrano
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Pavia, Italy; (L.D.); (A.C.); (G.D.); (C.R.)
- Department of Electrical Engineering and Information Technologies, University of Naples “Federico II”, 80125 Naples, Italy
- Correspondence:
| | - Giovanni D’Addio
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Pavia, Italy; (L.D.); (A.C.); (G.D.); (C.R.)
| | - Carlo Ricciardi
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Pavia, Italy; (L.D.); (A.C.); (G.D.); (C.R.)
- Department of Electrical Engineering and Information Technologies, University of Naples “Federico II”, 80125 Naples, Italy
| |
Collapse
|
23
|
Spicher N, Klingenberg A, Purrucker V, Deserno TM. Edge computing in 5G cellular networks for real-time analysis of electrocardiography recorded with wearable textile sensors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1735-1739. [PMID: 34891622 DOI: 10.1109/embc46164.2021.9630875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fifth-generation (5G) cellular networks promise higher data rates, lower latency, and large numbers of inter-connected devices. Thereby, 5G will provide important steps towards unlocking the full potential of the Internet of Things (IoT). In this work, we propose a lightweight IoT platform for continuous vital sign analysis. Electrocardiography (ECG) is acquired via textile sensors and continuously sent from a smartphone to an edge device using cellular networks. The edge device applies a state-of-the art deep learning model for providing a binary end-to-end classification if a myocardial infarction is at hand. Using this infrastructure, experiments with four volunteers were conducted. We compare 3rd, 4th-, and 5th-generation cellular networks (release 15) with respect to transmission latency, data corruption, and duration of machine learning inference. The best performance is achieved using 5G showing an average transmission latency of 110ms and data corruption in 0.07% of ECG samples. Deep learning inference took approximately 170ms. In conclusion, 5G cellular networks in combination with edge devices are a suitable infrastructure for continuous vital sign analysis using deep learning models. Future 5G releases will introduce multi-access edge computing (MEC) as a paradigm for bringing edge devices nearer to mobile clients. This will decrease transmission latency and eventually enable automatic emergency alerting in near real-time.
Collapse
|
24
|
Hu CL, Cheng IC, Huang CH, Liao YT, Lin WC, Tsai KJ, Chi CH, Chen CW, Wu CH, Lin IT, Li CJ, Lin CW. Dry Wearable Textile Electrodes for Portable Electrical Impedance Tomography. SENSORS 2021; 21:s21206789. [PMID: 34696002 PMCID: PMC8537054 DOI: 10.3390/s21206789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022]
Abstract
Electrical impedance tomography (EIT), a noninvasive and radiation-free medical imaging technique, has been used for continuous real-time regional lung aeration. However, adhesive electrodes could cause discomfort and increase the risk of skin injury during prolonged measurement. Additionally, the conductive gel between the electrodes and skin could evaporate in long-term usage and deteriorate the signal quality. To address these issues, in this work, textile electrodes integrated with a clothing belt are proposed to achieve EIT lung imaging along with a custom portable EIT system. The simulation and experimental results have verified the validity of the proposed portable EIT system. Furthermore, the imaging results of using the proposed textile electrodes were compared with commercial electrocardiogram electrodes to evaluate their performance.
Collapse
Affiliation(s)
- Chang-Lin Hu
- Industrial Technology Research Institute, Hsinchu 310, Taiwan; (I.-C.C.); (K.-J.T.); (C.-J.L.); (C.-W.L.)
- Correspondence:
| | - I-Cheng Cheng
- Industrial Technology Research Institute, Hsinchu 310, Taiwan; (I.-C.C.); (K.-J.T.); (C.-J.L.); (C.-W.L.)
| | - Chih-Hsien Huang
- Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan; (C.-H.H.); (C.-H.W.)
| | - Yu-Te Liao
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (Y.-T.L.); (I.-T.L.)
| | - Wei-Chieh Lin
- Division of Critical Care Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (W.-C.L.); (C.-W.C.)
| | - Kun-Ju Tsai
- Industrial Technology Research Institute, Hsinchu 310, Taiwan; (I.-C.C.); (K.-J.T.); (C.-J.L.); (C.-W.L.)
| | - Chih-Hsien Chi
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Chang-Wen Chen
- Division of Critical Care Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (W.-C.L.); (C.-W.C.)
| | - Chia-Hsi Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan; (C.-H.H.); (C.-H.W.)
| | - I-Te Lin
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (Y.-T.L.); (I.-T.L.)
| | - Chien-Ju Li
- Industrial Technology Research Institute, Hsinchu 310, Taiwan; (I.-C.C.); (K.-J.T.); (C.-J.L.); (C.-W.L.)
| | - Chii-Wann Lin
- Industrial Technology Research Institute, Hsinchu 310, Taiwan; (I.-C.C.); (K.-J.T.); (C.-J.L.); (C.-W.L.)
- Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
25
|
Chou EF, Khine M, Lockhart T, Soangra R. Effects of ECG Data Length on Heart Rate Variability among Young Healthy Adults. SENSORS (BASEL, SWITZERLAND) 2021; 21:6286. [PMID: 34577492 PMCID: PMC8472063 DOI: 10.3390/s21186286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022]
Abstract
The relationship between the robustness of HRV derived by linear and nonlinear methods to the required minimum data lengths has yet to be well understood. The normal electrocardiography (ECG) data of 14 healthy volunteers were applied to 34 HRV measures using various data lengths, and compared with the most prolonged (2000 R peaks or 750 s) by using the Mann-Whitney U test, to determine the 0.05 level of significance. We found that SDNN, RMSSD, pNN50, normalized LF, the ratio of LF and HF, and SD1 of the Poincaré plot could be adequately computed by small data size (60-100 R peaks). In addition, parameters of RQA did not show any significant differences among 60 and 750 s. However, longer data length (1000 R peaks) is recommended to calculate most other measures. The DFA and Lyapunov exponent might require an even longer data length to show robust results. Conclusions: Our work suggests the optimal minimum data sizes for different HRV measures which can potentially improve the efficiency and save the time and effort for both patients and medical care providers.
Collapse
Affiliation(s)
- En-Fan Chou
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California at Irvine, Irvine, CA 92697, USA; (E.-F.C.); (M.K.)
| | - Michelle Khine
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California at Irvine, Irvine, CA 92697, USA; (E.-F.C.); (M.K.)
| | - Thurmon Lockhart
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA;
| | - Rahul Soangra
- Department of Physical Therapy, Crean College of Health and Behavioral Sciences, Chapman University, Irvine, CA 92618, USA
- Department of Electrical and Computer Science Engineering, Fowler School of Engineering, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
26
|
Arquilla K, Devendorf L, Webb AK, Anderson AP. Detection of the Complete ECG Waveform with Woven Textile Electrodes. BIOSENSORS 2021; 11:bios11090331. [PMID: 34562921 PMCID: PMC8471440 DOI: 10.3390/bios11090331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 05/02/2023]
Abstract
Wearable physiological monitoring systems are becoming increasingly prevalent in the push toward autonomous health monitoring and offer new modalities for playful and purposeful interaction within human computer interaction (HCI). Sensing systems that can be integrated into garments and, therefore, daily activities offer promising pathways toward ubiquitous integration. The electrocardiogram (ECG) signal is commonly monitored in healthcare and is increasingly utilized as a method of determining emotional and psychological state; however, the complete ECG waveform with the P, Q, R, S, and T peaks is not commonly used, due to the challenges associated with collecting the full waveform with wearable systems. We present woven textile electrodes as an option for garment-integrated ECG monitoring systems that are capable of capturing the complete ECG waveform. In this work, we present the changes in the peak detection performance caused by different sizes, patterns, and thread types with data from 10 human participants. These testing results provide empirically-derived guidelines for future woven textile electrodes, present a path forward for assessing design decisions, and highlight the importance of testing novel wearable sensor systems with more than a single individual.
Collapse
Affiliation(s)
- Katya Arquilla
- Smead Aerospace Engineering Sciences, University of Colorado Boulder, Bouder, CO 80303, USA;
- Correspondence:
| | - Laura Devendorf
- Department of Information Science, University of Colorado Boulder, Bouder, CO 80303, USA;
| | - Andrea K. Webb
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA 02139, USA;
| | - Allison P. Anderson
- Smead Aerospace Engineering Sciences, University of Colorado Boulder, Bouder, CO 80303, USA;
| |
Collapse
|
27
|
Blachowicz T, Ehrmann G, Ehrmann A. Textile-Based Sensors for Biosignal Detection and Monitoring. SENSORS (BASEL, SWITZERLAND) 2021; 21:6042. [PMID: 34577254 PMCID: PMC8470234 DOI: 10.3390/s21186042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023]
Abstract
Biosignals often have to be detected in sports or for medical reasons. Typical biosignals are pulse and ECG (electrocardiogram), breathing, blood pressure, skin temperature, oxygen saturation, bioimpedance, etc. Typically, scientists attempt to measure these biosignals noninvasively, i.e., with electrodes or other sensors, detecting electric signals, measuring optical or chemical information. While short-time measurements or monitoring of patients in a hospital can be performed by systems based on common rigid electrodes, usually containing a large amount of wiring, long-term measurements on mobile patients or athletes necessitate other equipment. Here, textile-based sensors and textile-integrated data connections are preferred to avoid skin irritations and other unnecessary limitations of the monitored person. In this review, we give an overview of recent progress in textile-based electrodes for electrical measurements and new developments in textile-based chemical and other sensors for detection and monitoring of biosignals.
Collapse
Affiliation(s)
- Tomasz Blachowicz
- Center for Science and Education, Institute of Physics, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Guido Ehrmann
- Virtual Institute of Applied Research on Advanced Materials (VIARAM);
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
28
|
Spanu A, Botter A, Zedda A, Cerone GL, Bonfiglio A, Pani D. Dynamic Surface Electromyography Using Stretchable Screen-Printed Textile Electrodes. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1661-1668. [PMID: 34398755 DOI: 10.1109/tnsre.2021.3104972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Wearable devices have created new opportunities in healthcare and sport sciences by unobtrusively monitoring physiological signals. Textile polymer-based electrodes proved to be effective in detecting electrophysiological potentials but suffer mechanical fragility and low stretch resistance. The goal of this research is to develop and validate in dynamic conditions cost-effective and easily manufacturable electrodes characterized by adequate robustness and signal quality. METHODS We here propose an optimized screen printing technique for the fabrication of PEDOT:PSS-based textile electrodes directly into finished stretchable garments for surface electromyography (sEMG) applications. A sensorised stretchable leg sleeve was developed, targeting five muscles of interest in rehabilitation and sport science. An experimental validation was performed to assess the accuracy of signal detection during dynamic exercises, including sit-to-stand, leg extension, calf raise, walking, and cycling. RESULTS The electrodes can resist up to 500 stretch cycles. Tests on five subjects revealed excellent contact impedance, and cross-correlation between sEMG envelopes simultaneously detected from the leg muscles by the textile and Ag/AgCl electrodes was generally greater than 0.9, which proves that it is possible to obtain good quality signals with performance comparable with disposable electrodes. CONCLUSIONS An effective technique to embed polymer-based electrodes in stretchable smart garments was presented, revealing good performance for dynamic sEMG detections. SIGNIFICANCE The achieved results pave the way to the integration of unobtrusive electrodes, obtained by screen printing of conductive polymers, into technical fabrics for rehabilitation and sport monitoring, and in general where the detection of sEMG in dynamic conditions is necessary.
Collapse
|
29
|
Abstract
Arrhythmia management has been revolutionized by the ability to monitor the cardiac rhythm in a patient's home environment in real-time using high-fidelity prescription-grade and commercially available wearable electrodes. The vast amount of digitally acquired electrophysiological signals has generated the need for scalable and efficient data processing with actionable output that can be provided directly to clinicians and patients. In this setting, artificial intelligence applications are increasingly important in arrhythmia monitoring, ranging from conventional algorithmic analysis for rhythm determination to more complex deep machine learning methods that have led to the realization of fully automated humanlike rhythm determination in real-time.
Collapse
Affiliation(s)
- Konstantinos C Siontis
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Paul A Friedman
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
30
|
Nigusse AB, Mengistie DA, Malengier B, Tseghai GB, Langenhove LV. Wearable Smart Textiles for Long-Term Electrocardiography Monitoring-A Review. SENSORS 2021; 21:s21124174. [PMID: 34204577 PMCID: PMC8234162 DOI: 10.3390/s21124174] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022]
Abstract
The continuous and long-term measurement and monitoring of physiological signals such as electrocardiography (ECG) are very important for the early detection and treatment of heart disorders at an early stage prior to a serious condition occurring. The increasing demand for the continuous monitoring of the ECG signal needs the rapid development of wearable electronic technology. During wearable ECG monitoring, the electrodes are the main components that affect the signal quality and comfort of the user. This review assesses the application of textile electrodes for ECG monitoring from the fundamentals to the latest developments and prospects for their future fate. The fabrication techniques of textile electrodes and their performance in terms of skin–electrode contact impedance, motion artifacts and signal quality are also reviewed and discussed. Textile electrodes can be fabricated by integrating thin metal fiber during the manufacturing stage of textile products or by coating textiles with conductive materials like metal inks, carbon materials, or conductive polymers. The review also discusses how textile electrodes for ECG function via direct skin contact or via a non-contact capacitive coupling. Finally, the current intensive and promising research towards finding textile-based ECG electrodes with better comfort and signal quality in the fields of textile, material, medical and electrical engineering are presented as a perspective.
Collapse
Affiliation(s)
- Abreha Bayrau Nigusse
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium; (B.M.); (G.B.T.); (L.V.L.)
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar 6000, Ethiopia;
- Correspondence: ; Tel.: +32-465-66-8911
| | - Desalegn Alemu Mengistie
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar 6000, Ethiopia;
- Materials Engineering Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Benny Malengier
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium; (B.M.); (G.B.T.); (L.V.L.)
| | - Granch Berhe Tseghai
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium; (B.M.); (G.B.T.); (L.V.L.)
| | - Lieva Van Langenhove
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium; (B.M.); (G.B.T.); (L.V.L.)
| |
Collapse
|
31
|
Dautta M, Jimenez A, Dia KKH, Rashid N, Abdullah Al Faruque M, Tseng P. Wireless Qi-powered, Multinodal and Multisensory Body Area Network for Mobile Health. IEEE INTERNET OF THINGS JOURNAL 2021; 8:7600-7609. [PMID: 33969145 PMCID: PMC8098718 DOI: 10.1109/jiot.2020.3040713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wireless, battery-free Body Area Networks (BAN) enable reliable long-term health monitoring with minimal intervention, and have the potential to transform patient care via mobile health monitoring. Current approaches for achieving such battery-free networks are limited in the number, capability, and positioning of sensing nodes-this is related to constraints in power supply, data rate, and working distance requirements between the wireless power source and sensing nodes. Here, we investigate a Qi-based, near-field power transfer scheme that can effectively drive wireless, battery-free, multi-node and multi-sensor BAN over long distances. This consists of a single Qi power source (such as a cellphone), a detached/untethered Passive Intermediate Relay (PIR) (facilitates power transfer from a central Qi source to multiple nodes on the body), and finally individual/detached sensing nodes placed throughout the body. Alongside this power scheme we implement the star network topology of a Gazell protocol to enable the continuous connection of one host to many sensing nodes while minimizing data loss over long temporal periods. The high-power transmission capabilities of Qi enables wireless support for a multitude of sensors (up to 12), and sensing nodes (up to 6) with a single transmitter at long distances (60 cm) and a sample rate of 20 Hz. This scheme is studied both in-vitro and in-vivo on the body.
Collapse
Affiliation(s)
- Manik Dautta
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, USA - 92697
| | - Abel Jimenez
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, USA - 92697
| | - Kazi Khurshidi Haque Dia
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, USA - 92697
| | - Nafiul Rashid
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, USA - 92697
| | - Mohammad Abdullah Al Faruque
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, USA - 92697
| | - Peter Tseng
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, USA - 92697
| |
Collapse
|
32
|
Euler L, Guo L, Persson NK. Textile Electrodes: Influence of Knitting Construction and Pressure on the Contact Impedance. SENSORS (BASEL, SWITZERLAND) 2021; 21:1578. [PMID: 33668250 PMCID: PMC7956463 DOI: 10.3390/s21051578] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022]
Abstract
Textile electrodes, also called textrodes, for biosignal monitoring as well as electrostimulation are central for the emerging research field of smart textiles. However, so far, only the general suitability of textrodes for those areas was investigated, while the influencing parameters on the contact impedance related to the electrode construction and external factors remain rather unknown. Therefore, in this work, six different knitted electrodes, applied both wet and dry, were compared regarding the influence of specific knitting construction parameters on the three-electrode contact impedance measured on a human forearm. Additionally, the influence of applying pressure was investigated in a two-electrode setup using a water-based agar dummy. Further, simulation of an equivalent circuit was used for quantitative evaluation. Indications were found that the preferred electrode construction to achieve the lowest contact impedance includes a square shaped electrode, knitted with a high yarn density and, in the case of dry electrodes, an uneven surface topography consisting of loops, while in wet condition a smooth surface is favorable. Wet electrodes are showing a greatly reduced contact impedance and are therefore to be preferred over dry ones; however, opportunities are seen for improving the electrode performance of dry electrodes by applying pressure to the system, thereby avoiding disadvantages of wet electrodes with fluid administration, drying-out of the electrolyte, and discomfort arising from a "wet feeling".
Collapse
Affiliation(s)
- Luisa Euler
- Polymeric E-Textiles, Department of Textile Technology, University of Borås, SE-501 90 Borås, Sweden; (L.E.); (L.G.)
- Smart Textiles Technology Lab, Smart Textiles, University of Borås, SE-501 90 Borås, Sweden
| | - Li Guo
- Polymeric E-Textiles, Department of Textile Technology, University of Borås, SE-501 90 Borås, Sweden; (L.E.); (L.G.)
| | - Nils-Krister Persson
- Polymeric E-Textiles, Department of Textile Technology, University of Borås, SE-501 90 Borås, Sweden; (L.E.); (L.G.)
- Smart Textiles Technology Lab, Smart Textiles, University of Borås, SE-501 90 Borås, Sweden
| |
Collapse
|
33
|
|
34
|
Kubicek J, Fiedorova K, Vilimek D, Cerny M, Penhaker M, Janura M, Rosicky J. Recent Trends, Construction and Applications of Smart Textiles and Clothing for Monitoring of Health Activity: A Comprehensive Multidisciplinary Review. IEEE Rev Biomed Eng 2020; 15:36-60. [PMID: 33301410 DOI: 10.1109/rbme.2020.3043623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the area of biomedical signal monitoring, wearable electronics represents a dynamically growing field with a significant impact on the market of commercial products of biomedical signal monitoring and acquisition, as well as consumer electronic for vital functions monitoring. Since the electrodes are perceived as one of the most important part of the biomedical signal monitoring, they have been one of the most frequent subjects in the research community. Electronic textile (e-textile), also called smart textile represents a modern trend in the wearable electronics, integrating of functional materials with common clothing with the goal to realize the devices, which include sensors, antennas, energy harvesters and advanced textiles for self-cooling and heating. The area of textile electrodes and e-textile is perceived as a multidisciplinary field, integrating material engineering, chemistry, and biomedical engineering. In this review, we provide a comprehensive view on this area. This multidisciplinary review integrates the e-textile characteristics, materials and manufacturing of the textile electrodes, noise influence on the e-textiles performance, and mainly applications of the textile electrodes for biomedical signal monitoring and acquisition, including pressure sensors, electrocardiography, electromyography, electroencephalography and electrooculography monitoring.
Collapse
|
35
|
Silva AF, Tavakoli M. Domiciliary Hospitalization through Wearable Biomonitoring Patches: Recent Advances, Technical Challenges, and the Relation to Covid-19. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6835. [PMID: 33260466 PMCID: PMC7729497 DOI: 10.3390/s20236835] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/10/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
This article reviews recent advances and existing challenges for the application of wearable bioelectronics for patient monitoring and domiciliary hospitalization. More specifically, we focus on technical challenges and solutions for the implementation of wearable and conformal bioelectronics for long-term patient biomonitoring and discuss their application on the Internet of medical things (IoMT). We first discuss the general architecture of IoMT systems for domiciliary hospitalization and the three layers of the system, including the sensing, communication, and application layers. In regard to the sensing layer, we focus on current trends, recent advances, and challenges in the implementation of stretchable patches. This includes fabrication strategies and solutions for energy storage and energy harvesting, such as printed batteries and supercapacitors. As a case study, we discuss the application of IoMT for domiciliary hospitalization of COVID 19 patients. This can be used as a strategy to reduce the pressure on the healthcare system, as it allows continuous patient monitoring and reduced physical presence in the hospital, and at the same time enables the collection of large data for posterior analysis. Finally, based on the previous works in the field, we recommend a conceptual IoMT design for wearable monitoring of COVID 19 patients.
Collapse
Affiliation(s)
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal;
| |
Collapse
|
36
|
Arquilla K, Leary S, Webb AK, Anderson AP. Wearable 3-Lead Electrocardiogram Placement Model for Fleet Sizing of Medical Devices. Aerosp Med Hum Perform 2020; 91:868-875. [PMID: 33334407 DOI: 10.3357/amhp.5633.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND: Electrocardiography (ECG) provides valuable information on astronaut physiological and psychological health. ECG monitoring has been conducted during crewed missions since the beginning of human spaceflight and will continue during astronauts upcoming long-duration exploration missions (LDEMs) in support of automated health monitoring systems. ECG monitoring is traditionally performed in clinical environments with single-use, adhesive electrodes in a 3, 6, or 12-lead configuration placed by a trained clinician. In the space exploration environment, astronauts self-place electrodes without professional assistance. Wearable ECG systems are an attractive option for automated health monitoring, but electrode placement has not been quantified to a high enough degree to avoid artifacts within the data due to position changes. This variability presents challenges for physician-limited, autonomous health monitoring, so quantifying electrode placement is key in the development of reliable, wearable ECG monitoring systems.METHODS: We present a method of quantifying electrode placement for 3-lead, chest-mounted ECG using easy-to-measure, two-dimensional chest measurements.RESULTS: We find that male and female dimensions require different electrode positioning computations, but there is overlap in positioning between men and women. The distribution of electrodes vertical positions is wider than their horizontal positions.DISCUSSION: These results can be translated directly to ECG wearable design for the individual and for the size range and adjustability required for the astronaut fleet. Implementation of this method will improve the reliability in placement and fit of future wearables, increasing comfort and usability of these systems and subsequently augmenting autonomous health monitoring capabilities for exploration medicine.Arquilla K, Leary S, Webb AK, Anderson AP. Wearable 3-lead electrocardiogram placement model for fleet sizing of medical devices. Aerosp Med Hum Perform. 2020; 91(11):868875.
Collapse
|
37
|
Arquilla K, Webb AK, Anderson AP. Woven electrocardiogram (ECG) electrodes for health monitoring in operational environments. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:4498-4501. [PMID: 33018993 DOI: 10.1109/embc44109.2020.9176478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electrical signals produced within the human body can reveal information about a wide variety of physiological processes including physical activity, cardiac health, and psychological state. The industry standard for physiological signal detection is the use of adhesive electrodes that stick onto the skin. These electrodes can irritate the skin over long periods of time and are not reusable, making them a challenge for use in operational environments. Further, these electrodes often require gel to improve signal transduction, leading to changes in signal quality as these gels dry over time. Wearable sensors for operational environments should be comfortable, unobtrusive, and non-stigmatizing while maintaining signal quality high enough to allow the detection of health states. Here, we present the development and test of a set of woven textile electrodes of 8 different sizes for chest-mounted, 3-lead electrocardiogram (ECG) monitoring. Ten male subjects were tested with each of the woven electrode sizes and with one set of adhesive electrodes. A derived performance metric and signal-to-noise ratio were calculated for each set of electrodes for comparison between them. The smallest sized electrodes were found to be least effective, while the 6th of the 8 sizes were found to be most effective.
Collapse
|
38
|
Schiavoni R, Monti G, Piuzzi E, Tarricone L, Tedesco A, De Benedetto E, Cataldo A. Feasibility of a Wearable Reflectometric System for Sensing Skin Hydration. SENSORS 2020; 20:s20102833. [PMID: 32429375 PMCID: PMC7284366 DOI: 10.3390/s20102833] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 11/29/2022]
Abstract
One of the major goals of Health 4.0 is to offer personalized care to patients, also through real-time, remote monitoring of their biomedical parameters. In this regard, wearable monitoring systems are crucial to deliver continuous appropriate care. For some biomedical parameters, there are a number of well established systems that offer adequate solutions for real-time, continuous patient monitoring. On the other hand, monitoring skin hydration still remains a challenging task. The continuous monitoring of this physiological parameter is extremely important in several contexts, for example for athletes, sick people, workers in hostile environments or for the elderly. State-of-the-art systems, however, exhibit some limitations, especially related with the possibility of continuous, real-time monitoring. Starting from these considerations, in this work, the feasibility of an innovative time-domain reflectometry (TDR)-based wearable, skin hydration sensing system for real-time, continuous monitoring of skin hydration level was investigated. The applicability of the proposed system was demonstrated, first, through experimental tests on reference substances, then, directly on human skin. The obtained results demonstrate the TDR technique and the proposed system holds unexplored potential for the aforementioned purposes.
Collapse
Affiliation(s)
- Raissa Schiavoni
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.S.); (G.M.); (L.T.)
| | - Giuseppina Monti
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.S.); (G.M.); (L.T.)
| | - Emanuele Piuzzi
- Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, 00184 Rome, Italy;
| | - Luciano Tarricone
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.S.); (G.M.); (L.T.)
| | | | - Egidio De Benedetto
- Department of Information Technology and Electrical Engineering (DIETI), University of Naples Federico II, 80125 Naples, Italy;
| | - Andrea Cataldo
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.S.); (G.M.); (L.T.)
- Correspondence:
| |
Collapse
|