1
|
Tang X, Zheng N, Lin Q, You Y, Gong Z, Zhuang Y, Wu J, Wang Y, Huang H, Ke J, Chen F. Hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect neurons from cardiac arrest-induced pyroptosis. Neural Regen Res 2025; 20:1103-1123. [PMID: 38845218 PMCID: PMC11438345 DOI: 10.4103/nrr.nrr-d-23-01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/28/2024] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00027/figure1/v/2024-07-06T104127Z/r/image-tiff Cardiac arrest can lead to severe neurological impairment as a result of inflammation, mitochondrial dysfunction, and post-cardiopulmonary resuscitation neurological damage. Hypoxic preconditioning has been shown to improve migration and survival of bone marrow-derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest, but the specific mechanisms by which hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown. To this end, we established an in vitro co-culture model of bone marrow-derived mesenchymal stem cells and oxygen-glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis, possibly through inhibition of the MAPK and nuclear factor κB pathways. Subsequently, we transplanted hypoxia-preconditioned bone marrow-derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia. The results showed that hypoxia-preconditioned bone marrow-derived mesenchymal stem cells significantly reduced cardiac arrest-induced neuronal pyroptosis, oxidative stress, and mitochondrial damage, whereas knockdown of the liver isoform of phosphofructokinase in bone marrow-derived mesenchymal stem cells inhibited these effects. To conclude, hypoxia-preconditioned bone marrow-derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest, and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning.
Collapse
Affiliation(s)
- Xiahong Tang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Nan Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Qingming Lin
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yan You
- The Second Department of Intensive Care Unit, Fujian Provincial Hospital South Branch, Fuzhou, Fujian Province, China
| | - Zheng Gong
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yangping Zhuang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Jiali Wu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yu Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Hanlin Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Jun Ke
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Feng Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Lv B, Xing S, Wang Z, Zhang A, Wang Q, Bian Y, Pei Y, Sun H, Chen Y. NRF2 inhibitors: Recent progress, future design and therapeutic potential. Eur J Med Chem 2024; 279:116822. [PMID: 39241669 DOI: 10.1016/j.ejmech.2024.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a crucial transcription factor involved in oxidative stress response, which controls the expression of various cytoprotective genes. Recent research has indicated that constitutively activated NRF2 can enhance patients' resistance to chemotherapy drugs, resulting in unfavorable prognosis. Therefore, the development of NRF2 inhibitors has emerged as a promising approach for overcoming drug resistance in cancer treatment. However, there are limited reports and reviews focusing on NRF2 inhibitors. This review aims to provide a comprehensive analysis of the structure and regulation of the NRF2 signaling pathway, followed by a comprehensive review of reported NRF2 inhibitors. Moreover, the current design strategies and future prospects of NRF2 inhibitors will be discussed, aiming to establish a foundation for the development of more effective NRF2 inhibitors.
Collapse
Affiliation(s)
- Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhiqiang Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ao Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qinjie Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
3
|
Mahmoud DSE, Kamel MA, El-Sayed IET, Binsuwaidan R, Elmongy EI, Razzaq MK, Abd Eldaim MA, Ahmed ESAM, Shaker SA. Astaxanthin ameliorated isoproterenol induced myocardial infarction via improving the mitochondrial function and antioxidant activity in rats. J Biochem Mol Toxicol 2024; 38:e23804. [PMID: 39132813 DOI: 10.1002/jbt.23804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
The present study evaluated the cardioprotective effect of astaxanthin (ASX) against isoproterenol (ISO) induced myocardial infarction in rats via the pathway of mitochondrial biogenesis as the possible molecular target of astaxanthin. The control group was injected with normal physiological saline subcutaneously for 2 days. The second group was injected with ISO at a dose of 85 mg/kg bwt subcutaneously for 2 days. The third, fourth and fifth groups were supplemented with ASX at doses of 10, 20, 30 mg/kg bwt, respectively daily by oral gavage for 21 days then injected with ISO dose of 85 mg/kg bwt subcutaneously for 2 successive days. Isoproterenol administration in rats elevated the activities of Creatine kinase-MB (CK-MB), aspartate transaminase (AST), lactate dehydrogenase (LDH), and other serum cardiac biomarkers Troponin-I activities, oxidative stress biomarkers, malondialdehyde(MDA), Nuclear factor-kappa B (NF-KB), while it decreased Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α), Nuclear factor erythroid-2-related factor 2 (Nfe212), mitochondrial transcriptional factor A (mt TFA), mitochondrial DNA copy number and glutathione system parameters. However, Astaxanthin decreased the activities of serum AST, LDH, CK-MB, and Troponin I that elevated by ISO. In addition, it increased glutathione peroxidase and reductase activities, total glutathione and reduced GSH content, and GSH/GSSG ratio, mtDNA copy number, PGC-1α expression and Tfam expression that improved mitochondrial biogenesis while it decreased GSSG and MDA contents and NF-KB level in the cardiac tissues. This study indicated that astaxanthin relieved isoproterenol induced myocardial infarction via scavenging free radicals and reducing oxidative damage and apoptosis in cardiac tissue.
Collapse
Affiliation(s)
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Elshaymaa I Elmongy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohand Kareem Razzaq
- Department of Biochemistry, College of Medicine, University of Sumer, Thi-Qar, Iraq
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Menoufia University, Shibin El-Kom, Egypt
| | | | - Sara A Shaker
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Peng X, Fan H, Liu J, Jiang X, Liu C, Yang Y, Zhai S. Embryo injected with Ochratoxin A induced jejunum injury in ducklings by activating the TLR4 signaling pathway: Involvement of intestinal microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116666. [PMID: 38945100 DOI: 10.1016/j.ecoenv.2024.116666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Ochratoxin A (OTA) is a common mycotoxin that causes intestinal injury in humans and various animal species. OTA may lead to intestinal injury in offspring due to the maternal effect. The aim of this study was to investigate the mechanism of embryo injected with OTA induced jejunum injury in ducklings. The results showed that OTA disrupted the jejunum tight junctions in hatching ducklings, and promoted the secretion of inflammatory cytokines. And this inflammatory response was caused by the activation of the TLR4 signaling pathway. Moreover, embryo injected with OTA could cause damage to the intestinal barrier in 21-day-old ducks, characterized by shortened villi, crypt hyperplasia, disrupted intestinal tight junctions, increased level of LPS in the jejunum, activation of the TLR4 signaling pathway, and increased levels of pro-inflammatory cytokines. Meanwhile, OTA induced oxidative stress in the jejunum. And dysbiosis of gut microbiota was mainly characterized by an increased the relative abundance of Bacteroides, Megamonas, Fournierella, and decreased the relative abundance of Alistipes and Weissella. Interestingly, embryo injected with OTA did not induce these changes in the jejunum of antibiotics-treated 21-day-old ducks. In conclusion, embryo injected with OTA induced jejunum injury in ducklings by activating the TLR4 signaling pathway, which involvement of intestinal microbiota.
Collapse
Affiliation(s)
- Xin Peng
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Hailu Fan
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Jinhui Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Xiayu Jiang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Cheng Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Ye Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Shuangshuang Zhai
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China.
| |
Collapse
|
5
|
Wen X, Cheng M, Song Z, Hu J, Liang X, Lang W, Yang M, Zhou R, Hao Y. Molecular mechanism of honeysuckle + forsythia in treatment of acute lung injury based on network pharmacology. Biomed Rep 2024; 20:32. [PMID: 38273899 PMCID: PMC10809323 DOI: 10.3892/br.2024.1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/08/2023] [Indexed: 01/27/2024] Open
Abstract
The pathogenesis of acute lung injury (ALI) is complex and it is a common critical illness in clinical practice, seriously threatening the lives of critically ill patients, for which no specific molecular marker exists and there is a lack of effective methods for the treatment of ALI. The present study aimed to investigate the mechanism of action of honeysuckle and forsythia in treatment of acute lung injury (ALI) based on network pharmacology and in vitro modeling. The active ingredients and targets of honeysuckle and forsythia were predicted using traditional Chinese medicine systems pharmacology, PubChem and Swiss Target Prediction databases, and the Cytoscape 3.7.2 software was used to construct a drug-component-potential target network. The potential targets were imported into the Search tool for recurring instances of neighboring genes) database to obtain protein-protein interactions and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Targets analysis using Database for Annotation, Visualization, and Integrated Discovery. AutoDock Vina 1.1.2 software was used for docking between key active ingredients and the target proteins to analyze the binding ability of the active ingredients to the primary targets in honeysuckle and forsythia. A total of 64 male BALB/c mice were randomly divided into control, model, positive drug (Lianhua-Qingwen capsule), honeysuckle, forsythia, honeysuckle + forsythia high-, medium- and low-dose groups. Lipopolysaccharide (LPS) was used to induced an ALI model. The lung tissues of the mice were stained with hematoxylin-eosin and the serum levels of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured 4 h after the LPS administration. Reverse transcription-quantitative PCR and western blotting were used to detect NF-κB mRNA and protein expression, respectively. Active ingredients of honeysuckle and forsythia acted on 265 common targets in ALI, which regulated NF-κB, tumor necrosis factor-α (TNF-α) and PI3K-AKT signaling pathway, HIF-1 signalling pathway to slow the inflammatory response in treatment of ALI. In the positive drug group, honeysuckle, forsythia group, honeysuckle + forsythia high-, medium- and low-dose groups, lung tissue damage were significantly decrease compared with the model group, and inflammatory cell infiltration was reduced. Compared with the model group, honeysuckle + forsythia groups experienced decreased damage caused by the LPS and inflammation in the lung tissues and significantly decreased TNF-α and NF-κB and MDA concentration and significantly increased the SOD and GSH-Px activities. The mechanism of the effect of honeysuckle and forsythia on ALI may be mediated by inhibition of TNF-α and NF-κB expression and the activation of antioxidant mechanisms to decrease production of pro-inflammatory cytokines in lung tissue, thus treating ALI.
Collapse
Affiliation(s)
- Xin Wen
- Shaanxi University of Chinese Medicine, Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Xianyang, Shaanxi 712046, P.R. China
| | - Min Cheng
- Shaanxi University of Chinese Medicine, Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Xianyang, Shaanxi 712046, P.R. China
- Shangluo University, College of Biomedical and Food Engineering, Shangluo, Shaanxi 726000, P.R. China
| | - Zhongxing Song
- Shaanxi University of Chinese Medicine, Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Xianyang, Shaanxi 712046, P.R. China
| | - Jinhang Hu
- Shaanxi University of Chinese Medicine, Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Xianyang, Shaanxi 712046, P.R. China
| | - Xuhu Liang
- Shangluo University, College of Biomedical and Food Engineering, Shangluo, Shaanxi 726000, P.R. China
| | - Wuying Lang
- Shangluo University, College of Biomedical and Food Engineering, Shangluo, Shaanxi 726000, P.R. China
| | - Mengqi Yang
- Shaanxi University of Chinese Medicine, Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Xianyang, Shaanxi 712046, P.R. China
| | - Ruina Zhou
- Shaanxi University of Chinese Medicine, Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Xianyang, Shaanxi 712046, P.R. China
| | - Yunjing Hao
- Northwest University, College of Life Sciences, Xian, Shaanxi 710075, P.R. China
| |
Collapse
|
6
|
Tang H, Zhang Y, Wang Q, Zeng Z, Wang X, Li Y, Wang Z, Ma N, Xu G, Zhong X, Guo L, Yuan X, Wang X. Astaxanthin attenuated cigarette smoke extract-induced apoptosis via decreasing oxidative DNA damage in airway epithelium. Biomed Pharmacother 2023; 167:115471. [PMID: 37699317 DOI: 10.1016/j.biopha.2023.115471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a lung inflammatory disease that is associated with environmental allergic component exposure. Cigarette smoke is an environmental toxicant that induces lung malfunction leading to various pulmonary diseases. Astaxanthin (AST) is a carotenoid that shows antioxidant and anti-inflammatory activities which might be a promising candidate for COPD therapy. In this study, we released that AST could attenuate cigarette smoke-induced DNA damage and apoptosis in vivo and in vitro. AST administration ameliorated cigarette smoke extract (CSE)-induced activation of Caspase-3 and apoptosis. Pretreated mice with AST significantly decrease CSE-induced DNA damage which shows lower nuclear γ-H2AX level. AST treatment also dramatically reduces the production of intracellular reactive oxygen species (ROS) by suppressing the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase enzyme 4 (NOX4) and dual oxidase 1 (DUOX1). Taken together, this study suggested that AST can decrease CSE-induced DNA damage and apoptosis by inhibiting NOX4/DUOX1 expression that promotes ROS generation. AST may be a potential protective agent against CSE-associated lung disease that is worth in-depth investigation.
Collapse
Affiliation(s)
- Hongmei Tang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yun Zhang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qiao Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ziling Zeng
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaoyun Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yuejiao Li
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhibin Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ning Ma
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaolin Zhong
- Department of Gastroenterology Organization: The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Linlin Guo
- Department of Microbiology and Immunology, The Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| | - Xiefang Yuan
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
7
|
Liu M, Xu X, Sun C, Zheng X, Zhou Q, Song C, Xu P, Gao Q, Liu B. Tea Tree Oil Improves Energy Metabolism, Non-Specific Immunity, and Microbiota Diversity via the Intestine-Hepatopancreas Axis in Macrobrachium rosenbergii under Low Fish Meal Diet Administration. Antioxidants (Basel) 2023; 12:1879. [PMID: 37891958 PMCID: PMC10604904 DOI: 10.3390/antiox12101879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Tea tree oil (TTO) is an essential plant oil with diverse antibacterial and antioxidant properties; however, whether the role played by TTO in low fish meal (LF) diets induced the observed effects in the farmed crustaceans remains unclear. Therefore, this study used Macrobrachium rosenbergii as the model crustacean, and an 8-week feeding experiment with NF (normal fish meal), LF (soybean meal replacing 40% fish meal), and LFT (LF with 200 mg/kg TTO) diets was conducted to evaluate the positive effects of TTO under the LF diet. Compared to the NF diet, the LF diet reduced hemolymph antioxidant capacity and non-specific immunity, and induced hepatopancreas apoptosis and damage. However, in comparison with LF, LTF significantly ameliorated morphological impairment in the hepatopancreas, improved hepatopancreas energy metabolism by upregulating the Bcl-2/Bax and Akt/mTOR pathways, and enhanced antioxidant and non-specific immune capacity by activating the NF-κB/NO pathway. In addition, LFT repaired intestinal barrier injury and the imbalance of intestinal microbiota induced by the LF diet. Moreover, the Pearson correlation revealed the variations of the above indicators, which were related to the abundance changes of Klebsiella, Clostridium sensu stricto 12, Thermobifida, Bifidobacterium, and Alistipes, indicating that these microbes might serve as prospective targets for the intestine-hepatopancreas axis to affect hepatopancreas apoptosis, metabolism, and non-specific immunity. In summary, 200 mg/kg TTO supplementation mediated gut microbiota and positively improved energy metabolism and non-specific immunity, thereby alleviating hepatopancreas dysplasia and damage induced by the LF diet in M. rosenbergii.
Collapse
Affiliation(s)
- Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Xiaodi Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Cunxin Sun
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Xiaochuan Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Changyou Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Qiang Gao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| |
Collapse
|
8
|
Cai J, Liu P, Zhang X, Shi B, Jiang Y, Qiao S, Liu Q, Fang C, Zhang Z. Micro-algal astaxanthin improves lambda-cyhalothrin-induced necroptosis and inflammatory responses via the ROS-mediated NF-κB signaling in lymphocytes of carp (Cyprinus carpio L.). FISH & SHELLFISH IMMUNOLOGY 2023:108929. [PMID: 37414307 DOI: 10.1016/j.fsi.2023.108929] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Lambda-cyhalothrin (LCY) is a widely used toxic pesticide that causes harmful effects on the immune organs of fish and aquatic species. Micro-algal astaxanthin (MAA), a heme pigment found in haematococcus pluvialis, has been shown to benefit antioxidants and immunity in aquaculture. To investigate how MAA protects carp lymphocytes from LCY-induced immunotoxicity, a model of fish lymphocytes treated with LCY and/or MAA was established. Lymphocytes from carp (Cyprinus carpio L.) were given LCY (80 μM) and/or MAA (50 μM) as a treatment for a period of 24 h. Firstly, LCY exposure resulted in excessive ROS and malondialdehyde production and reduces antioxidant enzymes (SOD and CAT), indicating a reduced capacity of the antioxidant system. Secondly, the results of flow cytometry and AO/EB labeling proved that lymphocytes treated with LCY have a larger ratio of necroptosis. In addition, LCY upregulated the levels of necroptosis-related regulatory factors (RIP1, RIP3 and MLKL) via the ROS-mediated NF-κB signaling pathway in lymphocytes. Thirdly, LCY treatment caused increased secretion of inflammatory genes (IL-6, INF-γ, IL-4, IL-1β and TNF-α), leading to immune dysfunction in lymphocytes. Surprisingly, LCY-induced immunotoxicity was inhibited by MAA treatment, indicating that it effectively attenuated the LCY-induced changes described above. Overall, we concluded that MAA treatment could ameliorate LCY-induced necroptosis and immune dysfunction by inhibiting the ROS-mediated NF-κB signaling in lymphocytes. It provides insights into the protection of farmed fish from agrobiological threats in fish under LCY and the value of MAA applications in aquaculture.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China
| | - Pinnan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bendong Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yangyang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shenqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cheng Fang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
9
|
Zhang Z, Wang J, Wang J, Xie H, Zhang Z, Shi L, Zhu X, Lv Q, Chen X, Liu Y. Selenomethionine attenuates ochratoxin A-induced small intestinal injury in rabbits by activating the Nrf2 pathway and inhibiting NF-κB activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114837. [PMID: 37001190 DOI: 10.1016/j.ecoenv.2023.114837] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
The aim of this study was to investigate whether selenomethionine (SeMet) could attenuate intestinal injury in rabbits induced by ochratoxin A (OTA). Sixty 35-day-old IRA rabbits with similar weights were randomly assigned to the control group, OTA group (0.2 mg OTA/kg b.w), OTA+ 0.2 mg/kg Se (0.2 mg OTA/kg b.w + 0.2 mg SeMet/kg feed), OTA+ 0.4 mg/kg Se (0.2 mg OTA/kg b.w + 0.4 mg SeMet/kg feed) and OTA+ 0.6 mg/kg Se (0.2 mg OTA/kg b.w + 0.6 mg SeMet/kg feed). The rabbits were examined after oral administration of different doses of SeMet for 21 days and were intragastrically administered OTA for 7 consecutive days. The results showed that pretreatment with different doses of SeMet protected against the changes in serum biochemical indicators and the decline in production performance caused by OTA exposure. In addition, the activities of SOD, GSH-PX and T-AOC were significantly increased, and the levels of MDA and ROS were decreased after SeMet pretreatment; thus, oxidative damage in rabbit jejunum tissue due to OTA exposure was inhibited. SeMet stimulates Nrf2 and inhibits the NF-κB signalling pathway; the anti-inflammatory response and antioxidative stress in rabbits were improved, and the intestinal barrier damage caused by OTA exposure was improved. In summary, SeMet alleviates OTA-induced intestinal toxicity in rabbits by activating the Nrf2 pathway and inhibiting NF-κB activation. Moreover, 0.4 mg/kg SeMet induced the most significant improvement.
Collapse
Affiliation(s)
- Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Jiajia Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Jianing Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Hui Xie
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Zhikai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Lihui Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Xuemin Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Qiongxia Lv
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Xiaoguang Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| |
Collapse
|
10
|
Kanwugu ON, Glukhareva TV. Activation of Nrf2 pathway as a protective mechanism against oxidative stress-induced diseases: Potential of astaxanthin. Arch Biochem Biophys 2023; 741:109601. [PMID: 37086962 DOI: 10.1016/j.abb.2023.109601] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/24/2023]
Abstract
Astaxanthin, a red-orange liposoluble carotenoid, has been the centre of considerable attention in recent years for its numerous biological activities, notably its potent antioxidant activity. It is reported that astaxanthin elicits these biological activities via a number of cellular pathways. The Nrf2/Keap1 pathway is a major regulator of the antioxidant defence system of cells; it modulates the expression of a plethora of genes related to redox homeostasis as well as cellular detoxification. The pathway has received lots of attention as a prospective therapeutic target for diseases related to oxidative stress and aging. Several reports have shown that the pathway is inducible by many natural compounds. This present work reviews the Nrf2/Keap1 pathway, its regulation and involvement in diseases, provides a brief overview of naturally occurring compounds as activators of the pathway as well as discusses the effect of astaxanthin on the pathway.
Collapse
Affiliation(s)
- Osman N Kanwugu
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia; Institute of Chemical Engineering, Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira Street 28, 620002, Ekaterinburg, Russia.
| | - Tatiana V Glukhareva
- Institute of Chemical Engineering, Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira Street 28, 620002, Ekaterinburg, Russia
| |
Collapse
|
11
|
Zhao J, He R, Zhong H, Liu S, Liu X, Hussain M, Sun P. A cold-water extracted polysaccharide-protein complex from Grifola frondosa exhibited anti-tumor activity via TLR4-NF-κB signaling activation and gut microbiota modification in H22 tumor-bearing mice. Int J Biol Macromol 2023; 239:124291. [PMID: 37028620 DOI: 10.1016/j.ijbiomac.2023.124291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023]
Abstract
Grifola frondosa polysaccharide-protein complex (G. frondosa PPC) is a polymer which consists of polysaccharides and proteins/peptides linked by covalent bonds. In our previous ex vivo research, it has been demonstrated that a cold-water extracted G. frondosa PPC has stronger antitumor activity than a G. frondosa PPC extracted from boiling water. The main purpose of the current study was to further evaluate the anti-hepatocellular carcinoma and gut microbiota regulation effects of two PPCs isolated from G. frondosa at 4 °C (GFG-4) and 100 °C (GFG-100) in vivo. The results exhibited that GFG-4 remarkably upregulated the expression of related proteins in TLR4-NF-κB and apoptosis pathway, thereby inhibiting the development of H22 tumors. Additionally, GFG-4 increased the abundance of norank_f__Muribaculaceae and Bacillus and reduced the abundance of Lactobacillus. Short chain fatty acids (SCFAs) analysis suggested that GFG-4 promoted SCFAs production, particularly butyric acid. Conclusively, the present experiments revealed GFG-4 has the potential of anti-hepatocellular carcinoma growth via activating TLR4-NF-κB pathway and regulating gut microbiota. Therefore, G. frondosa PPCs could be considered as safe and effective natural ingredient for treatment of hepatocellular carcinoma. The present study also provides a theoretical foundation for the regulation of gut microbiota by G. frondosa PPCs.
Collapse
Affiliation(s)
- Jiahui Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rongjun He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China; Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China.
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
| | - Shizhu Liu
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
| | - Xiaofeng Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Hangzhou 310014, China; Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China.
| |
Collapse
|
12
|
Tian Y, Che H, Yang J, Jin Y, Yu H, Wang C, Fu Y, Li N, Zhang J. Astaxanthin Alleviates Aflatoxin B1-Induced Oxidative Stress and Apoptosis in IPEC-J2 Cells via the Nrf2 Signaling Pathway. Toxins (Basel) 2023; 15:toxins15030232. [PMID: 36977123 PMCID: PMC10057844 DOI: 10.3390/toxins15030232] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Aflatoxin B1 (AFB1), a typical fungal toxin found in feed, is highly carcinogenic. Oxidative stress is one of the main ways it exerts its toxicity; therefore, finding a suitable antioxidant is the key to reducing its toxicity. Astaxanthin (AST) is a carotenoid with strong antioxidant properties. The aim of the present research was to determine whether AST eases the AFB1-induced impairment in IPEC-J2 cells, and its specific mechanism of action. AFB1 and AST were applied to IPEC-J2 cells in different concentrations for 24 h. The AST (80 µM) significantly prevented the reduction in the IPEC-J2 cell viability that was induced by AFB1 (10 μM). The results showed that treatment with AST attenuated the AFB1-induced ROS, and cytochrome C, the Bax/Bcl2 ratio, Caspase-9, and Caspase-3, which were all activated by AFB1, were among the pro-apoptotic proteins which were diminished by AST. AST activates the Nrf2 signaling pathway and ameliorates antioxidant ability. This was further evidenced by the expression of the HO-1, NQO1, SOD2, and HSP70 genes were all upregulated. Taken together, the findings show that the impairment of oxidative stress and apoptosis, caused by the AFB1 in the IPEC-J2 cells, can be attenuated by AST triggering the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yue Tian
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haoyu Che
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jinsheng Yang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yongcheng Jin
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hao Yu
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Chuanqi Wang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yurong Fu
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Na Li
- Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jing Zhang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
13
|
Zhang Z, Sun Y, Xie H, Wang J, Zhang X, Shi Z, Liu Y. Protective effect of selenomethionine on kidney injury induced by ochratoxin A in rabbits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29874-29887. [PMID: 36417076 DOI: 10.1007/s11356-022-24297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was to investigate the protective effect and mechanism of selenomethionine (SeMet) on ochratoxin A (OTA)-induced nephrotoxicity in rabbits. In total, sixty Ira rabbits were randomly divided into 5 groups (the control group, OTA group, 0. 2 mg/kg SeMet + OTA group, 0. 4 mg/kg SeMet + OTA group, and 0. 6 mg/kg SeMet + OTA group). The rabbits were fed diets supplemented with different doses of SeMet for 21 days and given 0. 2 mg/kg OTA starting on day 15 for a week. The results showed that the SeMet supplementation could improve the changes in blood physiological indices and renal function decline caused by OTA poisoning, and alleviate pathological kidney injury in the rabbits. SeMet also increased the activities of total antioxidant capacity, superoxide dismutase, and glutathione peroxidase, and decreased the contents of malondialdehyde and reactive oxygen species and the expression of interleukin-1β, interleukin-6, and tumor necrosis factor-α in the damaged kidneys of the rabbits. In addition, the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream gene heme oxygenase 1 (HO-1) was also inhibited after OTA poisoning, while SeMet activated the Nrf2 signaling pathway and enhanced the expression of Nrf2 and the downstream gene HO-1. In conclusion, SeMet protected against kidney injury caused by OTA in rabbits, and the mechanism may be the activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yingying Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Hui Xie
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Jiajia Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xin Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Zhangyu Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| |
Collapse
|
14
|
Islam F, Muni M, Mitra S, Emran TB, Chandran D, Das R, Rauf A, Safi SZ, Chidambaram K, Dhawan M, Cheon C, Kim B. Recent advances in respiratory diseases: Dietary carotenoids as choice of therapeutics. Biomed Pharmacother 2022; 155:113786. [PMID: 36271564 DOI: 10.1016/j.biopha.2022.113786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
|
15
|
Coutinho-Wolino KS, Almeida PP, Mafra D, Stockler-Pinto MB. Bioactive compounds modulating Toll-like 4 receptor (TLR4)-mediated inflammation: pathways involved and future perspectives. Nutr Res 2022; 107:96-116. [PMID: 36209684 DOI: 10.1016/j.nutres.2022.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 12/27/2022]
Abstract
Chronic inflammation is associated with the development and progression of several noncommunicable diseases, such as diabetes, cardiovascular disease, chronic kidney disease, cancer, and nonalcoholic fatty liver disease. Evidence suggests that pattern recognition receptors that identify pathogen-associated molecular patterns and danger-associated molecular patterns are crucial in chronic inflammation. Among the pattern recognition receptors, Toll-like receptor 4 (TLR4) stimulates several inflammatory pathway agonists, such as nuclear factor-κB, interferon regulator factor 3, and nod-like receptor pyrin domain containing 3 pathways, which consequently trigger the expression of pro-inflammatory biomarkers, increasing the risk of noncommunicable disease development and progression. Studies have focused on the antagonistic potential of bioactive compounds, following the concept of food as a medicine, in which nutritional strategies may mitigate inflammation via TLR4 modulation. Thus, this review discusses preclinical evidence concerning bioactive compounds from fruit, vegetable, spice, and herb extracts (curcumin, resveratrol, catechin, cinnamaldehyde, emodin, ginsenosides, quercetin, allicin, and caffeine) that may regulate the TLR4 pathway and reduce the inflammatory response. Bioactive compounds can inhibit TLR4-mediated inflammation through gut microbiota modulation, improvement of intestinal permeability, inhibition of lipopolysaccharide-TLR4 binding, and decreasing TLR4 expression by modulation of microRNAs and antioxidant pathways. The responses directly mitigated inflammation, especially nuclear factor-κB activation and inflammatory cytokines release. These findings should be considered for further clinical studies on inflammation-mediated diseases.
Collapse
Affiliation(s)
- Karen S Coutinho-Wolino
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | - Patricia P Almeida
- Postgraduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Denise Mafra
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil; Postgraduate Program in Medical Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Milena B Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Postgraduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
16
|
Lu LW, Gao Y, Quek SY, Foster M, Eason CT, Liu M, Wang M, Chen JH, Chen F. The landscape of potential health benefits of carotenoids as natural supportive therapeutics in protecting against Coronavirus infection. Biomed Pharmacother 2022; 154:113625. [PMID: 36058151 PMCID: PMC9428603 DOI: 10.1016/j.biopha.2022.113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus Disease-2019 (COVID-19) pandemic urges researching possibilities for prevention and management of the effects of the virus. Carotenoids are natural phytochemicals of anti-oxidant, anti-inflammatory and immunomodulatory properties and may exert potential in aiding in combatting the pandemic. This review presents the direct and indirect evidence of the health benefits of carotenoids and derivatives based on in vitro and in vivo studies, human clinical trials and epidemiological studies and proposes possible mechanisms of action via which carotenoids may have the capacity to protect against COVID-19 effects. The current evidence provides a rationale for considering carotenoids as natural supportive nutrients via antioxidant activities, including scavenging lipid-soluble radicals, reducing hypoxia-associated superoxide by activating antioxidant enzymes, or suppressing enzymes that produce reactive oxygen species (ROS). Carotenoids may regulate COVID-19 induced over-production of pro-inflammatory cytokines, chemokines, pro-inflammatory enzymes and adhesion molecules by nuclear factor kappa B (NF-κB), renin-angiotensin-aldosterone system (RAS) and interleukins-6- Janus kinase-signal transducer and activator of transcription (IL-6-JAK/STAT) pathways and suppress the polarization of pro-inflammatory M1 macrophage. Moreover, carotenoids may modulate the peroxisome proliferator-activated receptors γ by acting as agonists to alleviate COVID-19 symptoms. They also may potentially block the cellular receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human angiotensin-converting enzyme 2 (ACE2). These activities may reduce the severity of COVID-19 and flu-like diseases. Thus, carotenoid supplementation may aid in combatting the pandemic, as well as seasonal flu. However, further in vitro, in vivo and in particular long-term clinical trials in COVID-19 patients are needed to evaluate this hypothesis.
Collapse
|
17
|
Cai X, Hua S, Deng J, Du Z, Zhang D, Liu Z, Khan NU, Zhou M, Chen Z. Astaxanthin Activated the Nrf2/HO-1 Pathway to Enhance Autophagy and Inhibit Ferroptosis, Ameliorating Acetaminophen-Induced Liver Injury. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42887-42903. [PMID: 36094079 DOI: 10.1021/acsami.2c10506] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acetaminophen (APAP)-induced liver injury (AILI) is a common liver disease in clinical practice. Only one clinically approved drug, N-acetylcysteine (NAC), for the treatment of AILI is available in clinics, but novel treatment strategies are still needed due to the complicated pathological changes of AILI and the side effects of NAC. Here, we found that astaxanthin (ASX) can prevent AILI through the Nrf2/HO-1 pathway. After treatment with ASX, there was a positive activation of the Nrf2/HO-1 pathway in AILI models both in vivo and in vitro accompanied by enhanced autophagy and reduced ferroptosis. In APAP-challenged L02 liver cells, ASX reduced autophagy and enhanced apoptosis of the cells. Furthermore, we developed ASX-loaded hollow mesoporous silica nanoparticles (HMSN@ASX) to improve the aqueous solubility of ASX and targeted delivery of ASX to the liver and then significantly improve the therapeutic effects. Taken together, we found that ASX can protect against AILI by activating the Nrf2/HO-1 pathway, which mainly affects oxidative stress, autophagy, and ferroptosis processes, and the HMSN@ASX nanosystem can target the liver to enhance the treatment efficiency of AILI.
Collapse
Affiliation(s)
- Xiaopeng Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Shiyuan Hua
- Institute of Translational Medicine, Zhejiang University, Hangzhou310009, China
| | - Jingwen Deng
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou310058, China
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Zhen Du
- Institute of Translational Medicine, Zhejiang University, Hangzhou310009, China
| | - Dongxiao Zhang
- Institute of Translational Medicine, Zhejiang University, Hangzhou310009, China
| | - Zhenfeng Liu
- Institute of Translational Medicine, Zhejiang University, Hangzhou310009, China
| | - Nazif Ullah Khan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Min Zhou
- Institute of Translational Medicine, Zhejiang University, Hangzhou310009, China
- Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310009, China
- Cancer Center, Zhejiang University, Hangzhou310058, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| |
Collapse
|
18
|
Protective Effect of SeMet on Liver Injury Induced by Ochratoxin A in Rabbits. Toxins (Basel) 2022; 14:toxins14090628. [PMID: 36136566 PMCID: PMC9504919 DOI: 10.3390/toxins14090628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is second only to aflatoxin in toxicity among mycotoxins. Recent studies have shown that selenomethionine (SeMet) has a protective effect on mycotoxin-induced toxicity. The purpose of this study was to investigate the protective effect and mechanism of SeMet on OTA-induced liver injury in rabbits. Sixty 35-day-old rabbits with similar body weight were randomly divided into five groups: control group, OTA group (0.2 mg/kg OTA), OTA + 0.2 mg/kg SeMet group, OTA + 0.4 mg/kg SeMet group and OTA + 0.6 mg/kg SeMet group. Rabbits were fed different doses of the SeMet diet for 21 d, and OTA was administered for one week from day 15 (the control group was provided the same dose of NaHCO3 solution). The results showed that 0.4 mg/kg SeMet could significantly improve the liver injury induced by OTA poisoning. SeMet supplementation can improve the changes in physiological blood indexes caused by OTA poisoning in rabbits and alleviate pathological damage to the rabbit liver. SeMet also increased the activities of SOD, GSH-Px and T-AOC and significantly decreased the contents of ROS, MDA, IL-1β, IL-6 and TNF-α, effectively alleviating the oxidative stress and inflammatory response caused by OTA poisoning. In addition, OTA poisoning inhibits Nrf2 and HO-1 levels, ultimately leading to peroxide reaction, while SeMet activates the Nrf2 signaling pathway and enhances the expression of the HO-1 downstream Nrf2 gene. These results suggest that Se protects the liver from OTA-induced hepatotoxicity by regulating Nrf2/HO-1 expression.
Collapse
|
19
|
Manochkumar J, Singh A, Efferth T, Ramamoorthy S. Untapping the protective role of carotenoids against respiratory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154286. [PMID: 35820304 DOI: 10.1016/j.phymed.2022.154286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Recent studies revealed a substantial role of carotenoids to treat respiratory diseases. This review aimed to give an updated overview of the investigational evidence on the preventive properties of carotenoids against respiratory diseases both in vitro and in vivo along with their pathophysiology and mechanisms of action. HYPOTHESIS Carotenoids as a potential therapeutic class of bioactive compounds to treat respiratory diseases. RESULTS Carotenoids such as β-carotene, lycopene, crocin, bixin, lutein, and astaxanthin show beneficial effects against chronic lung diseases (e.g., asthma, emphysema, fibrosis, COPD, acute lung injury, and lung cancer). Moreover, in vitro and in vivo studies also supported the preventive role of carotenoids. These carotenoids showed a beneficial role by activation of the NRF2/HO-1 pathway and inhibition of the NF-кB, MAPK, JAK/STAT-3, and PI3K/AKT pathways. Additionally, epidemiological studies also showed that dietary intake of carotenoids lowers the risk of lung diseases. CONCLUSION Carotenoids may be used as drugs or can be given in combination with other drugs to prevent and treat respiratory diseases. Although in vitro and in vivo results are encouraging, further well-conducted randomized clinical trials are required to approve carotenoids as drug candidates.
Collapse
Affiliation(s)
- Janani Manochkumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Anuma Singh
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India.
| |
Collapse
|
20
|
Role of Nuclear Factor Erythroid 2 (Nrf2) in the Recovery of Long COVID-19 Using Natural Antioxidants: A Systematic Review. Antioxidants (Basel) 2022; 11:antiox11081551. [PMID: 36009268 PMCID: PMC9405009 DOI: 10.3390/antiox11081551] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease with approximately 517 million confirmed cases, with the average number of cases revealing that patients recover immediately without hospitalization. However, several other cases found that patients still experience various symptoms after 3–12 weeks, which is known as a long COVID syndrome. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can activate nuclear factor kappa beta (NF-κβ) and unbind the nuclear factor erythroid 2-related factor 2 (Nrf2) with Kelch-like ECH-associated protein 1 (Keap1), causing inhibition of Nrf2, which has an important role in antioxidant response and redox homeostasis. Disrupting the Keap1–Nrf2 pathway enhances Nrf2 activity, and has been identified as a vital approach for the prevention of oxidative stress and inflammation. Hence, natural antioxidants from various sources have been identified as a promising strategy to prevent oxidative stress, which plays a role in reducing the long COVID-19 symptoms. Oxygen-rich natural antioxidant compounds provide an effective Nrf2 activation effect that interact with the conserved amino acid residues in the Keap1-binding pocket, such as Ser602, Ser363, Ser508, and Ser555. In this review, the benefits of various natural antioxidant compounds that can modulate the Nrf2 signaling pathway, which is critical in reducing and curing long COVID-19, are highlighted and discussed.
Collapse
|
21
|
Du G, Chang S, Guo Q, Yan X, Chen H, Shi K, Yuan Y, Yue T. Protective effects of Tibetan kefir in mice with ochratoxin A-induced cecal injury. Food Res Int 2022; 158:111551. [DOI: 10.1016/j.foodres.2022.111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/28/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
|
22
|
Alesci A, Aragona M, Cicero N, Lauriano ER. Can nutraceuticals assist treatment and improve covid-19 symptoms? Nat Prod Res 2022; 36:2672-2691. [PMID: 33949266 DOI: 10.1080/14786419.2021.1914032] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Viral diseases have always played an important role in public and individual health. Since December 2019, the world is facing a pandemic of SARS-CoV-2, a coronavirus that results in a syndrome known as COVID-19. Several studies were conducted to implement antiviral drug therapy, until the arrival of SARS-CoV-2 vaccines. Numerous scientific investigations have considered some nutraceuticals as an additional treatment of COVID-19 patients to improve their clinical picture. In this review, we would like to emphasize the studies conducted to date about this issue and try to understand whether the use of nutraceuticals as a supplementary therapy to COVID-19 may be a valid and viable avenue. Based on the results obtained so far, quercetin, astaxanthin, luteolin, glycyrrhizin, lactoferrin, hesperidin and curcumin have shown encouraging data suggesting their use to prevent and counteract the symptoms of this pandemic infection.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
23
|
Örs ED, Alkan ŞB, Öksüz A. Possible Effect of Astaxanthin on Obesity-related Increased COVID-19
Infection Morbidity and Mortality. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401317666211011105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract:
Obesity is defined by the World Health Organisation (WHO) as a body mass index
equal to 30 kg/m2 or greater. It is an important and escalating global public health problem.
Obesity is known to cause low-grade chronic inflammation, increasing the burden of noncommunicable
and possibly communicable diseases. There is considerable evidence that obesity is
associated with an increased risk of contracting coronavirus disease 2019 (COVID-19) infection
as well as significantly higher COVID-19 morbidity and mortality. It appears plausible
that controlling the chronic systemic low-grade inflammation associated with obesity may have
a positive impact on the symptoms and the prognosis of COVID-19 disease in obese patients.
Astaxanthin (ASTX) is a naturally occurring carotenoid with anti-inflammatory, antioxidant,
and immunomodulatory activities. As a nutraceutical agent, it is used as a preventative and a
co-treatment in a number of systemic neurological, cardiovascular, and metabolic diseases.
This review article will discuss the pathogenesis of COVID-19 infection and the effect of
ASTX on obesity and obesity-related inflammation. The potential positive impact of ASTX anti-
inflammatory properties in obese COVID-19 patients will be discussed.
Collapse
Affiliation(s)
- Elif Didem Örs
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| | - Şenay Burçin Alkan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| | - Abdullah Öksüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
24
|
Astaxanthin as a Modulator of Nrf2, NF-κB, and Their Crosstalk: Molecular Mechanisms and Possible Clinical Applications. Molecules 2022; 27:molecules27020502. [PMID: 35056816 PMCID: PMC8779084 DOI: 10.3390/molecules27020502] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 02/08/2023] Open
Abstract
Astaxanthin (AST) is a dietary xanthophyll predominantly found in marine organisms and seafood. Due to its unique molecular features, AST has an excellent antioxidant activity with a wide range of applications in the nutraceutical and pharmaceutical industries. In the past decade, mounting evidence has suggested a protective role for AST against a wide range of diseases where oxidative stress and inflammation participate in a self-perpetuating cycle. Here, we review the underlying molecular mechanisms by which AST regulates two relevant redox-sensitive transcription factors, such as nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor κB (NF-κB). Nrf2 is a cellular sensor of electrophilic stress that coordinates the expression of a battery of defensive genes encoding antioxidant proteins and detoxifying enzymes. Likewise, NF-κB acts as a mediator of cellular stress and induces the expression of various pro-inflammatory genes, including those encoding cytokines, chemokines, and adhesion molecules. The effects of AST on the crosstalk between these transcription factors have also been discussed. Besides this, we summarize the current clinical studies elucidating how AST may alleviate the etiopathogenesis of oxidative stress and inflammation.
Collapse
|
25
|
Sharma V, Patial V. Food Mycotoxins: Dietary Interventions Implicated in the Prevention of Mycotoxicosis. ACS FOOD SCIENCE & TECHNOLOGY 2021; 1:1717-1739. [DOI: 10.1021/acsfoodscitech.1c00220] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Affiliation(s)
- Vinesh Sharma
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061 (H.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 (U.P.), India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061 (H.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 (U.P.), India
| |
Collapse
|
26
|
Cancer Chemopreventive Role of Dietary Terpenoids by Modulating Keap1-Nrf2-ARE Signaling System—A Comprehensive Update. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210806] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ROS, RNS, and carcinogenic metabolites generate excessive oxidative stress, which changes the basal cellular status and leads to epigenetic modification, genomic instability, and initiation of cancer. Epigenetic modification may inhibit tumor-suppressor genes and activate oncogenes, enabling cells to have cancer promoting properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that in humans is encoded by the NFE2L2 gene, and is activated in response to cellular stress. It can regulate redox homoeostasis by expressing several cytoprotective enzymes, including NADPH quinine oxidoreductase, heme oxygenase-1, UDP-glucuronosyltransferase, glutathione peroxidase, glutathione-S-transferase, etc. There is accumulating evidence supporting the idea that dietary nutraceuticals derived from commonly used fruits, vegetables, and spices have the ability to produce cancer chemopreventive activity by inducing Nrf2-mediated detoxifying enzymes. In this review, we discuss the importance of these nutraceuticals in cancer chemoprevention and summarize the role of dietary terpenoids in this respect. This approach was taken to accumulate the mechanistic function of these terpenoids to develop a comprehensive understanding of their direct and indirect roles in modulating the Keap1-Nrf2-ARE signaling system.
Collapse
|
27
|
Khalil A, Tazeddinova D, Aljoumaa K, Kazhmukhanbetkyzy ZA, Orazov A, Toshev AD. Carotenoids: Therapeutic Strategy in the Battle against Viral Emerging Diseases, COVID-19: An Overview. Prev Nutr Food Sci 2021; 26:241-261. [PMID: 34737985 PMCID: PMC8531419 DOI: 10.3746/pnf.2021.26.3.241] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Carotenoids, a group of phytochemicals, are naturally found in the Plant kingdom, particularly in fruits, vegetables, and algae. There are more than 600 types of carotenoids, some of which are thought to prevent disease, mainly through their antioxidant properties. Carotenoids exhibit several biological and pharmaceutical benefits, such as anti-inflammatory, anti-cancer, and immunity booster properties, particularly as some carotenoids can be converted into vitamin A in the body. However, humans cannot synthesize carotenoids and need to obtain them from their diets or via supplementation. The emerging zoonotic virus severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19), originated in bats, and was transmitted to humans. COVID-19 continues to cause devastating international health problems worldwide. Therefore, natural preventive therapeutic strategies from bioactive compounds, such as carotenoids, should be appraised for strengthening physiological functions against emerging viruses. This review summarizes the most important carotenoids for human health and enhancing immunity, and their potential role in COVID-19 and its related symptoms. In conclusion, promising roles of carotenoids as treatments against emerging disease and related symptoms are highlighted, most of which have been heavily premeditated in studies conducted on several viral infections, including COVID-19. Further in vitro and in vivo research is required before carotenoids can be considered as potent drugs against such emerging diseases.
Collapse
Affiliation(s)
- Ayman Khalil
- Department of Food technology, South Ural State University, Chelyabinsk 454080, Russian Federation
| | - Diana Tazeddinova
- Department of Food technology, South Ural State University, Chelyabinsk 454080, Russian Federation
| | - Khaled Aljoumaa
- Department of Food technology, South Ural State University, Chelyabinsk 454080, Russian Federation
| | | | - Ayan Orazov
- Higher School of Technologies of Food and Processing Productions, Zhangir Khan University, Uralsk 090009, The Republic of Kazakhstan
| | | |
Collapse
|
28
|
Ávila-Román J, García-Gil S, Rodríguez-Luna A, Motilva V, Talero E. Anti-Inflammatory and Anticancer Effects of Microalgal Carotenoids. Mar Drugs 2021; 19:531. [PMID: 34677429 PMCID: PMC8539290 DOI: 10.3390/md19100531] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation is a key component of the immune system's response to pathogens, toxic agents, or tissue injury, involving the stimulation of defense mechanisms aimed to removing pathogenic factors and restoring tissue homeostasis. However, uncontrolled acute inflammatory response may lead to chronic inflammation, which is involved in the development of many diseases, including cancer. Nowadays, the need to find new potential therapeutic compounds has raised the worldwide scientific interest to study the marine environment. Specifically, microalgae are considered rich sources of bioactive molecules, such as carotenoids, which are natural isoprenoid pigments with important beneficial effects for health due to their biological activities. Carotenoids are essential nutrients for mammals, but they are unable to synthesize them; instead, a dietary intake of these compounds is required. Carotenoids are classified as carotenes (hydrocarbon carotenoids), such as α- and β-carotene, and xanthophylls (oxygenate derivatives) including zeaxanthin, astaxanthin, fucoxanthin, lutein, α- and β-cryptoxanthin, and canthaxanthin. This review summarizes the present up-to-date knowledge of the anti-inflammatory and anticancer activities of microalgal carotenoids both in vitro and in vivo, as well as the latest status of human studies for their potential use in prevention and treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Javier Ávila-Román
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Sara García-Gil
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Virginia Motilva
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Elena Talero
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| |
Collapse
|
29
|
Xu Y, Huang X, Luo Q, Zhang X. MicroRNAs Involved in Oxidative Stress Processes Regulating Physiological and Pathological Responses. Microrna 2021; 10:164-180. [PMID: 34279211 DOI: 10.2174/2211536610666210716153929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
Oxidative stress influences several physiological and pathological cellular events, including cell differentiation, excessive growth, proliferation, apoptosis, and the inflammatory response. Therefore, oxidative stress is involved in the pathogenesis of various diseases, including pulmonary fibrosis, epilepsy, hypertension, atherosclerosis, Parkinson's disease, cardiovascular disease, and Alzheimer's disease. Recent studies have shown that several microRNAs (miRNAs) are involved in developing various diseases caused by oxidative stress and that miRNAs may be helpful to determine the inflammatory characteristics of immune responses during infection and disease. This review describes the known effects of miRNAs on reactive oxygen species to induce oxidative stress and the miRNA regulatory mechanisms involved in the uncoupling of Keap1-Nrf2 complexes. Finally, we summarized the functions of miRNAs in several antioxidant genes. Understanding the crosstalk between miRNAs and oxidative stress-inducing factors during physiological and pathological cellular events may have implications for designing more effective treatments for immune diseases.
Collapse
Affiliation(s)
- Yongjie Xu
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou 514015, China
| | - Xunhe Huang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou 514015, China
| | - Qingbin Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
30
|
Rančić M, Ristić L, Rančić A, Krtinić D, Ilić B, Pavlović M, Milojković M, Živković N, Sokolović D. Lycopene and Caffeic Acid Phenethyl Ester Affect Caspase-3 Activity, but Do Not Alter the NO Pathway in Lung Tissue Damage Induced by Cisplatin. Pharmacology 2021; 106:400-408. [PMID: 33975324 DOI: 10.1159/000515935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/16/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Antioxidants such as lycopene (LCP) and caffeic acid phenethyl ester (CAPE) represent ideal molecules for the treatment of different reactive oxygen species (ROS) associated disorders. Cisplatin is a chemotherapeutic agent, causing an increase in ROS and DNA damage, with numerous side effects, which include lung toxicity. In the presents study, we evaluated and mutually compared the potential of LCP and CAPE in preventing cisplatin-induced rat lung damage. METHODS The study was done using pathohistological analysis and a panel of biochemical parameters that reflect lung oxidative tissue damage, inflammation, and apoptosis. RESULTS The obtained results suggest that cisplatin (10 mg/kg) causes significant disturbances in the lung tissue morphology, followed by an increase in lipid peroxidization and protein modification. Also, a pronounced inflammatory response and cell apoptosis cascade activation was noted. Both LCP and CAPE were able to mitigate the changes, to a different extent, in oxidative damage and apoptosis progression induced by cisplatin. However, they both had limited effect on inflammation since they only prevented an increase in myeloperoxidase activity but had not been able to prevent the NO generation. CONCLUSION It is hard to be exact in saying whether LCP or CAPE is better in preventing cis-platin-induced lung damage since they obviously possess different mechanisms of action.
Collapse
Affiliation(s)
- Milan Rančić
- Department for internal medicine, Faculty of Medicine, University of Niš, Niš, Serbia.,Clinic for lung diseases, Clinical center Niš, Niš, Serbia
| | - Lidija Ristić
- Department for internal medicine, Faculty of Medicine, University of Niš, Niš, Serbia.,Clinic for lung diseases, Clinical center Niš, Niš, Serbia
| | | | - Dane Krtinić
- Department for pharmacology with toxicology, Faculty of Medicine, University of Niš, Niš, Serbia.,Clinic for oncology, Clinical center Niš, Niš, Serbia
| | - Bojan Ilić
- Clinic for thoracic surgery, Clinical center Niš, Niš, Serbia
| | | | | | - Nikola Živković
- Department for pathology, Faculty of Medicine, University of Niš, Niš, Serbia.,Center for pathology and pathological anatomy, Clinical Center Niš, Niš, Serbia
| | - Dušan Sokolović
- Department of biochemistry, Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|
31
|
Cao L, Li Z, Yang Z, Wang M, Zhang W, Ren Y, Li L, Hu J, Sun Z, Nie S. Ferulic acid positively modulates the inflammatory response to septic liver injury through the GSK-3β/NF-κB/CREB pathway. Life Sci 2021; 277:119584. [PMID: 33961853 DOI: 10.1016/j.lfs.2021.119584] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022]
Abstract
AIMS Ferulic acid (FA) is a component found in plants that has free radical scavenging and liver-protective properties. Acute liver injury (ALI) is a serious complication of sepsis and is closely associated with changes in the levels of inflammatory factors. This study was taken to examine the role of FA in cecal ligation and perforation (CLP)-induced murine ALI and lipopolysaccharide (LPS)-induced cellular ALI models. MATERIALS AND METHODS An in vivo ALI model was established by performing CLP surgery on C57BL/6 mice. After the ALI model was established, mice were examined for liver injury, including HE staining to observe tissue sections, the percentage of liver/body weight and inflammatory factor levels. Myeloperoxidase (MPO), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were measured in liver or serum using commercial kits. An in vitro ALI model was established using LPS-stimulated RAW264.7 cells. Cell viability was measured by MTT method and the intracellular levels of IL-10, IL-1β, IL-6, IL-12 and TNF-α inflammatory factors were measured using kits. The expression of GSK-3β, NF-κB and CREB was measured by western blot or immunofluorescence. KEY FINDINGS FA pretreatment significantly reduced liver/body weight ratio, decreased MPO, AST and ALT activity, alleviated the inflammatory responses and improved CLP-induced histopathological changes in liver. In addition, in vitro results showed that FA could dose-dependently increase the viability of RAW264.7 cells and decrease the levels of pro-inflammatory factors. SIGNIFICANCE In conclusion, our data suggest that FA can ameliorate ALI-induced inflammation via the GSK-3β/NF-κB/CREB pathway, suggesting that FA can be used to protect the liver against ALI.
Collapse
Affiliation(s)
- Liping Cao
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhenghong Li
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Liang Li
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Junxian Hu
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China.
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China.
| |
Collapse
|
32
|
Lin Z, Li F, Zhang Y, Tan X, Luo P, Liu H. Analysis of astaxanthin molecular targets based on network pharmacological strategies. J Food Biochem 2021; 45:e13717. [PMID: 33844306 DOI: 10.1111/jfbc.13717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/28/2021] [Accepted: 03/21/2021] [Indexed: 12/17/2022]
Abstract
In order to further explore the potential pharmacological activity of astaxanthin (AST), network pharmacological approaches were employed in this work to systematically investigate its affinity targets, perturbed signaling pathways, and related disease applications. First, potential targets were captured based on AST chemical structure information. Enrichment analysis was then performed using bioinformatics tools to predict the biological processes and diseases in which AST targets are involved. The results suggest that AST is involved in steroid hormone metabolism, and the regulation of glucocorticoids may be one of the potential mechanisms of its known therapeutic effects on depression and insulin resistance. Molecular docking experiments confirmed that AST can form stable binding to several key nodes (SRD5A2, STS, AKR1C2, HSD11B1, and CYP17A1) in steroid hormone biosynthesis. More importantly, the molecular targets of AST were the most significantly associated with endometriosis. Functionally, grouped analysis of key therapeutic nodes was carried out by establishing the interaction network between drug targets and disease targets. While exerting inflammatory effects, the regulation of estrogen and other semiochemicals by targeting steroid metabolism may be the biological basis for the potential treatment of endometriosis with AST. This work provides a theoretical basis for further exploring the pharmacological mechanisms of AST and development of new therapeutic applications. PRACTICAL APPLICATIONS: In this study, systematic pharmacological methods were used to identify the potential therapeutic effects and associated mechanisms of astaxanthin, providing a bioinformatics basis for further exploration of astaxanthin's new pharmacological properties in foods.
Collapse
Affiliation(s)
- Zhen Lin
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Fangping Li
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Yu Zhang
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Xiaohui Tan
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Ping Luo
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Huazhong Liu
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
33
|
Protective effects of Antarctic krill oil in dextran sulfate sodium-induced ulcerative colitis mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
34
|
Astaxanthin Alleviates Ochratoxin A-Induced Cecum Injury and Inflammation in Mice by Regulating the Diversity of Cecal Microbiota and TLR4/MyD88/NF- κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8894491. [PMID: 33505592 PMCID: PMC7806395 DOI: 10.1155/2021/8894491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/10/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
Ochratoxin A (OTA) is a common environmental pollutant found in a variety of foods and grains, and excessive OTA consumption causes serious global health effects on animals and humans. Astaxanthin (AST) is a natural carotenoid that has anti-inflammatory, antiapoptotic, immunomodulatory, antitumor, antidiabetes, and other biological activities. The present study is aimed at investigating the effects of AST on OTA-induced cecum injury and its mechanism of action. Eighty C57 mice were randomly divided into four groups, including the control group, OTA group (5 mg/kg body weight), AST group (100 mg/kg body weight), and AST intervention group (100 mg/kg body weight AST+5 mg/kg body weight OTA). It was found that AST decreased the endotoxin content, effectively prevented the shortening of mouse cecum villi, and increased the expression levels of tight junction (TJ) proteins, consisting of occludin, claudin-1, and zonula occludens-1 (ZO-1). AST increased the number of goblet cells, the contents of mucin-2 (MUC2), and defensins (Defa5 and β-pD2) significantly, while the expression of mucin-1 (MUC1) decreased significantly. The 16S rRNA sequencing showed that AST affected the richness and diversity of cecum flora, decreased the proportion of lactobacillus, and also decreased the contents of short-chain fatty acids (SCFAs) (acetate and butyrate). In addition, AST significantly decreased the expression of TLR4, MyD88, and p-p65, while increasing the expression of p65. Meanwhile, the expression of inflammatory factors including TNF-α and INF-γ decreased, while the expression of IL-10 increased. In conclusion, AST reduced OTA-induced cecum injury by regulating the cecum barrier function and TLR4/MyD88/NF-κB signaling pathway.
Collapse
|
35
|
Zhou X, Zhang J, Li Y, Cui L, Wu K, Luo H. Astaxanthin inhibits microglia M1 activation against inflammatory injury triggered by lipopolysaccharide through down-regulating miR-31-5p. Life Sci 2021; 267:118943. [PMID: 33359248 DOI: 10.1016/j.lfs.2020.118943] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/06/2020] [Accepted: 12/15/2020] [Indexed: 01/31/2023]
Abstract
AIMS Astaxanthin is a natural carotenoid, can readily cross the blood-brain barrier and exerts a powerful neuroprotective effect. In this study, experiments were performed to explore the underlying molecular mechanisms of which Astaxanthin inhibiting the microglia M1 activation. MAIN METHODS BV2 cells and mice were pre-treated with Astaxanthin and treated by Lipopolysaccharide (LPS). The expressions of M1-related factors (pro-inflammatory cytokines and M1 markers) were measured by RT-qPCR and western blot. The target association between miR-31-5p and Numb was explored via luciferase activity assay. MiR-31-5p mimic was transfected into BV2 cells, then the cells were treated with Astaxanthin in combination with LPS. The expression of M1-related factors and Notch pathway-related molecules were measured via RT-qPCR, western blot and immunofluorescence assay. KEY FINDINGS Precondition of BV2 cells with Astaxanthin inhibited the expression of M1-related factors triggered by LPS. In addition, Astaxanthin decreased the number of Iba1-positive microglia and downregulated the levels of M1-related factors in hippocampus in LPS-treated mice. Further investigation revealed that Astaxanthin-mediated suppression of M1-related factors levels was reversed by miR-31-5p mimic in BV2 cells stimulated by LPS. Subsequently, we verified that miR-31-5p repressed Numb expression by binding to the 3'-UTR of Numb mRNA. Also, Astaxanthin suppressed the expression of Notch1, Hes1 and Hes5 and improved the expression of Numb in BV2 cells challenged by LPS, but this alteration can be reversed by miR-31-5p mimic. SIGNIFICANCE Our study demonstrated that down-regulating miR-31-5p by Astaxanthin could be a potential therapeutic approach to suppress neuroinflammation via regulating microglia M1 activation.
Collapse
Affiliation(s)
- Xin Zhou
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Junyu Zhang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yuxin Li
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Liao Cui
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China
| | - Kefeng Wu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China.
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China.
| |
Collapse
|
36
|
Talukdar J, Bhadra B, Dattaroy T, Nagle V, Dasgupta S. Potential of natural astaxanthin in alleviating the risk of cytokine storm in COVID-19. Biomed Pharmacother 2020; 132:110886. [PMID: 33113418 PMCID: PMC7566765 DOI: 10.1016/j.biopha.2020.110886] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Host excessive inflammatory immune response to SARS-CoV-2 infection is thought to underpin the pathogenesis of COVID-19 associated severe pneumonitis and acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Once an immunological complication like cytokine storm occurs, anti-viral based monotherapy alone is not enough. Additional anti-inflammatory treatment is recommended. It must be noted that anti-inflammatory drugs such as JAK inhibitors, IL-6 inhibitors, TNF-α inhibitors, colchicine, etc., have been either suggested or are under trials for managing cytokine storm in COVID-19 infections. Natural astaxanthin (ASX) has a clinically proven safety profile and has antioxidant, anti-inflammatory, and immunomodulatory properties. There is evidence from preclinical studies that supports its preventive actions against ALI/ARDS. Moreover, ASX has a potent PPARs activity. Therefore, it is plausible to speculate that ASX could be considered as a potential adjunctive supplement. Here, we summarize the mounting evidence where ASX is shown to exert protective effect by regulating the expression of pro-inflammatory factors IL-1β, IL-6, IL-8 and TNF-α. We present reports where ASX is shown to prevent against oxidative damage and attenuate exacerbation of the inflammatory responses by regulating signaling pathways like NF-ĸB, NLRP3 and JAK/STAT. These evidences provide a rationale for considering natural astaxanthin as a therapeutic agent against inflammatory cytokine storm and associated risks in COVID-19 infection and this suggestion requires further validation with clinical studies.
Collapse
Affiliation(s)
- Jayanta Talukdar
- Synthetic Biology Group, Reliance Research & Development Centre, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India.
| | - Bhaskar Bhadra
- Synthetic Biology Group, Reliance Research & Development Centre, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Tomal Dattaroy
- Synthetic Biology Group, Reliance Research & Development Centre, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Vinod Nagle
- Synthetic Biology Group, Reliance Research & Development Centre, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Santanu Dasgupta
- Synthetic Biology Group, Reliance Research & Development Centre, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| |
Collapse
|
37
|
Cheng J, Eroglu A. The Promising Effects of Astaxanthin on Lung Diseases. Adv Nutr 2020; 12:850-864. [PMID: 33179051 PMCID: PMC8166543 DOI: 10.1093/advances/nmaa143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/25/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Astaxanthin (ASX) is a naturally occurring xanthophyll carotenoid. Both in vitro and in vivo studies have shown that it is a potent antioxidant with anti-inflammatory properties. Lung cancer is the leading cause of cancer death worldwide, whereas other lung diseases such as chronic obstructive pulmonary disease, emphysema, and asthma are of high prevalence. In the past decade, mounting evidence has suggested a protective role for ASX against lung diseases. This article reviews the potential role of ASX in protecting against lung diseases, including lung cancer. It also summarizes the underlying molecular mechanisms by which ASX protects against pulmonary diseases, including regulating the nuclear factor erythroid 2-related factor/heme oxygenase-1 pathway, NF-κB signaling, mitogen-activated protein kinase signaling, Janus kinase-signal transducers and activators of transcription-3 signaling, the phosphoinositide 3-kinase/Akt pathway, and modulating immune response. Several future directions are proposed in this review. However, most in vitro and in vivo studies have used ASX at concentrations that are not achievable by humans. Also, no clinical trials have been conducted and/or reported. Thus, preclinical studies with ASX treatment within physiological concentrations as well as human studies are required to examine the health benefits of ASX with respect to lung diseases.
Collapse
Affiliation(s)
- Junrui Cheng
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | | |
Collapse
|
38
|
Pang Y, Zhang PC, Lu RR, Li HL, Li JC, Fu HX, Cao YW, Fang GX, Liu BH, Wu JB, Zhou JY, Zhou Y. Andrade-Oliveira Salvianolic Acid B Modulates Caspase-1-Mediated Pyroptosis in Renal Ischemia-Reperfusion Injury via Nrf2 Pathway. Front Pharmacol 2020; 11:541426. [PMID: 33013384 PMCID: PMC7495093 DOI: 10.3389/fphar.2020.541426] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) is a serious disease characterized by a rapid decline in kidney function. Oxidative stress is the primary pathogenesis of AKI. Salvianolic acid B (SalB), a water-soluble compound extracted from Salvia miltiorrhiza, possesses a potent antioxidant activity. Here, we investigated the protective effect of SalB against renal ischemia-reperfusion injury (I/R) in mice. Briefly, by analyzing renal function, oxidative stress markers and inflammatory biomarkers, we found that SalB could improve kidney damage, reduce oxidative stress and inflammatory factor levels. Interestingly, the expression of the NLR family pyrin domain-containing 3 (NLRP3), caspase-1, pyroptosis related proteins gasdermin D (GSDMD) and interleukin (IL)-1β, which were significantly upregulated in the kidney tissues of I/R group, was effectively reversed by SalB. Meanwhile, renal tubular epithelial cells hypoxia and reoxygenation model was used to explore pyroptosis of caspase-1-dependent. Further mechanism study showed that the SalB pretreatment could promote the increase of nuclear factor erythroid-2 related factor 2 (Nrf2) nuclear accumulation, which significantly suppressed oxidative stress, proinflammatory cytokines, NLRP3 inflammasome activation and pyroptosis. These results indicate that SalB can inhibit caspase-1/GSDMD-mediated pyroptosis by activating Nrf2/NLRP3 signaling pathway, resulting in alleviating I/R injury in mice.
Collapse
Affiliation(s)
- Yu Pang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei-Chun Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui-Rui Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Lian Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ji-Cheng Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Xin Fu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Wen Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guo-Xing Fang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bi-Hao Liu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jun-Biao Wu
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiu-Yao Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
39
|
Overexpression of miR-129-5p Mitigates Sepsis-Induced Acute Lung Injury by Targeting High Mobility Group Box 1. J Surg Res 2020; 256:23-30. [PMID: 32682121 DOI: 10.1016/j.jss.2020.05.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND MicroRNAs are dysregulated in sepsis. Acute lung injury is a progressive syndrome during sepsis. However, the role of miR-129-5p in the development of acute lung injury induced by sepsis remains unclear. METHODS The acute lung injury of sepsis model was established by cecal ligation puncture (CLP)-treated mice and lipopolysaccharide (LPS)-treated murine alveolar epithelial cell line (MLE)-12 cells. The lung injury in vivo was investigated by hematoxylin and eosin staining, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling staining, enzyme-linked immunosorbent assay, lung wet-to-dry weight ratio, and myeloperoxidase activity. The lung injury in vitro was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide, flow cytometry, and enzyme-linked immunosorbent assay. The expression levels of miR-129-5p and high mobility group box 1 (HMGB1) were measured by quantitative real-time polymerase chain reaction and Western blot. The association between miR-129-5p and HMGB1 was validated by luciferase assay and RNA immunoprecipitation. RESULTS The expression of miR-129-5p was decreased in CLP model and LPS-treated MLE-12 cells. Overexpression of miR-129-5p attenuated inflammatory response, apoptosis, lung wet/dry weight ratio, and myeloperoxidase activity induced by CLP surgery in vivo. Moreover, addition of miR-129-5p increased cell viability and suppressed cell apoptosis and inflammatory response in vitro. HMGB1 as a target of miR-129-5p alleviated miR-129-5p-mediated injury suppression in LPS-treated MLE-12 cells. CONCLUSIONS miR-129-5p protects against sepsis-induced acute lung injury by decreasing HMGB1 expression, providing new target for sepsis treatment.
Collapse
|
40
|
Li L, Chen Y, Jiao D, Yang S, Li L, Li P. Protective Effect of Astaxanthin on Ochratoxin A-Induced Kidney Injury to Mice by Regulating Oxidative Stress-Related NRF2/KEAP1 Pathway. Molecules 2020; 25:molecules25061386. [PMID: 32197464 PMCID: PMC7144393 DOI: 10.3390/molecules25061386] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the effects of astaxanthin (ASX) on ochratoxin A (OTA)-induced renal oxidative stress and its mechanism of action. Serum kidney markers, histomorphology, ultrastructural observation, and oxidative stress indicators were assessed. Meanwhile, quantitative real-time reverse transcription PCR and western blotting detection of NRF2 (encoding nuclear factor, erythroid 2 like) and members of the NRF2/KEAP1 signaling pathway (KEAP1 (encoding Kelch-like ECH-associated protein), NQO1 (encoding NAD(P)H quinone dehydrogenase), HO-1 (encoding heme oxygenase 1), γ-GCS (gamma-glutamylcysteine synthetase), and GSH-Px (glutathione peroxidase 1)) were performed. Compared with the control group, the OTA-treated group showed significantly increased levels of serum UA (uric acid) and BUN (blood urea nitrogen), tubular epithelial cells were swollen and degenerated, and the levels of antioxidant enzymes decreased significantly, and the expression of NRF2 (cytoplasm), NQO1, HO-1, γ-GCS, and GSH-Px decreased significantly. More importantly, after ASX pretreatment, compared with the OTA group, serum markers were decreased, epithelial cells appeared normal; the expression of antioxidant enzymes increased significantly, NQO1, HO-1, γ-GCS and GSH-Px levels increased significantly, and ASX promoted the transfer of NRF2 from the cytoplasm to the nucleus. These results highlight the protective ability of ASX in renal injury caused by OTA exposure, and provide theoretical support for ASX’s role in other mycotoxin-induced damage.
Collapse
Affiliation(s)
| | | | | | - Shuhua Yang
- Correspondence: (S.Y.); (L.L.); (P.L.); Tel./Fax: +86-24-8848-7156 (S.Y., L.L. & P.L.)
| | - Lin Li
- Correspondence: (S.Y.); (L.L.); (P.L.); Tel./Fax: +86-24-8848-7156 (S.Y., L.L. & P.L.)
| | - Peng Li
- Correspondence: (S.Y.); (L.L.); (P.L.); Tel./Fax: +86-24-8848-7156 (S.Y., L.L. & P.L.)
| |
Collapse
|