1
|
Campos-Avelar I, García Jaime MF, Morales Sandoval PH, Parra-Cota FI, de los Santos Villalobos S. Bacillus cabrialesii subsp. cabrialesii Strain TE5: A Promising Biological Control Bacterium Against the Causal Agent of Spot Blotch in Wheat. PLANTS (BASEL, SWITZERLAND) 2025; 14:209. [PMID: 39861562 PMCID: PMC11769180 DOI: 10.3390/plants14020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Strain TE5 was isolated from a wheat (Triticum turgidum L. subsp. durum) rhizosphere grown in a commercial field of wheat in the Yaqui Valley in Mexico. In this work, we present strain TE5 as a promising biological control agent against Bipolaris sorokiniana. First, after its genome sequencing through Illumina NovaSeq, this strain showed a genome size of 4,262,927 bp, with a 43.74% G + C content, an N50 value of 397,059 bp, an L50 value of 4 bp, and 41 contigs (>500 bp). Taxonomical affiliation was carried out by using overall genome relatedness indexes (OGRIs) and the construction of a phylogenomic tree based on the whole genome. The results indicated that strain TE5 identifies with Bacillus cabrialesii subsp. cabrialesii. Genomic annotation using Rapid Annotation Using Subsystems Technology (RAST) and Rapid Prokaryotic Genome Annotation (Prokka) indicated the presence of 4615 coding DNA sequences (CDSs) distributed across 330 subsystems, which included gene families associated with biocontrol, stress response, and iron competition. Furthermore, when the antiSMASH 7.1 platform was used for genome mining, the results indicated the presence of seven putative biosynthetic gene clusters related to the production of biocontrol metabolites, namely subtilosin A, bacillibactin, fengycin, bacillaene, bacilysin, surfactin, and rhizocticin A. Moreover, the antifungal activity of strain TE5 and its cell-free extract (CFE) was evaluated against Bipolaris sorokiniana, an emergent wheat pathogen. The results of in vitro dual confrontation showed fungal growth inhibition of 67% by strain TE5. Additionally, its CFE almost completely inhibited (93%) the growth of the studied phytopathogenic fungus on liquid media. Further observations of the impact of these bacterial metabolites on fungal spore germination exhibited inhibition of fungal spores through degrading the germinative hypha, avoiding mycelium development. Finally, the protective effect of strain TE5 against Bipolaris sorokiniana was evaluated for wheat seedlings. The results showed a significant decrease (83%) in disease severity in comparison with the plant infection without inoculation of the biological control agent. Thus, this work proposes Bacillus cabrialesii subsp. cabrialesii strain TE5 as a promising biological control agent against the wheat pathogen Bipolaris sorokiniana while suggesting lipopeptides as the potential mode of action, together with plant growth and defense stimulation.
Collapse
Affiliation(s)
- Ixchel Campos-Avelar
- Instituto Tecnológico de Sonora, 5 de Febrero 818, Col. Centro, Cd. Obregón 85000, Mexico; (I.C.-A.); (P.H.M.S.)
| | | | | | - Fannie Isela Parra-Cota
- Campo Experimental Norman E. Borlaug-INIFAP, Norman E. Borlaug Km. 12, Cd. Obregón 85000, Mexico;
| | | |
Collapse
|
2
|
Moreno-Espíndola IP, Gutiérrez-Navarro A, Franco-Vásquez DC, Vega-Martínez D. Reflections on microbial genetic resources in agricultural systems. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100337. [PMID: 39844920 PMCID: PMC11751537 DOI: 10.1016/j.crmicr.2024.100337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
This paper reflects on the use of microbial genetic resources in the context of agricultural systems. The benefits of harnessing the diversity of these resources in any agricultural system are highlighted, as well as the importance of knowing and preserving native agrobiodiversity, which is deemed an essential resource for Latin America. In this region, harmful effects of irrational use of agrochemicals and monocultures on the environment, economy, and health have been brought to light. In view of the growing awareness and global interest in the development of bioinputs, rational biodiversity use, environmental crisis, cost of conventional synthetic inputs, and the right to safe and quality food, agriculture requires new tools and effective strategies in its practice. Microbial genetic resources are a potential source of relevant and suitable inputs for this purpose. Using the bibliometric technique of co-occurrence of terms with the VOSviewer tool, an analysis of 60 articles published between 2020 and 2024, collected from databases such as Scopus and Web of Science, was performed. An interest in microbial resources and their potential application in plant nutrition, production of growth regulators, defenses against pests and diseases, and tolerance to limiting environmental conditions can be appreciated. However, elucidating their complex ecological dynamics is necessary to understand them in real production contexts, thus allowing the allocation of relevant technological packages and the fair management of their use and potential benefits.
Collapse
Affiliation(s)
- Iván Pável Moreno-Espíndola
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Alonso Gutiérrez-Navarro
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | | | - Daniel Vega-Martínez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| |
Collapse
|
3
|
Han J, Destouni G, Jarsjö J, Zhang Q, Cantoni J, Zhang C. Legacy sources determine current water quality: Nitrogen and phosphorus in streams of Australia, China, Sweden and USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176407. [PMID: 39306130 DOI: 10.1016/j.scitotenv.2024.176407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Waterborne nutrient loads to downstream ecosystems integrate contributions from both active and legacy sources. Effective mitigation of nutrient pollution and eutrophication around the world requires distinction of these, largely unknown, relative load contributions. Here, the active and legacy contributions to nitrogen and phosphorus loads are distinguished in numerous streams and associated hydrological catchments of Australia, China, Sweden, and USA. The legacy contributions overshadow the active ones in all countries during 2005-2020. China and USA, with higher population densities and related overall human-activity levels, also have substantial active contributions. The median values of legacy concentration contributions of total nitrogen range from 321 (in Sweden) to 1850 μg/L (in USA); whereas the active contributions range from 2.2 (in Australia) to 315 μg/L (in USA). In China, nitrogen data are available only for ammonia, with median concentration contributions of 294 μg/L for legacy and 352 μg/L for active sources. For total phosphorus, the median values of legacy concentration contributions range from 28.8 (in Sweden) to 270 μg/L (in USA), while the active ones range from 0.1 (in Australia) to 67.3 μg/L (in USA). For relatively fast mitigation responses, China and USA need to mitigate their current nutrient emissions, while Australia and Sweden need a shift in mitigation focus to targeting their dominant legacy source contributions. The data-driven method testing in this study supports the used source distinction-attribution approach. This enables consistent source identification and tailoring of targeted measures for effective nutrient load mitigation in various regional contexts.
Collapse
Affiliation(s)
- Jianxu Han
- Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
| | - Georgia Destouni
- Department of Physical Geography, Stockholm University, Stockholm 10691, Sweden; Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Jerker Jarsjö
- Department of Physical Geography, Stockholm University, Stockholm 10691, Sweden
| | - Qin Zhang
- Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jacopo Cantoni
- Department of Physical Geography, Stockholm University, Stockholm 10691, Sweden
| | - Chi Zhang
- Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China; State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Biswas S, Chatterjee R, Rai U, Jana SK, Mukhopadhyay M. Proclaiming Plant Growth-Promoting and Antifungal Properties of Pseudomonas lurida and Bacillus velezensis Isolated from Rhododendrons of Darjeeling Hills. Curr Microbiol 2024; 81:393. [PMID: 39369364 DOI: 10.1007/s00284-024-03900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
Endophytes have drawn attentions due to their effectiveness in providing benefits to host and non-host plants. In this study endophytic bacteria were isolated from stem and leaf samples of medicinally important plants Rhododendron griffithianum Wight and Rhododendron arboreum Smith subsp. cinnamomeum (Wall. ex G. Don) grown at higher altitudes of Darjeeling, India. Two endophytic bacteria, Pseudomonas lurida RGDS03 and Bacillus velezensis RCDL12 were identified based on 16S rRNA gene sequencing analysis. The endophytes exhibited indole acetic acid (IAA), gibberellic acid (GA), siderophore production, phosphate solubilization, nitrogen-fixing abilities, though B. velezensis RCDL12 showed superior production of IAA (126.04 ± 0.40 µg/mL), GA (241.00 ± 0.44 µg/mL), and phosphate (74.4 ± 0.41 µg/mL) solubilization as compared to P. lurida RGDS03. Purity of extracted IAA from these two endophytes was confirmed by HPLC and LC-MS analysis. In this study, P. lurida RGDS03 inhibited mycelial growth of two tested phytopathogens Phytophthora sp. and Pestalotiopsis sp. of broad host range. However, only against Pestalotiopsis sp. did B. velezensis RCDL12 exhibit antifungal activity. Study was conducted on growth promotion capabilities of isolates on rice and mung bean seedlings. P. lurida RGDS03, B. velezensis RCDL12 and consortium of both the strains reported with promising growth promotion on both rice (85-97%) and mung bean (86-99%) in terms of their seed germination, vegetative growth (root and shoot length, fresh and dry weight), and chlorophyll content as compared to the control plants (untreated). This study has emphasized growth-promoting and biocontrol activities of endophytic bacteria from rhododendrons, and application to enhance crop development for sustainable agriculture.
Collapse
Affiliation(s)
- Shreyasi Biswas
- Department of Microbiology, Lady Brabourne College, Kolkata, West Bengal, India
| | - Rajeshwari Chatterjee
- Deapartment of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Upakar Rai
- Department of Botany, St Joseph's College, Darjeeling, West Bengal, India
| | - Santosh Kumar Jana
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, Kolkata, West Bengal, India
| | - Mahuya Mukhopadhyay
- Department of Microbiology, Lady Brabourne College, Kolkata, West Bengal, India.
| |
Collapse
|
5
|
Beckmann A, Strassner C, Kwanbunjan K. Thailand - how far are we from achieving a healthy and sustainable diet? A longitudinal ecological study. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 29:100478. [PMID: 39315384 PMCID: PMC11418144 DOI: 10.1016/j.lansea.2024.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Background Newly industrialized countries like Thailand have been influenced by globalization, westernization, and urbanization over the last decades, leading to changes in dietary habits as well as food production. Consequences of these changes include rising non-communicable diseases (NCDs) and environmental degradation, which are defined as the leading global challenges today. The objectives of this study are to identify Thailand's dietary changes, considering health and sustainability aspects, and to determine correlations between these changes and NCD cases as well as environmental impacts (GHG emissions, land-, nitrogen-, phosphorus-use). In this way, diet-related adjustments can be identified to promote planetary and human health. Methods In this longitudinal ecological study, relative differences between the average food consumption in Thailand and the reference values of a healthy and sustainable diet, the Planetary Health Diet (PHD), were calculated. Furthermore, a bivariate correlation analysis was conducted, using data, based on Food and Agriculture Organization's (FAO's) data, results from the Global Burden of Disease Study (GBD), and PHD's reference values. Findings The consumption quantities of meat, eggs, saturated oils, and sugar increased significantly since 1961. The food groups, that have exceeded PHD's upper reference values, include sugar (+452%), red meat (+220%), grains (+143%), saturated oils (+20%) and eggs (+19%), while vegetables (-63%), and unsaturated oils (-61%) have fallen below PHD's lower limits. Concerning the bivariate correlation analyses, all investigated variables show significant correlations. The most significant correlations were found in NCD cases (r = 0.903, 95% CI 0.804-0.953), nitrogen use (r = 0.872, 95% CI 0.794-0.922), and land use (r = 0.870, 95% CI 0.791-0.921), followed by phosphorus use (r = 0.832, 95% CI 0.733-0.897), and green-house gas (GHG) emissions (r = 0.479, 95% CI 0.15-0.712). Interpretation The results show, that the determined differences of unhealthy or unsustainable food groups have increased concurrently with NCD cases and environmental impacts over the last decades in Thailand. A shift towards a reduced intake of sugar, red meat, grains, saturated oils and eggs along with an increase in vegetables and unsaturated oils, might support environmental and human health. Funding None.
Collapse
Affiliation(s)
- Alice Beckmann
- Department of Food Nutrition Facilities, FH Münster University of Applied Sciences, Corrensstraße 25, Münster, 48149, Germany
| | - Carola Strassner
- Department of Food Nutrition Facilities, FH Münster University of Applied Sciences, Corrensstraße 25, Münster, 48149, Germany
| | - Karunee Kwanbunjan
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| |
Collapse
|
6
|
Liu Y, Wu S, Qin X, Yu M, Shabala S, Zheng X, Hu C, Tan Q, Xu S, Sun X. Combined dynamic transcriptome and flavonoid metabolome reveal the role of Mo nanoparticles in the nodulation process in soybean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173733. [PMID: 38851347 DOI: 10.1016/j.scitotenv.2024.173733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Symbiotic nitrogen fixation can reduce the impact of agriculture on the environment by reducing fertilizer input. The rapid development of nanomaterials in agriculture provides a new prospect for us to improve the biological nitrogen fixation ability of leguminous crops. Molybdenum is an important component of nitrogenase, and the potential application of MoO3NPs in agriculture is largely unexplored. In this study, on the basis of verifying that MoO3NPs can improve the nitrogen fixation ability of soybean, the effects of MoO3NPs on the symbiotic nitrogen fixation process of soybean were investigated by using dynamic transcriptome and targeted metabolome techniques. Here we showed that compared with conventional molybdenum fertilizer, minute concentrations of MoO3NPs (0.01-0.1 mg kg-1) could promote soybean growth and nitrogen fixation efficiency. The nodules number, fresh nodule weight and nitrogenase activity of 0.1 mg kg-1 were increased by 17 %, 14 % and 27 %, and plant nitrogen accumulation increased by 17 %. Compared with conventional molybdenum fertilizer, MoO3NPs had a greater effect on apigenin, kaempferol and other flavonoid, and the expression of nodulation related genes such as ENOD93, F3'H. Based on WGCNA analysis, we identified a core gene GmCHS9 that was positively responsive to molybdenum and was highly expressed during MoO3NPs induced nodulation. MoO3NPs could improve the nitrogen fixation ability of soybean by promoting the secretion of flavonoids and the expression of key genes. This study provided a new perspective for the nano-strengthening strategy of nodules development and flavonoid biosynthesis by molybdenum.
Collapse
Affiliation(s)
- Yining Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoming Qin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
| | - Xiaomei Zheng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shoujun Xu
- Guangdong Agricultural Environment and Cultivated Land Quality Protection Center, Guangdong Agricultural and Rural Investment Project Center, Guangzhou 510500, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, PR China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, PR China.
| |
Collapse
|
7
|
Cardarelli M, Ceccarelli AV, El Nakhel C, Rouphael Y, Salehi H, Ganugi P, Zhang L, Luigi L, Pii Y, Choi S, Kim HJ, Colla G. Foliar applications of a Malvaceae-derived protein hydrolysate and its fractions differentially modulate yield and functional traits of tomato under optimal and suboptimal nitrogen application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7603-7616. [PMID: 38804737 DOI: 10.1002/jsfa.13596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/04/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Protein hydrolysates (PHs) can enhance plant nitrogen nutrition and improve the quality of vegetables, depending on their bioactive compounds. A tomato greenhouse experiment was conducted under both optimal (14 mM) and suboptimal (2 mM) nitrogen (N-NO3) conditions. Tomatoes were treated with a new Malvaceae-derived PH (MDPH) and its molecular fractions (MDPH1, >10 kDa; MDPH2, 1-10 kDa and MDPH3, <1 kDa). RESULTS Under optimal N conditions, the plants increased biomass and fruit yield, and showed a higher photosynthetic pigment content in leaves in comparison with suboptimal N, whereas under N-limiting conditions, an increase in dry matter, soluble solid content (SSC) and lycopene, a reduction in firmness, and changes in organic acid and phenolic compounds were observed. With 14 mM N-NO3, MDPH3 stimulated an increase in dry weight and increased yield components and lycopene in the fruit. The MDPH2 fraction also resulted in increased lycopene accumulation in fruit under 14 mM N-NO3. At a low N level, the PH fractions showed distinct effects compared with the whole MDPH and the control, with an increase in biomass for MDPH1 and MDPH2 and a higher pigment content for MDPH3. Regardless of N availability, all the fractions affected fruit quality by increasing SSC, whereas MDPH2 and MDPH3 modified organic acid content and showed a higher concentration of flavonols, lignans, and stilbenes. CONCLUSION The molecular weight of the peptides modifies the effect of PHs on plant performance, with different behavior depending on the level of N fertilization, confirming the effectiveness of fractioning processes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Christophe El Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Hajar Salehi
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Catholic University of the Sacred Heart, Piacenza, Italy
| | - Paola Ganugi
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Catholic University of the Sacred Heart, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Catholic University of the Sacred Heart, Piacenza, Italy
| | - Lucini Luigi
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Catholic University of the Sacred Heart, Piacenza, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Bolzano, Italy
| | - Seunghyun Choi
- Texas A&M AgriLife Research and Extension Center at Uvalde, Uvalde, TX, USA
| | - Hye-Ji Kim
- Agri-tech and Food Innovation Department, Urban Food Solutions Division, Singapore Food Agency, Singapore, Singapore
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
8
|
Rizwan M, Tanveer H, Ali MH, Sanaullah M, Wakeel A. Role of reactive nitrogen species in changing climate and future concerns of environmental sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51147-51163. [PMID: 39138725 DOI: 10.1007/s11356-024-34647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
The nitrogen (N) cycle is an intricate biogeochemical process that encompasses the conversion of several chemical forms of N. Given its role in food production, the need for N for life on Earth is obvious. However, the release of reactive nitrogen (Nr) species throughout different biogeochemical processes contributes to atmospheric pollution. Several human activities generate many species, including ammonia, nitrous oxide (N2O), nitric oxide, and nitrate. The primary reasons for this change are the use of nitrogen-based fertilizers, industrial activities, and the burning of fossil fuels. N2O poses a significant threat to environmental sustainability on our planet, with its global warming potential approximately 298 times greater than that of CO2. It has direct or indirect impacts on the environment, agroecosystem, and human life on earth. Solar, hydroelectric, geothermal, and wind turbines must be used to reduce Nr emissions. In addition, enterprises should install catalytic converters to minimize nitrogen gas emissions. To reduce Nr emissions, strategic interventions like fertilizer balancing are needed. This work will serve as a comprehensive guide for researchers, academics, and policymakers. Additionally, it will also assist social workers in emphasizing the Nr issue to the public in order to raise awareness within worldwide society.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Hurain Tanveer
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Hayder Ali
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Wakeel
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
9
|
Ciriello M, Rajabi Hamedani S, Rouphael Y, Colla G, Cardarelli M. Enriching NPK Mineral Fertilizer with Plant-Stimulating Peptides Increases Soilless Tomato Production, Grower Profit, and Environmental Sustainability. PLANTS (BASEL, SWITZERLAND) 2024; 13:2004. [PMID: 39065531 PMCID: PMC11280885 DOI: 10.3390/plants13142004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
The need to increase agricultural production to feed a steadily growing population may clash with the more environmentally friendly but less efficient production methods required. Therefore, it is important to try to reduce the use of chemical inputs without compromising production. In this scenario, natural biostimulants have become one of the most sought-after and researched technologies. In the present study, the results of a greenhouse experiment on hydroponic tomatoes (Solanum lycopersicum L.) are presented, which involved comparing the use of ordinary NPK fertilizer (Cerbero®) with the use of NPK fertilizers enriched with 0.5% protein hydrolysate of plant origin (Cerbero Green®) at both standard (100%) and reduced (70%) fertilization rates. The results highlight how the use of Cerbero Green® fertilizers improves the production performance of tomatoes. More specifically, they show that the use of Cerbero Green® leads to higher marketable yields, especially under reducing fertilizer use, ensuring a positive net change in profit for the grower. In addition, carbon footprint analysis has revealed that the use of Cerbero Green® reduces the environmental impact of hydroponic tomato growing practices by up to 8%. The observed higher yield of hydroponically grown tomatoes even with reduced fertilization rates underlines once again the key role of natural biostimulants in increasing both the economic and environmental sustainability of horticultural production.
Collapse
Affiliation(s)
- Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (Y.R.)
| | - Sara Rajabi Hamedani
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo De Lellis Snc, 01100 Viterbo, Italy;
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (Y.R.)
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo De Lellis Snc, 01100 Viterbo, Italy;
| | - Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo De Lellis Snc, 01100 Viterbo, Italy;
| |
Collapse
|
10
|
Colman SL, Salcedo MF, Iglesias MJ, Alvarez VA, Fiol DF, Casalongué CA, Foresi NP. Chitosan microparticles mitigate nitrogen deficiency in tomato plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108728. [PMID: 38772165 DOI: 10.1016/j.plaphy.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
Nitrogen (N) deficiency is one of the most prevalent nutrient deficiencies in plants, and has a significant impact on crop yields. In this work we aimed to develop and evaluate innovative strategies to mitigate N deficiency. We studied the effect of supplementing tomato plants grown under suboptimal N nutrition with chitosan microparticles (CS-MPs) during short- and long-term periods. We observed that the supplementation with CS-MPs prevented the reduction of aerial biomass and the elongation of lateral roots (LR) triggered by N deficiency in tomato plantlets. In addition, levels of nitrates, amino acids and chlorophyll, which decreased drastically upon N deficiency, were either partial or totally restored upon CS-MPs addition to N deficient media. Finally, we showed that CS-MPs treatments increased nitric oxide (NO) levels in root tips and caused the up-regulation of genes involved in N metabolism. Altogether, we suggest that CS-MPs enhance the growth and development of tomato plants under N deficiency through the induction of biochemical and transcriptional responses that lead to increased N metabolism. We propose treatments with CS-MPs as an efficient practice focused to mitigate the nutritional deficiencies in N impoverished soils.
Collapse
Affiliation(s)
- Silvana Lorena Colman
- Instituto de Investigaciones Biológicas (IIB), UE CONICET-UNMdP, FCEyN, Mar Del Plata, Argentina.
| | - María Florencia Salcedo
- Instituto de Investigaciones Biológicas (IIB), UE CONICET-UNMdP, FCEyN, Mar Del Plata, Argentina
| | - María José Iglesias
- Instituto de Investigaciones Biológicas (IIB), UE CONICET-UNMdP, FCEyN, Mar Del Plata, Argentina
| | - Vera Alejandra Alvarez
- Instituto de Investigación en Ciencia & Tecnología de Materiales (INTEMA), UE CONICET-UNMdP, Grupo Materiales Compuestos Termoplásticos (CoMP), Mar Del Plata, Argentina
| | - Diego Fernando Fiol
- Instituto de Investigaciones Biológicas (IIB), UE CONICET-UNMdP, FCEyN, Mar Del Plata, Argentina
| | | | - Noelia Pamela Foresi
- Instituto de Investigaciones Biológicas (IIB), UE CONICET-UNMdP, FCEyN, Mar Del Plata, Argentina.
| |
Collapse
|
11
|
Valle-Romero P, Castellanos EM, Luque CJ, Flores-Duarte NJ, Romano-Rodríguez E, Redondo-Gómez S, Rodríguez-Llorente ID, Pajuelo E, Mateos-Naranjo E. Nitrate modulates the physiological tolerance responses of the halophytic species Sarcocornia fruticosa to copper excess. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108569. [PMID: 38552261 DOI: 10.1016/j.plaphy.2024.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024]
Abstract
Coexistence impact of pollutants of different nature on halophytes tolerance to metal excess has not been thoroughly examined, and plant functional responses described so far do not follow a clear pattern. Using the Cu-tolerant halophyte Sarcocornia fruticosa as a model species, we conducted a greenhouse experiment to evaluate the impact of two concentration of copper (0 and 12 mM CuSO4) in combination with three nitrate levels (2, 14 and 50 mM KNO3) on plant growth, photosynthetic apparatus performance and ROS-scavenging enzymes system. The results revealed that S. fruticosa was able to grow adequately even when exposed to high concentrations of copper and nitrate. This response was linked to the plant capacity to uptake and retain a large amount of copper in its roots (up to 1500 mg kg-1 Cu), preventing its transport to aerial parts. This control of translocation was further magnified with nitrate concentration increment. Likewise, although Cu excess impaired S. fruticosa carbon assimilation capacity, the plant was able to downregulate its light-harvesting complexes function, as indicated its lowers ETR values, especially at 12 mM Cu + 50 mM NO3. This downregulation would contribute to avoid excess energy absorption and transformation. In addition, this strategy of avoiding excess energy was accompanied by the upregulation of all ROS-scavenging enzymes, a response that was further enhanced by the increase in nitrate concentration. Therefore, we conclude that the coexistence of nitrate would favor S. fruticosa tolerance to copper excess, and this effect is mediated by the combined activation of several tolerance mechanisms.
Collapse
Affiliation(s)
- Pedro Valle-Romero
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080 Sevilla, Spain
| | - Eloy Manuel Castellanos
- Departamento de Ciencias Integradas, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva, Spain
| | - Carlos J Luque
- Departamento de Ciencias Integradas, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva, Spain
| | - Noris J Flores-Duarte
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 1095, 41080 Sevilla, Spain
| | - Elena Romano-Rodríguez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080 Sevilla, Spain
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080 Sevilla, Spain
| | - Ignacio D Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 1095, 41080 Sevilla, Spain
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 1095, 41080 Sevilla, Spain
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080 Sevilla, Spain.
| |
Collapse
|
12
|
Gonzalez Zapata J, Vangipuram B, Erfani T. Harnessing market based mechanisms to improve water quality: Water quality trading policies in the river Alde, UK. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120771. [PMID: 38565035 DOI: 10.1016/j.jenvman.2024.120771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/21/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Nitrogen fertiliser in agriculture continues to be one of the largest contributors to water pollution driven by the global food demand. Consequently, policies designed to tackle nitrogen pollution tend to be focused on the farm level. Applying mitigation measures requires knowledge, local labour and financial investment to achieve desired goals. Influencing farming activity comes with challenges as policies result in economic losses. We propose Water Quality Trading (WQT) to minimize the cost of controlling water pollution and develop it for policy recommendations in the River Alde catchment in Suffolk. We apply WQT to three scenarios named Reference Pollution Target, Livestock Target Plan and Variation of Farming. Our findings demonstrate that WQT can reduce farmers nitrogen load by 8%, 7% and 18% respectively from the baseline of 6 mg/L. The scenario simulations show a net revenue increase of 6%, 5% and 18% respectively. Our study demonstrates the effectiveness of the WQT approach in reducing water pollution, promoting sustainable agriculture and meeting water management goals.
Collapse
Affiliation(s)
- Jamie Gonzalez Zapata
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, Gower Street WC1E 6BT, United Kingdom.
| | - Bharadwaj Vangipuram
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, Gower Street WC1E 6BT, United Kingdom
| | - Tohid Erfani
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, Gower Street WC1E 6BT, United Kingdom.
| |
Collapse
|
13
|
Lei H, Fan Y, Xiao Z, Jin C, Chen Y, Pan H. Comprehensive Evaluation of Tomato Growth Status under Aerated Drip Irrigation Based on Critical Nitrogen Concentration and Nitrogen Nutrient Diagnosis. PLANTS (BASEL, SWITZERLAND) 2024; 13:270. [PMID: 38256824 PMCID: PMC10818335 DOI: 10.3390/plants13020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
In order to provide a theoretical basis for the rational application of nitrogen fertilizer for tomatoes under aerated drip irrigation, a model of the critical nitrogen dilution curve was established in this study, and the feasibility of the nitrogen nutrition index (NNI) for the real-time diagnosis and evaluation of the nitrogen nutrient status was explored. The tomato variety "FENOUYA" was used as the test crop, and aerated drip irrigation was adopted by setting three levels of aeration rates, namely, A1 (dissolved oxygen concentration of irrigation water is 5 mg L-1), A2 (dissolved oxygen concentration of irrigation water is 15 mg L-1), and A3 (dissolved oxygen concentration of irrigation water is 40 mg L-1), and three levels of nitrogen rates, namely, N1 (120 kg ha-1), N2 (180 kg ha-1) and N3 (240 kg ha-1). The model of the critical nitrogen concentration dilution of tomatoes under different aerated treatments was established. The results showed that (1) the dry matter accumulation of tomatoes increased with the increase in the nitrogen application rate in a certain range and it showed a trend of first increase and then decrease with the increase in aeration rate. (2) As the reproductive period progressed, the nitrogen concentration in tomato plants showed a decreasing trend. (3) There was a power exponential relationship between the critical nitrogen concentration of tomato plant growth and above-ground biomass under different levels of aeration and nitrogen application rate, but the power exponential curves were characterized by A1 (Nc = 15.674DM-0.658), A2 (Nc = 101.116DM-0.455), A3 (Nc = 119.527DM-0.535), N1 (Nc = 33.819DM-0.153), N2 (Nc = 127.759DM-0.555) and N3 (Nc = 209.696DM-0.683). The standardized root mean square error (n-RMSE) values were 0.08%, 3.68%, 3.79% 0.50%, 1.08%, and 0.55%, which were less than 10%, and the model has good stability. (4) The effect of an increased nitrogen application rate on the critical nitrogen concentration dilution curve was more significant than that of the increase in aeration rate. (5) A nitrogen nutrition index model was built based on the critical nitrogen concentration model to evaluate the nitrogen nutritional status of tomatoes, whereby 180 kg ha-1 was the optimal nitrogen application rate, and 15 mg L-1 dissolved oxygen of irrigation water was the optimal aeration rate for tomatoes.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongwei Pan
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (H.L.); (Y.F.); (Z.X.); (C.J.); (Y.C.)
| |
Collapse
|
14
|
Wang C, Xie Y, Tan Z. Soil potassium depletion in global cereal croplands and its implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167875. [PMID: 37865238 DOI: 10.1016/j.scitotenv.2023.167875] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
Nitrogen (N), phosphorus (P) and potassium (K) are of the most essential nutrients for crop production, and inputs of their fertilizers have been a direct and effective way to replenish their removal from crop harvest. However, the global soil K status is scarcely documented. This study attempts to evaluate the soil K deficit in global cereal croplands and potential effects of better K fertilizer management. We hypothesized that historical records of cereal yield and K fertilizer use rate (K-FUR) can be used to understand how soil K deficit is related to the cumulative insufficient K replenishment. Evidently, the cereal production has been depleting soil K at a rate much higher than its replenishment, resulting in soil K deficit across 61 % of the global cereal harvest area with an average K-FUR (kg ha-1) of 7.1 which is much lower than the ∼27 required to balance N and P supply for an optimal grain yield. Replenishing K for all K-deficit areas based on current K-FUR classes could potentially add about 601 Mt. grains to the global food production: 386 Mt. from 153 M ha croplands with K-FUR class 10-20 kg ha-1; 90 Mt. from 131 M ha with K-FUR class 3-10 kg ha-1; and 126 Mt. from 158 M ha with K-FUR class <3 kg ha-1. Global soil K deficit is a long-standing and ubiquitous issue, and to replenish K for all K-deficit areas as proposed herein can be a feasible way for improving cereal yield by about 49 %. Increasing awareness of public and policy-makers about this threat and potential will help lead to a judicious allocation of limited potash resources and to a better return on any financial and humanitarian aids for eradicating poverty and hunger worldwide while also advancing global food security and agricultural sustainability.
Collapse
Affiliation(s)
- Changwei Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yingkai Xie
- South China Academy of Natural Resources Science and Technology, Guangzhou 510610, China
| | - Zhengxi Tan
- South China Academy of Natural Resources Science and Technology, Guangzhou 510610, China.
| |
Collapse
|
15
|
Maniero RA, Koltun A, Vitti M, Factor BG, de Setta N, Câmara AS, Lima JE, Figueira A. Identification and functional characterization of the sugarcane ( Saccharum spp.) AMT2-type ammonium transporter ScAMT3;3 revealed a presumed role in shoot ammonium remobilization. FRONTIERS IN PLANT SCIENCE 2023; 14:1299025. [PMID: 38098795 PMCID: PMC10720369 DOI: 10.3389/fpls.2023.1299025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
Sugarcane (Saccharum spp.) is an important crop for sugar and bioethanol production worldwide. To maintain and increase sugarcane yields in marginal areas, the use of nitrogen (N) fertilizers is essential, but N overuse may result in the leaching of reactive N to the natural environment. Despite the importance of N in sugarcane production, little is known about the molecular mechanisms involved in N homeostasis in this crop, particularly regarding ammonium (NH4 +), the sugarcane's preferred source of N. Here, using a sugarcane bacterial artificial chromosome (BAC) library and a series of in silico analyses, we identified an AMMONIUM TRANSPORTER (AMT) from the AMT2 subfamily, sugarcane AMMONIUM TRANSPORTER 3;3 (ScAMT3;3), which is constitutively and highly expressed in young and mature leaves. To characterize its biochemical function, we ectopically expressed ScAMT3;3 in heterologous systems (Saccharomyces cerevisiae and Arabidopsis thaliana). The complementation of triple mep mutant yeast demonstrated that ScAMT3;3 is functional for NH3/H+ cotransport at high availability of NH4 + and under physiological pH conditions. The ectopic expression of ScAMT3;3 in the Arabidopsis quadruple AMT knockout mutant restored the transport capacity of 15N-NH4 + in roots and plant growth under specific N availability conditions, confirming the role of ScAMT3;3 in NH4 + transport in planta. Our results indicate that ScAMT3;3 belongs to the low-affinity transport system (Km 270.9 µM; Vmax 209.3 µmol g-1 root DW h-1). We were able to infer that ScAMT3;3 plays a presumed role in NH4 + source-sink remobilization in the shoots via phloem loading. These findings help to shed light on the functionality of a novel AMT2-type protein and provide bases for future research focusing on the improvement of sugarcane yield and N use efficiency.
Collapse
Affiliation(s)
- Rodolfo A. Maniero
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Alessandra Koltun
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marielle Vitti
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Bruna G. Factor
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Nathalia de Setta
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Amanda S. Câmara
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Joni E. Lima
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
16
|
Ippolito T, Balkovič J, Skalsky R, Folberth C, Krisztin T, Neff J. Predicting spatiotemporal soil organic carbon responses to management using EPIC-IIASA meta-models. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118532. [PMID: 37454447 DOI: 10.1016/j.jenvman.2023.118532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
The management of Soil Organic Carbon (SOC) is a critical component of both nature-based solutions for climate change mitigation and global food security. Agriculture has contributed substantially to a reduction in global SOC through cultivation, thus there has been renewed focus on management practices which minimize SOC losses and increase SOC gain as pathways towards maintaining healthy soils and reducing net greenhouse gas emissions. Mechanistic models are frequently used to aid in identifying these pathways due to their scalability and cost-effectiveness. Yet, they are often computationally costly and rely on input data that are often only available at coarse spatial resolutions. Herein, we build statistical meta-models of a multifactorial crop model in order to both (a) obtain a simplified model response and (b) explore the biophysical determinants of SOC responses to management and the geospatial heterogeneity of SOC dynamics across Europe. Using 5600 unique simulations of crop growth from the gridded Environmental Policy Integrated Climate-based Gridded Agricultural Model (EPIC-IIASA GAM) covering 86,000 simulation units across Europe, we build multiple polynomial regression ensemble meta-models for unique combinations of climate and soil across Europe in order to predict SOC responses to varying management intensities. We find that our biophysically-explicit meta models are highly accurate (R2 = 0.97) representations of the full mechanistic model and can be used in lieu of the full EPIC-IIASA GAM model for the estimation of SOC responses to cropland management. Model stratification by means of climate and soil clustering improved the performance of the meta-models compared to the full EU-scale model. In regional and local validations of the meta-model predictions, we find that the meta-models largely capture broad SOC dynamics such as the linear nature of SOC responses to residue application, yet they often underestimate the magnitude of SOC responses to management. Furthermore, we find notable differences between the results from the biophysically-specific models throughout Europe, which point to spatially-distinct SOC responses to management choices such as nitrogen fertilizer application rates and residue retention that illustrate the potential for these models to be used for future management applications. While more accurate input data, calibration, and validation will be needed to accurately predict SOC change, we demonstrate the use of our meta-models for biophysical cluster and field study scale analyses of broad SOC dynamics with basically zero fine-tuning of the models needed. This work provides a framework for simplifying large-scale agricultural models and identifies the opportunities for using these meta-models for assessing SOC responses to management at a variety of scales.
Collapse
Affiliation(s)
- Tara Ippolito
- The Environmental Studies Program, University of Colorado at Boulder, Boulder, CO, 80309, USA.
| | - Juraj Balkovič
- International Institute for Applied Systems Analysis, Biodiversity and Natural Resources Program, Schlossplatz 1, A-2361, Laxenburg, Austria
| | - Rastislav Skalsky
- International Institute for Applied Systems Analysis, Biodiversity and Natural Resources Program, Schlossplatz 1, A-2361, Laxenburg, Austria
| | - Christian Folberth
- International Institute for Applied Systems Analysis, Biodiversity and Natural Resources Program, Schlossplatz 1, A-2361, Laxenburg, Austria
| | - Tamas Krisztin
- International Institute for Applied Systems Analysis, Biodiversity and Natural Resources Program, Schlossplatz 1, A-2361, Laxenburg, Austria; Paris Lodron University of Salzburg, Department of Economics, Kapitelgasse 4-6, A-5020, Salzburg, Austria
| | - Jason Neff
- The Environmental Studies Program, University of Colorado at Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
17
|
Garcia-Gomez P, Olmos-Ruiz R, Nicolas-Espinosa J, Carvajal M. Effects of low nitrogen supply on biochemical and physiological parameters related to nitrate and water, involving nitrate transporters and aquaporins in Citrus macrophylla. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:944-955. [PMID: 37357019 DOI: 10.1111/plb.13553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
A reduction in chemical N-based fertillizer was investigated in Citrus plants. As N and water uptake are connected, the relationship between the physiological response to reductions in N was studied in relation to N metabolism and water. We examined the response of new and mature leaves and roots of Citrus macrophylla, grown under controlled conditions, and given different concentrations of N: 16, 8 or 4 mM. Differences in growth and development were determined for biochemical (mineral content, photosynthetic pigments, proteins and nitrate and nitrite reductase activity), physiological (photosynthesis and transpiration), and molecular (relative expression of nitrate transporters and aquaporins) parameters. Only plants given 4 mM N showed a reduction in growth. Although there were changes in NR activity, protein synthesis, and chlorophyll content in both 8 and 4 mM N plants that were highly related to aquaporin and nitrate transporter expression. The results revealed new findings on the relationship between aquaporins and nitrate transporters in new leaves of Citrus, suggesting a mechanism for ensuring growth under low N when new tissues are being formed.
Collapse
Affiliation(s)
- P Garcia-Gomez
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - R Olmos-Ruiz
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - J Nicolas-Espinosa
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - M Carvajal
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
18
|
García-López JV, Redondo-Gómez S, Flores-Duarte NJ, Zunzunegui M, Rodríguez-Llorente ID, Pajuelo E, Mateos-Naranjo E. Exploring through the use of physiological and isotopic techniques the potential of a PGPR-based biofertilizer to improve nitrogen fertilization practices efficiency in strawberry cultivation. FRONTIERS IN PLANT SCIENCE 2023; 14:1243509. [PMID: 37780506 PMCID: PMC10540466 DOI: 10.3389/fpls.2023.1243509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
The use of microorganisms as a biofertilizer in strawberry has focused mainly on pathogen biocontrol, which has led to the underestimation of the potential of microorganisms for the improvement of nutritional efficiency in this crop. A study was established to investigate the impact of a plant growth-promoting rhizobacteria (PGPR) based biofertilizer integrated by self-compatible stress tolerant strains with multiple PGP properties, including atmospheric nitrogen fixation, on strawberry (Fragaria × ananassa cv. Rociera) tolerance to N deficiency in terms of growth and physiological performance. After 40 days of nitrogen fertilization shortage, inoculated plants were able to maintain root development and fertility structures (i.e. fruits and flowers) at a level similar to plants properly fertilized. In addition, inoculation lessened the negative impact of nitrogen deficiency on leaves' dry weight and relative water content. This effect was mediated by a higher root/shoot ratio, which would have allowed them to explore larger volumes of soil for the acquisition of water. Moreover, inoculation was able to buffer up to 50% of the reduction in carbon assimilation capacity, due to its positive effect on the diffusion efficiency of CO2 and the biochemical capacity of photosynthesis, as well as on the activity of photosystem II light harvesting. Furthermore, the higher leaf C/N ratio and the maintained δ15N values close to control plants were related to positive bacterial effects at the level of the plant nutritional balance. Despite these positive effects, the application of the bacterial inoculum was unable to completely counteract the restriction of fertilization, being necessary to apply a certain amount of synthetic fertilizer for the strawberry nutrition. However, according to our results, the complementary effect of this PGPR-based biofertilizer could provide a higher efficiency in environmental and economic yields on this crop.
Collapse
Affiliation(s)
- Jesús V. García-López
- Servicio General de Invernadero, Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla (CITIUS), Seville, Spain
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Noris J. Flores-Duarte
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - María Zunzunegui
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
19
|
Wurzer GK, Bacher M, Musl O, Kohlhuber N, Sulaeva I, Kelz T, Fackler K, Bischof RH, Hettegger H, Potthast A, Rosenau T. From liquid to solid-state, solvent-free oxidative ammonolysis of lignins – an easy, alternative approach to generate “N-lignins” †. RSC Adv 2023; 13:9479-9490. [PMID: 36968046 PMCID: PMC10034478 DOI: 10.1039/d3ra00691c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/12/2023] [Indexed: 03/25/2023] Open
Abstract
A new chemical modification protocol to generate N-lignins is presented, based on Indulin AT and Mg2+-lignosulfonate. The already known ammonoxidation reaction in liquid phase was used as a starting point and stepwise optimised towards a full solid-state approach. The “classical” liquid ammonoxidation products, the transition products from the optimization trials, as well as the “solid-state” products were comprehensively analysed and compared to the literature. The N-lignins obtained with the conventional ammonoxidation protocol showed the same properties as reported. Their molar mass distributions and the hydroxy group contents, hitherto not accessible due to solubility problems, were measured according to a recently reported protocol. N-Indulin showed an N-content up to 11 wt% and N-lignosulfonate up to 16 wt%. The transition experiments from liquid to solid-state gave insights into the influence of chemical components and reaction conditions. The use of a single chemical, the urea-hydrogen peroxide complex (UHP, “carbamide peroxide”), was sufficient to generate N-lignins with satisfying N-content. This chemical acts both as an N-source and as the oxidant. Following the optimization, a series of solid-state ammonoxidation tests were carried out. High N-contents of 10% in the case of Indulin and 11% in the case of lignosulfonate were obtained. By varying the ratio of UHP to lignin, the N-content can be controlled. Structural analysis showed that the N is organically bound to the lignin, similar to the “classical” ammonoxidation products obtained under homogeneous conditions. Overall, a new ammonoxidation protocol was developed which does not require an external gas supply nor liquids or dissolved reactants. This opens the possibility for carrying out the lignin modification in closed continuous reactor systems, such as extruders. The new, facile solid-state protocol will hopefully help N-lignins to find more consideration as a fertilizing material and in soil-improving materials. An alternative ammonoxidation protocol was developed. With this new approach in “solid-state” mode, one single solid reagent is sufficient to equip lignin with different N-functionalities.![]()
Collapse
Affiliation(s)
- Gerhild K. Wurzer
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 24A-3430 TullnAustria
| | - Markus Bacher
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 24A-3430 TullnAustria
| | - Oliver Musl
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 24A-3430 TullnAustria
- Department of Chemical and Biological Engineering, Biobased Colloids and Materials, UBC University of British Columbia, Vancouver2385 East MallVancouverCanada
| | - Nadine Kohlhuber
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 24A-3430 TullnAustria
| | - Irina Sulaeva
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 24A-3430 TullnAustria
- Core Facility Analysis of Lignocellulosics (ALICE), University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Straße 24A-3430 TullnAustria
| | - Theres Kelz
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 24A-3430 TullnAustria
| | - Karin Fackler
- Lenzing AG, Research & DevelopmentA-4860 LenzingAustria
| | | | - Hubert Hettegger
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 24A-3430 TullnAustria
| | - Antje Potthast
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 24A-3430 TullnAustria
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 24A-3430 TullnAustria
- Johan Gadolin Process Chemistry Centre, Åbo Akademi UniversityPorthansgatan 3FI-20500 ÅboFinland
| |
Collapse
|
20
|
Lukas S, Singh S, DeVetter LW, Davenport JR. Leaf Tissue Macronutrient Standards for Northern Highbush Blueberry Grown in Contrasting Environments. PLANTS (BASEL, SWITZERLAND) 2022; 11:3376. [PMID: 36501414 PMCID: PMC9735984 DOI: 10.3390/plants11233376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Leaf tissue testing is a useful tool for monitoring nutrient requirements in northern highbush blueberry (Vaccinium corymbosum L.; abbreviated as "blueberry") but may require adaptation to specific growing environments. The objective of this study was to evaluate macronutrient concentrations in early-, mid-, and late-season blueberry cultivars grown in two contrasting environments, specifically eastern and western Washington. Climate and soil conditions between these two regions differ tremendously with eastern Washington being more arid with naturally calcareous soils lower in soil organic matter. Sampling was conducted over a 3-year period in commercial fields. Leaf tissue nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) and sulfur (S) concentrations were affected by year (Y), growing region (R), cultivar (C), and Day of Year (DOY) that the samples were collected with many interactions. Leaf nutrient concentrations were higher, on average, in western than eastern Washington except for Ca and Mg, indicating sufficiency levels should differ between these regions. Leaf macronutrients generally stabilized between DOY 212-243 (1-31 August), suggesting this period is optimal for tissue sampling. Findings from this study demonstrate the importance of considering regional effects and may be applicable for blueberry cultivated in similar pedo-climactic conditions around the world.
Collapse
Affiliation(s)
- Scott Lukas
- Department of Horticulture, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA
| | - Shikha Singh
- Department of Horticulture, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA
| | - Lisa Wasko DeVetter
- Department of Horticulture, Northwestern Washington Research and Extension Center, Washington State University, Mount Vernon, WA 98273, USA
| | - Joan R. Davenport
- Department of Crop and Soil Sciences, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| |
Collapse
|
21
|
Thorburn PJ, Biggs JS, McCosker K, Northey A. Assessing water quality for cropping management practices: A new approach for dissolved inorganic nitrogen discharged to the Great Barrier Reef. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115932. [PMID: 35973290 DOI: 10.1016/j.jenvman.2022.115932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Applications of nitrogen (N) fertiliser to agricultural lands impact many marine and aquatic ecosystems, and improved N fertiliser management is needed to reduce these water quality impacts. Government policies need information on water quality and risk associated with improved practices to evaluate the benefits of their adoption. Policies protecting Great Barrier Reef (GBR) ecosystems are an example of this situation. We developed a simple metric for assessing the risk of N discharge from sugarcane cropping, the biggest contributor of dissolved inorganic N to the GBR. The metric, termed NiLRI, is the ratio of N fertiliser applied to crops and the cane yield achieved (i.e. kg N (t cane)-1). We defined seven classes of water quality risk using NiLRI values derived from first principles reasoning. NiLRI values calculated from (1) results of historical field experiments and (2) survey data on the management of 170,177 ha (or 53%) of commercial sugarcane cropping were compared to the classes. The NiLRI values in both the experiments and commercial crops fell into all seven classes, showing that the classes were both biophysically sensible (c.f. the experiments) and relevant to farmers' experience. We then used machine learning to explore the association between crop management practices recorded in the surveys and associated NiLRI values. Practices that most influenced NiLRI values had little apparent direct impact on N management. They included improving fallow management and reducing tillage and compaction, practices that have been promoted for production rather than N discharge benefits. The study not only provides a metric for the change in N water quality risk resulting from adoption of improved practices, it also gives the first clear empirical evidence of the agronomic practices that could be promoted to reduce water quality risk while maintaining or improving yields of sugarcane crops grown in catchments adjacent to the GBR. Our approach has relevance to assessing the environmental risk of N fertiliser management in other countries and cropping systems.
Collapse
Affiliation(s)
- Peter J Thorburn
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Qld, 4067, Australia.
| | - Jody S Biggs
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Qld, 4067, Australia
| | - Kevin McCosker
- Queensland Department Agriculture and Fisheries, 25 Yeppoon Road, Parkhurst, Qld, 4700, Australia
| | - Adam Northey
- Queensland Department Agriculture and Fisheries, 25 Yeppoon Road, Parkhurst, Qld, 4700, Australia
| |
Collapse
|
22
|
Andleeb T, Knight E, Borrill P. Wheat NAM genes regulate the majority of early monocarpic senescence transcriptional changes including nitrogen remobilization genes. G3 (BETHESDA, MD.) 2022; 13:6760127. [PMID: 36226803 PMCID: PMC9911049 DOI: 10.1093/g3journal/jkac275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/07/2022] [Indexed: 02/10/2023]
Abstract
Senescence enables the remobilization of nitrogen and micronutrients from vegetative tissues of wheat (Triticum aestivum L.) into the grain. Understanding the molecular players in this process will enable the breeding of wheat lines with tailored grain nutrient content. The NAC transcription factor NAM-B1 is associated with earlier senescence and higher levels of grain protein, iron, and zinc contents due to increased nutrient remobilization. To investigate how related NAM genes control nitrogen remobilization at the molecular level, we carried out a comparative transcriptomic study using flag leaves at 7 time points (3, 7, 10, 13, 15, 19, and 26 days after anthesis) in wild type and NAM RNA interference lines with reduced NAM gene expression. Approximately 2.5 times more genes were differentially expressed in wild type than NAM RNA interference plants during this early senescence time course (6,508 vs 2,605 genes). In both genotypes, differentially expressed genes were enriched for gene ontology terms related to photosynthesis, hormones, amino acid transport, and nitrogen metabolism. However, nitrogen metabolism genes including glutamine synthetase (GS1 and GS2), glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), and asparagine synthetase (ASN1) showed stronger or earlier differential expression in wild-type than in NAM RNA interference plants, consistent with higher nitrogen remobilization. The use of time course data identified the dynamics of NAM-regulated and NAM-independent gene expression changes during senescence and provides an entry point to functionally characterize the pathways regulating senescence and nutrient remobilization in wheat.
Collapse
Affiliation(s)
- Tayyaba Andleeb
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK,Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 15320, Pakistan
| | - Emilie Knight
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Philippa Borrill
- Corresponding author: Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
23
|
Han M, Xu M, Su T, Wang S, Wu L, Feng J, Ding C. Transcriptome Analysis Reveals Critical Genes and Pathways in Carbon Metabolism and Ribosome Biogenesis in Poplar Fertilized with Glutamine. Int J Mol Sci 2022; 23:9998. [PMID: 36077396 PMCID: PMC9456319 DOI: 10.3390/ijms23179998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Exogenous Gln as a single N source has been shown to exert similar roles to the inorganic N in poplar 'Nanlin895' in terms of growth performance, yet the underlying molecular mechanism remains unclear. Herein, transcriptome analyses of both shoots (L) and roots (R) of poplar 'Nanlin895' fertilized with Gln (G) or the inorganic N (control, C) were performed. Compared with the control, 3109 differentially expressed genes (DEGs) and 5071 DEGs were detected in the GL and GR libraries, respectively. In the shoots, Gln treatment resulted in downregulation of a large number of ribosomal genes but significant induction of many starch and sucrose metabolism genes, demonstrating that poplars tend to distribute more energy to sugar metabolism rather than ribosome biosynthesis when fertilized with Gln-N. By contrast, in the roots, most of the DEGs were annotated to carbon metabolism, glycolysis/gluconeogenesis and phenylpropanoid biosynthesis, suggesting that apart from N metabolism, exogenous Gln has an important role in regulating the redistribution of carbon resources and secondary metabolites. Therefore, it can be proposed that the promotion impact of Gln on poplar growth and photosynthesis may result from the improvement of both carbon and N allocation, accompanied by an efficient energy switch for growth and stress responses.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyue Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Shizhen Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Liangdan Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Junhu Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Changjun Ding
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
24
|
Li T, Wang Z, Wang C, Huang J, Feng Y, Shen W, Zhou M, Yang L. Ammonia volatilization mitigation in crop farming: A review of fertilizer amendment technologies and mechanisms. CHEMOSPHERE 2022; 303:134944. [PMID: 35577135 DOI: 10.1016/j.chemosphere.2022.134944] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Good practices in controlling ammonia produced from the predominant agricultural contributor, crop farming, are the most direct yet effective approaches for mitigating ammonia emissions and further relieving air pollution. Of all the practices that have been investigated in recent decades, fertilizer amendment technologies are garnering increased attention as the low nitrogen use efficiency in most applied quick-acting fertilizers is the main cause of high ammonia emissions. This paper systematically reviews the fertilizer amendment technologies and associated mechanisms that have been developed for ammonia control, especially the technology development of inorganic additives-based complex fertilizers, coating-based enhanced efficiency fertilizers, organic waste-based resource fertilizers and microbial agent and algae-based biofertilizers, and their corresponding mechanisms in farmland properties shifting towards inhibiting ammonia volatilization and enhancing nitrogen use efficiency. The systematic analysis of the literature shows that both enhanced efficiency fertilizers technique and biofertilizers technique present outstanding ammonia inhibition performance with an average mitigation efficiency of 54% and 50.1%, respectively, which is mainly attributed to the slowing down in release and hydrolysis of nitrogen fertilizer, the enhancement in the adsorption and retention of NH4+/NH3 in soil, and the promotion in the microbial consumption of NH4+ in soil. Furthermore, a combined physical and chemical means, namely membrane/film-based mulching technology, for ammonia volatilization inhibition is also evaluated, which is capable of increasing the resistance of ammonia volatilization. Finally, the review addresses the challenges of mitigating agricultural ammonia emissions with the aim of providing an outlook for future research.
Collapse
Affiliation(s)
- Tianling Li
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, PR China; Centre for Clean Environment and Energy, Griffith University, Gold Coast campus, QLD, 4222, Australia
| | - Zhengguo Wang
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, PR China
| | - Chenxu Wang
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, PR China
| | - Jiayu Huang
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, PR China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Weishou Shen
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, PR China
| | - Ming Zhou
- Centre for Clean Environment and Energy, Griffith University, Gold Coast campus, QLD, 4222, Australia.
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| |
Collapse
|
25
|
Efficient Nitrate Adsorption from Groundwater by Biochar-Supported Al-Substituted Goethite. SUSTAINABILITY 2022. [DOI: 10.3390/su14137824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Groundwater nitrate contamination is challenging and requires efficient solutions for nitrate removal. This study aims to investigate nitrate removal using a novel adsorbent, biochar-supported aluminum-substituted goethite (BAG). The results showed that an increase in the initial Al/(Al + Fe) atomic ratio for BAGs from 0 to 20% decreased the specific surface area from 115.2 to 75.7 m2/g, but enhanced the surface charge density from 0.0180 to 0.0843 C/m2. By comparison, 10% of Al/(Al + Fe) led to the optimal adsorbent for nitrate removal. The adsorbent’s adsorption capacity was effective with a wide pH range (4–8), and decreased with increasing ionic strength. The descending order of nitrate adsorption inhibition by co-existing anions was SO42−, HCO3−, PO43−, and Cl−. The adsorption kinetics and isotherms agreed well with the pseudo-first-order equation and Langmuir model, respectively. The theoretical maximum adsorption capacity was 96.1469 mg/g. Thermodynamic analysis showed that the nitrate adsorption was spontaneous and endothermic. After 10-cycle regeneration, the BAG still kept 92.6% of its original adsorption capacity for synthetic nitrate-contaminated groundwater. Moreover, the main adsorption mechanism was attributed to electrostatic attraction due to the enhancement of surface charge density by Al substitution. Accordingly, the BAG adsorbent is a potential solution to remove nitrate from groundwater.
Collapse
|
26
|
De Pessemier J, Moturu TR, Nacry P, Ebert R, De Gernier H, Tillard P, Swarup K, Wells DM, Haseloff J, Murray SC, Bennett MJ, Inzé D, Vincent CI, Hermans C. Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3569-3583. [PMID: 35304891 DOI: 10.1093/jxb/erac118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The role of root phenes in nitrogen (N) acquisition and biomass production was evaluated in 10 contrasting natural accessions of Arabidopsis thaliana L. Seedlings were grown on vertical agar plates with two different nitrate supplies. The low N treatment increased the root to shoot biomass ratio and promoted the proliferation of lateral roots and root hairs. The cost of a larger root system did not impact shoot biomass. Greater biomass production could be achieved through increased root length or through specific root hair characteristics. A greater number of root hairs may provide a low-resistance pathway under elevated N conditions, while root hair length may enhance root zone exploration under low N conditions. The variability of N uptake and the expression levels of genes encoding nitrate transporters were measured. A positive correlation was found between root system size and high-affinity nitrate uptake, emphasizing the benefits of an exploratory root organ in N acquisition. The expression levels of NRT1.2/NPF4.6, NRT2.2, and NRT1.5/NPF7.3 negatively correlated with some root morphological traits. Such basic knowledge in Arabidopsis demonstrates the importance of root phenes to improve N acquisition and paves the way to design eudicot ideotypes.
Collapse
Affiliation(s)
- Jérôme De Pessemier
- Crop Production and Biostimulation Laboratory, Interfacultary School of Bioengineers, Université libre de Bruxelles, B-1050 Brussels, Belgium
| | - Taraka Ramji Moturu
- Crop Production and Biostimulation Laboratory, Interfacultary School of Bioengineers, Université libre de Bruxelles, B-1050 Brussels, Belgium
| | - Philippe Nacry
- Institute of Plant Science Montpellier, Université de Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Rebecca Ebert
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Hugues De Gernier
- Crop Production and Biostimulation Laboratory, Interfacultary School of Bioengineers, Université libre de Bruxelles, B-1050 Brussels, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Pascal Tillard
- Institute of Plant Science Montpellier, Université de Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Kamal Swarup
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Darren M Wells
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Seth C Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Christopher I Vincent
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Christian Hermans
- Crop Production and Biostimulation Laboratory, Interfacultary School of Bioengineers, Université libre de Bruxelles, B-1050 Brussels, Belgium
| |
Collapse
|
27
|
Agrobot Lala-An Autonomous Robotic System for Real-Time, In-Field Soil Sampling, and Analysis of Nitrates. SENSORS 2022; 22:s22114207. [PMID: 35684829 PMCID: PMC9185546 DOI: 10.3390/s22114207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
This paper presents an autonomous robotic system, an unmanned ground vehicle (UGV), for in-field soil sampling and analysis of nitrates. Compared to standard methods of soil analysis it has several advantages: each sample is individually analyzed compared to average sample analysis in standard methods; each sample is georeferenced, providing a map for precision base fertilizing; the process is fully autonomous; samples are analyzed in real-time, approximately 30 min per sample; and lightweight for less soil compaction. The robotic system has several modules: commercial robotic platform, anchoring module, sampling module, sample preparation module, sample analysis module, and communication module. The system is augmented with an in-house developed cloud-based platform. This platform uses satellite images, and an artificial intelligence (AI) proprietary algorithm to divide the target field into representative zones for sampling, thus, reducing and optimizing the number and locations of the samples. Based on this, a task is created for the robot to automatically sample at those locations. The user is provided with an in-house developed smartphone app enabling overview and monitoring of the task, changing the positions, removing and adding of the sampling points. The results of the measurements are uploaded to the cloud for further analysis and the creation of prescription maps for variable rate base fertilization.
Collapse
|
28
|
Cu2O nanoparticles modified BiO2-x nanosheets for efficient electrochemical reduction of nitrate-N and nitrobenzene from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Optimizing Hydraulic Retention Time and Area of Biological Settling Ponds for Super-Intensive Shrimp Wastewater Treatment Systems. WATER 2022. [DOI: 10.3390/w14060932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Biological settling ponds are a practicable approach for treating super-intensive shrimp aquaculture wastewater for almost all shrimp producers in the Vietnamese Mekong Delta (VMD). The optimization of the hydraulic retention time (HRT) of biological settling ponds plays a crucial role in establishing the stability of outflow wastewater quality and suitability of the settling pond area (SPA). This study aims to suggest appropriate HRT and SPA for super-intensive shrimp wastewater treatment systems based on the National Standard (QCVN 02-19:2014/BNNPTNT) and the best aquaculture practices (BAP) standards and guidelines. We investigated 20 typical super-intensive shrimp farms in the VMD and collected effluent samples from siphoning process, daily water exchange, and outflow of biological effluent-treatment settling ponds. The results showed that the average of each super-intensive shrimp farm produced wastewater at approximately 218 m3 ha−1 day−1. The contaminant loads of TSS, COD, TKN, and TP were commensurate to 177, 113, 9.86, and 4.19 kg ha−1 day−1, respectively. Based on the relationship between outflow COD, TSS concentrations, and HRT of biological-surveyed settling ponds, a 13.4-day HRT and 1934-m2 SPA were suggested to optimize the super-intensive shrimp wastewater treatment systems. Our recommendation for further work is to continuously optimize the HRT and SPA rates of functional ponds (anaerobic, facultative, and maturation) to ameliorate the engineering configuration of the recommended biological settling pond.
Collapse
|
30
|
Mainardis M, Cecconet D, Moretti A, Callegari A, Goi D, Freguia S, Capodaglio AG. Wastewater fertigation in agriculture: Issues and opportunities for improved water management and circular economy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118755. [PMID: 34971741 DOI: 10.1016/j.envpol.2021.118755] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/14/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Water shortages are an issue of growing worldwide concern. Irrigated agriculture accounts for about 70% of total freshwater withdrawals globally, therefore alternatives to use of conventional sources need to be investigated. This paper critically reviews the application of treated wastewater for agricultural fertigation (i.e., water and nutrient recovery) considering different perspectives: legislation, agronomic characteristics, social acceptability, sustainability of treatment technologies. Critical issues that still need further investigation for a wider application of fertigation practices include accumulation of emerging contaminants in soils, microbiological and public health implications, and stakeholders' acceptance. A techno-economic methodological approach for assessing the sustainability of treated wastewater reuse in agriculture is subsequently proposed herein, which considers different possible local conditions (cultivated crops and effluent characteristics). The results showed that tailoring effluent characteristics to the desired nutrient composition could enhance the process economic sustainability; however, water savings have a major economic impact than fertilizers' savings, partly due to limited P reuse efficiency. The developed methodology is based on a practical approach and may be generalized to most agricultural conditions, to evaluate and encourage safe and efficient agricultural wastewater reuse practices.
Collapse
Affiliation(s)
- Matia Mainardis
- Department Polytechnic of Engineering and Architecture (DPIA), University of Udine, Via Del Cotonificio 108, 33100, Udine, Italy.
| | - Daniele Cecconet
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100, Pavia, Italy
| | - Alessandro Moretti
- Department Polytechnic of Engineering and Architecture (DPIA), University of Udine, Via Del Cotonificio 108, 33100, Udine, Italy
| | - Arianna Callegari
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100, Pavia, Italy
| | - Daniele Goi
- Department Polytechnic of Engineering and Architecture (DPIA), University of Udine, Via Del Cotonificio 108, 33100, Udine, Italy
| | - Stefano Freguia
- Department of Chemical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Victoria, 3010, Australia
| | - Andrea G Capodaglio
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100, Pavia, Italy
| |
Collapse
|
31
|
One-Dimensional Convolutional Neural Networks for Hyperspectral Analysis of Nitrogen in Plant Leaves. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Accurately determining the nutritional status of plants can prevent many diseases caused by fertilizer disorders. Leaf analysis is one of the most used methods for this purpose. However, in order to get a more accurate result, disorders must be identified before symptoms appear. Therefore, this study aims to identify leaves with excessive nitrogen using one-dimensional convolutional neural networks (1D-CNN) on a dataset of spectral data using the Keras library. Seeds of cucumber were planted in several pots and, after growing the plants, they were divided into different classes of control (without excess nitrogen), N30% (excess application of nitrogen fertilizer by 30%), N60% (60% overdose), and N90% (90% overdose). Hyperspectral data of the samples in the 400–1100 nm range were captured using a hyperspectral camera. The actual amount of nitrogen for each leaf was measured using the Kjeldahl method. Since there were statistically significant differences between the classes, an individual prediction model was designed for each class based on the 1D-CNN algorithm. The main innovation of the present research resides in the application of separate prediction models for each class, and the design of the proposed 1D-CNN regression model. The results showed that the coefficient of determination and the mean squared error for the classes N30%, N60% and N90% were 0.962, 0.0005; 0.968, 0.0003; and 0.967, 0.0007, respectively. Therefore, the proposed method can be effectively used to detect over-application of nitrogen fertilizers in plants.
Collapse
|
32
|
Assessment of Single- vs. Two-Stage Process for the Anaerobic Digestion of Liquid Cow Manure and Cheese Whey. ENERGIES 2021. [DOI: 10.3390/en14175423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The growing interest in processes that involve biomass conversion to renewable energy, such as anaerobic digestion, has stimulated research in this field in order to assess the optimum conditions for biogas production from abundant feedstocks, like agro-industrial wastes. Anaerobic digestion is an attractive process for the decomposition of organic wastes via a complex microbial consortium and subsequent conversion of metabolic intermediates to hydrogen and methane. The present study focused on the exploitation of liquid cow manure (LCM) and cheese whey (CW) as noneasily and easily biodegradable sources, respectively, using continuous stirred-tank reactors for biogas production, and a comparison was presented between single- and two-stage anaerobic digestion systems. No significant differences were found concerning LCM treatment, in a two-stage system compared to a single one, concluding that LCM can be treated by implementing a single-stage process, as a recalcitrant substrate, with the greatest methane production rate of 0.67 L CH4/(LR·d) at an HRT of 16 d. On the other hand, using the easily biodegradable CW as a monosubstrate, the two-stage process was considered a better treatment system compared to a single one. During the single-stage process, operational problems were observed due to the limited buffering capacity of CW. However, the two-stage anaerobic digestion of CW produced a stable methane production rate of 0.68 L CH4/(LR·d) or 13.7 L CH4/Lfeed, while the total COD was removed by 76%.
Collapse
|