1
|
Guerre P, Lassallette E, Beaujardin-Daurian U, Travel A. Fumonisins alone or mixed with other fusariotoxins increase the C22-24:C16 sphingolipid ratios in chicken livers, while deoxynivalenol and zearalenone have no effect. Chem Biol Interact 2024; 395:111005. [PMID: 38615975 DOI: 10.1016/j.cbi.2024.111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Poultry feed is often contaminated with fumonisins, deoxynivalenol, and zearalenone, which can result in oxidative damage, inflammation and change in lipid metabolism. Although sphingolipids play key roles in cells, only the effects of fumonisins on the sphingolipidome are well-documented. In chickens, fumonisins have been shown to increase the sphinganine to sphingosine ratio and the C22-24:C16 sphingolipid ratio, which has been proposed as a new biomarker of toxicity. In this study, we used UHPLC-MSMS targeted analysis to measure the effect of fusariotoxins on sphingolipids in the livers of chickens fed with diets containing fusariotoxins administered individually and in combination, at the maximum levels recommended by the European Commission. Chickens were exposed from hatching until they reached 35 days of age. This study revealed for the first time that fumonisins, deoxynivalenol, and zearalenone alone and in combination have numerous effects on the sphingolipidome in chicken livers. A 30-50 % decrease in ceramide, dihydroceramide, sphingomyelin, dihydrosphingomyelin, monohexosylceramide and lactosylceramide measured at the class level was observed when fusariotoxins were administered alone, whereas a 30-100 % increase in dihydroceramide, sphingomyelin, dihydrosphingomyelin, and monohexosylceramide was observed when the fusariotoxins were administered in combination. For these different variables, strong significant interactions were observed between fumonisins and zearalenone and between fumonisins and deoxynivalenol, whereas interactions between deoxynivalenol and zearalenone were less frequent and less significant. Interestingly, an increase in the C22-24:C16 ratio of ceramides, sphingomyelins, and monohexosylceramides was observed in chickens fed the diets containing fumonisins only, and this increase was close when the toxin was administered alone or in combination with deoxynivalenol and zearalenone. This effect mainly corresponded to a decrease in sphingolipids with a fatty acid chain length of 16 carbons, whereas C22-24 sphingolipids were unaffected or increased. In conclusion the C22-24:C16 ratio emerged as a specific biomarker, with variations dependent only on the presence of fumonisins.
Collapse
Affiliation(s)
- Philippe Guerre
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| | | | | | | |
Collapse
|
2
|
Yu J, Pedroso IR. Mycotoxins in Cereal-Based Products and Their Impacts on the Health of Humans, Livestock Animals and Pets. Toxins (Basel) 2023; 15:480. [PMID: 37624237 PMCID: PMC10467131 DOI: 10.3390/toxins15080480] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Cereal grains are the most important food staples for human beings and livestock animals. They can be processed into various types of food and feed products such as bread, pasta, breakfast cereals, cake, snacks, beer, complete feed, and pet foods. However, cereal grains are vulnerable to the contamination of soil microorganisms, particularly molds. The toxigenic fungi/molds not only cause quality deterioration and grain loss, but also produce toxic secondary metabolites, mycotoxins, which can cause acute toxicity, death, and chronic diseases such as cancer, immunity suppression, growth impairment, and neural tube defects in humans, livestock animals and pets. To protect human beings and animals from these health risks, many countries have established/adopted regulations to limit exposure to mycotoxins. The purpose of this review is to update the evidence regarding the occurrence and co-occurrence of mycotoxins in cereal grains and cereal-derived food and feed products and their health impacts on human beings, livestock animals and pets. The effort for safe food and feed supplies including prevention technologies, detoxification technologies/methods and up-to-date regulation limits of frequently detected mycotoxins in cereal grains for food and feed in major cereal-producing countries are also provided. Some important areas worthy of further investigation are proposed.
Collapse
Affiliation(s)
- Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | | |
Collapse
|
3
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Leblanc J, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Daenicke S, Nebbia CS, Oswald IP, Rovesti E, Steinkellner H, Hoogenboom L(R. Assessment of information as regards the toxicity of fumonisins for pigs, poultry and horses. EFSA J 2022; 20:e07534. [PMID: 36034321 PMCID: PMC9399829 DOI: 10.2903/j.efsa.2022.7534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In 2018, the EFSA Panel on Contaminants in the Food Chain (CONTAM) adopted a Scientific Opinion on the risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. A no observed adverse effect level (NOAEL) of 1 mg/kg feed was established for pigs. In poultry a NOAEL of 20 mg/kg feed and in horses a reference point for adverse animal health effect of 8.8 mg/kg feed was established, referred to as NOAEL. The European Commission (EC) requested EFSA to review the information regarding the toxicity of fumonisins for pigs, poultry and horses and to revise, if necessary, the established NOAELs. The EFSA CONTAM Panel considered that the term reference point (RP) for adverse animal health effects better reflects the uncertainties in the available studies. New evidence which had become available since the previous opinion allowed to revise an RP for adverse animal health effects for poultry from 20 mg/kg to 1 mg/kg feed (based on a LOAEL of 2.5 mg/kg feed for reduced intestinal crypt depth) and for horses from 8.8 to 1.0 mg/kg feed (based on case studies on equine leukoencephalomalacia (ELEM)). For pigs, the previously established NOAEL was confirmed as no further studies suitable for deriving an RP for adverse animal health effects could be identified. Based on exposure estimates performed in the previous opinion, the risk of adverse health effects of feeds containing FB1-3 was considered a concern for poultry, when taking into account the RP of 1 mg/kg feed for intestinal effects. For horses and other solipeds, the risk is considered low, although a large uncertainty associated with exposure was identified. The same conclusions apply to the sum of FB1-3 and their hidden forms.
Collapse
|
4
|
Xu R, Kiarie EG, Yiannikouris A, Sun L, Karrow NA. Nutritional impact of mycotoxins in food animal production and strategies for mitigation. J Anim Sci Biotechnol 2022; 13:69. [PMID: 35672806 PMCID: PMC9175326 DOI: 10.1186/s40104-022-00714-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/05/2022] [Indexed: 01/25/2023] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by filamentous fungi that are commonly detected as natural contaminants in agricultural commodities worldwide. Mycotoxin exposure can lead to mycotoxicosis in both animals and humans when found in animal feeds and food products, and at lower concentrations can affect animal performance by disrupting nutrient digestion, absorption, metabolism, and animal physiology. Thus, mycotoxin contamination of animal feeds represents a significant issue to the livestock industry and is a health threat to food animals. Since prevention of mycotoxin formation is difficult to undertake to avoid contamination, mitigation strategies are needed. This review explores how the mycotoxins aflatoxins, deoxynivalenol, zearalenone, fumonisins and ochratoxin A impose nutritional and metabolic effects on food animals and summarizes mitigation strategies to reduce the risk of mycotoxicity.
Collapse
|
5
|
Impact of a Natural Fusarial Multi-Mycotoxin Challenge on Broiler Chickens and Mitigation Properties Provided by a Yeast Cell Wall Extract and a Postbiotic Yeast Cell Wall-Based Blend. Toxins (Basel) 2022; 14:toxins14050315. [PMID: 35622561 PMCID: PMC9145611 DOI: 10.3390/toxins14050315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Yeast cell wall-based preparations have shown efficacy against Aspergillus-based toxins but have lower impact against type-B trichothecenes. Presently, we investigated a combination of deoxynivalenol (DON), T-2 toxin (T2) and zearalenone (ZEA), and the effect of a yeast cell wall extract (YCWE) and a post-biotic yeast cell wall-based blend (PYCW) with the objectives of preventing mycotoxins’ negative effects in commercial broilers. A total of 720 one-day-old male Cobb broilers were randomly allocated to: (1) control diet, (aflatoxins 6 µg/kg; cyclopiazonic acid 15 µg/kg; fusaric acid 25 µg/kg; fumonisin B1 310 µg/kg); (2) Diet1 + 0.2% YCWE; (3) Diet1 + 0.2% PYCW; (4) Contaminated diet (3.0 mg/kg DON; 2.17 mg/kg 3-acetyldeoxynivalenol; 104 g/kg T2; 79 g/kg ZEA); (5) Diet4 + 0.2% YCWE; and (6) Diet4 + 0.2% PYCW. Naturally contaminated diets adversely affected performance, serum biochemistry, liver function, immune response, altered cecal SCFA goblet cell count and architecture of intestinal villi. These adverse effects were reduced in birds fed PYCW and to a lesser extent YCWE, indicating protection against toxic assault. PYCW yielded better production performance and stimulated liver function, with higher response to NDV and IBV vaccination. Furthermore, mycotoxins were found to affect production outputs when evaluated with the European poultry production efficiency factor compared to control or YCWE and PYCW supplemented treatments. Taken together, YCWE, when complemented with nutritional add-ons (PYCW), could potentiate the remediation of the negative effects from a multi mycotoxins dietary challenge in broiler birds.
Collapse
|
6
|
Guerre P, Travel A, Tardieu D. Targeted Analysis of Sphingolipids in Turkeys Fed Fusariotoxins: First Evidence of Key Changes That Could Help Explain Their Relative Resistance to Fumonisin Toxicity. Int J Mol Sci 2022; 23:2512. [PMID: 35269655 PMCID: PMC8910753 DOI: 10.3390/ijms23052512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
The effects of fumonisins on sphingolipids in turkeys are unknown, except for the increased sphinganine to sphingosine ratio (Sa:So) used as a biomarker. Fumonisins fed at 20.2 mg/kg for 14 days were responsible for a 4.4 fold increase in the Sa:So ratio and a decrease of 33% and 36% in C14-C16 ceramides and C14-C16 sphingomyelins, respectively, whereas C18-C26 ceramides and C18-C26 sphingomyelins remained unaffected or were increased. Glucosyl- and lactosyl-ceramides paralleled the concentrations of ceramides. Fumonisins also increased dihydroceramides but had no effect on deoxysphinganine. A partial least squfares discriminant analysis revealed that all changes in sphingolipids were important in explaining the effect of fumonisins. Because deoxynivalenol and zearalenone are often found in feed, their effects on sphingolipids alone and in combination with fumonisins were investigated. Feeding 5.12 mg deoxynivalenol/kg reduced dihydroceramides in the liver. Zearalenone fed at 0.47 mg/kg had no effect on sphingolipids. When fusariotoxins were fed simultaneously, the effects on sphingolipids were similar to those observed in turkeys fed fumonisins alone. The concentration of fumonisin B1 in the liver of turkeys fed fumonisins was 0.06 µmol/kg. Changes in sphingolipid concentrations differed but were consistent with the IC50 of fumonisin B1 measured in mammals; these changes could explain the relative resistance of turkeys to fumonisins.
Collapse
Affiliation(s)
- Philippe Guerre
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, F-31076 Toulouse, France
| | | | - Didier Tardieu
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, F-31076 Toulouse, France
| |
Collapse
|
7
|
Effects of Fumonisin B and Hydrolyzed Fumonisin B on Growth and Intestinal Microbiota in Broilers. Toxins (Basel) 2022; 14:toxins14030163. [PMID: 35324660 PMCID: PMC8954478 DOI: 10.3390/toxins14030163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Fumonisins are mainly produced by Fusarium verticillioides and proliferatum, which causes a variety of toxicities in humans and animals, including fumonisin Bs (FBs) as the main form. After they are metabolized by plants or microorganisms, modified fumonisins are difficult to detect by conventional methods, which result in an underestimation of their contamination level. Fumonisins widely contaminate maize and maize products, especially in broiler feed. As an economically important food, broilers are often adversely affected by mycotoxins, leading to food safety hazards and high economic losses. However, there are few studies regarding the adverse effects of FBs on broiler growth and health, especially modified FBs. Our data shows that after exposure to FBs or hydrolyzed fumonisin Bs (HFBs), the body weight and tissue weight of broilers decreased significantly, especially the testes. Moreover, they significantly affect the intestinal microbiota and the relative abundance of bacteria from phylum-to-species levels, with the differentially affected bacteria mainly belonging to Firmicutes and Proteobacteria. Our findings suggest that both the parent and hydrolyzed FBs could induce growth retardation, tissue damage and the imbalance of intestinal microbiota in broilers. This indicated that the harmful effects of HFBs cannot be ignored during food safety risk assessment.
Collapse
|
8
|
Strong Alterations in the Sphingolipid Profile of Chickens Fed a Dose of Fumonisins Considered Safe. Toxins (Basel) 2021; 13:toxins13110770. [PMID: 34822554 PMCID: PMC8619408 DOI: 10.3390/toxins13110770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/11/2023] Open
Abstract
Fumonisins (FB) are mycotoxins known to exert most of their toxicity by blocking ceramide synthase, resulting in disruption of sphingolipid metabolism. Although the effects of FB on sphinganine (Sa) and sphingosine (So) are well documented in poultry, little information is available on their other effects on sphingolipids. The objective of this study was to analyze the effects of FB on the hepatic and plasma sphingolipidome in chickens. The first concern of this analysis was to clarify the effects of FB on hepatic sphingolipid levels, whose variations can lead to numerous toxic manifestations. The second was to specify the possible use of an alteration of the sphingolipidome as a biomarker of exposure to FB, in addition to the measurement of the Sa:So ratio already widely used. For this purpose, we developed an UHPLC MS/MS method that enabled the determination of 82 SL, including 10 internal standards, in chicken liver and plasma. The validated method was used to measure the effects of FB administered to chickens at a dose close to 20 mg FB1 + FB2/kg feed for 9 days. Significant alterations of sphingoid bases, ceramides, dihydroceramides, glycosylceramides, sphingomyelins and dihydrosphingomyelins were observed in the liver. In addition, significant increases in plasma sphinganine 1-phosphate, sphingosine 1-phosphate and sphingomyelins were observed in plasma. Interestingly, partial least-squares discriminant analysis of 11 SL in plasma made it possible to discriminate exposed chickens from control chickens, whereas analysis of Sa and So alone revealed no difference. In conclusion, our results show that the effects of FB in chickens are complex, and that SL profiling enables the detection of exposure to FB when Sa and So fail.
Collapse
|
9
|
Laurain J, Tardieu D, Matard-Mann M, Rodriguez MA, Guerre P. Fumonisin B1 Accumulates in Chicken Tissues over Time and This Accumulation Was Reduced by Feeding Algo-Clay. Toxins (Basel) 2021; 13:toxins13100701. [PMID: 34678994 PMCID: PMC8537492 DOI: 10.3390/toxins13100701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
The toxicokinetics of the food and feed contaminant Fumonisin B (FB) are characterized by low oral absorption and rapid plasma elimination. For these reasons, FB is not considered to accumulate in animals. However, recent studies in chicken and turkey showed that, in these species, the hepatic half-elimination time of fumonisin B1 (FB1) was several days, suggesting that FB1 may accumulate in the body. For the present study, 21-day-old chickens received a non-toxic dose of around 20 mg FB1 + FB2/kg of feed to investigate whether FB can accumulate in the body over time. Measurements taken after four and nine days of exposure revealed increased concentrations of sphinganine (Sa) and sphingosine (So) over time in the liver, but no sign of toxicity and no effect on performances were observed at this level of FB in feed. Measurements of FB in tissues showed that FB1 accumulated in chicken livers from four to nine days, with concentrations of 20.3 and 32.1 ng FB1/g observed, respectively, at these two exposure periods. Fumonisin B2 (FB2) also accumulated in the liver, from 0.79 ng/g at four days to 1.38 ng/g at nine days. Although the concentrations of FB found in the muscles was very low, an accumulation of FB1 over time was observed in this tissue, with concentrations of 0.036 and 0.072 ng FB1/g being measured after four and nine days of exposure, respectively. Feeding algo-clay to the chickens reduced the accumulation of FB1 in the liver and muscle by , approximately 40 and 50% on day nine, respectively. By contrast, only a weak non-significant effect was observed on day four. The decrease in the concentration of FB observed in tissues of chickens fed FB plus algo-clay on day nine was accompanied by a decrease in Sa and So contents in the liver compared to the levels of Sa and So measured in chickens fed FB alone. FB1 in the liver and Sa or So contents were correlated in liver tissue, confirming that both FB1 and Sa are suitable biomarkers of FB exposure in chickens. Further studies are necessary to determine whether FB can accumulate at higher levels in chicken tissues with an increase in the time of exposure and in the age of the animals.
Collapse
Affiliation(s)
- Julia Laurain
- Olmix S.A., ZA du Haut du Bois, 56580 Bréhan, France; (J.L.); (M.M.-M.); (M.A.R.)
| | - Didier Tardieu
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France;
| | - Maria Matard-Mann
- Olmix S.A., ZA du Haut du Bois, 56580 Bréhan, France; (J.L.); (M.M.-M.); (M.A.R.)
| | | | - Philippe Guerre
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France;
- Correspondence:
| |
Collapse
|
10
|
Ochieng PE, Scippo ML, Kemboi DC, Croubels S, Okoth S, Kang’ethe EK, Doupovec B, Gathumbi JK, Lindahl JF, Antonissen G. Mycotoxins in Poultry Feed and Feed Ingredients from Sub-Saharan Africa and Their Impact on the Production of Broiler and Layer Chickens: A Review. Toxins (Basel) 2021; 13:633. [PMID: 34564637 PMCID: PMC8473361 DOI: 10.3390/toxins13090633] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
The poultry industry in sub-Saharan Africa (SSA) is faced with feed insecurity, associated with high cost of feeds, and feed safety, associated with locally produced feeds often contaminated with mycotoxins. Mycotoxins, including aflatoxins (AFs), fumonisins (FBs), trichothecenes, and zearalenone (ZEN), are common contaminants of poultry feeds and feed ingredients from SSA. These mycotoxins cause deleterious effects on the health and productivity of chickens and can also be present in poultry food products, thereby posing a health hazard to human consumers of these products. This review summarizes studies of major mycotoxins in poultry feeds, feed ingredients, and poultry food products from SSA as well as aflatoxicosis outbreaks. Additionally reviewed are the worldwide regulation of mycotoxins in poultry feeds, the impact of major mycotoxins in the production of chickens, and the postharvest use of mycotoxin detoxifiers. In most studies, AFs are most commonly quantified, and levels above the European Union regulatory limits of 20 μg/kg are reported. Trichothecenes, FBs, ZEN, and OTA are also reported but are less frequently analyzed. Co-occurrences of mycotoxins, especially AFs and FBs, are reported in some studies. The effects of AFs on chickens' health and productivity, carryover to their products, as well as use of mycotoxin binders are reported in few studies conducted in SSA. More research should therefore be conducted in SSA to evaluate occurrences, toxicological effects, and mitigation strategies to prevent the toxic effects of mycotoxins.
Collapse
Affiliation(s)
- Phillis E. Ochieng
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; (P.E.O.); (M.-L.S.)
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; (P.E.O.); (M.-L.S.)
| | - David C. Kemboi
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00100, Kenya;
- Department of Animal Science, Chuka University, P.O. Box 109-00625, Chuka 00625, Kenya
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
| | - Sheila Okoth
- School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya;
| | | | | | - James K. Gathumbi
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00100, Kenya;
| | - Johanna F. Lindahl
- Department of Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya;
- Department of Medical Biochemistry and Microbiology, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O Box 7054, 750 07 Uppsala, Sweden
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
11
|
Riahi I, Pérez-Vendrell AM, Ramos AJ, Brufau J, Esteve-Garcia E, Schulthess J, Marquis V. Biomarkers of Deoxynivalenol Toxicity in Chickens with Special Emphasis on Metabolic and Welfare Parameters. Toxins (Basel) 2021; 13:217. [PMID: 33803037 PMCID: PMC8002947 DOI: 10.3390/toxins13030217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022] Open
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium species, is the most widespread mycotoxin in poultry feed worldwide. Long term-exposure from low to moderate DON concentrations can produce alteration in growth performance and impairment of the health status of birds. To evaluate the efficacy of mycotoxin-detoxifying agent alleviating the toxic effects of DON, the most relevant biomarkers of toxicity of DON in chickens should be firstly determined. The specific biomarker of exposure of DON in chickens is DON-3 sulphate found in different biological matrices (plasma and excreta). Regarding the nonspecific biomarkers called also biomarkers of effect, the most relevant ones are the impairment of the productive parameters, the intestinal morphology (reduction of villus height) and the enlargement of the gizzard. Moreover, the biomarkers of effect related to physiology (decrease of blood proteins, triglycerides, hemoglobin, erythrocytes, and lymphocytes and the increase of alanine transaminase (ALT)), immunity (response to common vaccines and release of some proinflammatory cytokines) and welfare status of the birds (such as the increase of Thiobarbituric acid reactive substances (TBARS) and the stress index), has been reported. This review highlights the available information regarding both types of biomarkers of DON toxicity in chickens.
Collapse
Affiliation(s)
- Insaf Riahi
- Animal Nutrition Department, Institute of Agrifood Research and Technology (IRTA Mas Bové), 43120 Constanti, Spain; (A.M.P.-V.); (J.B.); (E.E.-G.)
| | - Anna Maria Pérez-Vendrell
- Animal Nutrition Department, Institute of Agrifood Research and Technology (IRTA Mas Bové), 43120 Constanti, Spain; (A.M.P.-V.); (J.B.); (E.E.-G.)
| | - Antonio J. Ramos
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio, Av. Rovira Roure 191, 25198 Lleida, Spain;
| | - Joaquim Brufau
- Animal Nutrition Department, Institute of Agrifood Research and Technology (IRTA Mas Bové), 43120 Constanti, Spain; (A.M.P.-V.); (J.B.); (E.E.-G.)
| | - Enric Esteve-Garcia
- Animal Nutrition Department, Institute of Agrifood Research and Technology (IRTA Mas Bové), 43120 Constanti, Spain; (A.M.P.-V.); (J.B.); (E.E.-G.)
| | - Julie Schulthess
- Phileo by Lesaffre, 137 Rue Gabriel Péri, 59700 Marcq en Baroeul, France; (J.S.); (V.M.)
| | - Virginie Marquis
- Phileo by Lesaffre, 137 Rue Gabriel Péri, 59700 Marcq en Baroeul, France; (J.S.); (V.M.)
| |
Collapse
|
12
|
Peillod C, Laborde M, Travel A, Mika A, Bailly JD, Cleva D, Boissieu C, Le Guennec J, Albaric O, Labrut S, Froment P, Tardieu D, Guerre P. Toxic Effects of Fumonisins, Deoxynivalenol and Zearalenone Alone and in Combination in Ducks Fed the Maximum EUTolerated Level. Toxins (Basel) 2021; 13:toxins13020152. [PMID: 33669302 PMCID: PMC7920068 DOI: 10.3390/toxins13020152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/01/2022] Open
Abstract
Toxic effects among fumonisins B (FB), deoxynivalenol (DON) and zearalenone (ZEN) administered alone and combined were investigated in 84-day-old ducks during force-feeding. 75 male ducks, divided into five groups of 15 animals, received daily during the meal a capsule containing the desired among of toxin. Treated animals received dietary levels of toxins equivalent to 20 mg FB1+FB2/kg (FB), 5 mg DON/kg (DON), 0.5 mg ZEN/kg (ZEN) and 20, 5 and 0.5 mg/kg of FB, DON and ZEN (FBDONZEN), respectively. Control birds received capsules with no toxin. After 12 days, a decrease in body weight gain accompanied by an increase in the feed conversion ratio was observed in ducks exposed to FBDONZEN, whereas there was no effect on performances in ducks exposed to FB, DON and ZEN separately. No difference among groups was observed in relative organ weight, biochemistry, histopathology and several variables used to measure oxidative damage and testicular function. A sphinganine to sphingosine ratio of 0.32, 1.19 and 1.04, was measured in liver in controls and in ducks exposed to FB and FBDONZEN, respectively. Concentrations of FB1 in liver were 13.34 and 15.4 ng/g in ducks exposed to FB and FBDONZEN, respectively. Together ZEN and its metabolites were measured after enzymatic hydrolysis of the conjugated forms. Mean concentrations of α-zearalenol in liver were 0.82 and 0.54 ng/g in ducks exposed to ZEN and FBDONZEN, respectively. β-zearalenol was 2.3-fold less abundant than α-zearalenol, whereas ZEN was only found in trace amounts. In conclusion, this study suggests that decreased performance may occur in ducks exposed to a combination of FB, DON and ZEN, but does not reveal any other interaction between mycotoxins in any of the other variables measured.
Collapse
Affiliation(s)
- Céline Peillod
- ITAVI, Centre INRA Val de Loire, 37380 Nouzilly, France; (C.P.); (M.L.); (A.T.); (A.M.)
| | - Marie Laborde
- ITAVI, Centre INRA Val de Loire, 37380 Nouzilly, France; (C.P.); (M.L.); (A.T.); (A.M.)
| | - Angélique Travel
- ITAVI, Centre INRA Val de Loire, 37380 Nouzilly, France; (C.P.); (M.L.); (A.T.); (A.M.)
| | - Amandine Mika
- ITAVI, Centre INRA Val de Loire, 37380 Nouzilly, France; (C.P.); (M.L.); (A.T.); (A.M.)
| | - Jean Denis Bailly
- Equipe Biosynthèse et toxicité des mycotoxines, ENVT, UMR Toxalim, Université de Toulouse, F-31076 Toulouse, France;
| | - Didier Cleva
- Chêne Vert Conseil, Z Bellevue II, 35220 Chateaubourg, France; (D.C.); (C.B.)
| | - Cyril Boissieu
- Chêne Vert Conseil, Z Bellevue II, 35220 Chateaubourg, France; (D.C.); (C.B.)
| | - Jean Le Guennec
- Finalab, 4 bis rue Th. Botrel, BP 351, 22603 Loudéac CEDEX, France;
| | - Olivier Albaric
- ONIRIS, Site de la Chantrerie, BP 40706, 44307 Nantes CEDEX 3, France; (O.A.); (S.L.)
| | - Sophie Labrut
- ONIRIS, Site de la Chantrerie, BP 40706, 44307 Nantes CEDEX 3, France; (O.A.); (S.L.)
| | - Pascal Froment
- Equipe GCR INRA–Physiologie de la Reproduction et des Comportements-UMR INRA-CNRS (UMR 6175)-Université François Rabelais de Tours, 37380 Nouzilly, France;
| | | | - Philippe Guerre
- ENVT, Université de Toulouse, F-31076 Toulouse, France;
- Correspondence: ; Tel.: +33-056-119-3840
| |
Collapse
|
13
|
Effects of Deoxynivalenol-Contaminated Diets on Metabolic and Immunological Parameters in Broiler Chickens. Animals (Basel) 2021; 11:ani11010147. [PMID: 33440734 PMCID: PMC7826962 DOI: 10.3390/ani11010147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
The current study was conducted to examine the effects of deoxynivalenol (DON) at different levels (5 and 15 mg/kg feed) on the metabolism, immune response and welfare parameters of male broiler chickens (Ross 308) at 42 days old. Forty-five 1 day-old broiler chickens were randomly distributed into three different dietary treatments: (1) control, (2) DON-contaminated diet with 5 mg DON/kg of feed (guidance level), and (3) DON-contaminated diet with 15 mg DON/kg of feed. Five replicated cages with three birds each were used for each treatment in a randomized complete block design. The results showed that DON was detected in excreta of birds fed contaminated diets compared with controls. The metabolite DON-3 sulphate (DON-3S) was detected in plasma and excreta in both treated groups, as well as in the liver (but only at 15 mg/kg feed). The increase in the level of DON decreased the hemoglobin concentration (p < 0.001), whereas the erythrocyte counts were only decreased at 15 mg DON/kg feed. No effect of DON on the responses to common vaccines was observed. In plasma, interleukin 8 levels in both contaminated groups were significantly higher than in the control group. The expression of interleukin 6, interleukin 1β and interferon-γ increased in jejunum tissues of broilers fed 5 mg/kg of DON compared with controls. The stress index (heterophil to lymphocyte ratio) was not affected by DON-contaminated diets compared with controls. The plasma corticosterone level was significantly lower in both DON groups compared with controls. In conclusion, DON-3S could be used as a specific biomarker of DON in different biological matrices, while the immune response in broiler chickens is stimulated by the presence of DON at the guidance level, but no adverse effect was observed on physiological stress parameters.
Collapse
|
14
|
Tardieu D, Travel A, Le Bourhis C, Metayer JP, Mika A, Cleva D, Boissieu C, Guerre P. Fumonisins and zearalenone fed at low levels can persist several days in the liver of turkeys and broiler chickens after exposure to the contaminated diet was stopped. Food Chem Toxicol 2021; 148:111968. [PMID: 33422601 DOI: 10.1016/j.fct.2021.111968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/10/2020] [Accepted: 12/30/2020] [Indexed: 01/23/2023]
Abstract
Previous studies using zearalenone (ZEN) and fumonisins (FB) revealed alpha-zearalanol (α-ZOL) and FB1 in the liver of turkeys and chickens with no sign of toxicity. The aim of the present study was to determine whether contamination persists after distribution of a mycotoxin-free diet for several days. Turkeys and broilers were fed for 14 days with a diet containing respectively, 7.5 and 0.6 mg/kg of FB and ZEN, then fed for 0, 2 or 4 days with a mycotoxin-free diet. FB1 and total α-ZOL were the most abundant metabolites found, and their concentration decreased with time. The decrease was linear for FB1 (P < 0.001) and exponential for α-ZOL. Mean concentrations of FB1 on days 0, 2, and 4 were respectively, 4.9, 4, and 2.9 ng/g in turkeys, and respectively, 5, 2.3, and 1.3 ng/g in chickens. The decrease in concentration of FB1 with time was modeled by linear regression (P < 0.001). Mean concentrations of α-ZOL on days 0, 2 and 4, were respectively, 4.8, 0.8, and 0.5 ng/g in turkeys, whereas α-ZOL was only quantified in chickens on day 0 at 0.3 ng/g. A strong correlation was found between α-ZOL and β-zearalenol (P < 0.001).
Collapse
Affiliation(s)
- D Tardieu
- Université de Toulouse, ENVT, F-31076, Toulouse, France
| | - A Travel
- ITAVI, L'Orfrasière, 37380, Nouzilly, France
| | - C Le Bourhis
- INRAE, Unité 1295 PEAT Centre Recherche Val de Loire, 37380, Nouzilly, France
| | - J-P Metayer
- ARVALIS-Institut du Végétal, Station expérimentale, 91720, Boigneville, France
| | - A Mika
- ITAVI, L'Orfrasière, 37380, Nouzilly, France
| | - D Cleva
- Chêne Vert Conseil, Z Bellevue II, Chateaubourg, France
| | - C Boissieu
- Chêne Vert Conseil, Z Bellevue II, Chateaubourg, France
| | - P Guerre
- Université de Toulouse, ENVT, F-31076, Toulouse, France.
| |
Collapse
|
15
|
Riahi I, Marquis V, Ramos AJ, Brufau J, Esteve-Garcia E, Pérez-Vendrell AM. Effects of Deoxynivalenol-Contaminated Diets on Productive, Morphological, and Physiological Indicators in Broiler Chickens. Animals (Basel) 2020; 10:ani10101795. [PMID: 33023213 PMCID: PMC7600407 DOI: 10.3390/ani10101795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The presence of mycotoxins in feed is a really significant problem worldwide; it leads to adverse effects on animals and great economic losses, especially in the monogastric industry. Deoxynivalenol (DON) is one of these mycotoxins that contaminates poultry feed and consequently has negative effects on this specie. Different concentrations of DON (5 and 15 mg/kg feed) were tested in broiler chickens. Results showed that high levels could adversely affect productive and welfare parameters; however, organ weights, morphological intestine indicators, and biochemical parameters were affected at low and high level of dietary DON. In general, even the low level of DON (5 mg/kg), which is the guidance level in complete poultry feed could affect the physiological status of birds. Abstract The present study with 1-day-old male broilers (Ross 308) was conducted to evaluate the effects of deoxynivalenol (DON) at different levels (5 and 15 mg/kg feed) on growth performance, relative weight of organs, morphology of the small intestine, serum biochemistry, and welfare parameters of broiler chickens. Forty-five broiler chicks were randomly divided into three different experimental groups with five replicates each: (1) control group received a non-contaminated diet, (2) contaminated diet with 5 mg DON/kg of feed, and (3) contaminated diet with 15 mg DON/kg of feed for 42 days. Results showed that feed artificially contaminated with DON at guidance level (5 mg/kg diet) did not affect growth performance parameters. However, 15 mg/kg reduced body weight gain and altered feed efficiency. DON at two assayed levels significantly increased the absolute and relative weight of thymus and the relative weight of gizzard and decreased the absolute and the relative weight of the colon. Compared to controls, both doses affected small intestine morphometry parameters. In terms of biochemical indicators, DON at 5 mg/kg reduced the creatine kinase level and at 15 mg/kg DON reduced the cholesterol level. Furthermore, DON at 15 mg/kg induced more fear in broilers compared to broilers fed the guidance level. It was concluded that even the guidance level of DON did not affect the chickens’ performance. However, its toxic effect occurred in some organs and biochemical parameters.
Collapse
Affiliation(s)
- Insaf Riahi
- Institute of Agrifood Research and Technology (IRTA Mas Bové), Animal Nutrition Department, 43120 Constanti, Spain; (I.R.); (J.B.); (E.E.-G.)
| | - Virginie Marquis
- Phileo by Lesaffre, 137 rue Gabriel Péri, 59700 Marcq en Baroeul, France;
| | - Antonio J. Ramos
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio, Av.Rovira Roure 191, 25198 Lleida, Spain;
| | - Joaquim Brufau
- Institute of Agrifood Research and Technology (IRTA Mas Bové), Animal Nutrition Department, 43120 Constanti, Spain; (I.R.); (J.B.); (E.E.-G.)
| | - Enric Esteve-Garcia
- Institute of Agrifood Research and Technology (IRTA Mas Bové), Animal Nutrition Department, 43120 Constanti, Spain; (I.R.); (J.B.); (E.E.-G.)
| | - Anna Maria Pérez-Vendrell
- Institute of Agrifood Research and Technology (IRTA Mas Bové), Animal Nutrition Department, 43120 Constanti, Spain; (I.R.); (J.B.); (E.E.-G.)
- Correspondence:
| |
Collapse
|
16
|
Zearalenone and Metabolites in Livers of Turkey Poults and Broiler Chickens Fed with Diets Containing Fusariotoxins. Toxins (Basel) 2020; 12:toxins12080525. [PMID: 32824220 PMCID: PMC7472091 DOI: 10.3390/toxins12080525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
Zearalenone (ZEN) and metabolites were measured in livers of turkeys and broilers fed a control diet free of mycotoxins, a diet that contained 0.5 mg/kg ZEN (ZEN diet), and a diet that contained 0.5, 5, and 20 mg/kg of ZEN, fumonisins, and deoxynivalenol, respectively (ZENDONFB diet). The feed was individually distributed to male Grade Maker turkeys from the 55th to the 70th day of age and to male Ross chickens from the 1st to the 35th day of age, without any signs of toxicity. Together, the free and conjugated forms of ZEN, α- and β-zearalenols (ZOLs), zearalanone (ZAN), and α- and β-zearalanols (ZALs) were measured by UHPLC-MS/MS with [13C18]-ZEN as an internal standard and immunoaffinity clean-up of samples. ZAN and ZALs were not detected. ZEN and ZOLs were mainly found in their conjugated forms. α-ZOL was the most abundant and was found at a mean concentration of 2.23 and 1.56 ng/g in turkeys and chickens, respectively. Consuming the ZENDONFB diet significantly increased the level of total metabolites in the livers of chickens. Furthermore, this increase was more pronounced for the free forms of α-ZOL than for the conjugated forms. An investigation of the presence of ZEN and metabolites in muscle with the methods validated for the liver failed to reveal any traces of these contaminants in this tissue. These results suggest that concomitant dietary exposure to deoxynivalenol (DON) and fumonisins (FB) may alter the metabolism and persistence of ZEN and its metabolites in the liver.
Collapse
|
17
|
Kolawole O, Graham A, Donaldson C, Owens B, Abia WA, Meneely J, Alcorn MJ, Connolly L, Elliott CT. Low Doses of Mycotoxin Mixtures below EU Regulatory Limits Can Negatively Affect the Performance of Broiler Chickens: A Longitudinal Study. Toxins (Basel) 2020; 12:E433. [PMID: 32630277 PMCID: PMC7404967 DOI: 10.3390/toxins12070433] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Several studies have reported a wide range of severe health effects as well as clinical signs, when livestock animals are exposed to high concentration of mycotoxins. However, little is known regarding health effects of mycotoxins at low levels. Thus, a long-term feeding trial (between May 2017 and December 2019) was used to evaluate the effect of low doses of mycotoxin mixtures on performance of broiler chickens fed a naturally contaminated diet. In total, 18 successive broiler performance trials were carried out during the study period, with approximately 2200 one-day-old Ross-308 chicks used for each trial. Feed samples given to birds were collected at the beginning of each trial and analysed for multi-mycotoxins using a validated LC-MS/MS method. Furthermore, parameters including feed intake, body weight and feed efficiency were recorded on a weekly basis. In total, 24 mycotoxins were detected in samples analysed with deoxynivalenol (DON), zearalenone (ZEN), fumonisins (FBs), apicidin, enniatins (ENNs), emodin and beauvericin (BEV), the most prevalent mycotoxins. Furthermore, significantly higher levels (however below EU guidance values) of DON, ZEN, FBs, BEV, ENNs and diacetoxyscirpenol (DAS) were detected in 6 of the 18 performance trials. A strong positive relationship was observed between broilers feed efficiency and DON (R2 = 0.85), FBs (R2 = 0.53), DAS (R2 = 0.86), ZEN (R2 = 0.92), ENNs (R2 = 0.60) and BEV (R2 = 0.73). Moreover, a three-way interaction regression model revealed that mixtures of ZEN, DON and FBs (p = 0.01, R2 = 0.84) and ZEN, DON and DAS (p = 0.001, R2 = 0.91) had a statistically significant interaction effect on the birds' feed efficiency. As farm animals are often exposed to low doses of mycotoxin mixtures (especially fusarium mycotoxins), a cumulative risk assessment in terms of measuring and mitigating against the economic, welfare and health impacts is needed for this group of compounds.
Collapse
Affiliation(s)
- Oluwatobi Kolawole
- Institute for Global Food Security, School of Biological Sciences, Queens University, Belfast BT9 5DL, UK; (O.K.); (W.A.A.); (J.M.); (L.C.)
| | - Abigail Graham
- Devenish Nutrition Limited, Lagan House, 19 Clarendon Road, Belfast BT1 3BG, UK; (A.G.); (C.D.); (B.O.); (M.J.A.)
| | - Caroline Donaldson
- Devenish Nutrition Limited, Lagan House, 19 Clarendon Road, Belfast BT1 3BG, UK; (A.G.); (C.D.); (B.O.); (M.J.A.)
| | - Bronagh Owens
- Devenish Nutrition Limited, Lagan House, 19 Clarendon Road, Belfast BT1 3BG, UK; (A.G.); (C.D.); (B.O.); (M.J.A.)
| | - Wilfred A. Abia
- Institute for Global Food Security, School of Biological Sciences, Queens University, Belfast BT9 5DL, UK; (O.K.); (W.A.A.); (J.M.); (L.C.)
| | - Julie Meneely
- Institute for Global Food Security, School of Biological Sciences, Queens University, Belfast BT9 5DL, UK; (O.K.); (W.A.A.); (J.M.); (L.C.)
| | - Michael J. Alcorn
- Devenish Nutrition Limited, Lagan House, 19 Clarendon Road, Belfast BT1 3BG, UK; (A.G.); (C.D.); (B.O.); (M.J.A.)
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queens University, Belfast BT9 5DL, UK; (O.K.); (W.A.A.); (J.M.); (L.C.)
| | - Christopher T. Elliott
- Institute for Global Food Security, School of Biological Sciences, Queens University, Belfast BT9 5DL, UK; (O.K.); (W.A.A.); (J.M.); (L.C.)
| |
Collapse
|
18
|
Tardieu D, Travel A, Metayer JP, Le Bourhis C, Guerre P. Fumonisin B1, B2 and B3 in Muscle and Liver of Broiler Chickens and Turkey Poults Fed with Diets Containing Fusariotoxins at the EU Maximum Tolerable Level. Toxins (Basel) 2019; 11:E590. [PMID: 31614665 PMCID: PMC6832716 DOI: 10.3390/toxins11100590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022] Open
Abstract
Although provisional maximum tolerable daily intake and recommended guidelines have been established for fumonisins (FB) in food, few data are available concerning levels of FB in edible animal tissues. Such data are of particular interest in avian species that can tolerate relatively high levels of fumonisins in their feed. Also, even if multiple contamination of animal feed by toxins produced by Fusarium is very frequent, little is known about the consequences of multiple contamination for FB levels in tissues. The aim of this study was to analyze the concentrations of FB in the muscle and liver of chickens and turkeys fed with FB alone and with FB combined with deoxynivalenol (DON), and with zearalenone (ZEN). Experimental diets were formulated by incorporating ground cultured toxigenic Fusarium strains in corn-soybean based feeds. Control diets were free of mycotoxins, FB diets contained 20 mg FB1+FB2/kg, and FBDONZEN diets contained 20, 5, and 0.5 mg/kg of FB1+FB2, DON, and ZEN, respectively. Animals were reared in individual cages with free access to water and feed. The feed was distributed to male Ross chickens from the 1st to the 35th day of age and to male Grade Maker turkeys from the 55th to the 70th day of age. On the last day of the study, the birds were starved for eight hours, killed, and autopsied for tissues sampling. No sign of toxicity was observed. A UHPLC-MS/MS method with isotopic dilution and immunoaffinity clean-up of samples has been developed for analysis of FB in muscle (n = 8 per diet) and liver (n = 8 per diet). Only traces of FB that were below the LOQ of 0.25 µg/kg were found in most of the samples of animals fed with the control diets. Mean concentrations of FB1, FB2, and FB3 in muscle were 17.5, 3.39, and 1.26 µg/kg, respectively, in chickens, and 5.77, 1.52, and 0.54 µg/kg in turkeys, respectively. In the liver, the respective FB1, FB2, and FB3 concentrations were 44.7, 2.61, and 0.79 µg/kg in chickens, and 41.47, 4.23, and 1.41 µg/kg, in turkeys. Cumulated level of FB1+FB2+FB3 in the highly contaminated samples were above 60 and 100 µg/kg in muscle and liver, respectively. The concentrations of FB in the tissues of animals fed the FBDONZEN diet did not greatly differ from the concentrations measured in animals fed the diet containing only FB.
Collapse
Affiliation(s)
- Didier Tardieu
- Université de Toulouse, INP, ENVT, UR Mycotoxicologie, F-31076 Toulouse, France.
| | | | - Jean-Paul Metayer
- ARVALIS-Institut du Végétal, Station expérimentale, 91720 Boigneville, France.
| | - Celeste Le Bourhis
- INRA Unité Expérimentale 1295 PEAT, Centre INRA Val de Loire, 37380 Nouzilly, France.
| | - Philippe Guerre
- Université de Toulouse, INP, ENVT, UR Mycotoxicologie, F-31076 Toulouse, France.
| |
Collapse
|
19
|
Terciolo C, Bracarense AP, Souto PCMC, Cossalter AM, Dopavogui L, Loiseau N, Oliveira CAF, Pinton P, Oswald IP. Fumonisins at Doses below EU Regulatory Limits Induce Histological Alterations in Piglets. Toxins (Basel) 2019; 11:E548. [PMID: 31546931 PMCID: PMC6784023 DOI: 10.3390/toxins11090548] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 01/11/2023] Open
Abstract
Fumonisins (FBs) are mycotoxins produced by Fusarium species that can contaminate human food and animal feed. Due to the harmful effects of FBs on animals, the European Union (EU) defined a recommendation of a maximum of 5 mg FBs (B1 + B2)/kg for complete feed for swine and 1 µg FBs/kg body weight per day as the tolerable daily intake for humans. The aim of this study was to evaluate the toxicity of dietary exposure to low doses of FBs, including a dose below the EU regulatory limits. Four groups of 24 weaned castrated male piglets were exposed to feed containing 0, 3.7, 8.1, and 12.2 mg/kg of FBs for 28 days; the impact was measured by biochemical analysis and histopathological observations. Dietary exposure to FBs at a low dose (3.7 mg/kg of feed) significantly increased the plasma sphinganine-to-sphingosine ratio. FBs-contaminated diets led to histological modifications in the intestine, heart, lung, lymphoid organs, kidney, and liver. The histological alterations in the heart and the intestine appeared at the lowest dose of FBs-contaminated diet (3.7 mg/kg feed) and in the kidney at the intermediate dose (8.1 mg/kg feed). At the highest dose tested (12.2 mg/kg feed), all the organs displayed histological alterations. This dose also induced biochemical modifications indicative of kidney and liver alterations. In conclusion, our data indicate that FBs-contaminated diets at doses below the EU regulatory limit cause histological lesions in several organs. This study suggests that EU recommendations for the concentration of FBs in animal feed, especially for swine, are not sufficiently protective and that regulatory doses should be modified for better protection of animal health.
Collapse
Affiliation(s)
- Chloé Terciolo
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31300 Toulouse, France.
| | - Ana Paula Bracarense
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Londrina, PR 86057-970, Brazil.
| | - Pollyana C M C Souto
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP 13635-900, Brazil.
| | - Anne-Marie Cossalter
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31300 Toulouse, France.
| | - Léonie Dopavogui
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31300 Toulouse, France.
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31300 Toulouse, France.
| | - Carlos A F Oliveira
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP 13635-900, Brazil.
| | - Philippe Pinton
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31300 Toulouse, France.
| | - Isabelle P Oswald
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31300 Toulouse, France.
| |
Collapse
|