1
|
Sun X, Yang R, Tang H, Ma M, Chen H, Chang X, Zhang M, Gong G. Diversity and pathogenicity of Fusarium species associated with Fusarium head blight in wheat and maize cropping systems in Sichuan Province. Sci Rep 2025; 15:5984. [PMID: 39966545 DOI: 10.1038/s41598-024-83402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/13/2024] [Indexed: 02/20/2025] Open
Abstract
Fusarium head blight (FHB) is a severe disease worldwide that leads to substantial economic losses. Wheat‒maize cropping is the dominant system in Sichuan Province, China. However, FHB has become increasingly severe in this system, and Fusarium rot disease is also becoming a severe threat to maize. To understand the composition and pathogenicity of the Fusarium species associated with FHB, samples of typical symptomatic wheat spikes were collected from wheat‒maize cropping fields in 16 administrative districts of Sichuan Province, and Fusarium perithecia were obtained from both wheat straw and maize stubble. Based on morphological and molecular identification, 175 isolates from symptomatic wheat spikes were identified as five Fusarium species: F. asiaticum, F. avenaceum, F. graminearum, F. meridionale, and F. proliferatum. Among them, F. asiaticum and F. graminearum were the dominant pathogenic species, with isolation frequencies of 75.43% and 20.57%, respectively. Additionally, 136 single-ascospore isolates from wheat straw or maize stubble were identified as F. asiaticum, F. equiseti, F. graminearum, F. meridionale, F. proliferatum, and F. temperatum. Pathogenicity assays revealed that the Fusarium strains from all sources could successfully infect wheat and maize. F. graminearum exhibited a high degree of pathogenicity towards both crops under investigation, while F. asiaticum demonstrated significantly greater pathogenicity towards wheat than maize. This work will help understand the cyclic infection caused by Fusarium species in wheat‒maize cropping systems and provide valuable data for the effectively controlling Fusarium rot disease in both wheat and maize.
Collapse
Affiliation(s)
- Xiaofang Sun
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Industrial Crops Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300, China
| | - Rui Yang
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huimin Tang
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Miaomiao Ma
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huabao Chen
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Chang
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Zhang
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoshu Gong
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Dimitrakopoulou ME, Marinos G, Karvounis M, Elliott C. What Lies Behind Mycotoxin Presence in Animal Feed? A case study. J Food Prot 2025:100464. [PMID: 39921133 DOI: 10.1016/j.jfp.2025.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
This study investigates seasonal trends and correlations among different mycotoxins in animal feed, employing time series analysis and Seasonal-Trend Decomposition using LOESS (STL) to uncover patterns and relationships. Data collected from Food Fortress, covering 2014 to 2024, includes feed for ruminants, pigs, and poultry. The analysis reveals that seasonality accounts for less than 15% of the variability in mycotoxin levels, suggesting a limited seasonal influence. High deoxynivalenol (DON) concentrations in ram feed were attributed to specific management practices, while persistent DON levels in pig and poultry feed highlight the need for enhanced interventions. A strong correlation between DON and zearalenone (ZEN) was identified in pig and poultry feed. Over the study period, aflatoxin levels exhibited a slight increase, potentially linked to evolving climatic conditions, whereas DON and ZEN levels showed a slight decline. Furthermore, an inverse correlation between aflatoxin and ochratoxin levels suggests competitive interactions among fungal species, such as Aspergillus and Penicillium. These findings provide valuable insights into the intricate interactions of seasonal factors, management practices, and fungal ecology shaping mycotoxin contamination in animal feed. The study emphasizes the need for advanced mitigation strategies, including predictive modeling and artificial intelligence, to monitor and manage mycotoxin risks effectively at regional level, ensuring feed safety and quality in the face of evolving environmental and management challenges.
Collapse
Affiliation(s)
| | | | | | - Chris Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University of Belfast, Belfast BT9 5DL Northern Ireland, UK; International Joint Research Centre on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
3
|
Mwabulili F, Li P, Shi J, Zhang H, Xie Y, Ma W, Sun S, Yang Y, Li Q, Li X, Jia H. Research diversity and advances in simultaneous removal of multi-mycotoxin. Toxicon 2024; 250:108106. [PMID: 39306098 DOI: 10.1016/j.toxicon.2024.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/14/2024]
Abstract
Mycotoxins are toxic secondary metabolites produced by different fungal species under specific environmental conditions. The common and regulated mycotoxins are such as deoxynivalenol (DON), zearalenone (ZEN), ochratoxin (OTA), aflatoxin B1 (AFB1), and fumonisins (FB). These mycotoxins are highly regulated in feed and food because their effects start to exert from their lowest exposures and are abundant in our common environment. However, there are other emerging mycotoxins such as apicidin, beauvericin, aurofusarin, and enniatins which are also harmful. Thus, making a total of around 500 forms of mycotoxins. The existence of mycotoxins in feed and food has a significant impact on animal and human health, which ultimately, slows down economic growth globally. According to this review, different approaches to removing multi-mycotoxin separately or simultaneously have been stated. Mostly, the review focused on the simultaneous removal of different multiple mycotoxins. This is because the current studies show a growing trend in reporting the co-existence of multiple mycotoxins in feed and food materials, however, most detoxifying approaches are for singular mycotoxins. Therefore, the physical, chemical, and biological approaches to remove multi-mycotoxin have been elucidated as well as their advantages and limitations. Furthermore, the authors give suggestions on the way forward to reduce exposure to mycotoxins and diminish their health effects in society. Lastly, the authors emphasized introducing more stringent limits for co-existing mycotoxins, especially those that have the same health effects by acting synergistically, such as AFB1 and OTA, which both act as carcinogenic agents.
Collapse
Affiliation(s)
- Fred Mwabulili
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China; Department of Food Science and Technology, College of Agricultural Sciences and Technology, Mbeya University of Science and Technology, P.O. Box 131, Mbeya, 53119, Tanzania
| | - Peng Li
- Centre for Complexity Science, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Jinghao Shi
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Hongxin Zhang
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yanli Xie
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China.
| | - Weibin Ma
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Shumin Sun
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Qian Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Xiao Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Hang Jia
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| |
Collapse
|
4
|
Wu J, Wang H, Liao J, Ke L, Lu D, Deng B, Xu Z. Mitigation effects of plant carbon black on intestinal morphology, inflammation, antioxidant status, and microbiota in piglets challenged with deoxynivalenol. Front Immunol 2024; 15:1454530. [PMID: 39315103 PMCID: PMC11416923 DOI: 10.3389/fimmu.2024.1454530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Plant carbon black (PCB) is a new feed additive for zearalenone adsorption in China. However, information regarding whether PCB can effectively absorb deoxynivalenol (DON) is limited. Methods To explore this research gap, the present study examined the adsorption effectiveness of DON by PCB using a phosphate buffer, artificial gastric juice, and artificial intestinal juice. In a 21-day in vivo trial, 48 male piglets were randomly assigned to four treatment groups: (1) uncontaminated basal diet (CTR), (2) basal diet supplemented with 1 mg/kg PCB(PCB), (3) 2.3 mg/kg DON-contaminated diet (DON), and (4) 2.3 mg/kg DON-contaminated diet supplemented with 0.1% PCB (DON+PCB). Results When DON concentration was 1 µg/mL, the adsorption rate of PCB on DON in phosphate buffer systems (pH 2.0 and 6.0) and the artificial gastric and intestinal juices were 100%, 100%, 71.46%, and 77.20%, respectively. In the in vivo trial, the DON group significantly increased the DON+deepoxy-deoxynivalenol (DOM-1) content in serum as well as the inflammation cytokine proteins (interleukin-6, interleukin-8, and tumor necrosis factor-α) and mRNA expression of interleukin-6 and longchain acyl-CoA synthetase 4 in the jejunum and ileum. It decreased the villus height, goblet cells, mucosal thickness, and mRNA expression of Claudin-1 compared to the CTR group. In addition, DON decreased the Shannon and Simpson indices; reduced the relative abundances of Firmicutes, Lactobacillus, Candidatus_Saccharimonas, and Ruminococcus; and increased the relative abundances of Terrisporobacter and Clostridium_sensu_stricto_1 in the cecal content. Discussion In conclusion, these results suggest that PCB showed high adsorption efficacy on DON in vitro, and exhibit the protective effects against various intestinal toxicity manifestations in DON-challenged piglets.
Collapse
Affiliation(s)
- Jie Wu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hanyang Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jianling Liao
- Department of Techniques Developing, Fujian Baicaoshuang Biotechnology Co., Ltd., Nanping, China
| | - Linfu Ke
- Department of Techniques Developing, Fujian Baicaoshuang Biotechnology Co., Ltd., Nanping, China
| | - Deqiu Lu
- Department of Production Research and Development, Harbin PuFan Feed Co., Ltd., Harbin, China
| | - Bo Deng
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ziwei Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
5
|
Zhang H, Cui L, Xie Y, Li X, Zhao R, Yang Y, Sun S, Li Q, Ma W, Jia H. Characterization, Mechanism, and Application of Dipeptidyl Peptidase III: An Aflatoxin B 1-Degrading Enzyme from Aspergillus terreus HNGD-TM15. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15998-16009. [PMID: 38949246 DOI: 10.1021/acs.jafc.4c03531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Aflatoxin B1 is a notorious mycotoxin with mutagenicity and carcinogenicity, posing a serious hazard to human and animal health. In this study, an AFB1-degrading dipeptidyl-peptidase III mining from Aspergillus terreus HNGD-TM15 (ADPP III) with a molecular weight of 79 kDa was identified. ADPP III exhibited optimal activity toward AFB1 at 40 °C and pH 7.0, maintaining over 80% relative activity at 80 °C. The key amino acid residues that affected enzyme activity were identified as H450, E451, H455, and E509 via bioinformatic analysis and site-directed mutagenesis. The degradation product of ADPP III toward AFB1 was verified to be AFD1. The zebrafish hepatotoxicity assay verified the toxicity of the AFB1 degradation product was significantly weaker than that of AFB1. The result of this study proved that ADPP III presented a promising prospect for industrial application in food and feed detoxification.
Collapse
Affiliation(s)
- Hongxin Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou 450001, China
| | - Lanbin Cui
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- School of Biological Science, Faculty of Science, The University of Hong Kong, Hong Kong 999077, China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou 450001, China
| | - Xiao Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou 450001, China
| | - Renyong Zhao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou 450001, China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou 450001, China
| | - Shumin Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou 450001, China
| | - Qian Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou 450001, China
| | - Weibin Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou 450001, China
| | - Hang Jia
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou 450001, China
| |
Collapse
|
6
|
Wang Q, Li A, Yu H, Wang C, Wang T, Zhang J. Evaluation of Cross-Talk and Alleviate Potential of Cytotoxic Factors Induced by Deoxynivalenol in IPEC-J2 Cells Interference with Curcumin. Int J Mol Sci 2024; 25:6984. [PMID: 39000093 PMCID: PMC11241398 DOI: 10.3390/ijms25136984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin produced by Fusarium graminearum, and curcumin (CUR) is a natural polyphenolic compound found in turmeric. However, the combined treatment of CUR and DON to explore the mitigating effect of CUR on DON and their combined mechanism of action is not clear. Therefore, in this study, we established four treatment groups (CON, CUR, DON and CUR + DON) to investigate their mechanism in the porcine intestinal epithelial cells (IPEC-J2). In addition, the cross-talk and alleviating potential of CUR interfering with DON-induced cytotoxic factors were evaluated by in vitro experiments; the results showed that CUR could effectively inhibit DON-exposed activated TNF-α/NF-κB pathway, attenuate DON-induced apoptosis, and alleviate DON-induced endoplasmic reticulum stress and oxidative stress through PERK/CHOP pathways, which were verified at both mRNA and protein levels. In conclusion, these promising findings may contribute to the future use of CUR as a novel feed additive to protect livestock from the harmful effects of DON.
Collapse
Affiliation(s)
- Qiyuan Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Chuanqi Wang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Ting Wang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jing Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| |
Collapse
|
7
|
Muñoz-Solano B, Lizarraga Pérez E, González-Peñas E. Monitoring Mycotoxin Exposure in Food-Producing Animals (Cattle, Pig, Poultry, and Sheep). Toxins (Basel) 2024; 16:218. [PMID: 38787070 PMCID: PMC11125880 DOI: 10.3390/toxins16050218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Food-producing animals are exposed to mycotoxins through ingestion, inhalation, or dermal contact with contaminated materials. This exposure can lead to serious consequences for animal health, affects the cost and quality of livestock production, and can even impact human health through foods of animal origin. Therefore, controlling mycotoxin exposure in animals is of utmost importance. A systematic literature search was conducted in this study to retrieve the results of monitoring exposure to mycotoxins in food-producing animals over the last five years (2019-2023), considering both external exposure (analysis of feed) and internal exposure (analysis of biomarkers in biological matrices). The most commonly used analytical technique for both approaches is LC-MS/MS due to its capability for multidetection. Several mycotoxins, especially those that are regulated (ochratoxin A, zearalenone, deoxynivalenol, aflatoxins, fumonisins, T-2, and HT-2), along with some emerging mycotoxins (sterigmatocystin, nivalenol, beauvericin, enniantins among others), were studied in 13,818 feed samples worldwide and were typically detected at low levels, although they occasionally exceeded regulatory levels. The occurrence of multiple exposure is widespread. Regarding animal biomonitoring, the primary objective of the studies retrieved was to study mycotoxin metabolism after toxin administration. Some compounds have been suggested as biomarkers of exposure in the plasma, urine, and feces of animal species such as pigs and poultry. However, further research is required, including many other mycotoxins and animal species, such as cattle and sheep.
Collapse
Affiliation(s)
| | | | - Elena González-Peñas
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (B.M.-S.); (E.L.P.)
| |
Collapse
|
8
|
Wu T, Kang K, Xia Y, Deng H, Han B, Han X, Xie Y, Li C, Zhan J, Huang W, You Y. Development and validation of a liquid chromatography tandem mass spectrometry method for the determination of 10 mycotoxins in beer of the Chinese market and exposure estimate. Food Res Int 2024; 184:114256. [PMID: 38609234 DOI: 10.1016/j.foodres.2024.114256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Mycotoxins are important risk factors in beer. In this study, a liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed to determine 10 mycotoxins in beer within 6 min. The method is fast, efficient, and has a simple and quick sample preparation. Validation was conducted based on the performance standards specified in Commission Decision 657/2002/EC, and the results demonstrated excellent linearity (R2 > 0.99), repeatability (RSD < 5 %), quantification limits (0.005-20.246 µg/L), and recovery rates (77 %-118 %). The prevalence of the 10 mycotoxins in 96 beers purchased from the Chinese market was analyzed, and the exposure of the Chinese population to mycotoxins through beer consumption was assessed. Deoxynivalenol (DON) was detected in 93.75 % of the beers, and the incidence of fumonisins (FBs) and zearalenone (ZEN) exceeded 50 %. Beer intake contributed significantly to the exposure of aflatoxins (AFs) and DON, especially in males. Correlation analysis between mycotoxin content in beer, raw materials, and the brewing process revealed that the brewing process significantly affected the content of DON (P < 0.001), while auxiliary materials also had a significant impact on the content of FBs and DON (P < 0.001). This study holds great significance in producing higher quality and safer beer.
Collapse
Affiliation(s)
- Tianyang Wu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China.
| | - Kun Kang
- Anheuser-Busch Inbeve (Foshan) Brewery Co., Ltd., No.1 Baiwei Avenue, Sanshui District, Foshan City, Guangdong Province 528100, China.
| | - Ying Xia
- Anheuser-Busch Inbev (Wuhan) Beer Co., Ltd Craft Brewery, Qingduankou, Hanyang District, Wuhan City 430050, China.
| | - Huan Deng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China.
| | - Bing Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China.
| | - Xiaoyu Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China.
| | - Yiding Xie
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China.
| | - Chenyu Li
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China.
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China.
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China.
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, Jiangsu, China.
| |
Collapse
|
9
|
Cai P, Liu S, Tu Y, Shan T. Toxicity, biodegradation, and nutritional intervention mechanism of zearalenone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168648. [PMID: 37992844 DOI: 10.1016/j.scitotenv.2023.168648] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Zearalenone (ZEA), a global mycotoxin commonly found in a variety of grain products and animal feed, causes damage to the gastrointestinal tract, immune organs, liver and reproductive system. Many treatments, including physical, chemical and biological methods, have been reported for the degradation of ZEA. Each degradation method has different degradation efficacies and distinct mechanisms. In this article, the global pollution status, hazard and toxicity of ZEA are summarized. We also review the biological detoxification methods and nutritional regulation strategies for alleviating the toxicity of ZEA. Moreover, we discuss the molecular detoxification mechanism of ZEA to help explore more efficient detoxification methods to better reduce the global pollution and hazard of ZEA.
Collapse
Affiliation(s)
- Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
10
|
Li Y, Chen S, Yu Z, Yao J, Jia Y, Liao C, Chen J, Wei Y, Guo R, He L, Ding K. A Novel Bacillus Velezensis for Efficient Degradation of Zearalenone. Foods 2024; 13:530. [PMID: 38397507 PMCID: PMC10888444 DOI: 10.3390/foods13040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Zearalenone (ZEN) is considered one of the most serious mycotoxins contaminating grains and their by-products, causing significant economic losses in the feed and food industries. Biodegradation pathways are currently considered the most efficient solution to remove ZEN contamination from foods. However, low degradation rates and vulnerability to environmental impacts limit the application of biodegradation pathways. Therefore, the main research objective of this article was to screen strains that can efficiently degrade ZEN and survive under harsh conditions. This study successfully isolated a new strain L9 which can efficiently degrade ZEN from 108 food ingredients. The results of sequence alignment showed that L9 is Bacillus velezensis. Meanwhile, we found that the L9 degradation rate reached 91.14% at 24 h and confirmed that the primary degradation mechanism of this strain is biodegradation. The strain exhibits resistance to high temperature, acid, and 0.3% bile salts. The results of whole-genome sequencing analysis showed that, it is possible that the strain encodes the key enzyme, such as chitinase, carboxylesterases, and lactone hydrolase, that work together to degrade ZEN. In addition, 227 unique genes in this strain are primarily involved in its replication, recombination, repair, and protective mechanisms. In summary, we successfully excavated a ZEN-degrading, genetically distinct strain of Bacillus velezensis that provides a solid foundation for the detoxification of feed and food contamination in the natural environment.
Collapse
Affiliation(s)
- Yijia Li
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Songbiao Chen
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
| | - Zuhua Yu
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jie Yao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yanyan Jia
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
| | - Chengshui Liao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jian Chen
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ying Wei
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Rongxian Guo
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Lei He
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ke Ding
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
| |
Collapse
|
11
|
Qu H, Zheng Y, Kang R, Feng Y, Li P, Wang Y, Cheng J, Ji C, Chai W, Ma Q. Toxicokinetics of Zearalenone following Oral Administration in Female Dezhou Donkeys. Toxins (Basel) 2024; 16:51. [PMID: 38251267 PMCID: PMC10819545 DOI: 10.3390/toxins16010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Zearalenone (ZEN) is a mycotoxin produced by various Fusarium strains, that is present in food and feed raw materials worldwide, causing toxicity effects in animals and humans. This research aimed to explore the toxicokinetics of ZEN on female Dezhou donkeys following a single oral exposure dosage of 2 mg/kg BW (body weight). The sample collection of donkeys plasma was carried out at 0, 5, 10, 15, 20, 30, 45, 60, 90 min, 2 h, 2.5 h, 3 h, 3.5 h, 4 h, 4.5 h, 6 h, 9 h, 12 h, 24 h, 48 h, 72 h, 96 h and 120 h via intravenous catheter, and fecal and urinary samples were severally collected at 0 h and every 6 h until 120 h. The concentrations of ZEN, α-zearalenol (α-ZOL), β-zearalenol (β-ZOL), α-zearalanol (α-ZAL), β-zearalanol (β-ZAL), zearalanone (ZAN) in plasma, urine, and feces were detected by UPLC-MS/MS. Only ZEN was detected in plasma, and the maximum was 15.34 ± 5.12 µg/L occurred at 0.48 h after gavage. The total plasma clearance (Cl) of ZEN was 95.20 ± 8.01 L·kg·BW-1·h-1. In addition, the volume of distribution (Vd) was up to 216.17 ± 58.71 L/kg. The percentage of total ZEN (ZEN plus the main metabolites) excretion in feces and urine was 2.49% and 2.10%, respectively. In summary, ZEN was fast absorbed and relatively slowly excreted in female donkeys during 120 h after a single gavage, indicating a trend of wider tissue distribution and longer tissue persistence.
Collapse
Affiliation(s)
- Honglei Qu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Q.); (Y.Z.); (R.K.); (P.L.); (C.J.)
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng 252201, China; (Y.F.); (Y.W.); (J.C.)
| | - Yunduo Zheng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Q.); (Y.Z.); (R.K.); (P.L.); (C.J.)
| | - Ruifen Kang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Q.); (Y.Z.); (R.K.); (P.L.); (C.J.)
| | - Yulong Feng
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng 252201, China; (Y.F.); (Y.W.); (J.C.)
| | - Pengshuai Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Q.); (Y.Z.); (R.K.); (P.L.); (C.J.)
| | - Yantao Wang
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng 252201, China; (Y.F.); (Y.W.); (J.C.)
| | - Jie Cheng
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng 252201, China; (Y.F.); (Y.W.); (J.C.)
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Q.); (Y.Z.); (R.K.); (P.L.); (C.J.)
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Q.); (Y.Z.); (R.K.); (P.L.); (C.J.)
| |
Collapse
|
12
|
Chen L, Li F, Ma Z, Wang A, Kang Y, Liu B, Xu H, Li J, Wang X, Li K. Improving feed intake and rumen fermentation in lambs using mixed-dimensional attapulgite clay to adsorb naturally occurring mycotoxins. J Anim Sci 2024; 102:skae080. [PMID: 38513071 PMCID: PMC11015868 DOI: 10.1093/jas/skae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/20/2024] [Indexed: 03/23/2024] Open
Abstract
This experiment was conducted to evaluate the effects of including a mixed-dimensional attapulgite clay (MDA) into a naturally moldly diet for Hu lambs. Fifty male Hu lambs with similar initial body weight (28.24 ± 1.80 kg) were randomly allocated into five dietary treatments: a basal diet containing naturally occurring mycotoxins with 0, 0.5, 1.0, and 2.0 kg/t MDA, and basal diet with a commercial mycotoxin adsorbent Solis with montmorillonite as the major component at 1 kg/t. Both MDA and Solis increased average daily gain (ADG) and dry matter intake (DMI; P ≤ 0.004), and there was no difference in growth performance between MDA and Solis (P ≥ 0.26). The final body weight, DMI, and ADG were linearly increased with increasing MDA supplementation (P < 0.01). Lambs treated with both MDA and Solis demonstrated greater apparent digestibility of dry matter (DM), organic matter (OM), and energy compared with the control group (P ≤ 0.03), and there were no differences in nutrient digestibilities between MDA and Solis (P ≥ 0.38). Digestibility of CP was linearly increased with the increasing MDA supplementation (P = 0.01). Neither MDA nor Solis affected rumen total volatile fatty acid (TVFA) concentration (P ≥ 0.39), but decreased the acetate-to-propionate ratio and molar proportion of n-butyrate (P ≤ 0.01), and MDA also increased the concentration of ammonia (P = 0.003). Besides, increasing MDA supplementation linearly reduced the acetate-to-propionate ratio and molar proportion of n-butyrate (P = 0.01), but linearly and quadratically increased the concentration of ammonia (P ≥ 0.003). These results showed that the incorporation of MDA into a naturally moldy diet of Hu lambs yielded comparable results to the Solis product, with higher growth performance and nutrient digestibility but lower acetate-to-propionate ratio observed. In conclusion, including ≥ 1 kg/t of MDA in high mycotoxin risk diets for growing lambs improves feed intake and rumen fermentation.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Fei Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Zhiyuan Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yuru Kang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Baocang Liu
- Xinjiang Tycoon Group Aksu Feed Corp, Aksu 842008, PR China
| | - Hui Xu
- Minqin County Defu Agricultural Technology Co., Ltd., Minqin 733300, PR China
| | - Jiandong Li
- Minqin County Defu Agricultural Technology Co., Ltd., Minqin 733300, PR China
| | - Xinji Wang
- Extension Station of Animal Husbandry and Veterinary Medicine in Minqin County, Minqin 733300, PR China
| | - Kaidong Li
- Animal Husbandry and Veterinary Workstation, Minqin County 733399, PR China
| |
Collapse
|
13
|
Ali S, Freire LGD, Rezende VT, Noman M, Ullah S, Abdullah, Badshah G, Afridi MS, Tonin FG, de Oliveira CAF. Occurrence of Mycotoxins in Foods: Unraveling the Knowledge Gaps on Their Persistence in Food Production Systems. Foods 2023; 12:4314. [PMID: 38231751 DOI: 10.3390/foods12234314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
In this review, the intricate issue about the occurrence levels of mycotoxins in foods is discussed aiming to underline the main knowledge gaps on the persistence of these toxicants in the food production system. Mycotoxins have been a key challenge to the food industry, economic growth, and consumers' health. Despite a breadth of studies over the past decades, the persistence of mycotoxins in foods remain an overlooked concern that urges exploration. Therefore, we aimed to concisely underline the matter and provide possible biochemical and metabolic details that can be relevant to the food sector and overall public health. We also stress the application of computational modeling, high-throughput omics, and high-resolution imaging approaches, which can provide insights into the structural and physicochemical characteristics and the metabolic activities which occur in a stored cereal grain's embryo and endosperm and their relationship with storage fungi and mycotoxins on a cellular level. In addition, there is a need for extensive collaborative network and funding, which will play a key role in finding effective solutions against the persistence of mycotoxins at the genetic and molecular to metabolic levels in the food system.
Collapse
Affiliation(s)
- Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Lucas Gabriel Dionisio Freire
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Vanessa Theodoro Rezende
- Faculty of Veterinary and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Muhammad Noman
- Plant Molecular Physiology, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, MG, Brazil
| | - Sana Ullah
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Abdullah
- Department of Health and Biological Sciences, Abasyn University Peshawar (AUP), Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Gul Badshah
- Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81530-000, PR, Brazil
| | - Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil
| | - Fernando Gustavo Tonin
- Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Carlos Augusto Fernandes de Oliveira
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| |
Collapse
|
14
|
Yu J, Ai S, Zhang W, Wang C, Shi P. Ratiometric fluorescent aptasensor for convenient detection of ochratoxin A in beer and orange juice. Analyst 2023; 148:5172-5177. [PMID: 37721150 DOI: 10.1039/d3an01360j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Based on the principle of fluorescence resonance energy transfer (FRET), a simple ratiometric fluorescent aptasensor for convenient detection of ochratoxin A (OTA), a Group IIB carcinogen secreted by some fungi, was established. Initially, the anti-OTA aptamer with a quadruplex structure was flanked with FAM and BHQ1, and its partially complementary DNA (cDNA) was tagged with Cy3. In the absence of OTA, this aptamer hybridized with the cDNA strand forming a DNA duplex structure, in which BHQ1 was adjacent to Cy3 and distant from FAM. Due to the FRET principle, the fluorescence intensity emitted by Cy3 (FCy3) was quenched by BHQ1, and the fluorescence intensity emitted by FAM (FFAM) recovered. In the presence of OTA, the prepared aptamer preferred to bind with OTA instead of cDNA, forming an aptamer-OTA complex structure in which BHQ1 was adjacent to FAM and distant from Cy3. As a result, FFAM was quenched and FCy3 was restored. OTA can be accurately detected via the determination of the FCy3/FFAM ratio value. Under optimal conditions, this ratiometric fluorescent aptasensor offers excellent OTA detection in the range of 0.6 nmol L-1-5 μmol L-1, with a limit of detection (LOD) of 0.3 nmol L-1. This ratiometric aptasensor showed the advantages of easy operation, accuracy and sensitive analysis. Good specificity of this aptasensor was demonstrated. This ratiometric aptasensor could be used for the detection of OTA in real samples, e.g. beer and orange juice, showing its promising application potential.
Collapse
Affiliation(s)
- Jie Yu
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| | - Shuheng Ai
- School of Medicine, Linyi University, Linyi 276000, China
| | - Wenhan Zhang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| | - Chao Wang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
- School of Medicine, Linyi University, Linyi 276000, China
| | - Pengfei Shi
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| |
Collapse
|
15
|
Kleber A, Gruber-Dorninger C, Platzer A, Payet C, Novak B. Effect of Fungicide Treatment on Multi-Mycotoxin Occurrence in French Wheat during a 4-Year Period. Toxins (Basel) 2023; 15:443. [PMID: 37505712 PMCID: PMC10467151 DOI: 10.3390/toxins15070443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Wheat represents one of the most widely consumed cereals worldwide. Cultivated in winter and spring, it is vulnerable to an array of different pathogens, including fungi, which are managed largely through the in-field application of fungicides. During this study, a 4-year field investigation (2018-2021) was performed in France, aiming to assess the efficacy of fungicide treatment to reduce mycotoxin contamination in common and durum wheat. Several different commercially available fungicides were applied via sprayers. Concentrations of mycotoxins and fungal metabolites in wheat were determined using a multi-analyte liquid-chromatography-tandem-mass-spectrometry-based method. The highest contamination levels and strongest effects of fungicides were observed in 2018, followed by 2021. A significant fungicide-mediated reduction was observed for the trichothecenes deoxynivalenol, deoxynivalenol-3-glucoside, nivalenol, and nivalenol-3-glucoside. Furthermore, fungicide treatment also reduced levels of culmorin and its hydroxy metabolites 5- and 15-hydroxy-culmorin, as well as aurofusarin. Interestingly, the Alternaria metabolite infectopyron was increased following fungicide treatment. In conclusion, fungicide treatment was effective in reducing mycotoxin levels in wheat. However, as complete prevention of mycotoxin contamination was not achieved, fungicide treatment should always be combined with other pre- and post-harvest mycotoxin mitigation strategies to improve food and feed safety.
Collapse
Affiliation(s)
- Alexandra Kleber
- DSM-BIOMIN Research Center, 3430 Tulln, Austria; (C.G.-D.); (A.P.); (B.N.)
| | | | - Alexander Platzer
- DSM-BIOMIN Research Center, 3430 Tulln, Austria; (C.G.-D.); (A.P.); (B.N.)
| | | | - Barbara Novak
- DSM-BIOMIN Research Center, 3430 Tulln, Austria; (C.G.-D.); (A.P.); (B.N.)
| |
Collapse
|
16
|
Ruan H, Wu J, Zhang F, Jin Z, Tian J, Xia J, Luo J, Yang M. Zearalenone Exposure Disrupts STAT-ISG15 in Rat Colon: A Potential Linkage between Zearalenone and Inflammatory Bowel Disease. Toxins (Basel) 2023; 15:392. [PMID: 37368693 DOI: 10.3390/toxins15060392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Zearalenone (ZEN), a prevalent mycotoxin contaminating food and known for its intestinal toxicity, has been suggested as a potential risk factor for inflammatory bowel disease (IBD), although the exact relationship between ZEN exposure and IBD remains unclear. In this study, we established a rat model of colon toxicity induced by ZEN exposure to investigate the key targets of ZEN-induced colon toxicity and explore the underlying connection between ZEN exposure and IBD. Histological staining of the rat colon revealed significant pathological changes resulting from ZEN exposure (p < 0.01). Furthermore, the proteomic analysis demonstrated a notable upregulation of protein expression levels, specifically STAT2 (0.12 ± 0.0186), STAT6 (0.36 ± 0.0475) and ISG15 (0.43 ± 0.0226) in the rat colon (p < 0.05). Utilizing bioinformatics analysis, we combined ZEN exposure and IBD clinical sample databases to reveal that ZEN exposure may increase the risk of IBD through activation of the STAT-ISG15 pathway. This study identified novel targets for ZEN-induced intestinal toxicity, providing the basis for further study of ZEN exposure to IBD.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiashuo Wu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100091, China
| | - Fangqing Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100091, China
| | - Ziyue Jin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiao Tian
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jing Xia
- School of Basic Medical Science, Peking University, Beijing 100191, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|