1
|
Cui Z, Yuan X, Wang Y, Liu Z, Fei X, Chen K, Shen HM, Wu Y, Xia D. Environmentally relevant level of PFDA exacerbates intestinal inflammation by activating the cGAS/STING/NF-κB signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176786. [PMID: 39383958 DOI: 10.1016/j.scitotenv.2024.176786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
As a constituent of the Per- and Polyfluoroalkyl Substances (PFAS) family, perfluorodecanoic acid (PFDA) is ubiquitous in the environment and enters the human body through environmental exposure, the food chain, and other pathways, resulting in various toxic effects. Previous population-based studies have suggested a correlation between PFDA exposure and inflammation. However, the evidence is still limited, and the potential mechanisms underlying this correlation remain to be further elucidated. In our study, we observed that exposure to internal doses of PFDA significantly promoted macrophage inflammation through in vitro assays. Utilizing RNA-seq screening and molecular experiments, we identified that environmentally relevant concentration of PFDA promote inflammation mainly by activating non-canonical cGAS/STING/NF-κB pathways in vitro. Finally, we confirmed in the typical mouse inflammatory bowel disease (IBD) model that PFDA could exacerbate intestinal inflammation in a cGAS dependent manner. In conclusion, our research firstly demonstrated that even at environmentally relevant concentrations, PFDA could promote the progression of intestinal inflammation primarily through the cGAS/STING/NF-κB pathway, revealing the potential risk associated with PFDA exposure and providing theoretical evidence for its management.
Collapse
Affiliation(s)
- Zhenyan Cui
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Wang
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zekun Liu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohong Fei
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Han-Ming Shen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau
| | - Yihua Wu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Hangzhou, China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Li S, Qin S, Zeng H, Chou W, Oudin A, Kanninen KM, Jalava P, Dong G, Zeng X. Adverse outcome pathway for the neurotoxicity of Per- and polyfluoroalkyl substances: A systematic review. ECO-ENVIRONMENT & HEALTH 2024; 3:476-493. [PMID: 39605965 PMCID: PMC11599988 DOI: 10.1016/j.eehl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 11/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors with unambiguous neurotoxic effects. However, due to variability in experimental models, population characteristics, and molecular endpoints, the elucidation of mechanisms underlying PFAS-induced neurotoxicity remains incomplete. In this review, we utilized the adverse outcome pathway (AOP) framework, a comprehensive tool for evaluating toxicity across multiple biological levels (molecular, cellular, tissue and organ, individual, and population), to elucidate the mechanisms of neurotoxicity induced by PFAS. Based on 271 studies, the reactive oxygen species (ROS) generation emerged as the molecular initiating event 1 (MIE1). Subsequent key events (KEs) at the cellular level include oxidative stress, neuroinflammation, apoptosis, altered Ca2+ signal transduction, glutamate and dopamine signaling dyshomeostasis, and reduction of cholinergic and serotonin. These KEs culminate in synaptic dysfunction at organ and tissue levels. Further insights were offered into MIE2 and upstream KEs associated with altered thyroid hormone levels, contributing to synaptic dysfunction and hypomyelination at the organ and tissue levels. The inhibition of Na+/I- symporter (NIS) was identified as the MIE2, initiating a cascade of KEs at the cellular level, including altered thyroid hormone synthesis, thyroid hormone transporters, thyroid hormone metabolism, and binding with thyroid hormone receptors. All KEs ultimately result in adverse outcomes (AOs), including cognition and memory impairment, autism spectrum disorders, attention deficit hyperactivity disorders, and neuromotor development impairment. To our knowledge, this review represents the first comprehensive and systematic AOP analysis delineating the intricate mechanisms responsible for PFAS-induced neurotoxic effects, providing valuable insights for risk assessments and mitigation strategies against PFAS-related health hazards.
Collapse
Affiliation(s)
- Shenpan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuangjian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huixian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weichun Chou
- Department of Environmental Sciences, College of Natural and Agricultural Sciences, University of California, Riverside, CA, United States
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M. Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guanghui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
La Merrill MA, Smith MT, McHale CM, Heindel JJ, Atlas E, Cave MC, Collier D, Guyton KZ, Koliwad S, Nadal A, Rhodes CJ, Sargis RM, Zeise L, Blumberg B. Consensus on the key characteristics of metabolism disruptors. Nat Rev Endocrinol 2024:10.1038/s41574-024-01059-8. [PMID: 39613954 DOI: 10.1038/s41574-024-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Metabolism-disrupting agents (MDAs) are chemical, infectious or physical agents that increase the risk of metabolic disorders. Examples include pharmaceuticals, such as antidepressants, and environmental agents, such as bisphenol A. Various types of studies can provide evidence to identify MDAs, yet a systematic method is needed to integrate these data to help to identify such hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we developed 12 KCs of MDAs based on our knowledge of processes underlying metabolic diseases and the effects of their causal agents: (1) alters function of the endocrine pancreas; (2) impairs function of adipose tissue; (3) alters nervous system control of metabolic function; (4) promotes insulin resistance; (5) disrupts metabolic signalling pathways; (6) alters development and fate of metabolic cell types; (7) alters energy homeostasis; (8) causes inappropriate nutrient handling and partitioning; (9) promotes chronic inflammation and immune dysregulation in metabolic tissues; (10) disrupts gastrointestinal tract function; (11) induces cellular stress pathways; and (12) disrupts circadian rhythms. In this Consensus Statement, we present the logic that revealed the KCs of MDAs and highlight evidence that supports the identification of KCs. We use chemical, infectious and physical agents as examples to illustrate how the KCs can be used to organize and use mechanistic data to help to identify MDAs.
Collapse
Affiliation(s)
- Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| | - Martyn T Smith
- School of Public Health, University of California, Berkeley, CA, USA
| | - Cliona M McHale
- School of Public Health, University of California, Berkeley, CA, USA
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Environmental Health Sciences, Bozeman, MT, USA
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| | - David Collier
- Department of Pediatrics, East Carolina University, Greenville, NC, USA
| | - Kathryn Z Guyton
- Board on Environmental Studies and Toxicology, National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Suneil Koliwad
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), CIBERDEM, Miguel Hernandez University of Elche, Elche, Spain
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, IL, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency, Sacramento, CA, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
4
|
Bjørke-Monsen AL, Holstad K, Huber S, Averina M, Bolann B, Brox J. PFAS exposure is associated with an unfavourable metabolic profile in infants six months of age. ENVIRONMENT INTERNATIONAL 2024; 193:109121. [PMID: 39515038 DOI: 10.1016/j.envint.2024.109121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Exposure to perfluoroalkyl substances (PFAS) are reported to have numerous negative health effects and children are especially vulnerable. The aim of this study was to investigate whether maternal and infant PFAS burden have any impact on prenatal and postnatal growth, liver and lipid parameters in infants at age six months. Data on diet and growth parameters, as well as blood samples were collected from healthy pregnant women in week 18 and in the women and their infants at six months postpartum. The blood samples were analysed for liver enzymes, blood lipids and PFAS. Maternal perfluoroalkyl carboxylic acids (PFCA) and fish for dinner ≥ 3 days per week in pregnancy week 18 were associated with reduced birth weight and increased percent weight gain the first six months of life. Infant PFCA concentrations were positively associated with serum alanine aminotransferase and total- and LDL-cholesterol concentrations at six months of age. Our data demonstrate that prenatal and postnatal PFAS exposure are associated with an unfavourable metabolic profile at a very young age. This pattern is concerning as it may be linked to early conditioning of later metabolic disease. It is vital to reduce PFAS exposure in women of fertile age in order to prevent development of metabolic disease in the next generation.
Collapse
Affiliation(s)
- Anne-Lise Bjørke-Monsen
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Laboratory of Medical Biochemistry, Innlandet Hospital Trust, Lillehammer, Norway; Laboratory of Medical Biochemistry, Førde Hospital Trust, Førde, Norway.
| | - Kristin Holstad
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Maria Averina
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway; Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Bjørn Bolann
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Jan Brox
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
5
|
Qu R, Wang J, Li X, Zhang Y, Yin T, Yang P. Per- and Polyfluoroalkyl Substances (PFAS) Affect Female Reproductive Health: Epidemiological Evidence and Underlying Mechanisms. TOXICS 2024; 12:678. [PMID: 39330606 PMCID: PMC11435644 DOI: 10.3390/toxics12090678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
PFAS (per- and polyfluoroalkyl substances) have been extensively used across numerous industries and consumer goods. Due to their high persistence and mobility, they are ubiquitous in the environment. Exposure to PFAS occurs in people via multiple pathways such as dermal contact, water supply, air inhalation, and dietary intake. Even if some PFAS are being phased out because of their persistent presence in the environment and harmful impacts on human health, mixes of replacement and legacy PFAS will continue to pollute the ecosystem. Numerous toxicological investigations have revealed harmful effects of PFAS exposure on female reproductive health, e.g., polycystic ovaries syndrome, premature ovarian failure, endometriosis, reproductive system tumors, pregnancy complications, and adverse pregnancy outcomes. Despite extensive epidemiological studies on the reproductive toxicity of PFAS, research findings remain inconsistent, and the underlying mechanisms are not well understood. In this review, we give an in-depth description of the sources and pathways of PFAS, and then review the reproductive toxicity of PFAS and its possible mechanisms.
Collapse
Affiliation(s)
- Rui Qu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingxuan Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaojie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tailang Yin
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, 510632, China
| |
Collapse
|
6
|
Branagan A, Molloy EJ, Badawi N, Nelson KB. Causes and Terminology in Neonatal Encephalopathy: What is in a Name? Neonatal Encephalopathy, Hypoxic-ischemic Encephalopathy or Perinatal Asphyxia. Clin Perinatol 2024; 51:521-534. [PMID: 39095093 DOI: 10.1016/j.clp.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Neurologic depression in term/near-term neonates (neonatal encephalopathy, NE) is uncommon with modern obstetric care. Asphyxial birth, with or without co-factors, accounts for a minority of NE, while maldevelopment (congenital malformations, growth aberrations, genetic, metabolic and placental abnormalities) plays an enlarging role in identifying etiologic subgroups of NE. The terms NE and hypoxic-ischemic encephalopathy (HIE) have not been employed uniformly, hampering research and clinical care. The authors propose the term NE as an early working-diagnosis, to be supplemented by a diagnosis of NE due to HIE or to other factors, as a final diagnosis once workup is complete.
Collapse
Affiliation(s)
- Aoife Branagan
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Trinity Translational Medicine Institute (TTMI), St James Hospital & Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland; Department of Paediatrics, The Coombe Hospital, 32 Kickham Road, Inchicore, Dublin 8, Dublin D08W2T0, Ireland; Health Research Board Neonatal Encephalopathy PhD Training Network (NEPTuNE), Ireland
| | - Eleanor J Molloy
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Trinity Translational Medicine Institute (TTMI), St James Hospital & Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland; Department of Paediatrics, The Coombe Hospital, 32 Kickham Road, Inchicore, Dublin 8, Dublin D08W2T0, Ireland; Health Research Board Neonatal Encephalopathy PhD Training Network (NEPTuNE), Ireland; Department of Neonatology, Children's Health Ireland, Dublin, Ireland; Neurodisability, Children's Health Ireland (CHI) at Tallaght, Dublin, Ireland; Department of Paediatrics, Trinity Centre for Health Sciences, Tallaght University Hospital, Dublin 24, Ireland.
| | - Nadia Badawi
- Cerebral Palsy Alliance Research Institute, Specialty of Child & Adolescent Health, Sydney Medical School; Faculty of Medicine & Health, Department of Paediatrics, The University of Sydney, PO Box 171, Allambie Heights, Sydney, New South Wales 2100, Australia; Grace Centre for Newborn Intensive Care, Sydney Children's Hospital Network, The University of Sydney, Westmead, New South Wales, Australia
| | - Karin B Nelson
- National Institutes of Health, National Institute of Neurological Diseases and Stroke, 050 Military Road NEW, Apt 815, Washington, DC 20015, USA
| |
Collapse
|
7
|
Xing WY, Sun JN, Liu FH, Shan LS, Yin JL, Li YZ, Xu HL, Wei YF, Liu JX, Zheng WR, Zhang YY, Song XJ, Liu KX, Liu JC, Wang JY, Jia MQ, Chen X, Li XY, Liu C, Gong TT, Wu QJ. Per- and polyfluoroalkyl substances and human health outcomes: An umbrella review of systematic reviews with meta-analyses of observational studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134556. [PMID: 38735187 DOI: 10.1016/j.jhazmat.2024.134556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/27/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Although evidence on the association between per- and polyfluoroalkyl substances (PFASs) and human health outcomes has grown exponentially, specific health outcomes and their potential associations with PFASs have not been conclusively evaluated. METHODS We conducted a comprehensive search through the databases of PubMed, Embase, and Web of Science from inception to February 29, 2024, to identify systematic reviews with meta-analyses of observational studies examining the associations between the PFASs and multiple health outcomes. The quality of included studies was evaluated using the A Measurement Tool to Assess Systematic Reviews (AMSTAR) tool, and credibility of evidence was assessed using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) criteria. The protocol of this umbrella review (UR) had been registered in PROSPERO (CRD 42023480817). RESULTS The UR identified 157 meta-analyses from 29 articles. Using the AMSTAR measurement tool, all articles were categorized as of moderate-to-high quality. Based on the GRADE assessment, significant associations between specific types of PFASs and low birth weight, tetanus vaccine response, and triglyceride levels showed high certainty of evidence. Moreover, moderate certainty of evidence with statistical significance was observed between PFASs and health outcomes including lower BMI z-score in infancy, poor sperm progressive motility, and decreased risk of preterm birth as well as preeclampsia. Fifty-two (33%) associations (e.g., PFASs and gestational hypertension, cardiovascular disease, etc) presented low certainty evidence. Additionally, eighty-five (55%) associations (e.g., PFASs with infertility, lipid metabolism, etc) presented very low certainty evidence. CONCLUSION High certainty of evidence supported that certain PFASs were associated with the incidence of low birth weight, low efficiency of the tetanus vaccine, and low triglyceride levels.
Collapse
Affiliation(s)
- Wei-Yi Xing
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Nan Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li-Shen Shan
- Department of Pediatric, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Li Yin
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Xin Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wen-Rui Zheng
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying-Ying Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Jian Song
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ke-Xin Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Cheng Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Yi Wang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming-Qian Jia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xing Chen
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Ying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Chuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
8
|
Heindel JJ, Lustig RH, Howard S, Corkey BE. Obesogens: a unifying theory for the global rise in obesity. Int J Obes (Lond) 2024; 48:449-460. [PMID: 38212644 PMCID: PMC10978495 DOI: 10.1038/s41366-024-01460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Despite varied treatment, mitigation, and prevention efforts, the global prevalence and severity of obesity continue to worsen. Here we propose a combined model of obesity, a unifying paradigm that links four general models: the energy balance model (EBM), based on calories as the driver of weight gain; the carbohydrate-insulin model (CIM), based on insulin as a driver of energy storage; the oxidation-reduction model (REDOX), based on reactive oxygen species (ROS) as a driver of altered metabolic signaling; and the obesogens model (OBS), which proposes that environmental chemicals interfere with hormonal signaling leading to adiposity. We propose a combined OBS/REDOX model in which environmental chemicals (in air, food, food packaging, and household products) generate false autocrine and endocrine metabolic signals, including ROS, that subvert standard regulatory energy mechanisms, increase basal and stimulated insulin secretion, disrupt energy efficiency, and influence appetite and energy expenditure leading to weight gain. This combined model incorporates the data supporting the EBM and CIM models, thus creating one integrated model that covers significant aspects of all the mechanisms potentially contributing to the obesity pandemic. Importantly, the OBS/REDOX model provides a rationale and approach for future preventative efforts based on environmental chemical exposure reduction.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA.
| | - Robert H Lustig
- Department of Pediatrics and Institute for Health Policy Studies, University of California, San Francisco, CA, 94143, USA
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA
| | - Barbara E Corkey
- Department of Medicine, Boston University, Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
9
|
Zhang Y, Mustieles V, Martin L, Sun Y, Hillcoat A, Fang X, Bibi Z, Torres N, Coburn-Sanderson A, First O, Irene S, Petrozza JC, Botelho JC, Calafat AM, Wang YX, Messerlian C. Maternal and Paternal Preconception Serum Concentrations of Per and Polyfluoroalkyl Substances in Relation to Birth Outcomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2683-2692. [PMID: 38290209 PMCID: PMC10924800 DOI: 10.1021/acs.est.3c07954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Prenatal per and polyfluoroalkyl substances (PFAS) exposure is associated with adverse birth outcomes. There is an absence of evidence on the relationship between maternal and paternal preconception PFAS exposure and birth outcomes. This study included 312 mothers and 145 fathers with a singleton live birth from a preconception cohort of subfertile couples seeking fertility treatment at a U.S. clinic. PFAS were quantified in serum samples collected before conception. Gestational age (GA) and birthweight (BW) were abstracted from delivery records. We also assessed low birthweight (BW < 2500 g) and preterm birth (GA < 37 completed weeks). We utilized multivariable linear regression, logistic regression, and quantile-based g computation to examine maternal or paternal serum concentrations of individual PFAS and mixture with birth outcomes. Maternal serum concentrations of perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate (PFHxS), and the total PFAS mixture were inversely associated with birthweight. Maternal PFOS concentration was associated with a higher risk of low birthweight. Conversely, paternal PFOS and PFHxS concentrations were imprecisely associated with higher birthweight. No associations were found for gestational age or preterm birth. The findings have important implications for preconception care. Future research with larger sample sizes would assist in validating these findings.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain. Instituto de Investigación Biosanitaria Ibs GRANADA, Spain. Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Leah Martin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alexandra Hillcoat
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xin Fang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zainab Bibi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nicole Torres
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ayanna Coburn-Sanderson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Olivia First
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Souter Irene
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, MA, USA
| | - John C. Petrozza
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, MA, USA
| | - Julianne C. Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M. Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yi-Xin Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, MA, USA
| |
Collapse
|
10
|
Du Y, Chen C, Zhou G, Cai Z, Man Q, Liu B, Wang WC. Perfluorooctanoic acid disrupts thyroid-specific genes expression and regulation via the TSH-TSHR signaling pathway in thyroid cells. ENVIRONMENTAL RESEARCH 2023; 239:117372. [PMID: 37827365 DOI: 10.1016/j.envres.2023.117372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a highly persistent and widespread chemical in the environment with endocrine disruption effects. Although it has been reported that PFOA can affect multiple aspects of thyroid function, the exact mechanism by which it reduces thyroxine levels has not yet been elucidated. In this study, FRTL-5 rat thyroid follicular cells were used as a model to study the toxicity of PFOA to the genes related to thyroid hormone synthesis and their regulatory network. Our results reveal that PFOA interfered with the phosphorylation of the cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) induced by thyroid-stimulating hormone (TSH), as well as the transcription levels of paired box 8 (PAX8), thyroid transcription factor 1 (TTF1), sodium/iodide cotransporter (NIS), thyroglobulin (TG), and thyroid peroxidase (TPO). However, the above outcomes can be alleviated by enhancing cAMP production with forskolin treatment. Further investigations showed that PFOA reduced the mRNA level of TSH receptor (TSHR) and impaired its N-glycosylation, suggesting that PFOA has disrupting effects on both transcriptional regulation and post-translational regulation. In addition, PFOA increased endoplasmic reticulum (ER) stress and decreased ER mass in FRTL-5 cells. Based on these findings, it can be inferred that PFOA disrupts the TSH-activated cAMP signaling pathway by inhibiting TSHR expression and its N-glycosylation. We propose that this mechanism may contribute to the decrease in thyroid hormone levels caused by PFOA. Our study sheds light on the molecular mechanism by which PFOA can disrupt thyroid function and provides new insights and potential targets for interventions to counteract the disruptive effects of PFOA.
Collapse
Affiliation(s)
- Yatao Du
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Chaojie Chen
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, China
| | - Guangdi Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Zhenzhen Cai
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China; Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Baolin Liu
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China.
| | - Weiye Charles Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China.
| |
Collapse
|
11
|
Jaylet T, Quintens R, Armant O, Audouze K. An integrative systems biology strategy to support the development of adverse outcome pathways (AOPs): a case study on radiation-induced microcephaly. Front Cell Dev Biol 2023; 11:1197204. [PMID: 37427375 PMCID: PMC10323360 DOI: 10.3389/fcell.2023.1197204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Adverse Outcome Pathways (AOPs) are useful tools for assessing the potential risks associated with exposure to various stressors, including chemicals and environmental contaminants. They provide a framework for understanding the causal relationships between different biological events that can lead to adverse outcomes (AO). However, developing an AOP is a challenging task, particularly in identifying the molecular initiating events (MIEs) and key events (KEs) that constitute it. Here, we propose a systems biology strategy that can assist in the development of AOPs by screening publicly available databases, literature with the text mining tool AOP-helpFinder, and pathway/network analyses. This approach is straightforward to use, requiring only the name of the stressor and adverse outcome to be studied. From this, it quickly identifies potential KEs and literature providing mechanistic information on the links between the KEs. The proposed approach was applied to the recently developed AOP 441 on radiation-induced microcephaly, resulting in the confirmation of the KEs that were already present and identification of new relevant KEs, thereby validating the strategy. In conclusion, our systems biology approach represents a valuable tool to simplify the development and enrichment of Adverse Outcome Pathways (AOPs), thus supporting alternative methods in toxicology.
Collapse
Affiliation(s)
| | - Roel Quintens
- Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Olivier Armant
- PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul-Lez-Durance, France
| | | |
Collapse
|
12
|
Jaylet T, Coustillet T, Jornod F, Margaritte-Jeannin P, Audouze K. AOP-helpFinder 2.0: Integration of an event-event searches module. ENVIRONMENT INTERNATIONAL 2023; 177:108017. [PMID: 37295163 DOI: 10.1016/j.envint.2023.108017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/25/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
To support the use of alternative methods in regulatory assessment of chemical risks, the concept of adverse outcome pathway (AOP) constitutes an important toxicological tool. AOP represents a structured representation of existing knowledge, linking molecular initiating event (MIE) initiated by a prototypical stressor that leads to a cascade of biological key event (KE) to an adverse outcome (AO). Biological information to develop such AOP is very dispersed in various data sources. To increase the chance of capturing relevant existing data to develop a new AOP, the AOP-helpFinder tool was recently implemented to assist researchers to design new AOP. Here, an updated version of AOP-helpFinder proposes novel functionalities. The main one being the implementation of an automatic screening of the abstracts from the PubMed database to identify and extract event-event associations. In addition, a new scoring system was created to classify the identified co-occurred terms (stressor-event or event-event (which represent key event relationships) to help prioritization and support the weight of evidence approach, allowing a global assessment of the strength and reliability of the AOP. Moreover, to facilitate interpretation of the results, visualization options are also proposed. The AOP-helpFinder source code are fully accessible via GitHub, and searches can be performed via a web interface at http://aop-helpfinder-v2.u-paris-sciences.fr/.
Collapse
Affiliation(s)
- Thomas Jaylet
- Université Paris Cité, Inserm U1124, 45 rue des Saints Pères, 75006 Paris, France
| | - Thibaut Coustillet
- Université Paris Cité, Inserm U1124, 45 rue des Saints Pères, 75006 Paris, France
| | - Florence Jornod
- Université Paris Cité, Inserm U1124, 45 rue des Saints Pères, 75006 Paris, France
| | | | - Karine Audouze
- Université Paris Cité, Inserm U1124, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
13
|
Mahfouz M, Harmouche-Karaki M, Matta J, Mahfouz Y, Salameh P, Younes H, Helou K, Finan R, Abi-Tayeh G, Meslimani M, Moussa G, Chahrour N, Osseiran C, Skaiki F, Narbonne JF. Maternal Serum, Cord and Human Milk Levels of Per- and Polyfluoroalkyl Substances (PFAS), Association with Predictors and Effect on Newborn Anthropometry. TOXICS 2023; 11:toxics11050455. [PMID: 37235269 DOI: 10.3390/toxics11050455] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND The understanding of per- and polyfluoroalkyl substances (PFAS) health effects is rapidly advancing among critical populations. Therefore, the objective of this study was to assess PFAS serum levels among Lebanese pregnant women, cord serum and human milk levels, their determinants, and effects on newborn anthropometry. METHODS We measured concentrations of six PFAS (PFHpA, PFOA, PFHxS, PFOS, PFNA and PFDA) using liquid chromatography MS/MS for 419 participants, of which 269 had sociodemographic, anthropometric, environmental and dietary information. RESULTS The percentage of detection for PFHpA, PFOA, PFHxS and PFOS was 36.3-37.7%. PFOA and PFOS levels (95th percentile) were higher than HBM-I and HBM-II values. While PFAS were not detected in cord serum, five compounds were detected in human milk. Multivariate regression showed that fish/shellfish consumption, vicinity to illegal incineration and higher educational level were associated with an almost twice higher risk of elevated PFHpA, PFOA, PFHxS and PFOS serum levels. Higher PFAS levels in human milk were observed with higher eggs and dairy products consumption, in addition to tap water (preliminary findings). Higher PFHpA was significantly associated with lower newborn weight-for-length Z-score at birth. CONCLUSIONS Findings establish the need for further studies, and urgent action to reduce exposure among subgroups with higher PFAS levels.
Collapse
Affiliation(s)
- Maya Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O. Box 115076, Riad Solh Beirut 1107 2180, Lebanon
| | - Mireille Harmouche-Karaki
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O. Box 115076, Riad Solh Beirut 1107 2180, Lebanon
| | - Joseph Matta
- Industrial Research Institute, Lebanese University Campus, Hadath Baabda P.O. Box 112806, Lebanon
| | - Yara Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O. Box 115076, Riad Solh Beirut 1107 2180, Lebanon
| | - Pascale Salameh
- School of Medicine, Lebanese American University, Byblos 1102 2801, Lebanon
| | - Hassan Younes
- Institut Polytechnique UniLaSalle, Collège Santé, Equipe PANASH, Membre de l'ULR 7519, Université d'Artois, 19 Rue Pierre Waguet, 60026 Beauvais, France
| | - Khalil Helou
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O. Box 115076, Riad Solh Beirut 1107 2180, Lebanon
| | - Ramzi Finan
- Hotel-Dieu de France, Saint Joseph University of Beirut Hospital, Blvd Alfred Naccache, Beirut P.O. Box 166830, Lebanon
| | - Georges Abi-Tayeh
- Hotel-Dieu de France, Saint Joseph University of Beirut Hospital, Blvd Alfred Naccache, Beirut P.O. Box 166830, Lebanon
| | | | - Ghada Moussa
- Department of Obstetrics and Gynecology, Chtoura Hospital, Beqaa, Lebanon
| | - Nada Chahrour
- Department of Obstetrics and Gynecology, SRH University Hospital, Nabatieh, Lebanon
| | - Camille Osseiran
- Department of Obstetrics and Gynecology, Kassab Hospital, Saida, Lebanon
| | - Farouk Skaiki
- Department of Molecular Biology, General Management, Al Karim Medical Laboratories, Saida, Lebanon
| | - Jean-François Narbonne
- Laboratoire de Physico-Toxico Chimie des Systèmes Naturels, University of Bordeaux, CEDEX, 33405 Talence France
| |
Collapse
|
14
|
Uhl M, Schoeters G, Govarts E, Bil W, Fletcher T, Haug LS, Hoogenboom R, Gundacker C, Trier X, Fernandez MF, Calvo AC, López ME, Coertjens D, Santonen T, Murínová ĽP, Richterová D, Brouwere KD, Hauzenberger I, Kolossa-Gehring M, Halldórsson ÞI. PFASs: What can we learn from the European Human Biomonitoring Initiative HBM4EU. Int J Hyg Environ Health 2023; 250:114168. [PMID: 37068413 DOI: 10.1016/j.ijheh.2023.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) were one of the priority substance groups selected which have been investigated under the ambitious European Joint programme HBM4EU (2017-2022). In order to answer policy relevant questions concerning exposure and health effects of PFASs in Europe several activities were developed under HBM4EU namely i) synthesis of HBM data generated in Europe prior to HBM4EU by developing new platforms, ii) development of a Quality Assurance/Quality Control Program covering 12 biomarkers of PFASs, iii) aligned and harmonized human biomonitoring studies of PFASs. In addition, some cohort studies (on mother-child exposure, occupational exposure to hexavalent chromium) were initiated, and literature researches on risk assessment of mixtures of PFAS, health effects and effect biomarkers were performed. The HBM4EU Aligned Studies have generated internal exposure reference levels for 12 PFASs in 1957 European teenagers aged 12-18 years. The results showed that serum levels of 14.3% of the teenagers exceeded 6.9 μg/L PFASs, which corresponds to the EFSA guideline value for a tolerable weekly intake (TWI) of 4.4 ng/kg for some of the investigated PFASs (PFOA, PFOS, PFNA and PFHxS). In Northern and Western Europe, 24% of teenagers exceeded this level. The most relevant sources of exposure identified were drinking water and some foods (fish, eggs, offal and locally produced foods). HBM4EU occupational studies also revealed very high levels of PFASs exposure in workers (P95: 192 μg/L in chrome plating facilities), highlighting the importance of monitoring PFASs exposure in specific workplaces. In addition, environmental contaminated hotspots causing high exposure to the population were identified. In conclusion, the frequent and high PFASs exposure evidenced by HBM4EU strongly suggests the need to take all possible measures to prevent further contamination of the European population, in addition to adopting remediation measures in hotspot areas, to protect human health and the environment. HBM4EU findings also support the restriction of the whole group of PFASs. Further, research and definition for additional toxicological dose-effect relationship values for more PFASs compounds is needed.
Collapse
Affiliation(s)
- Maria Uhl
- Environment Agency Austria, Vienna, Austria.
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; University of Antwerp, Antwerp, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Wieneke Bil
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Tony Fletcher
- UK Health Security Agency, Chilton, Didcot, Oxfordshire, England, UK
| | | | - Ron Hoogenboom
- Wageningen Food Safety Research, Wageningen, the Netherlands
| | | | - Xenia Trier
- European Environment Agency, Copenhagen, Denmark
| | | | | | | | | | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Uusimaa, Finland
| | | | | | - Katleen De Brouwere
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | | | | |
Collapse
|
15
|
Ehrlich V, Bil W, Vandebriel R, Granum B, Luijten M, Lindeman B, Grandjean P, Kaiser AM, Hauzenberger I, Hartmann C, Gundacker C, Uhl M. Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS). Environ Health 2023; 22:19. [PMID: 36814257 PMCID: PMC9944481 DOI: 10.1186/s12940-022-00958-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/30/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature. OBJECTIVE The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system. METHODS A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed. CONCLUSIONS Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life.
Collapse
Affiliation(s)
- Veronika Ehrlich
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Wieneke Bil
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rob Vandebriel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Berit Granum
- Division of Climate and Environment Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Birgitte Lindeman
- Division of Climate and Environment Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Philippe Grandjean
- Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Andreas-Marius Kaiser
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Ingrid Hauzenberger
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Christina Hartmann
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Maria Uhl
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria.
| |
Collapse
|