1
|
Song C, Guo N, Xue A, Jia C, Shi W, Liu M, Zhang M, Qin J. Self-assembled thymol-betaine co-crystals with controlled release and hygroscopic properties as green preservatives for aflatoxin prevention. Food Chem 2024; 456:140037. [PMID: 38870801 DOI: 10.1016/j.foodchem.2024.140037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/18/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Mycotoxins are representative contaminants causing food losses and food safety problems worldwide. Thymol can effectively inhibit pathogen infestation and aflatoxin accumulation during grain storage, but high volatility limits its application. Here, a thymol-betaine co-crystal system was synthesized through grinding-induced self-assembly. The THY-TMG co-crystal exhibited excellent thermal stability with melting point of 91.2 °C owing to abundant intermolecular interactions. Remarkably, after 15 days at 30 °C, the release rate of thymol from co-crystal was only 55%, far surpassing that of pure thymol. Notably, the co-crystal demonstrated the ability to bind H2O in the environment while controlling the release of thymol, essentially acting as a desiccant. Moreover, the co-crystals effectively inhibited the growth of Aspergillus flavus and the biosynthesis of aflatoxin B1. In practical terms, the THY-TMG co-crystal was successful in preventing AFB1 contamination and nutrients loss in peanuts, thereby prolonging their shelf-life under conditions of 28 °C and 70% RH.
Collapse
Affiliation(s)
- Chenggang Song
- College of Plant Science, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Aoran Xue
- College of Plant Science, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Chengguo Jia
- College of Plant Science, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Wuliang Shi
- College of Plant Science, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Mingyuan Liu
- College of Plant Science, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Mingzhe Zhang
- College of Plant Science, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| | - Jianchun Qin
- College of Plant Science, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Casu A, Camardo Leggieri M, Toscano P, Battilani P. Changing climate, shifting mycotoxins: A comprehensive review of climate change impact on mycotoxin contamination. Compr Rev Food Sci Food Saf 2024; 23:e13323. [PMID: 38477222 DOI: 10.1111/1541-4337.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Climate change (CC) is a complex phenomenon that has the potential to significantly alter marine, terrestrial, and freshwater ecosystems worldwide. Global warming of 2°C is expected to be exceeded during the 21st century, and the frequency of extreme weather events, including floods, storms, droughts, extreme temperatures, and wildfires, has intensified globally over recent decades, differently affecting areas of the world. How CC may impact multiple food safety hazards is increasingly evident, with mycotoxin contamination in particular gaining in prominence. Research focusing on CC effects on mycotoxin contamination in edible crops has developed considerably throughout the years. Therefore, we conducted a comprehensive literature search to collect available studies in the scientific literature published between 2000 and 2023. The selected papers highlighted how warmer temperatures are enabling the migration, introduction, and mounting abundance of thermophilic and thermotolerant fungal species, including those producing mycotoxins. Certain mycotoxigenic fungal species, such as Aspergillus flavus and Fusarium graminearum, are expected to readily acclimatize to new conditions and could become more aggressive pathogens. Furthermore, abiotic stress factors resulting from CC are expected to weaken the resistance of host crops, rendering them more vulnerable to fungal disease outbreaks. Changed interactions of mycotoxigenic fungi are likewise expected, with the effect of influencing the prevalence and co-occurrence of mycotoxins in the future. Looking ahead, future research should focus on improving predictive modeling, expanding research into different pathosystems, and facilitating the application of effective strategies to mitigate the impact of CC.
Collapse
Affiliation(s)
- Alessia Casu
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Camardo Leggieri
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Piero Toscano
- IBE-CNR, Institute of BioEconomy-National Research Council, Firenze, Italia
| | - Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
3
|
Rasouli H, Nayeri FD, Khodarahmi R. May phytophenolics alleviate aflatoxins-induced health challenges? A holistic insight on current landscape and future prospects. Front Nutr 2022; 9:981984. [PMID: 36386916 PMCID: PMC9649842 DOI: 10.3389/fnut.2022.981984] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
The future GCC-connected environmental risk factors expedited the progression of nCDs. Indeed, the emergence of AFs is becoming a global food security concern. AFs are lethal carcinogenic mycotoxins, causing damage to the liver, kidney, and gastrointestinal organs. Long-term exposure to AFs leads to liver cancer. Almost a variety of food commodities, crops, spices, herbaceous materials, nuts, and processed foods can be contaminated with AFs. In this regard, the primary sections of this review aim to cover influencing factors in the occurrence of AFs, the role of AFs in progression of nCDs, links between GCC/nCDs and exposure to AFs, frequency of AFs-based academic investigations, and world distribution of AFs. Next, the current trends in the application of PPs to alleviate AFs toxicity are discussed. Nearly, more than 20,000 published records indexed in scientific databases have been screened to find recent trends on AFs and application of PPs in AFs therapy. Accordingly, shifts in world climate, improper infrastructures for production/storage of food commodities, inconsistency of global polices on AFs permissible concentration in food/feed, and lack of the public awareness are accounting for a considerable proportion of AFs damages. AFs exhibited their toxic effects by triggering the progression of inflammation and oxidative/nitrosative stress, in turn, leading to the onset of nCDs. PPs could decrease AFs-associated oxidative stress, genotoxic, mutagenic, and carcinogenic effects by improving cellular antioxidant balance, regulation of signaling pathways, alleviating inflammatory responses, and modification of gene expression profile in a dose/time-reliant fashion. The administration of PPs alone displayed lower biological properties compared to co-treatment of these metabolites with AFs. This issue might highlight the therapeutic application of PPs than their preventative content. Flavonoids such as quercetin and oxidized tea phenolics, curcumin and resveratrol were the most studied anti-AFs PPs. Our literature review clearly disclosed that considering PPs in antioxidant therapies to alleviate complications of AFs requires improvement in their bioavailability, pharmacokinetics, tissue clearance, and off-target mode of action. Due to the emergencies in the elimination of AFs in food/feedstuffs, further large-scale clinical assessment of PPs to decrease the consequences of AFs is highly required.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Dehghan Nayeri
- Department of Biotechnology, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Zingales V, Taroncher M, Martino PA, Ruiz MJ, Caloni F. Climate Change and Effects on Molds and Mycotoxins. Toxins (Basel) 2022; 14:toxins14070445. [PMID: 35878185 PMCID: PMC9319892 DOI: 10.3390/toxins14070445] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Earth’s climate is undergoing adverse global changes as an unequivocal result of anthropogenic activity. The occurring environmental changes are slowly shaping the balance between plant growth and related fungal diseases. Climate (temperature, available water, and light quality/quantity; as well as extreme drought, desertification, and fluctuations of humid/dry cycles) represents the most important agroecosystem factor influencing the life cycle stages of fungi and their ability to colonize crops, survive, and produce toxins. The ability of mycotoxigenic fungi to respond to Climate Change (CC) may induce a shift in their geographical distribution and in the pattern of mycotoxin occurrence. The present review examines the available evidence on the impact of CC factors on growth and mycotoxin production by the key mycotoxigenic fungi belonging to the genera Aspergillus, Penicillium, and Fusarium, which include several species producing mycotoxins of the greatest concern worldwide: aflatoxins (AFs), ochratoxins, and fumonisins (FUMs).
Collapse
Affiliation(s)
- Veronica Zingales
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles, s/n, Burjassot, 46100 Valencia, Spain; (V.Z.); (M.T.); (M.-J.R.)
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles, s/n, Burjassot, 46100 Valencia, Spain
| | - Mercedes Taroncher
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles, s/n, Burjassot, 46100 Valencia, Spain; (V.Z.); (M.T.); (M.-J.R.)
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles, s/n, Burjassot, 46100 Valencia, Spain
| | - Piera Anna Martino
- Department of Biomedical, Surgical and Dental Sciences-One Health Unit, Università degli Studi di Milano, Via Pascal 36, 20133 Milan, Italy;
| | - María-José Ruiz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles, s/n, Burjassot, 46100 Valencia, Spain; (V.Z.); (M.T.); (M.-J.R.)
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles, s/n, Burjassot, 46100 Valencia, Spain
| | - Francesca Caloni
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
5
|
Raj J, Farkaš H, Jakovčević Z, Medina A, Magan N, Čepela R, Vasiljević M. Comparison of multiple mycotoxins in harvested maize samples in three years (2018-2020) in four continents. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:599-608. [PMID: 35044892 DOI: 10.1080/19440049.2021.2012600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study has examined the pattern of mycotoxin contamination of maize destined for animal feed in different global regions over a period of 3 years (2018-2020) with up to 1000+ samples analysed in each year. Overall, >75% of samples in each of the survey years were contaminated with multiple mycotoxins regardless of the global region (Europe, Africa, Asia, South Americas countries). Using LC-MS/MS, it was possible to quantify the relative contamination present in the samples in each year from the different regions of eight different mycotoxins including aflatoxin B1 (AFB1), ochratoxin A (OTA) deoxynivalenol (DON), fumonisin B1 (FB1) and B2, zearalenone (ZEA), T-2 and HT-2 toxins. The trends in mycotoxin contamination showed that there was a consistent contamination with DON in the 3 sampling years in all four regions. Interestingly, AFB1 contamination was prevalent in all regions in 2018, but more predominant in Europe and in 2019. In contrast, in 2020 it was found to be the major contaminant in Africa only. However, FB1 contamination of maize which was prevalent in Europe in 2018, became more prevalent in Asia and LATAM countries in 2019 and even in African maize in 2020. Comparisons of contamination with different mycotoxins in each of the years globally showed significant differences for AFB1, FB1, DON and ZEA between the different years. These results are discussed in relation to the trends of contamination of maize with mixtures of mycotoxins and the implication for their control in this key commodity used as an important ingredient in animal feed.
Collapse
Affiliation(s)
- Jog Raj
- PATENT CO, DOO, Mišićevo, Serbia
| | | | | | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK
| | | | | |
Collapse
|
6
|
Baazeem A, Medina A, Magan N. Effect of Acclimatization in Elevated CO 2 on Growth and Aflatoxin B 1 Production by Aspergillus flavus Strains on Pistachio Nuts. Microorganisms 2021; 10:microorganisms10010049. [PMID: 35056498 PMCID: PMC8781546 DOI: 10.3390/microorganisms10010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022] Open
Abstract
There is little knowledge of the effect of acclimatization of Aspergillus flavus strains to climate-related abiotic factors and the subsequent effects on growth and aflatoxin B1 (AFB1) production. In this study, two strains of A. flavus (AB3, AB10) were acclimatized for five generations in elevated CO2 (1000 ppm × 37 °C) on a milled pistachio-based medium. A comparison was made of the effects of non-acclimatized strains and those that were acclimatized when colonizing layers of pistachio nuts exposed to 35 or 37 °C, 400 or 1000 ppm CO2, and 0.93 or 0.98 water activity (aw), respectively. Acclimatization influenced the fitness in terms of the growth of one strain, while there was no significant effect on the other strain when colonizing pistachio nuts. AFB1, production was significantly stimulated after ten days colonization when comparing the non-acclimatized and the acclimatized AB3 strain. However, there was no significant increase when comparing these for strain AB10. This suggests that there may be inter-strain differences in the effects of acclimatization and this could have a differential influence on the mycotoxin contamination of such commodities.
Collapse
Affiliation(s)
- Alaa Baazeem
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Angel Medina
- Applied Mycology Group, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK;
| | - Naresh Magan
- Applied Mycology Group, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK;
- Correspondence: ; Tel.: +44-123-475-8308
| |
Collapse
|
7
|
Fusarium verticillioides and Aspergillus flavus Co-Occurrence Influences Plant and Fungal Transcriptional Profiles in Maize Kernels and In Vitro. Toxins (Basel) 2021; 13:toxins13100680. [PMID: 34678972 PMCID: PMC8537323 DOI: 10.3390/toxins13100680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
Climate change will increase the co-occurrence of Fusarium verticillioides and Aspergillus flavus, along with their mycotoxins, in European maize. In this study, the expression profiles of two pathogenesis-related (PR) genes and four mycotoxin biosynthetic genes, FUM1 and FUM13, fumonisin pathway, and aflR and aflD, aflatoxin pathway, as well as mycotoxin production, were examined in kernels and in artificial medium after a single inoculation with F. verticillioides or A. flavus or with the two fungi in combination. Different temperature regimes (20, 25 and 30 °C) over a time-course of 21 days were also considered. In maize kernels, PR genes showed the strongest induction at 25 °C in the earlier days post inoculation (dpi)with both fungi inoculated singularly. A similar behaviour was maintained with fungi co-occurrence, but with enhanced defence response at 9 dpi under 20 °C. Regarding FUM genes, in the kernels inoculated with F. verticillioides the maximal transcript levels occurred at 6 dpi at 25 °C. At this temperature regime, expression values decreased with the co-occurrence of A. flavus, where the highest gene induction was detected at 20 °C. Similar results were observed in fungi grown in vitro, whilst A. flavus presence determined lower levels of expression along the entire time-course. As concerns afl genes, considering both A. flavus alone and in combination, the most elevated transcript accumulation occurred at 30 °C during all time-course both in infected kernels and in fungi grown in vitro. Regarding mycotoxin production, no significant differences were found among temperatures for kernel contamination, whereas in vitro the highest production was registered at 25 °C for aflatoxin B1 and at 20 °C for fumonisins in the case of single inoculation. In fungal co-occurrence, both mycotoxins resulted reduced at all the temperatures considered compared to the amount produced with single inoculation.
Collapse
|
8
|
A review of mycotoxin biosynthetic pathways: associated genes and their expressions under the influence of climatic factors. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Gallo A, Perrone G. Current Approaches for Advancement in Understanding the Molecular Mechanisms of Mycotoxin Biosynthesis. Int J Mol Sci 2021; 22:ijms22157878. [PMID: 34360643 PMCID: PMC8346063 DOI: 10.3390/ijms22157878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Filamentous fungi are able to synthesise a remarkable range of secondary metabolites, which play various key roles in the interaction between fungi and the rest of the biosphere, determining their ecological fitness. Many of them can have a beneficial activity to be exploited, as well as negative impact on human and animal health, as in the case of mycotoxins contaminating large quantities of food, feed, and agricultural products worldwide and posing serious health and economic risks. The elucidation of the molecular aspects of mycotoxin biosynthesis has been greatly sped up over the past decade due to the advent of next-generation sequencing technologies, which greatly reduced the cost of genome sequencing and related omic analyses. Here, we briefly highlight the recent progress in the use and integration of omic approaches for the study of mycotoxins biosynthesis. Particular attention has been paid to genomics and transcriptomic approaches for the identification and characterisation of biosynthetic gene clusters of mycotoxins and the understanding of the regulatory pathways activated in response to physiological and environmental factors leading to their production. The latest innovations in genome-editing technology have also provided a more powerful tool for the complete explanation of regulatory and biosynthesis pathways. Finally, we address the crucial issue of the interpretation of the combined omics data on the biology of the mycotoxigenic fungi. They are rapidly expanding and require the development of resources for more efficient integration, as well as the completeness and the availability of intertwined data for the research community.
Collapse
Affiliation(s)
- Antonia Gallo
- Institute of Sciences of Food Production (ISPA) National Research Council (CNR), 73100 Lecce, Italy
- Correspondence: (A.G.); (G.P.)
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA) National Research Council (CNR), 70126 Bari, Italy
- Correspondence: (A.G.); (G.P.)
| |
Collapse
|
10
|
Impacts of Climate Change Interacting Abiotic Factors on Growth, aflD and aflR Gene Expression and Aflatoxin B 1 Production by Aspergillus flavus Strains In Vitro and on Pistachio Nuts. Toxins (Basel) 2021; 13:toxins13060385. [PMID: 34071166 PMCID: PMC8228473 DOI: 10.3390/toxins13060385] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
Pistachio nuts are an important economic tree nut crop which is used directly or processed for many food-related activities. They can become colonized by mycotoxigenic spoilage fungi, especially Aspergillus flavus, mainly resulting in contamination with aflatoxins (AFs), especially aflatoxin B1 (AFB1). The prevailing climate in which these crops are grown changes as temperature and atmospheric CO2 levels increase, and episodes of extreme wet/dry cycles occur due to human industrial activity. The objectives of this study were to evaluate the effect of interacting Climate Change (CC)-related abiotic factors of temperature (35 vs. 37 °C), CO2 (400 vs. 1000 ppm), and water stress (0.98-0.93 water activity, aw) on (a) growth (b) aflD and aflR biosynthetic gene expression and (c) AFB1 production by two strains A. flavus (AB3, AB10) in vitro on milled pistachio-based media and when colonizing layers of shelled raw pistachio nuts. The A. flavus strains were resilient in terms of growth on pistachio-based media and the colonisation of pistachio nuts with no significant difference when exposed to the interacting three-way climate-related abiotic factors. However, in vitro studies showed that AFB1 production was significantly stimulated (p < 0.05), especially when exposed to 1000 ppm CO2 at 0.98-0.95 aw and 35 °C, and sometimes in the 37 °C treatment group at 0.98 aw. The relative expression of the structural aflD gene involved in AFB1 biosynthesis was decreased or only slightly increased, relative to the control conditions at elevated CO, regardless of the aw level examined. For the regulatory aflR gene expression, there was a significant (p < 0.05) increase in 1000 ppm CO2 and 37 °C for both strains, especially at 0.95 aw. The in situ colonization of pistachio nuts resulted in a significant (p < 0.05) stimulation of AFB1 production at 35 °C and 1000 ppm CO2 for both strains, especially at 0.98 aw. At 37 °C, AFB1 production was either decreased, in strain AB3, or remained similar, as in strain AB10, when exposed to 1000 ppm CO2. This suggests that CC factors may have a differential effect, depending on the interacting conditions of temperature, exposure to CO2 and the level of water stress on AFB1 production.
Collapse
|
11
|
Brazilian Coffee Production and the Future Microbiome and Mycotoxin Profile Considering the Climate Change Scenario. Microorganisms 2021; 9:microorganisms9040858. [PMID: 33923588 PMCID: PMC8073662 DOI: 10.3390/microorganisms9040858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
Brazil holds a series of favorable climatic conditions for agricultural production including the hours and intensity of sunlight, the availability of agricultural land and water resources, as well as diverse climates, soils and biomes. Amidst such diversity, Brazilian coffee producers have obtained various standards of qualities and aromas, between the arabica and robusta species, which each present a wide variety of lineages. However, temperatures in coffee producing municipalities in Brazil have increased by about 0.25 °C per decade and annual precipitation has decreased. Therefore, the agricultural sector may face serious challenges in the upcoming decades due to crop sensitivity to water shortages and thermal stress. Furthermore, higher temperatures may reduce the quality of the culture and increase pressure from pests and diseases, reducing worldwide agricultural production. The impacts of climate change directly affect the coffee microbiota. Within the climate change scenario, aflatoxins, which are more toxic than OTA, may become dominant, promoting greater food insecurity surrounding coffee production. Thus, closer attention on the part of authorities is fundamental to stimulate replacement of areas that are apt for coffee production, in line with changes in climate zoning, in order to avoid scarcity of coffee in the world market.
Collapse
|
12
|
Moore GG. Practical considerations will ensure the continued success of pre-harvest biocontrol using non-aflatoxigenic Aspergillus flavus strains. Crit Rev Food Sci Nutr 2021; 62:4208-4225. [PMID: 33506687 DOI: 10.1080/10408398.2021.1873731] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is an important reason for the accelerated use of non-aflatoxigenic Aspergillus flavus to mitigate pre-harvest aflatoxin contamination… it effectively addresses the imperative need for safer food and feed. Now that we have decades of proof of the effectiveness of A. flavus as biocontrol, it is time to improve several aspects of this strategy. If we are to continue relying heavily on this form of aflatoxin mitigation, there are considerations we must acknowledge, and actions we must take, to ensure that we are best wielding this strategy to our advantage. These include its: (1) potential to produce other mycotoxins, (2) persistence in the field in light of several ecological factors, (3) its reproductive and genetic stability, (4) the mechanism(s) employed that allow it to elicit control over aflatoxigenic strains and species of agricultural importance and (5) supplemental alternatives that increase its effectiveness. There is a need to be consistent, practical and thoughtful when it comes to implementing this method of mycotoxin mitigation since these fungi are living organisms that have been adapting, evolving and surviving on this planet for tens-of-millions of years. This document will serve as a critical review of the literature regarding pre-harvest A. flavus biocontrol and will discuss opportunities for improvements.
Collapse
Affiliation(s)
- Geromy G Moore
- United States Department of Agriculture, Agricultural Research Service, New Orleans, USA
| |
Collapse
|
13
|
Valencia-Quintana R, Milić M, Jakšić D, Šegvić Klarić M, Tenorio-Arvide MG, Pérez-Flores GA, Bonassi S, Sánchez-Alarcón J. Environment Changes, Aflatoxins, and Health Issues, a Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7850. [PMID: 33120863 PMCID: PMC7672603 DOI: 10.3390/ijerph17217850] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
Crops contaminated by aflatoxins (AFs), the toxic and carcinogenic mycotoxins produced namely by Aspergillus flavus and Aspergillus parasiticus, have severe impacts on human health. Changes in temperature and water availability related to actual climate changes (increased temperature, heavy rainfalls, and droughts) are modulating factors of mould growth and production of mycotoxins. To protect human and animal health from the harmful effects caused by AFs, the development of a safe and effective multifaceted approach in combating food and feed contamination with AFs is necessary. This review aims to collect and analyze the available information regarding AF presence in food and feed to reinforce AF management and to prevent health issues related to the AF exposure in the light of actual climate changes.
Collapse
Affiliation(s)
- Rafael Valencia-Quintana
- Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Tlaxcala 90120, Mexico; (R.V.-Q.); (G.A.P.-F.)
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia;
| | - Daniela Jakšić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, 10000 Zagreb, Croatia; (D.J.); (M.Š.K.)
| | - Maja Šegvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, 10000 Zagreb, Croatia; (D.J.); (M.Š.K.)
| | | | | | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy;
- Unit of Clinical and Molecular Epidemiology IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Juana Sánchez-Alarcón
- Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Tlaxcala 90120, Mexico; (R.V.-Q.); (G.A.P.-F.)
| |
Collapse
|
14
|
Uka V, Cary JW, Lebar MD, Puel O, De Saeger S, Diana Di Mavungu J. Chemical repertoire and biosynthetic machinery of the Aspergillus flavus secondary metabolome: A review. Compr Rev Food Sci Food Saf 2020; 19:2797-2842. [PMID: 33337039 DOI: 10.1111/1541-4337.12638] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
Filamentous fungi represent a rich source of extrolites, including secondary metabolites (SMs) comprising a great variety of astonishing structures and interesting bioactivities. State-of-the-art techniques in genome mining, genetic manipulation, and secondary metabolomics have enabled the scientific community to better elucidate and more deeply appreciate the genetic and biosynthetic chemical arsenal of these microorganisms. Aspergillus flavus is best known as a contaminant of food and feed commodities and a producer of the carcinogenic family of SMs, aflatoxins. This fungus produces many SMs including polyketides, ribosomal and nonribosomal peptides, terpenoids, and other hybrid molecules. This review will discuss the chemical diversity, biosynthetic pathways, and biological/ecological role of A. flavus SMs, as well as their significance concerning food safety and security.
Collapse
Affiliation(s)
- Valdet Uka
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Division of Pharmacy, Faculty of Medicine, University of Pristina, Pristina, Kosovo
| | - Jeffrey W Cary
- Southern Regional Research Center, USDA-ARS, New Orleans, Louisiana
| | - Matthew D Lebar
- Southern Regional Research Center, USDA-ARS, New Orleans, Louisiana
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sarah De Saeger
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - José Diana Di Mavungu
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Perrone G, Ferrara M, Medina A, Pascale M, Magan N. Toxigenic Fungi and Mycotoxins in a Climate Change Scenario: Ecology, Genomics, Distribution, Prediction and Prevention of the Risk. Microorganisms 2020; 8:E1496. [PMID: 33003323 PMCID: PMC7601308 DOI: 10.3390/microorganisms8101496] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022] Open
Abstract
Toxigenic fungi and mycotoxins are very common in food crops, with noticeable differences in their host specificity in terms of pathogenicity and toxin contamination. In addition, such crops may be infected with mixtures of mycotoxigenic fungi, resulting in multi-mycotoxin contamination. Climate represents the key factor in driving the fungal community structure and mycotoxin contamination levels pre- and post-harvest. Thus, there is significant interest in understanding the impact of interacting climate change-related abiotic factors (especially increased temperature, elevated CO2 and extremes in water availability) on the relative risks of mycotoxin contamination and impacts on food safety and security. We have thus examined the available information from the last decade on relative risks of mycotoxin contamination under future climate change scenarios and identified the gaps in knowledge. This has included the available scientific information on the ecology, genomics, distribution of toxigenic fungi and intervention strategies for mycotoxin control worldwide. In addition, some suggestions for prediction and prevention of mycotoxin risks are summarized together with future perspectives and research needs for a better understanding of the impacts of climate change scenarios.
Collapse
Affiliation(s)
- Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 70126 Bari, Italy; (M.F.); (M.P.)
| | - Massimo Ferrara
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 70126 Bari, Italy; (M.F.); (M.P.)
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK;
| | - Michelangelo Pascale
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 70126 Bari, Italy; (M.F.); (M.P.)
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK;
| |
Collapse
|
16
|
Akbar A, Medina A, Magan N. Resilience of Aspergillus westerdijkiae Strains to Interacting Climate-Related Abiotic Factors: Effects on Growth and Ochratoxin A Production on Coffee-Based Medium and in Stored Coffee. Microorganisms 2020; 8:E1268. [PMID: 32825420 PMCID: PMC7569885 DOI: 10.3390/microorganisms8091268] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022] Open
Abstract
We examined the resilience of strains of Aspergillus westerdijkiae in terms of growth and ochratoxin A (OTA) production in relation to: (a) two-way interacting climate-related abiotic factors of water activity (aw, 0.99-0.90) × temperature (25-37 °C) on green coffee and roasted coffee-based media; (b) three-way climate-related abiotic factors (temperature, 30 vs. 35 °C; water stress, 0.98-0.90 aw; CO2, 400 vs. 1000 ppm) on growth and OTA production on a 6% green coffee extract-based matrix; and (c) the effect of three-way climate-related abiotic factors on OTA production in stored green coffee beans. Four strains of A. westerdijkiae grew equally well on green or roasted coffee-based media with optimum 0.98 aw and 25-30 °C. Growth was significantly slower on roasted than green coffee-based media at 35 °C, regardless of aw level. Interestingly, on green coffee-based media OTA production was optimum at 0.98-0.95 aw and 30 °C. However, on roasted coffee-based media very little OTA was produced. Three-way climate-related abiotic factors were examined on two of these strains. These interacting factors significantly reduced growth of the A. westerdijkiae strains, especially at 35 °C × 1000 ppm CO2 and all aw levels when compared to 30 °C. At 35 °C × 1000 ppm CO2 there was some stimulation of OTA production by the two A. westerdijkiae strains, especially under water stress. In stored green coffee beans optimum OTA was produced at 0.95-0.97 aw/30 °C. In elevated CO2 and 35 °C, OTA production was stimulated at 0.95-0.90 aw.
Collapse
Affiliation(s)
| | | | - Naresh Magan
- Applied Mycology Group, School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK; (A.A.); (A.M.)
| |
Collapse
|
17
|
Musungu B, Bhatnagar D, Quiniou S, Brown RL, Payne GA, O’Brian G, Fakhoury AM, Geisler M. Use of Dual RNA-seq for Systems Biology Analysis of Zea mays and Aspergillus flavus Interaction. Front Microbiol 2020; 11:853. [PMID: 32582038 PMCID: PMC7285840 DOI: 10.3389/fmicb.2020.00853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/09/2020] [Indexed: 11/18/2022] Open
Abstract
The interaction between Aspergillus flavus and Zea mays is complex, and the identification of plant genes and pathways conferring resistance to the fungus has been challenging. Therefore, the authors undertook a systems biology approach involving dual RNA-seq to determine the simultaneous response from the host and the pathogen. What was dramatically highlighted in the analysis is the uniformity in the development patterns of gene expression of the host and the pathogen during infection. This led to the development of a "stage of infection index" that was subsequently used to categorize the samples before down-stream system biology analysis. Additionally, we were able to ascertain that key maize genes in pathways such as the jasmonate, ethylene and ROS pathways, were up-regulated in the study. The stage of infection index used for the transcriptomic analysis revealed that A. flavus produces a relatively limited number of transcripts during the early stages (0 to 12 h) of infection. At later stages, in A. flavus, transcripts and pathways involved in endosomal transport, aflatoxin production, and carbohydrate metabolism were up-regulated. Multiple WRKY genes targeting the activation of the resistance pathways (i.e., jasmonate, phenylpropanoid, and ethylene) were detected using causal inference analysis. This analysis also revealed, for the first time, the activation of Z. mays resistance genes influencing the expression of specific A. flavus genes. Our results show that A. flavus seems to be reacting to a hostile environment resulting from the activation of resistance pathways in Z. mays. This study revealed the dynamic nature of the interaction between the two organisms.
Collapse
Affiliation(s)
- Bryan Musungu
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, United States
| | - Deepak Bhatnagar
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, United States
| | - Sylvie Quiniou
- Warm Water Aquaculture Research Unit, USDA-ARS, Stoneville, MS, United States
| | - Robert L. Brown
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, United States
| | - Gary A. Payne
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Greg O’Brian
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Ahmad M. Fakhoury
- Department of Plant Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, United States
| | - Matt Geisler
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, United States
| |
Collapse
|
18
|
Garcia-Cela E, Verheecke-Vaessen C, Gutierrez-Pozo M, Kiaitsi E, Gasperini AM, Magan N, Medina A. Unveiling the effect of interacting forecasted abiotic factors on growth and aflatoxin B 1 production kinetics by Aspergillus flavus. Fungal Biol 2020; 125:89-94. [PMID: 33518209 DOI: 10.1016/j.funbio.2020.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022]
Abstract
The aim was to decipher the temporal impact of key interacting climate change (CC) abiotic factors of temperature (30 vs 37 °C), water activity (aw; 0.985 vs 0.930) and CO2 exposure (400 vs 1000 ppm) on (a) growth of Aspergillus flavus and effects on (b) gene expression of a structural (aflD) and key regulatory gene (aflR) involved in aflatoxin B1 (AFB1) biosynthesis and (c) AFB1 production on a yeast extract sucrose medium over a period of 10 days. A. flavus grew and produced AFB1 very early with toxin detected after only 48 h. Both growth and toxin production were significantly impacted by the interacting abiotic factors. The relative expression of the aflD gene was significantly influenced by temperature; aflR gene expression was mainly modulated by time. However, no clear relationship was observed for both genes with AFB1 production over the experimental time frame. The optimum temperature for AFB1 production was 30 °C. Maximum AFB1 production occurred between days 4-8. Exposure to higher CO2 conditions simulating forecasted CC conditions resulted in the amount of AFB1 produced in elevated temperature (37 °C) being higher than with the optimum temperature (30 °C) showing a potential for increased risk for human/animal health due to higher accumulation of this toxin.
Collapse
Affiliation(s)
- Esther Garcia-Cela
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds, MK43 0AL, UK; Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL109AB, UK
| | - Carol Verheecke-Vaessen
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds, MK43 0AL, UK
| | - Maria Gutierrez-Pozo
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds, MK43 0AL, UK; Surface Engineering and Precision Institute, Cranfield University, Cranfield, Beds, MK43 0AL, UK
| | - Elisavet Kiaitsi
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds, MK43 0AL, UK
| | - Alessandra M Gasperini
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds, MK43 0AL, UK
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds, MK43 0AL, UK
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds, MK43 0AL, UK.
| |
Collapse
|
19
|
Elliott CT, Connolly L, Kolawole O. Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin Res 2020; 36:115-126. [PMID: 31515765 PMCID: PMC6971152 DOI: 10.1007/s12550-019-00375-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022]
Abstract
The contamination of feed with mycotoxins is a continuing feed quality and safety issue, leading to significant losses in livestock production and potential human health risks. Consequently, various methods have been developed to reduce the occurrence of mycotoxins in feed; however, feed supplementation with clay minerals or mineral adsorbents is the most prominent approach widely practiced by farmers and the feed industry. Due to a negatively charged and high surface area, pore volume, swelling ability, and high cation exchange capacity, mineral adsorbents including bentonite, zeolite, montmorillonite, and hydrated sodium calcium aluminosilicate can bind or adsorb mycotoxins to their interlayer spaces, external surface, and edges. Several studies have shown these substances to be partly or fully effective in counteracting toxic effects of mycotoxins in farm animals fed contaminated diets and thus are extensively used in livestock production to reduce the risk of mycotoxin exposure. Nevertheless, a considerable number of studies have indicated that these agents may also cause undesirable effects in farm animals. The current work aims to review published reports regarding adverse effects that may arise in farm animals (with a focus on pig and poultry) and potential interaction with veterinary substances and nutrients in feeds, when mineral adsorbents are utilized as a technological feed additive. Furthermore, results of in vitro toxicity studies of both natural and modified mineral adsorbents on different cell lines are reported. Supplementation of mycotoxin-contaminated feed with mineral adsorbents must be carefully considered by farmers and feed industry.
Collapse
Affiliation(s)
- Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, UK.
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, UK
| | - Oluwatobi Kolawole
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, UK
| |
Collapse
|
20
|
Zhao G, Wang YF, Chen J, Yao Y. Predominant Mycotoxins, Pathogenesis, Control Measures, and Detection Methods in Fermented Pastes. Toxins (Basel) 2020; 12:E78. [PMID: 31979410 PMCID: PMC7076863 DOI: 10.3390/toxins12020078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
Fermented pastes are some of the most popular traditional products in China. Many studies reported a strong possibility that fermented pastes promote exposure to mycotoxins, including aflatoxins, ochratoxins, and cereulide, which were proven to be carcinogenic and neurotoxic to humans. The primary mechanism of pathogenicity is by inhibiting protein synthesis and inducing oxidative stress using cytochrome P450 (CYP) enzymes. The level of mycotoxin production is dependent on the pre-harvest or post-harvest stage. It is possible to implement methods to control mycotoxins by using appropriate antagonistic microorganisms, such as Aspergillus niger, Lactobacillus plantarum, and Saccharomyces cerevisiae isolated from ordinary foods. Also, drying products as soon as possible to avoid condensation or moisture absorption in order to reduce the water activity to lower than 0.82 during storage is also effective. Furthermore, organic acid treatment during the soaking process reduces toxins by more than 90%. Some novel detection technologies based on magnetic adsorption, aptamer probes, and molecular-based methods were applied to rapidly and accurately detect mycotoxins in fermented pastes.
Collapse
Affiliation(s)
- Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, 300457 Tianjin, China; (G.Z.); (Y.-F.W.)
| | - Yi-Fei Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, 300457 Tianjin, China; (G.Z.); (Y.-F.W.)
| | - Junling Chen
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, China;
| | - Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, 300457 Tianjin, China; (G.Z.); (Y.-F.W.)
| |
Collapse
|
21
|
Chai Q, Li Y, Li X, Wu W, Peng H, Jia R, Sun Q. Assessment of variation in paddy microbial communities under different storage temperatures and relative humidity by Illumina sequencing analysis. Food Res Int 2019; 126:108581. [DOI: 10.1016/j.foodres.2019.108581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
|
22
|
Gasperini AM, Rodriguez-Sixtos A, Verheecke-Vaessen C, Garcia-Cela E, Medina A, Magan N. Resilience of Biocontrol for Aflatoxin Minimization Strategies: Climate Change Abiotic Factors May Affect Control in Non-GM and GM-Maize Cultivars. Front Microbiol 2019; 10:2525. [PMID: 31787944 PMCID: PMC6856084 DOI: 10.3389/fmicb.2019.02525] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/21/2019] [Indexed: 01/16/2023] Open
Abstract
There has been significant interest in the development of formulations of non-toxigenic strains of Aspergillus flavus for control of toxigenic strains to reduce the aflatoxin B1 (AFB1) contamination of maize. In the future, climate change (CC) abiotic conditions of temperature (+2–4°C), CO2 (existing levels of 400 vs. 800–1,200 ppb), and drought stress will impact on the agronomy and control of pests and diseases. This study has examined (1) the effect of two-way interacting factors of water activity × temperature on colonization and AFB1 contamination of maize cobs of different ripening ages; (2) the effect of non-toxigenic strains of A. flavus (50:50 inoculum ratio) on relative control of toxigenic A. flavus and AFB1 contamination of ripening cobs; (3) post-harvest control of AFB1 by non-toxigenic strains of A. flavus in non-GM and isogenic GM maize cultivars using the same inoculum ratio; and (4) the impact of three-way interacting CC factors on relative control of AFB1 in maize cobs pre-harvest and in stored non-GM/GM cultivars. Pre-harvest colonization and AFB1 production by a toxigenic A. flavus strain was conserved at 37°C when compared with 30°C, at the three ripening stages of cob development examined: milk ripe (R3), dough (R4), and dent (R5). However, pre-harvest biocontrol with a non-toxigenic strain was only effective at the R3 and R4 stages and not at the R5 stage. This was supported by relative expression of the aflR regulatory biosynthetic gene in the different treatments. When exposed to three-way interacting CC factors for control of AFB1 pre-harvest, the non-toxigenic A. flavus strain was effective at R3 and £4 stages but not at the R5 stage. Post-harvest storage of non-GM and GM cultivars showed that control was achievable at 30°C, with slightly better control in GM-cultivars in terms of the overall inhibition of AFB1 production. However, in stored maize, the non-toxigenic strains of A. flavus had conserved biocontrol of AFB1 contamination, especially in the GM-maize cultivars under three-way interacting CC conditions (37°C × 1,000 ppm CO2 and drought stress). This was supported by the relative expression of the aflR gene in these treatments. This study suggests that the choice of the biocontrol strains, for pre- or post-harvest control, needs to take into account their resilience in CC-related abiotic conditions to ensure that control of AFB1 contamination can be conserved.
Collapse
Affiliation(s)
- Alessandra Marcon Gasperini
- Applied Mycology Group, Cranfield Soil and Agrifood Institute, Environment and Agrifood Theme, Cranfield University, Bedford, United Kingdom
| | - Alicia Rodriguez-Sixtos
- Applied Mycology Group, Cranfield Soil and Agrifood Institute, Environment and Agrifood Theme, Cranfield University, Bedford, United Kingdom
| | - Carol Verheecke-Vaessen
- Applied Mycology Group, Cranfield Soil and Agrifood Institute, Environment and Agrifood Theme, Cranfield University, Bedford, United Kingdom
| | - Esther Garcia-Cela
- Applied Mycology Group, Cranfield Soil and Agrifood Institute, Environment and Agrifood Theme, Cranfield University, Bedford, United Kingdom
| | - Angel Medina
- Applied Mycology Group, Cranfield Soil and Agrifood Institute, Environment and Agrifood Theme, Cranfield University, Bedford, United Kingdom
| | - Naresh Magan
- Applied Mycology Group, Cranfield Soil and Agrifood Institute, Environment and Agrifood Theme, Cranfield University, Bedford, United Kingdom
| |
Collapse
|
23
|
Hanano A, Almousally I, Shaban M. Exposure of Aspergillus flavus NRRL 3357 to the Environmental Toxin, 2,3,7,8-Tetrachlorinated Dibenzo- p-Dioxin, Results in a Hyper Aflatoxicogenic Phenotype: A Possible Role for Caleosin/Peroxygenase (AfPXG). Front Microbiol 2019; 10:2338. [PMID: 31681203 PMCID: PMC6803392 DOI: 10.3389/fmicb.2019.02338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022] Open
Abstract
Aflatoxins (AFs) as potent food contaminants are highly detrimental to human and animal health. The production of such biological toxins is influenced by environmental factors including pollutants, such as dioxins. Here, we report the biological feedback of an active AF-producer strain of A. flavus upon in vitro exposure to the most toxic congener of dioxins, the 2,3,7,8-tetrachlorinated dibenzo-p-dioxin (TCDD). The phenotype of TCDD-exposed A. flavus was typified by a severe limitation in vegetative growth, activation of conidia formation and a significant boost in AF production. Furthermore, the level of reactive oxygen species (ROS) in fungal protoplast was increased (3.1- to 3.8-fold) in response to TCDD exposure at 10 and 50 ng mL-1, respectively. In parallel, superoxide dismutase (SOD) and catalase (CAT) activities were, respectively, increased by a factor of 2 and 3. In contrast to controls, transcript, protein and enzymatic activity of caleosin/peroxygenase (AfPXG) was also significantly induced in TCDD-exposed fungi. Subsequently, fungal cells accumulated fivefold more lipid droplets (LDs) than controls. Moreover, the TCDD-exposed fungi exhibited twofold higher levels of AFB1. Interestingly, TCDD-induced hyperaflatoxicogenicity was drastically abolished in the AfPXG-silencing strain of A. flavus, suggesting a role for AfPXG in fungal response to TCDD. Finally, TCDD-exposed fungi showed an increased in vitro virulence in terms of sporulation and AF production. The data highlight the possible effects of dioxin on aflatoxicogenicity of A. flavus and suggest therefore that attention should be paid in particular to the potential consequences of climate change on global food safety.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | | | | |
Collapse
|
24
|
Verheecke-Vaessen C, Diez-Gutierrez L, Renaud J, Sumarah M, Medina A, Magan N. Interacting climate change environmental factors effects on Fusarium langsethiae growth, expression of Tri genes and T-2/HT-2 mycotoxin production on oat-based media and in stored oats. Fungal Biol 2019; 123:618-624. [DOI: 10.1016/j.funbio.2019.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 01/06/2023]
|
25
|
Krulj J, Markov S, Bočarov-Stančić A, Pezo L, Kojić J, Ćurčić N, Janić-Hajnal E, Bodroža-Solarov M. The effect of storage temperature and water activity on aflatoxin B 1 accumulation in hull-less and hulled spelt grains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3703-3710. [PMID: 30663055 DOI: 10.1002/jsfa.9601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/10/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND In concomitance with shifts in climate conditions in recent years, an increasingly frequent emergence of Aspergillus flavus and aflatoxins in cereals has been observed. In this study the effects of temperature (15, 23, 30 and 37 °C) and water activity (aw ) (0.85, 0.90, 0.95 and 0.99) on aflatoxin B1 (AFB1 ) production by A. flavus isolate inoculated on hull-less and hulled spelt grains were investigated. RESULTS The optimal conditions for AFB1 biosynthesis were reached at 30 °C and aw value of 0.99 in the all tested samples (hull-less grains, dehulled spelt grains and hulls). The AFB1 accumulation was significantly higher in hull-less than in dehulled grains, that implicated a protective effect of spelt hulls. The levels of AFB1 were about 10-170 times higher in hulls than in grains. In order to determine the possibility of predicting the occurrence of AFB1 under different storage conditions mathematical models [second order polynomial (SOP) and artificial neural network (ANN)] were applied. CONCLUSION The achievement of such estimation facilitates further decisions on continuous monitoring of the potential hazard related to AFB1 contamination of stored spelt-based food. The knowledge of the storage temperature and aw effects on the AFB1 content in spelt during the postharvest phase is of great practical importance. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jelena Krulj
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Siniša Markov
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandra Bočarov-Stančić
- Department of Biotechnology and Pharmaceutical Engineering, Institute for Science Application in Agriculture, Belgrade, Serbia
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, Beograd, Serbia
| | - Jovana Kojić
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Ćurčić
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | | | | |
Collapse
|
26
|
Taniwaki MH, Pitt JI, Magan N. Aspergillus species and mycotoxins: occurrence and importance in major food commodities. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.05.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Garcia-Cela E, Verheecke-Vaessen C, Magan N, Medina A. The ``-omics’’ contributions to the understanding of mycotoxin production under diverse environmental conditions. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
|