1
|
Tondolo JSM, Zeni G, Sassaki GL, Santurio JM, Loreto ES. Carboxymethylation of β-Glucan from Pythium insidiosum: Structural characterization and preliminary adsorption evaluation of DON and T2 toxin. Carbohydr Res 2025; 547:109323. [PMID: 39571190 DOI: 10.1016/j.carres.2024.109323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/24/2024] [Accepted: 11/16/2024] [Indexed: 12/06/2024]
Abstract
This study aimed to evaluate the impact of carboxymethylation on the structural and functional properties of β-glucan derived from the pathogenic oomycete Pythium insidiosum. β-Glucan was extracted and subjected to carboxymethylation (CM-glucan), with structural changes analyzed using 13C and 1H NMR spectroscopy. The modified β-glucan's ability to adsorb mycotoxins, specifically deoxynivalenol (DON) and T2 toxin, was assessed through in vitro adsorption assays. Results demonstrated that the adsorption of DON by CM-glucan increased from 0 % to 59.11 %, corresponding to the adsorption of approximately 1.18 μg of DON from the initial concentration (2 μg/mL). Similarly, the adsorption of T2 toxin increased slightly from 0 % to 4.54 %, corresponding to 0.09 μg of T2 toxin adsorbed from the initial concentration (2 μg/mL). These findings underscore the potential of chemical modifications to enhance the functional properties of natural polysaccharides, suggesting future applications in mycotoxin adsorption and other biological properties across various areas.
Collapse
Affiliation(s)
- Juliana S M Tondolo
- Sobresp Faculty of Health Sciences, 520 Appel Street, Santa Maria, RS, 97015-030, Brazil
| | - Gilson Zeni
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, RS, Brazil
| | - Guilherme L Sassaki
- Department of Biochemistry and Molecular Biology, Center for Biological Sciences, Federal University of Paraná, PR, Brazil
| | - Janio M Santurio
- Department of Microbiology and Parasitology, Federal University of Santa Maria, RS, Santa Maria, Brazil
| | - Erico S Loreto
- Sobresp Faculty of Health Sciences, 520 Appel Street, Santa Maria, RS, 97015-030, Brazil.
| |
Collapse
|
2
|
Maher A, Miśkiewicz K, Rosicka-Kaczmarek J, Nowak A. Detoxification of Acrylamide by Potentially Probiotic Strains of Lactic Acid Bacteria and Yeast. Molecules 2024; 29:4922. [PMID: 39459290 PMCID: PMC11510321 DOI: 10.3390/molecules29204922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Some potentially probiotic strains of lactic acid bacteria (LAB) and yeast that inhabit the digestive tract of humans are known to detoxify xenobiotics, including acrylamide (AA). The objective of the subsequent research was to evaluate the AA-detoxification capability of LAB and yeast isolated from various sources. Namely, the effect of AA was tested on the growth of LAB and yeast strains, as well in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Subsequently, the AA-binding ability of LAB and yeast was investigated in various environments, including the pH, incubation temperature, cell density, and with inanimate cells. The ability of selected LAB and yeast to reduce the genotoxicity of AA was tested on Caco-2 and Hep-G2 cell lines. The results showed that all tested strains exhibited strong resistance to AA at concentrations of 5, 10, and 50 µg/mL. Also, AA was detected in the intracellular and membrane extracts of tested strains. The most effective binding strain was Pediococcus acidilactici 16 at pH = 5, cell density = 109 CFU/mL, and incubation temperature = 37 °C (87.6% of AA removed). Additionally, all tested strains reduced the genotoxicity of AA, with the greatest reduction observed at the highest concentration of 50 µg/mL. The phenomena of detoxification by potentially probiotic strains could reduce the toxic and harmful effects of AA exposure to humans every day.
Collapse
Affiliation(s)
- Agnieszka Maher
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland;
| | - Karolina Miśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (K.M.); (J.R.-K.)
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (K.M.); (J.R.-K.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland;
| |
Collapse
|
3
|
Xiao J, Tan J, Guo R, Dai J, Xiu Z, Sun Y, Liu H, Li Y, Tong Y, Quan C. Deoxynivalenol Detoxification by a Novel Strain of Pichia kudriavzevii via Enzymatic Degradation and Cell Wall Adsorption. Appl Biochem Biotechnol 2024; 196:3102-3114. [PMID: 37624506 DOI: 10.1007/s12010-023-04712-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin that significantly threatens the food and feed industry. Corn steep liquor (CSL) is an acidic byproduct of the corn starch industry, and DON is concentrated in CSL once the material is contaminated. In this work, a Pichia kudriavzevii strain that could remove DON from CSL was isolated and characterized. The strain P. kudriavzevii E4-205 showed detoxifying activity in a pH range of 4.0~7.0 and temperature of 25~42 °C, and 39.4% DON was reduced by incubating this strain in CSL supernatant diluted by 2-fold (5 μg/mL DON) for 48 h at pH 5.0 and 30 °C. Further mechanism studies showed that P. kudriavzevii E4-205 could adsorb DON by the cell wall and degrade DON by intracellular enzymes with NADH as a cofactor. The degradation product was identified as 3,7,8,15-tetrahydroxyscirpene by liquid chromatography-tandem mass spectrometry. DON adsorption by inactivated cells was characterized, and the adsorption followed pseudo first-order kinetics. This study revealed a novel mechanism by which microbes degrade DON and might serve as a guide for the development of DON biological detoxification methods.
Collapse
Affiliation(s)
- Jiaqi Xiao
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Jian Tan
- COFCO Nutrition & Health Research Institute, Beijing, 102209, People's Republic of China
| | - Ruyi Guo
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Jianying Dai
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, People's Republic of China.
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Yaqin Sun
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Haijun Liu
- Jilin COFCO Biochemistry Co., Ltd., National Engineering Research Center of Corn Deep Processing, Changchun, 130033, People's Republic of China
| | - Yi Li
- Jilin COFCO Biochemistry Co., Ltd., National Engineering Research Center of Corn Deep Processing, Changchun, 130033, People's Republic of China
| | - Yi Tong
- Jilin COFCO Biochemistry Co., Ltd., National Engineering Research Center of Corn Deep Processing, Changchun, 130033, People's Republic of China.
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian, 116650, People's Republic of China
| |
Collapse
|
4
|
Bzducha-Wróbel A, Janowicz M, Bryła M, Grzesiuk I. Adsorption of Zearalenone by Aureobasidium pullulans Autolyzed Biomass Preparation and Its Detoxification Properties in Cultures of Saccharomyces cerevisiae Yeast. Toxins (Basel) 2024; 16:105. [PMID: 38393183 PMCID: PMC10892388 DOI: 10.3390/toxins16020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Different preventive strategies are needed to minimize the intake risks of mycotoxins, including zearalenone (ZEN). The aim of this study was to determine the ZEN adsorption ability of an autolyzed biomass preparation of polymorphic yeast Aureobasidium pullulans A.p.-3. The evaluation of the antitoxic properties of the preparation was also performed in relation to Saccharomyces cerevisiae yeast (ATCC 2366, ATCC 7090 and ATCC 9763) used as a model cell exposed to a toxic ZEN dose. The preparation at a dose of 5 mg/mL showed the adsorption of ZEN present in model systems at concentrations between 1 μg/mL to 100 μg/mL. The highest degree of adsorption was established for ZEN concentrations of 1 μg/mL and 5 μg/mL, becoming limited at higher doses of the toxin. Based on the Langmuir model of adsorption isotherms, the predicted maximum ZEN adsorption was approx. 190 µg/mL, regardless of pH. The growth of three strains of S. cerevisiae yeast cells in the medium with ZEN at concentrations within the range of 1.56 μg/mL-100 μg/mL was analyzed to determine the minimum inhibitory concentration. The growth of all tested strains was especially limited by high doses of ZEN, i.e., 50 and 100 μg/mL. The protective effect of the tested preparation was noted in relation to yeast cells exposed to toxic 100 μg/mL ZEN doses. The highest yeast cell growth (app. 36% percentage) was noted for a S. cerevisiae ATCC 9763 strain compared to the medium with ZEN but without preparation. More detailed tests determining the antitoxic mechanisms of the A. pullulans preparation are planned in the future, including cell culture bioassays and animal digestive tract models.
Collapse
Affiliation(s)
- Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland;
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka Str. 36, 02-532 Warsaw, Poland;
| | - Iga Grzesiuk
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Faculty of Food Technology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
5
|
Ouyang W, Liao Z, Yang X, Zhang X, Zhu X, Zhong Q, Wang L, Fang X, Wang J. Microbial Composition of Water Kefir Grains and Their Application for the Detoxification of Aflatoxin B1. Toxins (Basel) 2024; 16:107. [PMID: 38393185 PMCID: PMC10893553 DOI: 10.3390/toxins16020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Water kefir grains (WKGs), the starter used to develop a traditional beverage named water kefir, consist of a symbiotic mixture of probiotics with diverse bioactivities, but little is known about their abilities to remove mycotoxins that have serious adverse effects on humans and animals. This study investigated the ability of WKGs to remove aflatoxin B1 (AFB1), one of the most toxic mycotoxins, under different settings, and determined the mechanism of absorption mediated by WKGs and the effect of WKGs on the toxicity induced by AFB1 and the reduction in AFB1 in cow milk and tea soups. The results showed the WKGs used herein were dominated by Lactobacillus, Acetobacter, Phenylobacterium, Sediminibacterium, Saccharomyces, Issatchenkia, and Kodamaea. HPLC analysis demonstrated that the WKGs effectively removed AFB1 at concentrations ranging from 1 to 5 µg/mL, pH values ranging from 3 to 9, and temperatures ranging from 4 to 45 °C. Additionally, the removal of AFB1 mainly depended on absorption, which was consistent with the Freundlich and pseudo-second-order kinetic models. Moreover, only 49.63% of AFB1 was released from the AFB1-WKG complex after four washes when the release of AFB1 was non-detectable. Furthermore, WKG treatment caused a dramatic reduction in the mutagenicity induced by AFB1 according to an Ames test and reduced more than 54% of AFB1 in cow milk and three tea soups. These results suggested that WKGs can act as a potential bio-absorbent with a high binding ability to detoxify AFB1 in food and feed via a chemical action step and multi-binding sites of AFB1 absorption in a wide range of scenarios.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jie Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China (X.Y.); (X.Z.); (X.Z.); (X.F.)
| |
Collapse
|
6
|
Ruan ML, Wang J, Xia ZY, Li XW, Zhang B, Wang GL, Wu YY, Han Y, Deng J, Sun LH. An integrated mycotoxin-mitigating agent can effectively mitigate the combined toxicity of AFB 1, DON and OTA on the production performance, liver and oviduct health in broiler breeder hens. Food Chem Toxicol 2023; 182:114159. [PMID: 37913901 DOI: 10.1016/j.fct.2023.114159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
This study was to evaluate the efficacy of an integrated mycotoxin-mitigating agent in reducing the adverse effects of co-occurring dietary aflatoxin B1 deoxynivalenol and ochratoxin A on broiler breeder hens. 360 30-week-old Hubbard Efficiency Plus broiler breeder hens were allocated into four groups and received a basal diet (BD; Control), BD added 0.15 mg/kg aflatoxin B1+1.5 mg/kg deoxynivalenol+0.12 mg/kg ochratoxin A (Toxins), BD plus Toxins with 0.1% TOXO-XL (Toxins + XL1), and BD plus Toxins with 0.2% TOXO-XL (Toxins + XL2), respectively, for 8 weeks, and then received the same BD for another 4 weeks. Compared with control, mycotoxins decreased total egg weigh, egg laying rate, settable eggs rate, hatch of total eggs rate, egg quality, but increased feed/egg ratio and mortality rate, and impaired the liver and oviduct health during weeks 1-8 and(or) 9-12. It also increased PC and MDA concentrations, TUNEL-positive cells and IL-1β and IL-6 expression, and decreased T-AOC, GPX and CAT activities in liver and/or oviduct. Notably, most of these negative changes were mitigated by both dosages of TOXO-XL. Generally, 0.2% TOXO-XL displayed better mitigation effects than 0.1% TOXO-XL. Conclusively, these findings revealed that TOXO-XL could mitigate the combined mycotoxins-induced toxicity on the performance, liver and oviduct health, through the regulation of redox, immunity, and apoptosis in broiler breeder hens.
Collapse
Affiliation(s)
- Meng-Ling Ruan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jie Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhi-Yuan Xia
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xue-Wu Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Newhope Liuhe Co. Ltd., Beijing, 100102, China
| | - Bo Zhang
- Selko Feed Additives, Nutreco, Stationsstraat 77, 3811, MH, Amersfoort, the Netherlands
| | - Guan-Lin Wang
- Selko Feed Additives, Nutreco, Stationsstraat 77, 3811, MH, Amersfoort, the Netherlands
| | - Yuan-Yuan Wu
- Selko Feed Additives, Nutreco, Stationsstraat 77, 3811, MH, Amersfoort, the Netherlands
| | - Yanming Han
- Selko Feed Additives, Nutreco, Stationsstraat 77, 3811, MH, Amersfoort, the Netherlands
| | - Jiang Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
7
|
Morales D. Food By-Products and Agro-Industrial Wastes as a Source of β-Glucans for the Formulation of Novel Nutraceuticals. Pharmaceuticals (Basel) 2023; 16:460. [PMID: 36986559 PMCID: PMC10051131 DOI: 10.3390/ph16030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Food and agro-industrial by-products provoke a great environmental and economic impact that must be minimized by adding value to these wastes within the framework of circular economy. The relevance of β-glucans obtained from natural sources (cereals, mushrooms, yeasts, algae, etc.), in terms of their interesting biological activities (hypocholesterolemic, hypoglycemic, immune-modulatory, antioxidant, etc.), has been validated by many scientific publications. Since most of these by-products contain high levels of these polysaccharides or can serve as a substrate of β-glucan-producing species, this work reviewed the scientific literature, searching for studies that utilized food and agro-industrial wastes to obtain β-glucan fractions, attending to the applied procedures for extraction and/or purification, the characterization of the glucans and the tested biological activities. Although the results related to β-glucan production or extraction using wastes are promising, it can be concluded that further research on the glucans' characterization, and particularly on the biological activities in vitro and in vivo (apart from antioxidant capacity), is required to reach the final goal of formulating novel nutraceuticals based on these molecules and these raw materials.
Collapse
Affiliation(s)
- Diego Morales
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; or
- Departmental Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
Li Q, Yi P, Zhang J, Shan Y, Lin Y, Wu M, Wang K, Tian G, Li J, Zhu T. Bioconversion of food waste to crayfish feed using solid-state fermentation with yeast. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15325-15334. [PMID: 36169850 DOI: 10.1007/s11356-022-23100-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
In order to realize the value-added utilization of food waste (FW), the preparation of crayfish (Procambarus clarkii) feed by yeast fermentation was investigated. Firstly, the suitable fermentation condition was obtained through a single factor experiment as follows: the initial moisture of the FW was adjusted to 60% with bran and inoculated with a 2% yeast mixture (Saccharomyces cerevisiae, Candida utilis, and Yarrowia lipolytica, 3:2:1) followed by aerobic solid-state fermentation for 7 days. The crude protein and acid-soluble protein contents in the fermented feed were 25.14% and 5.16%, which were increased by 8% and 140.67%, respectively. The crude fat content was 0.74%, decreased by 68.29%. The content of antioxidant glutathione (571.78 μg/g) increased 63.33%, and the activities of protease and amylase increased nearly 9 and 3 times, respectively. The maximum degradation rates of aflatoxin B1, zearalenone, and deoxynivalenol were 63.83%, 77.52%, and 80.16%, respectively. The fermented feeds were evaluated by substituting (0%, 10%, 30%, 50%, and 100%) commercial diet for crayfish (30-day culture period). When the replacement proportion was 30%, the weight gain of crayfish reached 44.87% (initial body weight 13.98 ± 0.41 g), which was significantly increased by 10.25% compared with the control (p = 0.0005). In addition, the lysozyme and SOD enzyme activities in crayfish hepatopancreas were also increased significantly. Our findings suggest that yeast-fermented feed from FW can replace 30% of crayfish's conventional diet, which may improve crayfish's antioxidant capacity and enhance non-specific immunity by providing molecules such as glutathione.
Collapse
Affiliation(s)
- Qinping Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Puhong Yi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianze Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yudong Shan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yongfeng Lin
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215000, Jiangsu, China
| | - Ming Wu
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215000, Jiangsu, China
| | - Kun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Guangming Tian
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215000, Jiangsu, China
| | - Ji Li
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215000, Jiangsu, China
| | - Tingheng Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
9
|
Gan M, Hu J, Wan K, Liu X, Chen P, Zeng R, Wang F, Zhao Y. Isolation and Characterization of Lactobacillus paracasei 85 and Lactobacillus buchneri 93 to Absorb and Biotransform Zearalenone. TOXICS 2022; 10:680. [PMID: 36355971 PMCID: PMC9695132 DOI: 10.3390/toxics10110680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
As one of the most prevalent estrogenic mycotoxins in cereals and animal feed, zearalenone (ZEN) can cause serious reproductive disorders. ZEN control in food and feed commodities has been an imperative area of research. In this study, 87 lactic acid bacteria (LAB) were isolated from pickles and their ZEN (5 mg/L) removal abilities ranged from 0% to 68.4%. Then, five strains with potent ZEN removal ability (>50%) were identified: Lactobacillus plantarum 22, L. plantarum 37, L. plantarum 47, L. paracasei 85, and L. buchneri 93. Under optimization conditions (48 h, pH 4.0, 37 °C, and 5 mg/L), the highest ZEN removal abilities of L. paracasei 85 and L. buchneri 93 reached 77.7% and 72.8%, respectively. Moreover, the two lactic acid bacteria decreased the toxicity of ZEN, because the levels of β-zearalenol (β-ZOL) transformed from ZEN were more than two-fold higher than α-zearalenol (α-ZOL). Additionally, cell free supernatant and pellet biotransformation of ZEN to α-ZOL and β-ZOL in LAB were detected for the first time. Furthermore, chemical and enzymatical treatments combined with Fourier-transform infrared spectroscopy analysis indicated that exopolysaccharides, proteins, and lipids on the cell wall could bond to ZEN through hydrophobic interactions. Scanning electron microscopy indicated that cell structure damage occurred during the ZEN clearance to L. buchneri 93, but it did not with L. paracasei 85. In addition, various organic acids, alcohols, and esters of the two LAB participated in ZEN removal. Hence, L. paracasei 85 and L. buchneri 93 can be considered as potential detoxification agents for ZEN removal for food and feedstuff.
Collapse
Affiliation(s)
- Min Gan
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Jian Hu
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China
| | - Kai Wan
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Xiangxiang Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Peirong Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Rui Zeng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Fuhua Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Yarong Zhao
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| |
Collapse
|
10
|
Antifungal activity and detoxification by Candida albicans against Aspergillus parasiticus and aflatoxin production. J Verbrauch Lebensm 2022. [DOI: 10.1007/s00003-022-01381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Mantovani A, Aquilina G, Cubadda F, Marcon F. Risk-Benefit Assessment of Feed Additives in the One Health Perspective. Front Nutr 2022; 9:843124. [PMID: 35223963 PMCID: PMC8866873 DOI: 10.3389/fnut.2022.843124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 02/03/2023] Open
Abstract
Safety and sustainability of animal feeds is a pillar of the safety of the entire food chain. Feed additive assessment incorporates consumer safety as well as animal health and welfare, which, in turn, can affect productivity and hence food security. The safety of feed users and the environment are other important components of the assessment process which, therefore, builds on a One Health perspective. In several instances the assessment entails a balanced assessment of benefits and risks for humans, animals and/or the environment. Three case studies are selected to discuss issues for a consistent framework on Risk-Benefit Assessment (RBA) of feed additives, based on EFSA opinions and literature: (a) Supplementation of feeds with trace elements with recognized human toxicity (cobalt, iodine) - RBA question: can use levels, hence human exposure, be reduced without increasing the risk of deficiency in animals?; (b) Aflatoxin binders in dairy animals - RBA question: can the use reduce the risk for human health due to aflatoxin M1, without unexpected adverse effects for animals or humans?; (c) Use of formaldehyde as preservative in feedstuffs to prevent microbial contamination - RBA question: is the reduction of microbiological risks outweighed by risks for the consumers, farmed animals or the workers? The case studies indicate that the safety of use of feed additives can involve RBA considerations which fit into a One Health perspective. As in other RBA circumstances, the main issues are defining the question and finding "metrics" that allow a R/B comparison; in the case of feed additives, R and B may concern different species (farm animals and humans). A robust assessment of animal requirements, together with sustainability considerations, might be a significant driving force for a RBA leading to a safe and effective use.
Collapse
Affiliation(s)
| | | | - Francesco Cubadda
- Istituto Superiore di Sanità - National Institute of Health, Rome, Italy
| | | |
Collapse
|
12
|
Kowalczewski PŁ, Olejnik A, Świtek S, Bzducha-Wróbel A, Kubiak P, Kujawska M, Lewandowicz G. Bioactive compounds of potato ( Solanum tuberosum L.) juice: from industry waste to food and medical applications. CRITICAL REVIEWS IN PLANT SCIENCES 2022; 41:52-89. [DOI: 10.1080/07352689.2022.2057749] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Stanisław Świtek
- Department of Agronomy, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Kubiak
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - Grażyna Lewandowicz
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
13
|
Piotrowska M. Microbiological Decontamination of Mycotoxins: Opportunities and Limitations. Toxins (Basel) 2021; 13:toxins13110819. [PMID: 34822603 PMCID: PMC8619243 DOI: 10.3390/toxins13110819] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
The contamination of food and feeds with mycotoxins poses a global health risk to humans and animals, with major economic consequences. Good agricultural and manufacturing practices can help control mycotoxin contamination. Since these actions are not always effective, several methods of decontamination have also been developed, including physical, chemical, and biological methods. Biological decontamination using microorganisms has revealed new opportunities. However, these biological methods require legal regulations and more research before they can be used in food production. Currently, only selected biological methods are acceptable for the decontamination of feed. This review discusses the literature on the use of microorganisms to remove mycotoxins and presents their possible mechanisms of action. Special attention is given to Saccharomyces cerevisiae yeast and lactic acid bacteria, and the use of yeast cell wall derivatives.
Collapse
Affiliation(s)
- Małgorzata Piotrowska
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland
| |
Collapse
|
14
|
Antifungal and Aflatoxin-Reducing Activity of β-Glucan Isolated from Pichia norvegensis Grown on Tofu Wastewater. Foods 2021; 10:foods10112619. [PMID: 34828900 PMCID: PMC8618602 DOI: 10.3390/foods10112619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022] Open
Abstract
Yeast can be isolated from tofu wastewater and the cell wall in the form of β-glucan can act as a natural decontaminant agent. This study aimed to isolate and characterize native yeast from tofu wastewater, which can be extracted to obtain β-glucan and then identify the yeast and its β-glucan activity regarding antifungal ability against Aspergillus flavus and aflatoxin-reducing activity towards aflatoxin B1 (AFB1) and B2 (AFB2). Tofu wastewater native yeast was molecularly identified, and the growth observed based on optical density for 96 h and the pH also measured. β-glucan was extracted from native yeast cell walls with the acid-base method and then the inhibition activity towards A. flavus was tested using the well diffusion method and microscopic observation. AFB1 and AFB2 reduction were identified using HPLC LC-MS/MS. The results showed that the native yeast isolated was Pichia norvegensis with a β-glucan yield of 6.59%. Pichia norvegensis and its β-glucan showed an inhibition zone against Aspergillus flavus of 11.33 ± 4.93 and 7.33 ± 3.51 mm, respectively. Total aflatoxin-reducing activity was also shown by Pichia norvegensis of 26.85 ± 2.87%, and β-glucan of 27.30 ± 1.49%, while AFB1- and AFB2-reducing activity by Pichia norvegensis was 36.97 ± 3.07% and 27.13 ± 1.69%, and β-glucan was 27.13 ± 1.69% and 32.59 ± 4.20%, respectively.
Collapse
|
15
|
Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. The toxicity mechanisms of DON to humans and animals and potential biological treatment strategies. Crit Rev Food Sci Nutr 2021; 63:790-812. [PMID: 34520302 DOI: 10.1080/10408398.2021.1954598] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deoxynivalenol, also known as vomitotoxin, is produced by Fusarium, belonging to the group B of the trichothecene family. DON is widely polluted, mainly polluting cereal crops such as wheat, barley, oats, corn and related cereal products, which are closely related to lives of people and animals. At present, there have been articles summarizing DON induced toxicity, biological detoxification and the protective effect of natural products, but there is no systematic summary of this information. In addition to ribosome and endoplasmic reticulum, recent investigations support that mitochondrion is also organelles that DON can damage. DON can't directly act on mitochondria, but can indirectly cause mitochondrial damage and changes through other means. DON can indirectly inhibit mitochondrial biogenesis and mitochondrial electron transport chain activity, ATP production, and mitochondrial transcription and translation. This review will provide the latest progress on mitochondria as the research object, and systematically summarizes all the toxic mechanisms of DON. Here, we discuss DON induced mitochondrial-mediated apoptosis and various mitochondrial toxicity. For the toxicity of DON, many methods have been derived to prevent or reduce the toxicity. Biological detoxification and the antioxidant effect of natural products are potentially effective treatments for DON toxicity.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Bryła M, Ksieniewicz-Woźniak E, Stępniewska S, Modrzewska M, Waśkiewicz A, Szymczyk K, Szafrańska A. Transformation of ochratoxin A during bread-making processes. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
García-Béjar B, Owens RA, Briones A, Arévalo-Villena M. Proteomic profiling and glycomic analysis of the yeast cell wall in strains with Aflatoxin B 1 elimination ability. Environ Microbiol 2021; 23:5305-5319. [PMID: 34029450 DOI: 10.1111/1462-2920.15606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/18/2021] [Indexed: 11/27/2022]
Abstract
The use of microorganisms for Aflatoxin B1 elimination has been studied as a new alternative tool and it is known that cell wall carried out a critical role. For that reason, cell wall and soluble intracellular fraction of eight yeasts with AFB1 detoxification capability were analysed. The quantitative and qualitative comparative label-free proteomic allowed the identification of diverse common constituent proteins, which revealed that putative cell wall proteins entailed less than 10% of the total proteome. It was possible to characterize different enzymes linked to cell wall polysaccharides biosynthesis as well as other proteins related with the cell wall organization and regulation. Additionally, the concentration of the principal polysaccharides was determined which permitted us to observe that β-glucans concentration was higher than mannans in most of the samples. In order to better understand the biosorption role of the cell wall against the AFB1 , an antimycotic (Caspofungin) was used to damage the cell wall structure. This assay allowed the observation of an effect on the normal growth of those yeasts with damaged cell walls that were exposed to AFB1 . This effect was not observed in yeast with intact cell walls, which may reveal a protective role of this structure against mycotoxins.
Collapse
Affiliation(s)
- Beatriz García-Béjar
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ana Briones
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - María Arévalo-Villena
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| |
Collapse
|
18
|
Mitigation Effects of Bentonite and Yeast Cell Wall Binders on AFB 1, DON, and OTA Induced Changes in Laying Hen Performance, Egg Quality, and Health. Toxins (Basel) 2021; 13:toxins13020156. [PMID: 33671260 PMCID: PMC7922626 DOI: 10.3390/toxins13020156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to evaluate the efficacy of mycotoxin binders in reducing the adverse effects of co-occurring dietary aflatoxin B1 (AFB1), deoxynivalenol (DON) and ochratoxin A (OTA) on laying hens. Three hundred and sixty 26-week-old Roman laying hens were randomly allocated into four experimental groups with 10 replicates of nine birds each. The four groups received either a basal diet (BD; Control), a BD supplemented with 0.15 mg/kg AFB1 + 1.5 mg/kg DON + 0.12 mg/kg OTA (Toxins), a BD + Toxins with Toxo-HP binder (Toxins + HP), or a BD + Toxins with TOXO XL binder (Toxins + XL) for 12 weeks. Compared to the control, dietary supplementation of mycotoxins decreased (P < 0.10) total feed intake, total egg weight, and egg-laying rate, but increased feed/egg ratio by 2.5–6.1% and mortality during various experimental periods. These alterations induced by mycotoxins were alleviated by supplementation with both TOXO HP and XL binders (P < 0.10). Furthermore, dietary mycotoxins reduced (P < 0.05) eggshell strength by 12.3% and caused an accumulation of 249 μg/kg of DON in eggs at week 12, while dietary supplementation with TOXO HP or XL mitigated DON-induced changes on eggshell strength and prevented accumulation of DON in eggs (P < 0.05). Moreover, dietary mycotoxins increased relative liver weight, but decreased spleen and proventriculus relative weights by 11.6–22.4% (P < 0.05). Mycotoxin exposure also increased alanine aminotransferase activity and reduced immunoglobulin (Ig) A, IgM, and IgG concentrations in serum by 9.2–26.1% (P < 0.05). Additionally, mycotoxin exposure induced histopathological damage and reduced villus height, villus height/crypt depth, and crypt depth in duodenum, jejunum and (or) ileum (P < 0.05). Notably, most of these histological changes were mitigated by supplementation with both TOXO HP and XL (P < 0.05). In conclusion, the present study demonstrated that the mycotoxin binders TOXO HP and XL can help to mitigate the combined effects of AFB1, DON, and OTA on laying hen performance, egg quality, and health.
Collapse
|
19
|
Madrigal-Santillán E, Madrigal-Bujaidar E, Reyes-Arellano A, Morales-González JA, Álvarez-González I, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Calzada-Mendoza CC, Anguiano-Robledo L, Morales-González Á. Supramolecular complex formation, a possible antigenotoxic mechanism of glucomannan against aflatoxin B1. TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1080/02772248.2020.1715410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Ciudad de México, México
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Ciudad de México, México
| | - Alicia Reyes-Arellano
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Ciudad de México, México
| | | | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Ciudad de México, México
| | | | | | - Claudia C. Calzada-Mendoza
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Ciudad de México, México
| | - Liliana Anguiano-Robledo
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Ciudad de México, México
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Ciudad de México, México
| |
Collapse
|