1
|
Tavares CS, Wang X, Ghosh S, Mishra R, Bonning BC. Bacillus thuringiensis-derived pesticidal proteins toxic to the whitefly, Bemisia tabaci. J Invertebr Pathol 2025; 210:108291. [PMID: 39986348 DOI: 10.1016/j.jip.2025.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
The whitefly, Bemisia tabaci, is among the most important threats to global agriculture and food security. In addition to losses associated with feeding, B. tabaci vectors hundreds of plant viruses, many of which cause severe disease in staple food crops. The management of B. tabaci is confounded by extensive resistance to chemical insecticides. While pesticidal proteins derived from entomopathogenic bacteria such as Bacillus thuringiensis (Bt) could provide for alternative management approaches, only one pesticidal protein with toxicity to B. tabaci has been identified. Here we screened 11 Bt-derived pesticidal proteins from several different structural classes against the highly invasive, Middle East-Asian Minor 1 (MEAM1) cryptic species of B. tabaci, and assessed the impact of a B. tabaci-active protein on the gut epithelial membrane by transmission electron microscopy. The pesticidal proteins were expressed in Bt or in Escherichia coli and purified for use in bioassays. The toxicity of purified proteins was first assessed by feeding adults on a single dose followed by lethal concentration (LC50) determination for proteins with significant mortality relative to the buffer control. The proteins Tpp78Aa1, Tpp78Ba1, and Cry1Ca were toxic to B. tabaci with LC50 values of 99, 96, and 351 µg/mL, respectively. Disruption of the brush border and severe reduction in microvilli on the gut surface caused by Tpp78Aa1 is consistent with the mode of action of Bt-derived pesticidal proteins. These proteins may provide valuable tools for the integrated management of B. tabaci populations and associated reduced incidence of B. tabaci vectored plant viral diseases.
Collapse
Affiliation(s)
- Clebson S Tavares
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Xinyue Wang
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Saptarshi Ghosh
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Cui S, Shen K, Xiong S, Li X, Wang Y, Geng X, Lu Y. Low-Frequency Ultrasound Assisted in Improvement in Cell Development and Production of Parasporal Crystals from Bacillus thuringiensis HD1. INSECTS 2025; 16:507. [PMID: 40429220 PMCID: PMC12112675 DOI: 10.3390/insects16050507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/17/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025]
Abstract
Bacillus thuringiensis is widely utilized as a microbial insecticide due to its production of parasporal crystals during the spore-forming stage. However, lower fermentation efficiency coupled with elevated production costs limit its broad application. Low-frequency ultrasound (LFU) has been employed in the fermentation industry to enhance microbial growth and metabolism. In this study, the effect of LFU on the growth of B. thuringiensis HD1 and the yields of parasporal crystals was investigated. The maximum biomass accumulation of Bacillus thuringiensis and parasporal crystal production yield were achieved following low-frequency ultrasonic (LFU) treatment applied during the logarithmic growth phase (18 h of cultivation) under optimized parameters: a frequency of 40 kHz, a power output of 176 W, and an irradiation duration of 45 min. Under optimal conditions, LFU significantly increased the cell membrane permeability and secretory inositol, favoring cell growth and parasporal crystal production. FESEM/CLSM and TEM analyses visually displayed the changes in cell morphology. In addition, the germination rate of spores was increased after LFU treatment, which further confirmed the positive effect of LFU on the growth of B. thuringiensis. Compared to the control, parasporal crystals harvested under LFU exhibited significant modifications in their physicochemical characteristics; the particle size increased, the surface electronegativity intensified, and there was a morphological transition from spherical to cubic geometry. Importantly, the parasporal crystals exhibited strong insecticidal activity against S. zeamais adults, a typical stored-product insect pest, with an LC50 of 10.795 mg/g on day 14 and a Kt50 of 4.855 days at a concentration of 30 mg/g. These findings will provide new insights into the product development and application of B. thuringiensis in the future.
Collapse
Affiliation(s)
- Sufen Cui
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (K.S.); (S.X.); (X.L.); (Y.W.); (Y.L.)
| | - Kaihui Shen
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (K.S.); (S.X.); (X.L.); (Y.W.); (Y.L.)
| | - Shiqi Xiong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (K.S.); (S.X.); (X.L.); (Y.W.); (Y.L.)
| | - Xiao Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (K.S.); (S.X.); (X.L.); (Y.W.); (Y.L.)
| | - Yue Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (K.S.); (S.X.); (X.L.); (Y.W.); (Y.L.)
| | - Xueqing Geng
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yujie Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (K.S.); (S.X.); (X.L.); (Y.W.); (Y.L.)
| |
Collapse
|
3
|
Tan S, Shang Z, Jia H, Huang J, Geng L, Shu C, Soberón M, Bravo A, Shi W, Zhang J, Wei H. Enhancing Bacillus thuringiensis Cry8Ea1 toxicity: Insights into protease sensitivity for the evolutionary adaptation of Cry toxins to insect hosts. Int J Biol Macromol 2025; 308:142246. [PMID: 40132718 DOI: 10.1016/j.ijbiomac.2025.142246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/20/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Toxicity of Bacillus thuringiensis Cry protoxins relies on activation by larval midgut proteases, but overprocessing can reduce toxicity in various insects. Cry8Ea1 is effective against Coleopteran pests but shows limited toxicity towards Holotrichia parallela due to instability in its midgut proteases. Treatment of Cry8Ea1 protoxin with trypsin or midgut juice-proteases, produces a 55.6 kDa fragment by cleaving between residues V163 and Y655, removing the first three α-helices from domain I. To prevent protease degradation, the trypsin cleavage site was identified and mutated (Cry8Ea1R163H). Cry8Ea1R163H mutant resulted in a 67.2 kDa activated toxin after treatment with trypsin or midgut juice-proteases, and showed a correlative 8.5-fold increase insecticidal activity against H. parallela larvae. We analyzed the activation of other Cry8 proteins with trypsin or midgut juice-proteases from H. parallela, our data showed that Cry8Fa1 was activated into a 67.2 kDa protein, in contrast to Cry8Ha1, Cry8Ca1 and Cry8Ga2 that were activated into 55.6 kDa protein fragments. Finally, the structure of the trypsin cleavage site in all Cry8 protein members was predicted, revealing that in Cry8Fa, Cry8Q and Cry8I, the trypsin cleavage site is buried. Phylogenetic analyses suggest an adaptive evolution of certain Cry8 proteins against the host digesting enzymes.
Collapse
Affiliation(s)
- Shuqian Tan
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.
| | - Zixuan Shang
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Haoran Jia
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jinqiu Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Wangpeng Shi
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongshuang Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Mohanty P, Rajadurai G, Mohankumar S, Balakrishnan N, Raghu R, Balasubramani V, Sivakumar U. Interactions between insecticidal cry toxins and their receptors. Curr Genet 2025; 71:9. [PMID: 40156649 DOI: 10.1007/s00294-025-01312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Bacillus thuringiensis is a prominent, eco-friendly entomopathogenic bacterium used as a plant-incorporated toxin in genetically modified crops and as a stomach poison for insects in the form of spore formulations. Upon entering the alkaline environment of the insect gut, the toxin undergoes proteolytic breakdown, converting the protoxin into its activated form. The activated toxin then binds to receptors, forming pores that disrupt the ionic balance within the cell, ultimately leading to the insect's death. Alongside the four major receptors (Cadherin, ABCC, APN, and ALP), several other notable receptors are present on the Brush Border Membrane Vesicle of insects. Binding to these receptors plays a crucial role, and any mutations in these receptors can result in improper binding, leading to the development of resistant insect strains. This review explores the major receptors of insecticidal Cry toxins, the intricate interactions between toxins and receptors, receptor mutations, and strategies to overcome the resistance.
Collapse
Affiliation(s)
- Pravukalyan Mohanty
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - G Rajadurai
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - S Mohankumar
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - N Balakrishnan
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - R Raghu
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - V Balasubramani
- Controller of Examinations, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - U Sivakumar
- Department of Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| |
Collapse
|
5
|
Segretin ME, Soto GC, Lorenzo CD. Latin America: a hub for agrobiotechnological innovations. ANNALS OF BOTANY 2025; 135:629-642. [PMID: 39470392 PMCID: PMC11904903 DOI: 10.1093/aob/mcae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Modern biotechnology is one of the last century's major advances in human science. Particularly in the agronomical field, the landscape of crop improvement technologies has witnessed a great expansion, driven by the integration of molecular and genetic engineering methodologies into the breeding toolbox. Latin America (LATAM) serves as a pioneering region in incorporating such techniques with several countries swiftly embracing these technologies. SCOPE This review aims to give a comprehensive overview of the elements that influenced agrobiotech acceptance in LATAM countries and how such cases could provide support for upcoming technologies to be considered worldwide. CONCLUSIONS Nearly 50 years of biotech breakthroughs have provided humankind with an impressive portfolio of tools already integrated into several life-science areas. The agronomical field has greatly progressed thanks to technologies derived from genetically modified organisms and great promises are being made to also incorporate genome-editing products. LATAM provides a prime example of how early introduction of novelties in the crop production chain can result in improved yields, paving the way for future developments to be easily integrated into the technological ecosystem of a region. The example set by LATAM can also be useful for the present gene-editing regulatory scenario. With several countries presently on the path to approving these methods in their current crop systems, basing their next steps on the example of LATAM could represent a safe and practical pathway towards a new agronomical revolution.
Collapse
Affiliation(s)
- Maria Eugenia Segretin
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular-INGEBI-CONICET, Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma Buenos Aires, C1428EGA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Cynthia Soto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Genética ‘Ewald Favret’ (INTA), Buenos Aires, Argentina
| | - Christian Damian Lorenzo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
| |
Collapse
|
6
|
Sleutel M, Sogues A, Van Gerven N, Jonsmoen UL, Aspholm M, Van Molle I, Fislage M, Theunissen L, Bellis N, Baquero D, Egelman E, Krupovic M, Wang J, Remaut H. Cryo-EM analysis of the Bacillus thuringiensis extrasporal matrix identifies F-ENA as a widespread family of endospore appendages across Firmicutes. RESEARCH SQUARE 2025:rs.3.rs-6050303. [PMID: 40162231 PMCID: PMC11952670 DOI: 10.21203/rs.3.rs-6050303/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
For over 100 years, Bacillus thuringiensis (Bt) has been used as an agricultural biopesticide to control pests caused by insect species in the orders of Lepidoptera, Diptera and Coleoptera. Under nutrient starvation, Bt cells differentiate into spores and associated toxin crystals that can adopt biofilm-like aggregates. We reveal that such Bt spore/toxin biofilms are embedded in a fibrous extrasporal matrix (ESM), and using cryoID, we resolved the structure and molecular identity of an uncharacterized type of pili, referred to here as Fibrillar ENdospore Appendages or 'F-ENA'. F-ENA are monomolecular protein polymers tethered to the exosporium of Bt and are decorated with a flexible tip fibrillum. Phylogenetic analysis reveals that F-ENA is widespread not only in the class Bacilli, but also in the class Clostridia, and the cryoEM structures of F-ENA filaments from Bacillus, Anaerovorax and Paenibaccilus reveal subunits with a generic head-neck domain structure, where the b-barrel neck of variable length latch onto a preceding head domain through short N-terminal hook peptides. In Bacillus, two collagen-like proteins (CLP) respectively tether F-ENA to the exosporium (F-Anchor), or constitute the tip fibrillum at the distal terminus of F-ENA (F-BclA). Sedimentation assays point towards F-ENA involvement in spore-spore clustering, likely mediated via F-BclA contacts and F-ENA bundling through the antiparallel interlocking of the head-neck units.
Collapse
|
7
|
Zhao Y, Xie J, Yu S, Wu Q, Wang Z, Shang Y, Wang Z, Zhang J, Zhai H, Huang Z, Ding Y, Wang J. A novel method of species-specific molecular target mining and accurate discrimination of Bacillus cereus sensu lato. Int J Food Microbiol 2025; 431:111068. [PMID: 39842315 DOI: 10.1016/j.ijfoodmicro.2025.111068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/24/2024] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Bacillus cereus, a member of the Bacillus cereus sensu lato (B. cereus s.l.), is widely distributed in nature and can contaminate a variety of foods, leading to foodborne illnesses and substantial losses in the food industry. Although culture-based methods remain the gold standard for identifying B. cereus due to their high sensitivity under specific conditions, they are often complex and labor-intensive to implement. Furthermore, the high genetic similarity among certain members of the B. cereus s.l. makes it challenging to identify species-specific molecular targets, hindering the rapid and accurate differentiation of these bacteria. In this study, we introduce a novel method, comparative analysis based on whole genome slices (CAWGS), combined with the Basic Local Alignment Search Tool (BLAST) for efficient molecular target mining. Using CAWGS-BLAST and pan-genome analysis, we successfully identified new molecular targets for B. cereus, Bacillus thuringiensis, emetic B. cereus, Bacillus anthracis, Bacillus mycoides, Bacillus weihenstephanensis, and Bacillus megaterium. Based on these newly discovered targets, we developed a PCR-CRISPR/Cas12a method for detecting B. cereus s.l. and related species. Our research not only provides a rapid and accurate approach for discriminating B. cereus s.l. and related species, but also offers a universal and valuable reference for detecting foodborne pathogens, especially those with highly similar phenotypic and genetic characteristics.
Collapse
Affiliation(s)
- Yibing Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Jihang Xie
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shubo Yu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhi Wang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuting Shang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhengzheng Wang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jumei Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huichan Zhai
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Zhenying Huang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Yu Ding
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510432, China.
| |
Collapse
|
8
|
Hou Y, Zhang X, Zhou L, Xu Y, Zhu Y, Yan T, Peng Q, Liu H, Song F. Evaluation of the strategy for insecticidal crystal encapsulation with cell wall in industrial processes. PEST MANAGEMENT SCIENCE 2025; 81:1384-1392. [PMID: 39542718 DOI: 10.1002/ps.8537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Bacillus thuringiensis (Bt) can produce insecticidal crystal proteins during sporulation, and these are the basis of the most successful microbial insecticides in use today. However, the susceptibility of insecticidal crystal proteins to inactivation by ultraviolet (UV) radiation from sunlight causes damage to the insecticidal crystals and subsequent loss of toxicity. The deletion of the mclX gene, an unknown functional gene, can make the insecticidal crystal proteins become encapsulated by the cell wall which provides some protection against UV radiation. This study evaluates the potential of this innovative strategy during the industrial process of commercial strain KN11. RESULTS Gene mclX was deleted from a commercial Bt strain KN11 successfully, and the mutant strain was cultured under different conditions, including laboratory and industrial fermentation conditions. The mother cells of the mclX mutant strain remained nonlysed after industrial processes. The deletion of mclX had no adverse effects on the production of Cry1Ac protein and no impact on the insecticidal activity. Most noteworthy, the ΔmclX mutant had improved UV resistance and insecticidal activity compared to the wild-type KN11 strain. CONCLUSION This finding suggests that commercial strains can be genetically modified to encapsulate insecticidal crystal in Bt products using the mclX mutation strategy. This study evaluated the ability of commercial strains lacking the mclX gene to encapsulate crystals giving resistance to UV radiation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yujia Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Li Zhou
- Wuhan Kernel Bio-tech Co., Itd., Wuhan, China
| | - Yanrong Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanhong Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tinglu Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huamei Liu
- Wuhan Kernel Bio-tech Co., Itd., Wuhan, China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Antonino JD, Chaudhary S, Lubberts M, McConkey BJ, Valença CAS, de Aragão Batista MV, Severino P, da Costa Mendonça M, Souto EB, Dolabella SS, Jain S. Phylogenetic analysis and homology modelling of a new Cry8A crystal protein expressed in a sporulating soil bacterium. J Struct Biol 2025; 217:108167. [PMID: 39765318 DOI: 10.1016/j.jsb.2025.108167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/14/2024] [Accepted: 01/04/2025] [Indexed: 01/14/2025]
Abstract
Cry proteins, commonly found in Gram-positive soil bacteria, are used worldwide as aerial sprays or in transgenic plants for controlling crop pest populations and insect vectors. Via PCR analysis, a spore producing soil isolate (BV5) was speculated to encode a Cry gene. Partial nucleotide sequence of the amplified PCR fragment showed homology with the Cry8 genes present in GenBank. A full-length Cry gene was cloned, and the predicted protein sequence grouped the newly isolated Cry protein with other Cry8A present in GenBank with a high possibility of it being a new Cry8. SDS-PAGE and MALDI-TOF mass spectrometry confirmed the expression of a single 135 KDa protein matching uniquely to the putative protein sequence of the BV5 Cry gene. However, bioassay against the coleopteran Anthonomus grandis (Coleopterans are a known Cry8A target), showed no activity. Phylogenetic analysis and homology modelling was performed to characterize the protein structure and function. These analyses suggest a series of mutations in one of the variable loops on the surface of the protein.
Collapse
Affiliation(s)
- José D Antonino
- Departament of Agronomy-Entomology, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Mark Lubberts
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | - Camilla A S Valença
- Postgraduate Program in Industrial Biotechnology, Tiradentes University, Aracaju, Sergipe, Brazil
| | - Marcus V de Aragão Batista
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Patricia Severino
- Postgraduate Program in Industrial Biotechnology, Tiradentes University, Aracaju, Sergipe, Brazil
| | | | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| | - Silvio S Dolabella
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Sona Jain
- Postgraduate Program in Industrial Biotechnology, Tiradentes University, Aracaju, Sergipe, Brazil; Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
10
|
Jordan C, de Carvalho VR, Horta AB, Lemos MVF, Barbosa Rodrigues JD, Passos JRDS, Domingues MM, Zanuncio JC, Wilcken CF. Potential of Bacillus thuringiensis isolates to manage Gonipterus platensis (Coleoptera: Curculionidae) larvae populations. ENVIRONMENTAL ENTOMOLOGY 2025; 54:101-108. [PMID: 39739612 DOI: 10.1093/ee/nvae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/13/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
The growing expansion of eucalyptus plantations in Brazil and the impact of exotic pests, such as Gonipterus platensis, demand effective, and sustainable biological control strategies. The aim of this study was to assess the pathogenicity of 10 Bacillus thuringiensis (Bt) isolates to neonate Gonipterus platensis larvae, commonly known as the eucalyptus weevil (Coleoptera: Curculionidae) with the specific focus of evaluating their potential to manage this pest while preserving its egg parasitoid, Anaphes nitens. To achieve this, the genomic DNA of the 10 Bt isolates was extracted using the thermal lysis method for molecular characterization of their Cry and Vip proteins. Neonate G. platensis larvae were subjected to bioassays with each isolate, at a concentration of 1 × 109 spores/ml, was applied on 10 larvae per replication (3 replications). The concentration and lethal time to kill 50% of the larvae were determined for the most effective isolates. The Bt isolates 107 and 178 isolates even at concentrations 10× lower than those recommended for commercial Bacillus thuringiensis var. tenebrionis (Btt) formulations against Coleoptera pests, achieved 100% mortality of G. platensis larvae. These isolates, with coleopteran-specific genes, caused high mortality of neonate Gonipterus platensis larvae. This indicates their potential for the biological control of this pest and maybe of other Coleoptera pests. Their use poses minimal risk to non-target organisms such as the egg parasitoid A. nitens and indicates a promising avenue for integrated pest management strategies with effective pest control while preserving the ecological balance.
Collapse
Affiliation(s)
- Carolina Jordan
- Departamento de Proteção Vegetal, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Faculdade de Ciências Agronômicas, Avenida Universitária, Botucatu, São Paulo, Brasil
| | - Vanessa Rafaela de Carvalho
- Departamento de Proteção Vegetal, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Faculdade de Ciências Agronômicas, Avenida Universitária, Botucatu, São Paulo, Brasil
| | - André Ballerini Horta
- Departamento de Proteção Vegetal, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Faculdade de Ciências Agronômicas, Avenida Universitária, Botucatu, São Paulo, Brasil
| | - Manoel Victor Franco Lemos
- Departamento de Biologia Aplicada à Agropecuária, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Jaboticabal, São Paulo, Brasilm
| | - Jardel Diego Barbosa Rodrigues
- Departamento de Biologia Aplicada à Agropecuária, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Jaboticabal, São Paulo, Brasilm
| | - José Raimundo de Souza Passos
- Departamento de Bioestatística, Biologia Vegetal, Parasitologiae Zoologia, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Botucatu, São Paulo, Brasil
| | - Maurício Magalhães Domingues
- Departamento de Proteção Vegetal, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Faculdade de Ciências Agronômicas, Avenida Universitária, Botucatu, São Paulo, Brasil
| | - José Cola Zanuncio
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - Carlos Frederico Wilcken
- Departamento de Proteção Vegetal, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Faculdade de Ciências Agronômicas, Avenida Universitária, Botucatu, São Paulo, Brasil
| |
Collapse
|
11
|
Wang L, Fan Y, Zou L, Ge L, Jiang W, Chao S, Lv B, Zhao K, Chen J, Li P. Bt toxins alter bacterial communities and their potential functions in earthworm intestines. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125591. [PMID: 39725196 DOI: 10.1016/j.envpol.2024.125591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
The accumulation and persistence of Bt toxins in soils from Bt plants and Bt biopesticides can result in ecological hazards. Earthworms are one of the most frequently used bioindicators for soil ecological monitoring, characterization, and risk assessment. However, the effects of Bt toxins on earthworm bacterial communities have conversely rarely been studied. Here, the dynamics of exposure to exogenous Bt toxins in earthworm intestines were investigated alongside the impacts of Bt toxins on intestinal bacterial community diversity, stability, and potential function. The intestinal concentration of water-dissolved Bt toxins drastically decreased with increased incubation time. Intestinal bacterial community compositions in earthworm intestines were affected by the concentration of Bt toxin that was added and incubation time. Moreover, lower bacterial community α diversity (i.e., based on Sobs and ACE indices) and significantly higher predicted relative abundances of microbial enzymes in the Bt toxin treatment compared with the control were observed alongside differences in bacterial taxonomic and functional compositional profiles after Bt toxin exposure. The observed changes were most strongly associated with variation in overall functional redundancy. Intestinal bacterial taxa probably played pivotal roles in the degradation and transformation of Bt toxins via nitrogen, phosphorus, and polysaccharide hydrolysis metabolic pathways. Although the application of Bt toxin led to lower intestinal community α diversity and stability after 14 days, these community characteristics were restored upon further incubation to 21 days. Thus, these results suggest that earthworm intestinal microbial communities confer strong resilience and the ability to adapt to Bt toxin stress. Consequently, persistent adverse effects of Bt toxins on intestinal microbiomes were not observed after earthworm exposure to Bt toxins.
Collapse
Affiliation(s)
- Luyao Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai, 201106, China
| | - Yixuan Fan
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai, 201106, China
| | - Lingli Zou
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai, 201106, China
| | - Lei Ge
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai, 201106, China
| | - Wei Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Shengqian Chao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Beibei Lv
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Kai Zhao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Chen
- East China University of Technology, Nanchang, 330013, China.
| | - Peng Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai, 201106, China.
| |
Collapse
|
12
|
Sleutel M, Sogues A, Van Gerven N, Jonsmoen UL, Van Molle I, Fislage M, Theunissen LD, Bellis NF, Baquero DP, Egelman EH, Krupovic M, Wang F, Aspholm M, Remaut H. Cryo-EM analysis of the Bacillus thuringiensis extrasporal matrix identifies F-ENA as a widespread family of endospore appendages across the Firmicutes phylum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637640. [PMID: 39990323 PMCID: PMC11844507 DOI: 10.1101/2025.02.11.637640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
For over 100 years, Bacillus thuringiensis (Bt) has been used as an agricultural biopesticide to control pests caused by insect species in the orders of Lepidoptera, Diptera and Coleoptera. Under nutrient starvation, Bt cells differentiate into spores and associated toxin crystals that can adopt biofilm-like aggregates. We reveal that such Bt spore/toxin biofilms are embedded in a fibrous extrasporal matrix (ESM), and using cryoID, we resolved the structure and molecular identity of an uncharacterized type of pili, referred to here as Fibrillar ENdospore Appendages or 'F-ENA'. F-ENA are monomolecular protein polymers tethered to the exosporium of Bt and are decorated with a flexible tip fibrillum. Phylogenetic analysis reveals that F-ENA is widespread not only in the class Bacilli, but also in the class Clostridia, and the cryoEM structures of F-ENA filaments from Bacillus, Anaerovorax and Paenibaccilus reveal subunits with a generic head-neck domain structure, where the β-barrel neck of variable length latch onto a preceding head domain through short N-terminal hook peptides. In Bacillus, two collagen-like proteins (CLP) respectively tether F-ENA to the exosporium (F-Anchor), or constitute the tip fibrillum at the distal terminus of F-ENA (F-BclA). Sedimentation assays point towards F-ENA involvement in spore-spore clustering, likely mediated via F-BclA contacts and F-ENA bundling through the antiparallel interlocking of the head-neck units.
Collapse
Affiliation(s)
- Mike Sleutel
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Adrià Sogues
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Nani Van Gerven
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Unni Lise Jonsmoen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
| | - Inge Van Molle
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marcus Fislage
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Laurent Dirk Theunissen
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Nathan F. Bellis
- Department of Biochemistry and Molecular Genetics University of Alabama at Birmingham Birmingham, AL 35233, USA
| | - Diana P. Baquero
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris 75015, France
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics University of Virginia School of Medicine Charlottesville, VA 22903, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris 75015, France
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics University of Alabama at Birmingham Birmingham, AL 35233, USA
- Department of Biochemistry and Molecular Genetics University of Virginia School of Medicine Charlottesville, VA 22903, USA
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
13
|
Toledo D, Bel Y, Menezes de Moura S, Jurat-Fuentes JL, Grossi de Sa MF, Robles-Fort A, Escriche B. Distinct Impact of Processing on Cross-Order Cry1I Insecticidal Activity. Toxins (Basel) 2025; 17:67. [PMID: 39998084 PMCID: PMC11860814 DOI: 10.3390/toxins17020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
The insecticidal Cry proteins from Bacillus thuringiensis are used in biopesticides or transgenic crops for pest control. The Cry1I protein family has unique characteristics of being produced during the vegetative rather than sporulation phase, its protoxins forming dimers in solution, and exhibiting dual toxicity against lepidopteran and coleopteran pests. The Cry1Ia protoxin undergoes sequential proteolysis from the N- and C-terminal ends, producing intermediate forms with insecticidal activity, while in some cases, the fully processed toxin is inactive. We investigated the oligomerization and toxicity of Cry1Ia intermediate forms generated through trypsinization (T-Int) and larval gut fluid (GF-Int) treatments, as well as the fully trypsinized protein (toxin). Heterologously expressed intermediate forms assembled into oligomers and showed similar toxicity to Cry1Ia protoxin against Ostrinia nubilalis (European corn borer) larvae, while the toxin form was ~30 times less toxic. In contrast, bioassays with Leptinotarsa decemlineata (Colorado potato beetle) larvae did not show significant differences in toxicity among Cry1Ia protoxin, T-Int, GF-Int, and fully processed toxin. These results suggest that the Cry1I mode of action differs by insect order, with N-terminal cleavage affecting toxicity against lepidopteran but not coleopteran larvae. This knowledge is essential for designing pest control strategies using Cry1I insecticidal proteins.
Collapse
Affiliation(s)
- Dafne Toledo
- Institute of Biotechnology and Biomedicine, University of Valencia, 46100 Valencia, Spain;
- Department of Genetics, University of Valencia, 46100 Valencia, Spain;
| | - Yolanda Bel
- Institute of Biotechnology and Biomedicine, University of Valencia, 46100 Valencia, Spain;
- Department of Genetics, University of Valencia, 46100 Valencia, Spain;
| | - Stefanie Menezes de Moura
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (S.M.d.M.); (J.L.J.-F.)
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil;
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (S.M.d.M.); (J.L.J.-F.)
| | | | - Aida Robles-Fort
- Department of Genetics, University of Valencia, 46100 Valencia, Spain;
| | - Baltasar Escriche
- Institute of Biotechnology and Biomedicine, University of Valencia, 46100 Valencia, Spain;
- Department of Genetics, University of Valencia, 46100 Valencia, Spain;
| |
Collapse
|
14
|
Fang C(G, James B, Williams M, Bachler A, Tay WT, Walsh T, Frese M. Cry1 resistance in a CRISPR/Cas9-mediated HaCad1 gene knockout strain of the Australian cotton bollworm Helicoverpa armigera conferta (Lepidoptera: Noctuidae). PEST MANAGEMENT SCIENCE 2025; 81:959-965. [PMID: 39544011 PMCID: PMC11716338 DOI: 10.1002/ps.8500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Helicoverpa armigera is a highly polyphagous species that causes huge losses to agricultural and horticultural crops worldwide. In the cotton industry, H. armigera, including the Australian subspecies Helicoverpa armigera conferta, is largely managed using genetically modified crops that express insecticidal toxins, such as Cry1Ac. Resistance to Cry1 proteins occurs and, in some cases, is mediated by changes to HaCad1, a gene that encodes the midgut protein cadherin. Around the world, numerous resistance-associated polymorphisms have been identified in the HaCad1 gene of H. armigera, but Cry1Ac resistance is rare in the Australian subspecies. We used CRISPR/Cas9 to disrupt the cadherin gene in H. armigera conferta and characterised the resulting phenotype with bioassays and transcriptomics. RESULTS Compared to the parental strain, the newly generated HaCad1 knockout strain is 44-fold and 16-fold more resistant to Cry1Ac and Cry1A.105, respectively, while wild-type and knockout insects were equally insensitive to Cry1F. CONCLUSION The disruption of the HaCad1 gene causes Cry1Ac resistance in Australian H. armigera conferta. However, Cry1Ac resistance remains rare in Australian field populations suggesting that Australia's approach to pest management in cotton has prevented widespread Cry1Ac resistance. © 2024 CSIRO. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Cao (Grace) Fang
- Faculty of Science and TechnologyUniversity of CanberraCanberraAustralia
- Black Mountain Science and Innovation ParkCommonwealth Scientific and Industrial Research Organisation (CSIRO)ActonAustralia
| | - Bill James
- Black Mountain Science and Innovation ParkCommonwealth Scientific and Industrial Research Organisation (CSIRO)ActonAustralia
| | - Michelle Williams
- Black Mountain Science and Innovation ParkCommonwealth Scientific and Industrial Research Organisation (CSIRO)ActonAustralia
| | - Andy Bachler
- Black Mountain Science and Innovation ParkCommonwealth Scientific and Industrial Research Organisation (CSIRO)ActonAustralia
- Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Wee Tek Tay
- Black Mountain Science and Innovation ParkCommonwealth Scientific and Industrial Research Organisation (CSIRO)ActonAustralia
- Department of Applied BioSciencesMacquarie UniversitySydneyAustralia
| | - Tom Walsh
- Black Mountain Science and Innovation ParkCommonwealth Scientific and Industrial Research Organisation (CSIRO)ActonAustralia
- Department of Applied BioSciencesMacquarie UniversitySydneyAustralia
| | - Michael Frese
- Faculty of Science and TechnologyUniversity of CanberraCanberraAustralia
- Black Mountain Science and Innovation ParkCommonwealth Scientific and Industrial Research Organisation (CSIRO)ActonAustralia
| |
Collapse
|
15
|
Van Laere Y, Fraiture MA, Gobbo A, De Keersmaecker SCJ, Marchal K, Roosens NHC, Vanneste K. Assessing the authenticity and purity of a commercial Bacillus thuringiensis bioinsecticide through whole genome sequencing and metagenomics approaches. Front Microbiol 2025; 16:1532788. [PMID: 39963497 PMCID: PMC11831548 DOI: 10.3389/fmicb.2025.1532788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Biopesticides, biological agents for pest control in plants, are becoming increasingly prevalent in agricultural practices. However, no established methodology currently exists to assess their quality, and there are currently no publicly available authenticity and purity evaluations of commercial products. This lack of data may represent risks because of their widespread dispersal in the environment. We evaluated the potential of whole genome sequencing (WGS) and metagenomics approaches, including nanopore long-read sequencing, to verify both authenticity (i.e., the labeled strain) and biological purity (i.e., the absence of any undesired genetic material) of commercial Bacillus thuringiensis bioinsecticides. Four commercially available bioinsecticidal products containing Bacillus thuringiensis serovar kurstaki strain HD-1 were collected from the European market as a case study. Two sequencing approaches were employed: WGS of isolates and metagenomics sequencing of all genetic material in a product. To assess authenticity, isolate WGS data were compared against the publicly available reference genome of the expected strain. Antimicrobial resistance gene content, insecticidal gene content, and single nucleotide polymorphism differences were characterized to evaluate similarity to the reference genome. To assess purity, metagenomic sequencing data were analyzed using read classification and strain differentiation methods. Additionally, long- and short-read data were used to assess potential large-scale structural variations. Our results confirmed all investigated products to be authentic and pure. With the increasing usage of biopesticides, it is crucial to have adequate quality control methods. Our proposed approach could be adapted for other biopesticides, and similar products, providing a standardized and robust approach to contribute to biopesticide safety.
Collapse
Affiliation(s)
- Yari Van Laere
- Transversal Activities in Applied Genomics, Sciensano, Elsene, Belgium
- Department of Plant Biotechnology and Bioinformatics, UGent, Zwijnaarde, Belgium
| | | | - Andrea Gobbo
- Transversal Activities in Applied Genomics, Sciensano, Elsene, Belgium
| | | | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, UGent, Zwijnaarde, Belgium
- Department of Information Technology, UGent, Zwijnaarde, Belgium
| | | | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Elsene, Belgium
| |
Collapse
|
16
|
Yu H, Lv H, Lu F, Yang Q, Duan H, Li W, Fu F. Expression evaluation of exogenous and endogenous alcohol dehydrogenase genes in transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2025; 15:1476754. [PMID: 39911661 PMCID: PMC11794282 DOI: 10.3389/fpls.2024.1476754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/27/2024] [Indexed: 02/07/2025]
Abstract
A lot of endogenous genes, as well as genes from related species, are transformed back into crops for overexpression to improve their corresponding traits. However, almost all of these transgenic events remain at the testing stage. Most of the singular transgenic events of crops approved for commercial release are developed by the transformation and heterologous expression of exogenous genes from distant species. To detect the differences in expression, protein accumulation, and enzyme activity between transformed exogenous and endogenous genes, the coding sequences (CDSs) of the alcohol dehydrogenase (ADH) genes were cloned from dicotyledonous Arabidopsis, monocotyledonous maize, and prokaryotic Escherichia coli, constructed into expression vector pBI121-cMycNY, and used to transform wild-type Arabidopsis, respectively. Three homozygous T3 lines with a single integration site were screened for each of the three transformed genes by antibiotic screening, polymerase chain reaction (PCR) identification, and genomic DNA resequencing. Real-time quantitative PCR (RT-qPCR) analysis showed that the relative expression levels of the transformed exogenous ZmADH and EcADH genes were ten or tens of times higher than that of the transformed endogenous AtADH gene. After confirming the encoded proteins of these transformed genes by Western blotting, enzyme-linked immunosorbent assay (ELISA) showed that the accumulation levels of the proteins encoded by the transformed genes ZmADH and EcADH were significantly higher than that encoded by the transformed endogenous gene AtADH. Enzyme reaction assay showed that the ADH activities of the T3 lines transformed by the exogenous genes ZmADH and EcADH were also significantly higher than that transformed by the endogenous gene AtADH as well as the wild-type control. These results indicated that exogenous genes were more conducive to transgenic improvement of crops.
Collapse
Affiliation(s)
| | | | | | | | | | - Wanchen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fengling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
17
|
Marčić D, Döker I, Tsolakis H. Bioacaricides in Crop Protection-What Is the State of Play? INSECTS 2025; 16:95. [PMID: 39859676 PMCID: PMC11766257 DOI: 10.3390/insects16010095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Growing demands for environmentally safe and sustainable pest management have increased interest in biopesticides as alternatives to synthetic chemical pesticides. This review presents the current status of bioacaricides, defined as commercial biopesticide products based on microorganisms (microbial acaricides) and biologically active substances of microbial, plant or animal origin (biochemicals and semiochemicals) used in crop protection against spider mites (Tetranychidae) and other plant-feeding mites. The most important microbial bioacaricides are mycopesticides, which are products manufactured from living propagules of Beauveria bassiana s.l. and several other acaropathogenic fungi. Products based on avermectins and milbemycins, secondary metabolites of actinomycetes, are well-known examples of biochemicals of microbial origin. Among the biochemicals of plant origin, the most widely used to date have been the products based on pyrethrum-obtained from the Dalmatian daisy, Tanacetum cinerariifolium (Asteraceae)-and azadirachtin, obtained from the Indian neem tree, Azadirachta indica (Meliaceae). In recent years, products based on essential oils from aromatic plants belonging to the families Lamiaceae, Myrtaceae, Rutaceae and others have also gained increasing importance in the market. Special emphasis in this review is given to the compatibility of bioacaricides with predatory mites of the family Phytoseiidae as biological control agents used in the integrated management of plant-feeding mites.
Collapse
Affiliation(s)
- Dejan Marčić
- Laboratory of Applied Entomology, Institute of Pesticides and Environmental Protection, Banatska 31B, 11080 Belgrade, Serbia
| | - Ismail Döker
- Department of Plant Protection, Agricultural Faculty, Cukurova University, 01330 Sarıçam, Türkiye;
| | - Haralabos Tsolakis
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Viale delle Scienze 13, Ed. 5, 90128 Palermo, Italy;
| |
Collapse
|
18
|
Ejaz MR, Jaoua S, Lorestani N, Shabani F. Global climate change and its impact on the distribution and efficacy of Bacillus thuringiensis as a biopesticide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178091. [PMID: 39708739 DOI: 10.1016/j.scitotenv.2024.178091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
This study is the first modeling exercise to assess the impacts of climate change on the current and future global distribution of Bacillus thuringiensis (Bt). Bt is a common Gram-positive, rod-shaped bacterium widely distributed in various environments, including soil and water. It is widely recognized as a source of effective and safe agricultural biopesticides for pest management in various climatic regions globally. In the present work, ensemble species distribution models were developed for Bt based on the generalized linear model (GLM), generalized boosting model (GBM), random forest (RF), and maximum entropy (MaxEnt) under two distinct scenarios, SSP2-4.5 (optimistic) and SSP5-8.5 (pessimistic) for the year of 2050, 2070, and 2090. The performance of our models was evaluated based on true skill statistics (TSS) and the area under the receiver-operator curve (AUC) indices. Both AUC and TSS values were observed in an acceptable range, with AUC at 0.84 and TSS at 0.512, respectively. Results indicate that most of the areas currently suitable for Bt will likely remain stable in the future, particularly Central America, Central and South Africa, South Asia, and parts of Oceania. Norway, Peru, and the UK will have notable habitat gains by 2090 based on SSP2-4.5 and SSP5-8.5 scenarios. On the contrary, Serbia, Guinea, Poland, Croatia, Spain and Romania showed notable losses under both scenarios. Our results underscore Bt potential to improve pest control, crop yields, and environmental sustainability, especially in regions where agriculture is predominant. Our research highlights the need to understand ecological dynamics for future conservation and agricultural planning in the face of climate change.
Collapse
Affiliation(s)
- Muhammad Riaz Ejaz
- College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Samir Jaoua
- College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Niloufar Lorestani
- College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Farzin Shabani
- College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
19
|
Nascimento TA, Paes MJ, Valicente FH, Queiroz MMDC. Bioactive Potential of Some Bacillus thuringiensis Strains from Macapá, Amazon, Brazil, Against the Housefly Musca domestica (Diptera: Muscidae) Under Laboratory Conditions. INSECTS 2024; 16:27. [PMID: 39859608 PMCID: PMC11766272 DOI: 10.3390/insects16010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025]
Abstract
The high pathogenic activity of Bacillus thuringiensis (Bt) strains against various insect orders has positioned it as the most effective, environmentally safe, and sustainable approach to integrated insect management. We aimed to identify Bt strains capable of effectively controlling the housefly Musca domestica, a species of significant medical, veterinary, and public health concern. Twelve Bt strains from Macapá, Brazil, were tested against housefly larvae. PCR was employed to detect genes encoding Cry and Cyt proteins and Vips. Six strains exhibited 70 to 100% larval mortality, with five containing cry genes, none harboring cyt genes, and four carrying vip genes. Scanning electron microscopy revealed the production of crystal inclusions with distinct morphologies: spherical (TR4J, SOL5DM, SOL6RN), cuboidal and bipyramidal (TRO1TN and TRO2MQ), and spherical and bipyramidal (UNI2MA). The potential presence of genes from the cry1, cry2, vip1, and vip3 families suggests that these strains also exhibit bioinsecticidal activity against other muscoid flies and insect pests across various orders. This study underscores the bioactive potential of these Brazilian Bt strains for developing new bioinsecticides.
Collapse
Affiliation(s)
- Tatiane Aparecida Nascimento
- Programa de Pós-Graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz–Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil;
- Laboratório Integrado: Simulídeos e Oncocercose & Entomologia Médica e Forense—LSOEMF, Instituto Oswaldo Cruz–Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil;
| | - Maria José Paes
- Laboratório Integrado: Simulídeos e Oncocercose & Entomologia Médica e Forense—LSOEMF, Instituto Oswaldo Cruz–Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil;
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, CEFET, Rio de Janeiro 20271-204, RJ, Brazil
| | | | - Margareth Maria de Carvalho Queiroz
- Programa de Pós-Graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz–Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil;
- Laboratório Integrado: Simulídeos e Oncocercose & Entomologia Médica e Forense—LSOEMF, Instituto Oswaldo Cruz–Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil;
| |
Collapse
|
20
|
Bel Y, Galeano M, Baños-Salmeron M, Andrés-Antón M, Escriche B. Bacillus thuringiensis Cry5, Cry21, App6 and Xpp55 proteins to control Meloidogyne javanica and M. incognita. Appl Microbiol Biotechnol 2024; 108:525. [PMID: 39625663 PMCID: PMC11614921 DOI: 10.1007/s00253-024-13365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
The global imperative to enhance crop protection while preserving the environment has increased interest in the application of biological pesticides. Bacillus thuringiensis (Bt) is a Gram-positive bacterium that can produce nematicidal proteins and accumulate them in parasporal crystals. Root-knot nematodes are obligate root plant parasitic which are distributed worldwide, causing severe damages to the infested plants and, consequently, large yield reductions. In this work, we have evaluated the toxicity of the Bt crystal proteins Cry5, Cry21, App6, and Xpp55 against two root-knot nematodes belonging to the Meloidogyne genus (M. incognita and M. javanica). The results show that all four proteins, when solubilized, were highly toxic for both nematode species. To check the potential of using Bt strains producing nematicidal crystal proteins as biopesticides to control root-knot nematodes in the field, in planta assays were conducted, using two wild Bt strains which produced Cry5 or a combination of App6 and Cry5 proteins. The tests were carried out with cucumber or with tomato plants infested with M. javanica J2, irrigated with spore + cristal mixtures of the respective strains. The results showed that the effectiveness of the nematicidal activity was plant-dependent, as Bt was able to reduce emerged J2 in tomato plants but not in cucumber plants. In addition, the toxicity observed in the in planta assays was much lower than expected, highlighting the difficulty of the proteins supplied as crystals to exert their toxicity. This emphasizes the delivery of the Bt proteins as crucial for its use to control root-knot nematodes. KEY POINTS: • Solubilized Cry5, Cry21, App6 and Xpp55 Bt proteins are toxic to M. javanica. • Cry21 toxicity to M. incognita is similar to that of Cry5, App6, and Xpp55 proteins. • The Cry5 and App6 toxicities on M. javanica after Bt irrigation is crop dependent.
Collapse
Affiliation(s)
- Yolanda Bel
- Institute BIOTECMED/Department of Genetics, University of Valencia, Burjassot, Spain
| | - Magda Galeano
- R&D Department of Koppert España, S.L., Almeria, Spain
| | | | - Miguel Andrés-Antón
- Institute BIOTECMED/Department of Genetics, University of Valencia, Burjassot, Spain
| | - Baltasar Escriche
- Institute BIOTECMED/Department of Genetics, University of Valencia, Burjassot, Spain.
| |
Collapse
|
21
|
Lázaro-Berenguer M, Ferré J, Hernández-Martínez P. Receptor interactions of protoxin and activated Vip3Aa structural conformations in Spodoptera exigua. PEST MANAGEMENT SCIENCE 2024; 80:6142-6149. [PMID: 39123331 DOI: 10.1002/ps.8341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND The Vip3Aa insecticidal protein, produced by Bacillus thuringiensis, has been effectively used in commercial Bt-crops to manage lepidopteran pests. Upon ingestion by larvae, the protoxin is processed by midgut proteases into the activated protein and binds specifically to its receptors in the midgut, leading to insect mortality. Cryo-EM resolution of the trypsin-processed Vip3Aa protein unveiled structural remodelling of the N-terminal region during the transition from protoxin to activated protein. This conformational change has been demonstrated to be crucial for toxicity against Spodoptera exigua larvae, a major global lepidopteran pest. In this study, we investigated the relevance of the structural remodelling for the specific binding to midgut receptors. RESULTS We conducted in vitro binding assays with radiolabelled proteins and brush border membrane vesicles (BBMV) from S. exigua, employing structural mutants that lock the protein in either its protoxin or its activated conformation. Our results indicate that both structural stages of the protein share binding sites in the midgut epithelium. Moreover, in vivo competition assays revealed that Vip3Aa is able to bind to functional receptors in S. exigua larvae both as protoxin and as activated protein. CONCLUSION Altogether, our findings point to both structural conformations contributing to receptor binding. In vivo, either spontaneous structural shift upon proteolytic cleavage or receptor-mediated remodelling could be occurring. However, the timing and context in which the conformational change occurs could influence membrane insertion and toxicity. Our results show the complex interplay between proteolytic processing, protein structure and receptor interactions in Vip3Aa's toxicity. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Maria Lázaro-Berenguer
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Juan Ferré
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | | |
Collapse
|
22
|
Khunrach P, Surya W, Promdonkoy B, Torres J, Boonserm P. Biophysical Analysis of Vip3Aa Toxin Mutants Before and After Activation. Int J Mol Sci 2024; 25:11970. [PMID: 39596038 PMCID: PMC11594144 DOI: 10.3390/ijms252211970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Cry toxins from Bacillus thuringiensis are effective biopesticides that kill lepidopteran pests, replacing chemical pesticides that indiscriminately attack both target and non-target organisms. However, resistance in susceptible pests is an emerging problem. B. thuringiensis also produces vegetative insecticidal protein (Vip3A), which can kill insect targets in the same group as Cry toxins but using different host receptors, making the combined application of Cry and Vip3A an exciting possibility. Vip3A toxicity requires the formation of a homotetramer. Hence, screening of Vip3A mutants for increased stability requires orthogonal biophysical assays that can test both tetrameric integrity and monomeric robustness. For this purpose, we have used herein for the first time a combination of analytical ultracentrifugation (AUC), mass photometry (MP), differential static light scattering (DSLS) and differential scanning fluorimetry (DSF) to test five mutants at domains I and II. Although all mutants appeared more stable than the wild type (WT) in DSLS, mutants that showed more dissociation into dimers in MP and AUC experiments also showed earlier thermal unfolding by DSF at domains IV-V. All of the mutants were less toxic than the WT, but toxicity was highest for domain II mutations N242C and F229Y. Activation of the protoxin was complete and resulted in a form with a lower sedimentation coefficient. Future high-resolution structural data may lead to a deeper understanding of the increased stability that will help with rational design while retaining native toxicity.
Collapse
Affiliation(s)
- Pongsatorn Khunrach
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon 73170, Nakhon Pathom, Thailand;
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| | - Boonhiang Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Phahonyothin Road, Khlong Luang 12120, Pathum Thani, Thailand;
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon 73170, Nakhon Pathom, Thailand;
| |
Collapse
|
23
|
Liu H, Li J, He Y, Zheng T, Lin H, Xu C, Zhang Q, Ye Y, Lin C, Shen Z. Characterization of transgenic insect resistant sunflower (Helianthus annuus L.) expressing fusion protein Cry1Ab-Vip3Af2. Int J Biol Macromol 2024; 281:136219. [PMID: 39362429 DOI: 10.1016/j.ijbiomac.2024.136219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Lepidopteran pests frequently cause significant damage to Sunflowers (Helianthus annuus). In this study, the insect resistant fusion gene Cry1Ab-Vip3Af2 was transformed into sunflower by Agrobacterium-mediated transformation. A transgenic event, named MCPN-7, was selected and characterized for its high resistance to both yellow peach moth (Dichocrocis punctiferalis) and cotton bollworm (Helicoverpa armigera), two polyphagous pests feeding on various plants including sunflower. The neonates of both species feeding on MCPN-7 resulted to 100 % mortality within 72 h in laboratory bioassays. No significant damage caused by the two insects was observed in field trials of MCPN-7. ELISA analysis revealed that the fusion protein was predominantly expressed in leaves, seeds and heads. The flanking genomic sequence of the T-DNA of the event MCPN-7 was determined and confirmed by PCR analysis. In conclusion, the transgenic sunflowers obtained in this study is highly resistant to wide spectrum of Lepidopteran insect pests and could potentially be a candidate event for commercial development.
Collapse
Affiliation(s)
- Hengzhi Liu
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Jin Li
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Yiyang He
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Ting Zheng
- Hangzhou Ruifeng Biosciences Co., Ltd., 1500 Wenyi Road, Building 1, Room103, Hangzhou 310000, Zhejiang Province, China
| | - Haiyan Lin
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Chao Xu
- Hangzhou Ruifeng Biosciences Co., Ltd., 1500 Wenyi Road, Building 1, Room103, Hangzhou 310000, Zhejiang Province, China
| | - Qing Zhang
- Hangzhou Ruifeng Biosciences Co., Ltd., 1500 Wenyi Road, Building 1, Room103, Hangzhou 310000, Zhejiang Province, China
| | - Yuxuan Ye
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Chaoyang Lin
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Zhicheng Shen
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, Zhejiang Province, China; Hangzhou Ruifeng Biosciences Co., Ltd., 1500 Wenyi Road, Building 1, Room103, Hangzhou 310000, Zhejiang Province, China.
| |
Collapse
|
24
|
Zou L, Liu Z, Jin M, Wang P, Shan Y, Xiao Y. Genome-wide DNA methylation profile and its function in regulating Vip3Aa tolerance in fall armyworm (Spodoptera frugiperda). PEST MANAGEMENT SCIENCE 2024; 80:5820-5831. [PMID: 39030881 DOI: 10.1002/ps.8313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Vegetative insecticidal proteins (Vips) are widely used in pest management, but Vip tolerance poses a significant threat. DNA methylation plays important roles in regulating the response of biological organisms to environmental stress, and it may also regulate fall armyworm (FAW, Spodoptera frugiperda) Vip3Aa tolerance. RESULTS In this study, a DNA methylation map was developed for FAW, and its function in regulating FAW Vip3Aa tolerance was explored. The FAW genome-wide DNA methylation map showed that exons were preferred regions for DNA methylation and housekeeping genes were highly methylated. FAW was screened using Vip3Aa for ten generations, and bioassays indicated that Vip3Aa tolerance increased trans-generationally. A comparison of DNA methylation maps between Vip3Aa-tolerant and -susceptible strains showed that gene body methylation was positively correlated with gene expression level. FAW exhibits significant variation in DNA methylation among individuals, and Vip3Aa screening induces epigenetic variation based on DNA methylation. Moreover, the study demonstrated that a reduction in methylation density within the gene body of a 3'5'-cyclic nucleotide phosphodiesterase gene resulted in decreased expression and increased tolerance of FAW to Vip3Aa, which was validated through RNA interference experiments. CONCLUSION The DNA methylation map and mechanism of Vip3Aa tolerance improve our understanding of DNA methylation and its function in Lepidoptera and provide a new perspective for developing pest management strategies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Luming Zou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Zhenxing Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Peng Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| |
Collapse
|
25
|
Lanzaro MD, Padilha I, Ramos LFC, Mendez APG, Menezes A, Silva YM, Martins MR, Junqueira M, Nogueira FCS, AnoBom CD, Dias GM, Gomes FM, Oliveira DMP. Cry1Ac toxin binding in the velvetbean caterpillar Anticarsia gemmatalis: study of midgut aminopeptidases N. Front Physiol 2024; 15:1484489. [PMID: 39534858 PMCID: PMC11554492 DOI: 10.3389/fphys.2024.1484489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
The velvetbean caterpillar Anticarsia gemmatalis is one of the main soybean defoliators in Brazil. Currently, the main biopesticide used to control insect pests worldwide is the bacteria Bacillus thuringiensis (Bt), which produces entomopathogenic Crystal toxins (Cry) that act in the midgut of susceptible insects, leading them to death. The mode of action of Cry toxins in the midgut involves binding to specific receptors present on the brush border of epithelial cells such as aminopeptidase N (APN), alkaline phosphatase (ALP), cadherin, and others. Mutations in these receptors, among other factors, may be involved in the development of resistance; identification of functional Cry receptors in the midgut of A. gemmatalis is crucial to develop effective strategies to overcome this possible scenario. This study's goal is to characterize APNs of A. gemmatalis and identify a receptor for Cry1Ac in the midgut. The interaction of Bt spores with the midgut epithelium was observed in situ by immunohistochemistry and total aminopeptidase activity was estimated in brush border membrane vesicle (BBMV) samples, presenting higher activity in challenged individuals than in control ones. Ten APN sequences were found in a A. gemmatalis' transcriptome and subjected to different in silico analysis, such as phylogenetic tree, multiple sequence alignment and identification of signal peptide, activity domains and GPI-anchor signal. BBMV proteins from 5th instar larvae were submitted to a ligand blotting using activated Cry1Ac toxin and a commercial anti-Cry polyclonal antibody; corresponding bands of proteins that showed binding to Cry toxin were excised from the SDS-PAGE gel and subjected to mass spectrometry analysis, which resulted in the identification of seven of those APNs. Quantitative PCR was realized to compare expression levels between individuals subjected to sublethal infection with Bt spores and control ones, presenting up- and downregulations upon Bt infection. From these results, we can infer that aminopeptidases N in A. gemmatalis could be involved in the mode of action of Cry toxins in its larval stage.
Collapse
Affiliation(s)
- M. D. Lanzaro
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - I. Padilha
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - L. F. C. Ramos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A. P. G. Mendez
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A. Menezes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Y. M. Silva
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M. R. Martins
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M. Junqueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - F. C. S. Nogueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C. D. AnoBom
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - G. M. Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - F. M. Gomes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Entomologia Molecular, Rio de Janeiro, Brazil
| | - D. M. P. Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Jin J, Chen W, Xu C, Pooe OJ, Xie Y, Shen C, Meng M, Zhu Q, Zhang X, Liu X, Liu Y. Rational design and application of broad-spectrum antibodies for Bt Cry toxins determination. Anal Biochem 2024; 693:115584. [PMID: 38843975 DOI: 10.1016/j.ab.2024.115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
Using the amino acid sequences and analysis of selected known structures of Bt Cry toxins, Cry1Ab, Cry1Ac, Cry1Ah, Cry1B, Cry1C and Cry1F we specifically designed immunogens. After antibodies selection, broad-spectrum polyclonal antibodies (pAbs) and monoclonal antibody (namely 1A0-mAb) were obtained from rabbit and mouse, respectively. The produced pAbs displayed broad spectrum activity by recognizing Cry1 toxin, Cry2Aa, Cry2Ab and Cry3Aa with half maximal inhibitory concentration (IC50) values of 0.12-9.86 μg/mL. Similarly, 1A0-mAb showed broad spectrum activity, recognizing all of the above Cry protein (IC50 values of 4.66-20.46 μg/mL) with the exception of Cry2Aa. Using optimizations studies, 1A10-mAb was used as a capture antibody and pAbs as detection antibody. Double antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) were established for Cry1 toxin, Cry2Ab and Cry3Aa with the limit of detection (LOD) values of 2.36-36.37 ng/mL, respectively. The present DAS-ELISAs had good accuracy and precisions for the determination of Cry toxin spiked tap water, corn, rice, soybeans and soil samples. In conclusion, the present study has successfully obtained broad-spectrum pAbs and mAb. Furthermore, the generated pAbs- and mAb-based DAS-ELISAs protocol can potentially be used for the broad-spectrum monitoring of eight common subtypes of Bt Cry toxins residues in food and environmental samples.
Collapse
Affiliation(s)
- Jiafeng Jin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Plant Protection, Nanjing Agricultural University, Nanjing, 210023, China
| | - Wei Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chongxin Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Ofentse Jacob Pooe
- School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Yajing Xie
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Cheng Shen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Plant Protection, Nanjing Agricultural University, Nanjing, 210023, China
| | - Meng Meng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Qin Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiao Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xianjin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yuan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
27
|
Vermelho AB, Moreira JV, Akamine IT, Cardoso VS, Mansoldo FRP. Agricultural Pest Management: The Role of Microorganisms in Biopesticides and Soil Bioremediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2762. [PMID: 39409632 PMCID: PMC11479090 DOI: 10.3390/plants13192762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Pesticide use in crops is a severe problem in some countries. Each country has its legislation for use, but they differ in the degree of tolerance for these broadly toxic products. Several synthetic pesticides can cause air, soil, and water pollution, contaminating the human food chain and other living beings. In addition, some of them can accumulate in the environment for an indeterminate amount of time. The agriculture sector must guarantee healthy food with sustainable production using environmentally friendly methods. In this context, biological biopesticides from microbes and plants are a growing green solution for this segment. Several pests attack crops worldwide, including weeds, insects, nematodes, and microorganisms such as fungi, bacteria, and viruses, causing diseases and economic losses. The use of bioproducts from microorganisms, such as microbial biopesticides (MBPs) or microorganisms alone, is a practice and is growing due to the intense research in the world. Mainly, bacteria, fungi, and baculoviruses have been used as sources of biomolecules and secondary metabolites for biopesticide use. Different methods, such as direct soil application, spraying techniques with microorganisms, endotherapy, and seed treatment, are used. Adjuvants like surfactants, protective agents, and carriers improve the system in different formulations. In addition, microorganisms are a tool for the bioremediation of pesticides in the environment. This review summarizes these topics, focusing on the biopesticides of microbial origin.
Collapse
Affiliation(s)
- Alane Beatriz Vermelho
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
- Center of Excellence in Fertilizers and Plant Nutrition (Cefenp), SEDEICS, Rio de Janeiro 21941-850, RJ, Brazil
| | - Jean Vinícius Moreira
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Ingrid Teixeira Akamine
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Veronica S. Cardoso
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Felipe R. P. Mansoldo
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| |
Collapse
|
28
|
Alarcón-Aldana JS, Visser L, Rueda-Forero NJ, Pinzón-Reyes EH, Rondón-Villarreal P, Suárez-Barrera MO. Enhancing the Cytotoxicity and Apoptotic Efficacy of Parasporin-2-Derived Variants (Mpp46Aa1) on Cancer Cell Lines. Toxins (Basel) 2024; 16:415. [PMID: 39453191 PMCID: PMC11511244 DOI: 10.3390/toxins16100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Parasporin PS2Aa1, recently renamed Mpp46Aa1, is an anti-cancer protein known for its selectivity against various human cancer cell lines. We genetically modified native PS2Aa1 to create a library of approximately 100 mutants. From this library, we selected promising mutants based on their half-maximal inhibitory concentration (IC50) and sequence variations. In this study, Variant 3-35, with the G257V substitution, demonstrated increased cytotoxicity and selectivity against the colon cancer cell line SW480. Conversely, Variant N65, featuring substitutions N92D, K175R, and S218G, yielded the most favorable results against the cancer cell lines SW-620, MOLT-4, and Jurkat. The caspase 3/7 and 9, Annexin V-Cy3 and 6-GFDA activities, and, most notably, mitochondrial membrane permeabilization assays confirmed the apoptotic marker elevation. These findings indicate that residues 92, 175, 218, and 257 may play a critical role in the cytotoxic activity and selectivity. We successfully obtained genetically improved variants with substitutions at these key amino acid positions. Additionally, we conducted molecular dynamic simulations to explore the potential interactions between PS2Aa1 and the CD59 GPI-anchored protein. The simulation results revealed that residues 57, 92, and 101 were consistently present, suggesting their possible significance in the interactions between parasporin and the CD59 protein.
Collapse
Affiliation(s)
- Juan S. Alarcón-Aldana
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación MASIRA, Universidad de Santander, Bucaramanga 680002, Colombia; (J.S.A.-A.); (N.J.R.-F.); (E.H.P.-R.); (P.R.-V.)
| | - Lydia Visser
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 AB Groningen, The Netherlands;
| | - Nohora J. Rueda-Forero
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación MASIRA, Universidad de Santander, Bucaramanga 680002, Colombia; (J.S.A.-A.); (N.J.R.-F.); (E.H.P.-R.); (P.R.-V.)
| | - Efraín H. Pinzón-Reyes
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación MASIRA, Universidad de Santander, Bucaramanga 680002, Colombia; (J.S.A.-A.); (N.J.R.-F.); (E.H.P.-R.); (P.R.-V.)
| | - Paola Rondón-Villarreal
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación MASIRA, Universidad de Santander, Bucaramanga 680002, Colombia; (J.S.A.-A.); (N.J.R.-F.); (E.H.P.-R.); (P.R.-V.)
| | - Miguel O. Suárez-Barrera
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación MASIRA, Universidad de Santander, Bucaramanga 680002, Colombia; (J.S.A.-A.); (N.J.R.-F.); (E.H.P.-R.); (P.R.-V.)
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 AB Groningen, The Netherlands;
| |
Collapse
|
29
|
Gao M, Zhong J, Lu L, Li Y, Zhang Z. Synergism of Cry1 Toxins by a Fusion Protein Derived from a Cadherin Fragment and an Antibody Peptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19689-19698. [PMID: 39189874 DOI: 10.1021/acs.jafc.4c05875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Synergistic factors can enhance the toxicity of Bt toxins and delay the development of Bt resistance. Previous research has demonstrated that a Helicoverpa armigera cadherin fragment (HaCad-TBR) increased the toxicity of Cry1Ac in Plutella xylostella larvae but did not have a synergistic effect on Cry1B, Cry1C, and Cry1F toxins. In this study, a fusion protein (HaCad-TBR-2D3 VL) derived from HaCad-TBR and a Bt Cry1-specific antibody peptide was expressed in Escherichia coli. The HaCad-TBR-2D3 VL enhanced Cry1Ac toxicity more efficiently in insects and Sf9 cells than HaCad-TBR and also significantly increased the toxicity of Cry1B, Cry1C, and Cry1F toxins in insects. Further investigation indicated that the improved stability in insect midguts and higher binding capacity with Bt toxins contributed to the enhanced synergism of HaCad-TBR-2D3 VL over HaCad-TBR. This study suggested that Bt antibody fragments can potentially broaden the synergistic range of Bt receptor fragments, providing a theoretical foundation for developing broad-spectrum synergists for other biopesticides.
Collapse
Affiliation(s)
- Meijing Gao
- State Key Laboratory Cultivation Base, Ministry of Science and Technology─Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianfeng Zhong
- State Key Laboratory Cultivation Base, Ministry of Science and Technology─Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lina Lu
- State Key Laboratory Cultivation Base, Ministry of Science and Technology─Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ying Li
- State Key Laboratory Cultivation Base, Ministry of Science and Technology─Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiyong Zhang
- State Key Laboratory Cultivation Base, Ministry of Science and Technology─Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
30
|
Yadav V, Pal D, Poonia AK. A Study on Genetically Engineered Foods: Need, Benefits, Risk, and Current Knowledge. Cell Biochem Biophys 2024; 82:1931-1946. [PMID: 39020085 DOI: 10.1007/s12013-024-01390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Food requirements have always been a top priority, and with the exponential growth of the human population, there is an increasing need for large quantities of food. Traditional cultivation methods are not able to meet the current demand for food products. One significant challenge is the shortened shelf-life of naturally occurring food items, which directly contributes to food scarcity. Contaminating substances such as weeds and pests play a crucial role in this issue. In response, researchers have introduced genetically engineered (GE) food as a potential solution. These food products are typically created by adding or replacing genes in the DNA of naturally occurring foods. GE foods offer various advantages, including increased quality and quantity of food production, adaptability to various climatic conditions, modification of vitamin and mineral levels, and prolonged shelf life. They address the major concerns of global food scarcity and food security. However, the techniques used in the production of GE foods may not be universally acceptable due to the genetic alteration of animal genes into plants or vice versa. Additionally, their unique nature necessitates further long-term studies. This study delves into the procedures and growth stages of DNA sequencing, covering the benefits, risks, industrial relevance, current knowledge, and future challenges of GE foods. GE foods have the potential to extend the shelf life of food items, alleviate food shortages, and fulfill the current nutritional food demand.
Collapse
Affiliation(s)
- Venkteshwar Yadav
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India
| | - Dharm Pal
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India.
| | - Anil Kumar Poonia
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India
| |
Collapse
|
31
|
Srisaisap M, Suwankhajit T, Boonserm P. A fusion protein designed for soluble expression, rapid purification, and enhanced stability of parasporin-2 with potential therapeutic applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 43:e00851. [PMID: 39219730 PMCID: PMC11364052 DOI: 10.1016/j.btre.2024.e00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Bacillus thuringiensis parasporin-2 (PS2Aa1 or Mpp46Aa1) selectively destroys human cancer cells, making it a promising anticancer agent. PS2Aa1 protoxin expression in Escherichia coli typically results in inclusion bodies that must be solubilized and digested by proteinase K to become active. Here, maltose-binding protein (MBP) was fused to the N-terminus of PS2Aa1, either full-length (MBP-fPS2) or truncated (MBP-tPS2), to increase soluble protein expression in E. coli and avoid solubilization and proteolytic activation. Soluble MBP-fPS2 and MBD-tPS2 proteins were produced in E. coli and purified with endotoxin levels below 1 EU/μg. MBP-fPS2 was cytotoxic against T cell leukemia MOLT-4 and Jurkat cell lines after proteinase-K digestion. However, MBP-tPS2 was cytotoxic immediately without MBP tag removal or activation. MBP-tPS2's thermal stability also makes it appropriate for bioproduction and therapeutic applications.
Collapse
Affiliation(s)
- Monrudee Srisaisap
- Institute of Molecular Biosciences, Mahidol University, Phuttamonthon Salaya, Nakhon Pathom 73170, Thailand
| | - Thanya Suwankhajit
- Undergraduate Program in Biological Sciences, Mahidol University International College, Mahidol University, Phuttamonthon Salaya, Nakhon Pathom 73170, Thailand
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Phuttamonthon Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
32
|
Palma L, Sauka DH, Berry C, Peralta C. Positive selection analysis of Cyt proteins from Bacillus thuringiensis: A conservative trend driven by negative (purifying) selection. Toxicon 2024; 247:107853. [PMID: 38972359 DOI: 10.1016/j.toxicon.2024.107853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/27/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Bacillus thuringiensis is a Gram-positive entomopathogenic bacterium that produces different pesticidal proteins: vegetative insecticidal proteins (Vpb1/Vpa2, Vip3, and Vpb4) during vegetative growth, which are secreted to the culture medium, and δ-endotoxins (Cry and Cyt) during sporulation, which accumulate into parasporal crystals. Cyt proteins are the smaller subset of δ-endotoxins targeting Diptera species. While Cry and Vip3 proteins undergo positive selection, our analysis suggests that Cyt proteins evolve following a conservative trend driven negative (purifying) selection.
Collapse
Affiliation(s)
- Leopoldo Palma
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, 1555, Argentina; Laboratorio de Control Biotecnológico de Plagas, Instituto BIOTECMED, Departamento de Genética, Universitat de València, Burjassot, València, 46100, Spain.
| | - Diego Herman Sauka
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMYZA), Hurlingham, Buenos Aires, 1686, Argentina
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Cecilia Peralta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, 1555, Argentina; Laboratorio de Control Biotecnológico de Plagas, Instituto BIOTECMED, Departamento de Genética, Universitat de València, Burjassot, València, 46100, Spain
| |
Collapse
|
33
|
Pomari E, Orza P, Bernardi M, Fracchetti F, Campedelli I, De Marta P, Recchia A, Paradies P, Buonfrate D. A Pilot Study for the Characterization of Bacillus spp. and Analysis of Possible B. thuringiensis/ Strongyloides stercoralis Correlation. Microorganisms 2024; 12:1603. [PMID: 39203445 PMCID: PMC11356623 DOI: 10.3390/microorganisms12081603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Differentiating between Bacillus species is relevant in human medicine. Bacillus thuringiensis toxins might be effective against Strongyloides stercoralis, a nematode causing relevant human morbidity. Our first objective was to evaluate genomic and MALDI-TOF identification methods for B. thuringiensis. Our secondary objective was to evaluate a possible negative selection pressure of B. thuringiensis against S. stercoralis. PCR and Sanger were compared to MALDI-TOF on a collection of 44 B. cereus group strains. B. thuringiensis toxin genes were searched on 17 stool samples from S. stercoralis-infected and uninfected dogs. Metagenomic 16S rRNA was used for microbiome composition. The inter-rate agreement between PCR, Sanger, and MALDI-TOF was 0.631 k (p-value = 6.4 × 10-10). B. thuringiensis toxins were not found in dogs' stool. Bacteroidota and Bacillota were the major phyla in the dogs' microbiome (both represented >20% of the total bacterial community). Prevotella was underrepresented in all Strongyloides-positive dogs. However, the general composition of bacterial communities was not significantly linked with S. stercoralis infection. The genomic methods allowed accurate differentiation between B. thuringiensis and B. cereus. There was no association between B. thuringiensis and S. stercoralis infection, but further studies are needed to confirm this finding. We provide the first descriptive results about bacterial fecal composition in dogs with S. stercoralis infection.
Collapse
Affiliation(s)
- Elena Pomari
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (P.O.); (M.B.); (D.B.)
| | - Pierantonio Orza
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (P.O.); (M.B.); (D.B.)
| | - Milena Bernardi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (P.O.); (M.B.); (D.B.)
| | - Fabio Fracchetti
- Microbion srl, San Giovanni Lupatoto, 37057 Verona, Italy; (F.F.); (I.C.); (P.D.M.)
| | - Ilenia Campedelli
- Microbion srl, San Giovanni Lupatoto, 37057 Verona, Italy; (F.F.); (I.C.); (P.D.M.)
| | - Patrick De Marta
- Microbion srl, San Giovanni Lupatoto, 37057 Verona, Italy; (F.F.); (I.C.); (P.D.M.)
| | - Alessandra Recchia
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Veterinary Section, University of Bari “Aldo Moro”, Valenzano, 70010 Bari, Italy; (A.R.); (P.P.)
| | - Paola Paradies
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Veterinary Section, University of Bari “Aldo Moro”, Valenzano, 70010 Bari, Italy; (A.R.); (P.P.)
| | - Dora Buonfrate
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (P.O.); (M.B.); (D.B.)
| |
Collapse
|
34
|
Wang M, Geng L, Zhou J, Gu Z, Xue B, Shu C, Zhang J. Gut Microbiota Mediate Plutella xylostella Susceptibility to Bt Cry1Ac Protoxin and Exopolysaccharides. Int J Mol Sci 2024; 25:8483. [PMID: 39126052 PMCID: PMC11313015 DOI: 10.3390/ijms25158483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Exopolysaccharides (EPSs) are carbohydrate polymers that are synthesized and secreted into the extracellular during the growth of microorganisms. Bacillus thuringiensis (Bt) is a type of entomopathogenic bacterium, that produces various insecticidal proteins and EPSs. In our previous study, the EPSs produced by Bt strains were first found to enhance the toxicity of insecticidal crystal proteins against Plutella xylostella. However, the response of the intestinal bacterial communities of P. xylostella under the action of EPSs is still unelucidated. In this study, 16S rRNA amplicon sequencing was used to characterize the intestinal bacterial communities in P. xylostella treated with EPSs alone, Cry1Ac protoxin alone, and both the Cry1Ac protoxin and EPSs. Compared with the control group, alpha diversity indices, the Chao1 and ACE indices were significantly altered after treatment with EPSs alone, and no significant difference was observed between the groups treated with Cry1Ac protoxin alone and Cry1Ac protoxin + EPSs. However, compared with the gut bacterial community feeding on Cry1Ac protoxin alone, the relative abundance of 31 genera was significantly changed in the group treated with Cry1Ac protoxin and EPSs. The intestinal bacteria, through the oral of Cry1Ac protoxin and EPSs, significantly enhanced the toxicity of the Cry1Ac protoxin towards the axenic P. xylostella. In addition, the relative abundance of the 16S rRNA gene in the chloroplasts of Brassica campestris decreased after adding EPSs. Taken together, these results show the vital contribution of the gut microbiota to the Bt strain-killing activity, providing new insights into the mechanism of the synergistic insecticidal activity of Bt proteins and EPSs.
Collapse
Affiliation(s)
- Meiling Wang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (M.W.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.G.)
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.G.)
| | - Jinxi Zhou
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (M.W.)
| | - Ziqiong Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.G.)
| | - Bai Xue
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.G.)
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.G.)
| | - Jie Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (M.W.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.G.)
| |
Collapse
|
35
|
Osborne CJ, Su T, Silver KS, Cohnstaedt LW. Variable gut pH as a potential mechanism of tolerance to Bacillus thuringiensis subsp. israelensis toxins in the biting midge Culicoides sonorensis. PEST MANAGEMENT SCIENCE 2024; 80:4006-4012. [PMID: 38527917 DOI: 10.1002/ps.8104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Toxins of Bacillus thuringiensis subsp. israelensis (Bti) are safer alternatives for controlling dipteran pests such as black flies and mosquitoes. The biting midge Culicoides sonorensis (Diptera: Ceratopogonidae) is an important pest of livestock in much of the United States and larval midges utilize semi-aquatic habitats which are permissive for Bti product application. Reports suggest that Bti products are ineffective at killing biting midges despite their taxonomic relation to black flies and mosquitoes. Here, we investigate the toxicity of a Bti-based commercial insecticide and its active ingredient in larval Culicoides sonorensis. A suspected mechanism of Bti tolerance is an acidic larval gut, and we used a pH indicator dye to examine larval Culicoides sonorensis gut pH after exposure to Bti. RESULTS The lethal concentration to kill 90% (LC90) of larvae of the commercial product (386 mg/L) was determined to be almost 10 000 times more than that of some mosquito species, and no concentration of active ingredient tested achieved 50% larval mortality. The larval gut was found to be more acidic after exposure to Bti which inhibits Bti toxin activity. By comparison, 100% mortality was achieved in larval Aedes aegypti at the product's label rate for this species and mosquito larvae had alkaline guts regardless of treatment. Altering the larval rearing water to alkaline conditions enhanced Bti efficacy when using the active ingredient. CONCLUSION We conclude that Bti is not practical for larval Culicoides sonorensis control at the same rates as mosquitos but show that alterations or additives to the environment could make the products more effective. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cameron J Osborne
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Tianyun Su
- EcoZone International, Riverside, CA, USA
| | | | - Lee W Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| |
Collapse
|
36
|
Sevdalis SE, Varney KM, Cook ME, Gillespie JJ, Pozharski E, Weber DJ. Structural and Functional Insights into the Delivery Systems of Bacillus and Clostridial Binary Toxins. Toxins (Basel) 2024; 16:330. [PMID: 39195740 PMCID: PMC11359772 DOI: 10.3390/toxins16080330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Pathogenic Bacillus and clostridial (i.e., Clostridium and Clostridioides) bacteria express a diverse repertoire of effector proteins to promote disease. This includes production of binary toxins, which enter host epithelial cells and seriously damage the intestinal tracts of insects, animals, and humans. In particular, binary toxins form an AB-type complex composed of a catalytic subunit that is toxic (A) and an oligomeric cell-binding and delivery subunit (B), where upon delivery of A into the cytoplasm of the host cell it catalytically ADP-ribosylates actin and rapidly induces host cell death. In this review, binary toxins expressed by Bacillus thuringiensis, Clostridioides difficile, and Clostridium perfringens will be discussed, with particular focus placed upon the structural elucidations of their respective B subunits and how these findings help to deconvolute how toxic enzyme delivery into target host cells is achieved by these deadly bacteria.
Collapse
Affiliation(s)
- Spiridon E. Sevdalis
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.M.V.); (M.E.C.); (E.P.)
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kristen M. Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.M.V.); (M.E.C.); (E.P.)
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary E. Cook
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.M.V.); (M.E.C.); (E.P.)
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.M.V.); (M.E.C.); (E.P.)
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David J. Weber
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.M.V.); (M.E.C.); (E.P.)
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
37
|
Palma L, Bel Y, Escriche B. Draft genome sequence of Bacillus thuringiensis strain V-AB8.18, a novel isolate with potential nematicidal activity. Microbiol Resour Announc 2024; 13:e0022724. [PMID: 38847518 PMCID: PMC11256787 DOI: 10.1128/mra.00227-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/09/2024] [Indexed: 07/19/2024] Open
Abstract
We report the draft genome of Bacillus thuringiensis strain V-AB8.18, comprising 308 contigs totaling 6,182,614 bp, with 35% G + C content. It contains 6,151 putative protein-coding genes, including App6 and Cry5-like crystal proteins, exhibiting 99% pairwise identity to nematicidal proteins App6Aa2 and Cry5Ba2, active against Meloidogyne incognita and Meloidogyne hapla.
Collapse
Affiliation(s)
- Leopoldo Palma
- Laboratorio de Control Biotecnológico de Plagas, Departamento de Genética, Instituto BIOTECMED, Universitat de València, Burjassot-València, Spain
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina
| | - Yolanda Bel
- Laboratorio de Control Biotecnológico de Plagas, Departamento de Genética, Instituto BIOTECMED, Universitat de València, Burjassot-València, Spain
| | - Baltasar Escriche
- Laboratorio de Control Biotecnológico de Plagas, Departamento de Genética, Instituto BIOTECMED, Universitat de València, Burjassot-València, Spain
| |
Collapse
|
38
|
Castro-Saines E, Lagunes-Quintanilla R, Hernández-Ortiz R. Microbial agents for the control of ticks Rhipicephalus microplus. Parasitol Res 2024; 123:275. [PMID: 39017922 DOI: 10.1007/s00436-024-08291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
Ticks are ectoparasites responsible for the transmission of various pathogens to vertebrates. They represent one of the major threats to livestock production worldwide due to their impact on the health, production and welfare of livestock destined for human consumption. The development of resistance to the main families of ixodicides used for their control has led to the search for new alternatives, where microbial control is an option. The use of microbial control agents against the tick Rhipicephalus microplus is reviewed in this paper. Bacteria such as Bacillus thuringiensis, Serratia marcescens and Staphylococcus spp. the nematodes Steinernema spp. and Heterorhabditis spp. as well as the fungi Metarhizium anisopliae and Beauveria bassiana are the most studied organisms for use as biological control agents against ticks. Laboratory, stable and field trials with free-living and parasitised ticks have shown that microbial agents can control both susceptible and ixodicide-resistant tick populations. However, multidisciplinary studies using novel tools like genomics, transcriptomics and proteomics should be carried out to understand the virulence factors which microbial agents use to induce pathogenesis and virulence in ticks. In addition, applied research will be carried out with the aim of improving techniques for large-scale application, as well as the improvement of cultivation, storage, formulation and application methods.
Collapse
Affiliation(s)
- Edgar Castro-Saines
- Centro Nacional de Investigación Disciplinaria en Salud Animal E Inocuidad, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Carretera Federal Cuernavaca-Cuautla 8534, Colonia Progreso, Jiutepec, Morelos, CP 62550, México.
| | - Rodolfo Lagunes-Quintanilla
- Centro Nacional de Investigación Disciplinaria en Salud Animal E Inocuidad, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Carretera Federal Cuernavaca-Cuautla 8534, Colonia Progreso, Jiutepec, Morelos, CP 62550, México
| | - Rubén Hernández-Ortiz
- Centro Nacional de Investigación Disciplinaria en Salud Animal E Inocuidad, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Carretera Federal Cuernavaca-Cuautla 8534, Colonia Progreso, Jiutepec, Morelos, CP 62550, México
| |
Collapse
|
39
|
Rios T, Maximiano MR, Fernandes FC, Amorim GC, Porto WF, Buccini DF, Nieto Marín V, Feitosa GC, Freitas CDP, Barra JB, Alonso A, Grossi de Sá MF, Lião LM, Franco OL. Anti-Staphy Peptides Rationally Designed from Cry10Aa Bacterial Protein. ACS OMEGA 2024; 9:29159-29174. [PMID: 39005792 PMCID: PMC11238290 DOI: 10.1021/acsomega.3c07455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024]
Abstract
Bacterial infections pose a significant threat to human health, constituting a major challenge for healthcare systems. Antibiotic resistance is particularly concerning in the context of treating staphylococcal infections. In addressing this challenge, antimicrobial peptides (AMPs), characterized by their hydrophobic and cationic properties, unique mechanism of action, and remarkable bactericidal and immunomodulatory capabilities, emerge as promising alternatives to conventional antibiotics for tackling bacterial multidrug resistance. This study focuses on the Cry10Aa protein as a template for generating AMPs due to its membrane-penetrating ability. Leveraging the Joker algorithm, six peptide variants were derived from α-helix 3 of Cry10Aa, known for its interaction with lipid bilayers. In vitro, antimicrobial assays determined the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) required for inhibiting the growth of Staphylococcus aureus, Escherichia coli, Acinetobacter baummanii, Enterobacter cloacae, Enterococcus facallis, Klebsiella pneumonia, and Pseudomonas aeruginosa. Time-kill kinetics were performed using the parental peptide AMPCry10Aa, as well as AMPCry10Aa_1 and AMPCry10Aa_5, against E. coli ATCC, S. aureus 111 and S. aureus ATCC strains showing that AMPCry10Aa_1 and AMPCry10Aa_5 peptides can completely reduce the initial bacterial load with less than 2 h of incubation. AMPCry10Aa_1 and AMPCry 10Aa_5 present stability in human serum and activity maintenance up to 37 °C. Cytotoxicity assays, conducted using the MTT method, revealed that all of the tested peptides exhibited cell viability >50% (IC50). The study also encompassed evaluations of the structure and physical-chemical properties. The three-dimensional structures of AMPCry10Aa and AMPCry10Aa_5 were determined through nuclear magnetic resonance (NMR) spectroscopy, indicating the adoption of α-helical segments. Electron paramagnetic resonance (EPR) spectroscopy elucidated the mechanism of action, demonstrating that AMPCry10Aa_5 enters the outer membranes of E. coli and S. aureus, causing substantial increases in lipid fluidity, while AMPCry10Aa slightly increases lipid fluidity in E. coli. In conclusion, the results obtained underscore the potential of Cry10Aa as a source for developing antimicrobial peptides as alternatives to conventional antibiotics, offering a promising avenue in the battle against antibiotic resistance.
Collapse
Affiliation(s)
- Thuanny
Borba Rios
- S-Inova
Biotech, Programa de Pós-Graduação
em Biotecnologia Universidade Católica Dom Bosco, Av. Tamandaré, 6000—Jardim
Seminario, Campo Grande, MS 79117-900, Brazil
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
| | - Mariana Rocha Maximiano
- S-Inova
Biotech, Programa de Pós-Graduação
em Biotecnologia Universidade Católica Dom Bosco, Av. Tamandaré, 6000—Jardim
Seminario, Campo Grande, MS 79117-900, Brazil
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
| | - Fabiano Cavalcanti Fernandes
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
| | - Gabriella Cavalcante Amorim
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
- Embrapa
Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5 Norte—Asa Norte, Brasília, DF 70770-917, Brazil
| | | | - Danieli Fernanda Buccini
- S-Inova
Biotech, Programa de Pós-Graduação
em Biotecnologia Universidade Católica Dom Bosco, Av. Tamandaré, 6000—Jardim
Seminario, Campo Grande, MS 79117-900, Brazil
| | - Valentina Nieto Marín
- S-Inova
Biotech, Programa de Pós-Graduação
em Biotecnologia Universidade Católica Dom Bosco, Av. Tamandaré, 6000—Jardim
Seminario, Campo Grande, MS 79117-900, Brazil
| | - Gabriel Cidade Feitosa
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
- Pós-Graduação
em Patologia Molecular, Universidade de
Brasília, Campus
Darcy Ribeiro, Brasília, DF 70910-900, Brazil
| | | | - Juliana Bueno Barra
- Laboratório
de RMN, Instituto de Química, Universidade
Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Antonio Alonso
- Instituto
de Física, Universidade Federal de
Goiás, Goiânia, GO 74690-900, Brazil
| | - Maria Fátima Grossi de Sá
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
- Embrapa
Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5 Norte—Asa Norte, Brasília, DF 70770-917, Brazil
| | - Luciano Morais Lião
- Laboratório
de RMN, Instituto de Química, Universidade
Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Octávio Luiz Franco
- S-Inova
Biotech, Programa de Pós-Graduação
em Biotecnologia Universidade Católica Dom Bosco, Av. Tamandaré, 6000—Jardim
Seminario, Campo Grande, MS 79117-900, Brazil
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
| |
Collapse
|
40
|
Berini F, Montali A, Liguori R, Venturini G, Bonelli M, Shaltiel-Harpaz L, Reguzzoni M, Siti M, Marinelli F, Casartelli M, Tettamanti G. Production and characterization of Trichoderma asperellum chitinases and their use in synergy with Bacillus thuringiensis for lepidopteran control. PEST MANAGEMENT SCIENCE 2024; 80:3401-3411. [PMID: 38407453 DOI: 10.1002/ps.8045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Despite their known negative effects on ecosystems and human health, synthetic pesticides are still largely used to control crop insect pests. Currently, the biopesticide market for insect biocontrol mainly relies on the entomopathogenic bacterium Bacillus thuringiensis (Bt). New biocontrol tools for crop protection might derive from fungi, in particular from Trichoderma spp., which are known producers of chitinases and other bioactive compounds able to negatively affect insect survival. RESULTS In this study, we first developed an environmentally sustainable production process for obtaining chitinases from Trichoderma asperellum ICC012. Then, we investigated the biological effects of this chitinase preparation - alone or in combination with a Bt-based product - when orally administered to two lepidopteran species. Our results demonstrate that T. asperellum efficiently produces a multi-enzymatic cocktail able to alter the chitin microfibril network of the insect peritrophic matrix, resulting in delayed development and larval death. The co-administration of T. asperellum chitinases and sublethal concentrations of Bt toxins increased larval mortality. This synergistic effect was likely due to the higher amount of Bt toxins that passed the damaged peritrophic matrix and reached the target receptors on the midgut cells of chitinase-treated insects. CONCLUSION Our findings may contribute to the development of an integrated pest management technology based on fungal chitinases that increase the efficacy of Bt-based products, mitigating the risk of Bt-resistance development. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology (BAT Centre), University of Naples Federico II, Portici, Italy
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Riccardo Liguori
- Isagro Research Centre affiliated to Gowan Crop Protection Ltd, Novara, Italy
| | - Giovanni Venturini
- Isagro Research Centre affiliated to Gowan Crop Protection Ltd, Novara, Italy
| | - Marco Bonelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Liora Shaltiel-Harpaz
- Integrated Pest Management Laboratory Northern R&D, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
- Environmental Sciences Department, Faculty of Sciences and Technology, Tel Hai College, Kiryat Shmona, Israel
| | - Marcella Reguzzoni
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Moran Siti
- Luxembourg Industries Ltd, Tel-Aviv, Israel
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology (BAT Centre), University of Naples Federico II, Portici, Italy
| | - Morena Casartelli
- Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology (BAT Centre), University of Naples Federico II, Portici, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology (BAT Centre), University of Naples Federico II, Portici, Italy
| |
Collapse
|
41
|
Ribeiro TP, Martins-de-Sa D, Macedo LLP, Lourenço-Tessutti IT, Ruffo GC, Sousa JPA, Rósario Santana JMD, Oliveira-Neto OB, Moura SM, Silva MCM, Morgante CV, Oliveira NG, Basso MF, Grossi-de-Sa MF. Cotton plants overexpressing the Bacillus thuringiensis Cry23Aa and Cry37Aa binary-like toxins exhibit high resistance to the cotton boll weevil (Anthonomus grandis). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112079. [PMID: 38588981 DOI: 10.1016/j.plantsci.2024.112079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
The cotton boll weevil (CBW, Anthonomus grandis) stands as one of the most significant threats to cotton crops (Gossypium hirsutum). Despite substantial efforts, the development of a commercially viable transgenic cotton event for effective open-field control of CBW has remained elusive. This study describes a detailed characterization of the insecticidal toxins Cry23Aa and Cry37Aa against CBW. Our findings reveal that CBW larvae fed on artificial diets supplemented exclusively with Cry23Aa decreased larval survival by roughly by 69%, while supplementation with Cry37Aa alone displayed no statistical difference compared to the control. However, the combined provision of both toxins in the artificial diet led to mortality rates approaching 100% among CBW larvae (LC50 equal to 0.26 PPM). Additionally, we engineered transgenic cotton plants by introducing cry23Aa and cry37Aa genes under control of the flower bud-specific pGhFS4 and pGhFS1 promoters, respectively. Seven transgenic cotton events expressing high levels of Cry23Aa and Cry37Aa toxins in flower buds were selected for greenhouse bioassays, and the mortality rate of CBW larvae feeding on their T0 and T1 generations ranged from 75% to 100%. Our in silico analyses unveiled that Cry23Aa displays all the hallmark characteristics of β-pore-forming toxins (β-PFTs) that bind to sugar moieties in glycoproteins. Intriguingly, we also discovered a distinctive zinc-binding site within Cry23Aa, which appears to be involved in protein-protein interactions. Finally, we discuss the major structural features of Cry23Aa that likely play a role in the toxin's mechanism of action. In view of the low LC50 for CBW larvae and the significant accumulation of these toxins in the flower buds of both T0 and T1 plants, we anticipate that through successive generations of these transgenic lines, cotton plants engineered to overexpress cry23Aa and cry37Aa hold promise for effectively managing CBW infestations in cotton crops.
Collapse
Affiliation(s)
- Thuanne Pires Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Diogo Martins-de-Sa
- Department of Cellular Biology, University of Brasília, Brasília, DF 70910-900, Brazil; Genesilico Biotech, Brasília, DF 71503-508, Brazil
| | - Leonardo Lima Pepino Macedo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Gustavo Caseca Ruffo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - João Pedro Abreu Sousa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - Julia Moura do Rósario Santana
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - Osmundo Brilhante Oliveira-Neto
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Euroamerican University Center, Unieuro, Brasília, DF 70790-160, Brazil
| | - Stéfanie Menezes Moura
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Carolina Vianna Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Embrapa Semi-Arid, Pretrolina, PE 56302-970, Brazil
| | - Nelson Geraldo Oliveira
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Marcos Fernando Basso
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil; Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, MS 79117-900, Brazil.
| |
Collapse
|
42
|
de Oliveira JC, de Melo Katak R, Muniz VA, de Oliveira MR, Rocha EM, da Silva WR, do Carmo EJ, Roque RA, Marinotti O, Terenius O, Astolfi-Filho S. Bacteria isolated from Aedes aegypti with potential vector control applications. J Invertebr Pathol 2024; 204:108094. [PMID: 38479456 DOI: 10.1016/j.jip.2024.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024]
Abstract
Highly anthropophilic and adapted to urban environments, Aedes aegypti mosquitoes are the main vectors of arboviruses that cause human diseases such as dengue, zika, and chikungunya fever, especially in countries with tropical and subtropical climates. Microorganisms with mosquitocidal and larvicidal activities have been suggested as environmentally safe alternatives to chemical or mechanical mosquito control methods. Here, we analyzed cultivable bacteria isolated from all stages of the mosquito life cycle for their larvicidal activity against Ae. aegypti. A total of 424 bacterial strains isolated from eggs, larvae, pupae, or adult Ae. aegypti were analyzed for the pathogenic potential of their crude cultures against larvae of this same mosquito species. Nine strains displayed larvicidal activity comparable to the strain AM65-52, reisolated from commercial BTi-based product VectoBac® WG. 16S rRNA gene sequencing revealed that the set of larvicidal strains contains two representatives of the genus Bacillus, five Enterobacter, and two Stenotrophomonas. This study demonstrates that some bacteria isolated from Ae. aegypti are pathogenic for the mosquito from which they were isolated. The data are promising for developing novel bioinsecticides for the control of these medically important mosquitoes.
Collapse
Affiliation(s)
| | | | | | - Marta Rodrigues de Oliveira
- Department of Entomology and Acarology, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo - ESALQ - USP, Brazil
| | - Elerson Matos Rocha
- School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Central Multiuser Laboratory, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | | | - Edson Júnior do Carmo
- Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC/UFAM, Brazil; Instituto de Ciências Biológicas - ICB/UFAM, Brazil
| | | | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Olle Terenius
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden.
| | - Spartaco Astolfi-Filho
- Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC/UFAM, Brazil; Instituto de Ciências Biológicas - ICB/UFAM, Brazil
| |
Collapse
|
43
|
Morandini L, Caulier S, Bragard C, Mahillon J. Bacillus cereus sensu lato antimicrobial arsenal: An overview. Microbiol Res 2024; 283:127697. [PMID: 38522411 DOI: 10.1016/j.micres.2024.127697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/25/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
The Bacillus cereus group contains genetically closed bacteria displaying a variety of phenotypic features and lifestyles. The group is mainly known through the properties of three major species: the entomopathogen Bacillus thuringiensis, the animal and human pathogen Bacillus anthracis and the foodborne opportunistic strains of B. cereus sensu stricto. Yet, the actual diversity of the group is far broader and includes multiple lifestyles. Another less-appreciated aspect of B. cereus members lies within their antimicrobial potential which deserves consideration in the context of growing emergence of resistance to antibiotics and pesticides, and makes it crucial to find new sources of antimicrobial molecules. This review presents the state of knowledge on the known antimicrobial compounds of the B. cereus group members, which are grouped according to their chemical features and biosynthetic pathways. The objective is to provide a comprehensive review of the antimicrobial range exhibited by this group of bacteria, underscoring the interest in its potent biocontrol arsenal and encouraging further research in this regard.
Collapse
Affiliation(s)
| | - Simon Caulier
- Laboratory of Plant Health, Earth and Life Institute, UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | - Claude Bragard
- Laboratory of Plant Health, Earth and Life Institute, UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | | |
Collapse
|
44
|
Liu L, Bulla LA. Commentary: Analyzing invertebrate bitopic cadherin G protein-coupled receptors that bind Cry toxins of Bacillus thuringiensis. Comp Biochem Physiol B Biochem Mol Biol 2024; 272:110963. [PMID: 38431088 DOI: 10.1016/j.cbpb.2024.110963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Li Liu
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75083, USA.
| | - Lee A Bulla
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75083, USA.
| |
Collapse
|
45
|
Sun K, Fu K, Hu T, Shentu X, Yu X. Leveraging insect viruses and genetic manipulation for sustainable agricultural pest control. PEST MANAGEMENT SCIENCE 2024; 80:2515-2527. [PMID: 37948321 DOI: 10.1002/ps.7878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 11/12/2023]
Abstract
The potential of insect viruses in the biological control of agricultural pests is well-recognized, yet their practical application faces obstacles such as host specificity, variable virulence, and resource scarcity. High-throughput sequencing (HTS) technologies have significantly advanced our capabilities in discovering and identifying new insect viruses, thereby enriching the arsenal for pest management. Concurrently, progress in reverse genetics has facilitated the development of versatile viral expression vectors. These vectors have enhanced the specificity and effectiveness of insect viruses in targeting specific pests, offering a more precise approach to pest control. This review provides a comprehensive examination of the methodologies employed in the identification of insect viruses using HTS. Additionally, it explores the domain of genetically modified insect viruses and their associated challenges in pest management. The adoption of these cutting-edge approaches holds great promise for developing environmentally sustainable and effective pest control solutions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Kang Fu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Tao Hu
- Zhejinag Seed Industry Group Xinchuang Bio-breeding Co., Ltd., Hangzhou, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
46
|
Skrzecz I, Sierpińska A, Tumialis D. Entomopathogens in the integrated management of forest insects: from science to practice. PEST MANAGEMENT SCIENCE 2024; 80:2503-2514. [PMID: 37983918 DOI: 10.1002/ps.7871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
The most important aim of the integrated management of forest insect pests remains the prevention of insect outbreaks, which are a consequence of the interaction of many factors in forest ecosystems, including species composition, age and health of the forest, soil type, the presence of natural enemies, and climatic factors. Integrated pest management until now has been achieved using measures aimed at shaping the functioning of stands in a changing environment. The aim of this review is to summarize research on the use of entomopathogens (microorganisms and nematodes) in the management of forest insect pests and to identify the principal knowledge gaps. We briefly describe the main research directions on the use of pathogens and nematodes to control insect pests and discuss limitations affecting their implementation. Research on entomopathogens for the biocontrol of forest insects has provided a wealth of knowledge that can be used effectively to reduce insect populations. Despite this, few entomopathogens are currently used in integrated pest management in forestry. They are applied in inoculation or inundation biocontrol strategies. While the use of entomopathogens in forest pest management shows great promise, practical implementation remains a distant goal. Consequently, sustainable reduction of forest pests, mainly native species, will be largely based on conservation biological control, which aims to modify the environment to favor the activity of natural enemies that regulate pest populations. This type of biocontrol can be supported by a range of silvicultural measures to increase the resilience of stands to insect infestations. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Iwona Skrzecz
- Department of Forest Protection, Forest Research Institute, Raszyn, Poland
| | - Alicja Sierpińska
- Department of Forest Protection, Forest Research Institute, Raszyn, Poland
| | - Dorota Tumialis
- Department of Animal Environment Biology, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
47
|
Tavares CS, Mishra R, Kishk A, Wang X, Ghobrial PN, Killiny N, Bonning BC. The beta pore-forming bacterial pesticidal protein Tpp78Aa1 is toxic to the Asian citrus psyllid vector of the citrus greening bacterium. J Invertebr Pathol 2024; 204:108122. [PMID: 38710321 DOI: 10.1016/j.jip.2024.108122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The Asian citrus psyllid (ACP) Diaphorina citri transmits the causative agent of huanglongbing, or citrus greening disease, that has decimated global citrus production. Pesticidal proteins derived from bacteria such as Bacillus thuringiensis (Bt) can provide effective and environmentally friendly alternatives for management of D. citri, but few with sufficient toxicity to D. citri have been identified. Here, we report on the toxicity of 14 Bt-derived pesticidal proteins from five different structural groups against D. citri. These proteins were selected based on previously reported toxicity to other hemipteran species and on pesticidal protein availability. Most of the proteins were expressed in Escherichia coli and purified from inclusion bodies or His-tag affinity purification, while App6Aa2 was expressed in Bt and purified from spore/crystal mixtures. Pesticidal proteins were initially screened by feeding psyllids on a single dose, and lethal concentration (LC50) then determined for proteins with significantly greater mortality than the buffer control. The impact of CLas infection of D. citri on toxicity was assessed for selected proteins via topical feeding. The Bt protein Tpp78Aa1 was toxic to D. citri adults with an LC50 of approximately 204 µg/mL. Nymphs were more susceptible to Tpp78Aa1 than adults but no significant difference in susceptibility was observed between healthy and CLas-infected nymphs or adults. Tpp78Aa1 and other reported D. citri-active proteins may provide valuable tools for suppression of D. citri populations.
Collapse
Affiliation(s)
- Clebson S Tavares
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Abdelaziz Kishk
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850, USA; Department of Plant Protection, Faculty of Agriculture, Tanta University 31527, Egypt
| | - Xinyue Wang
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Pierre N Ghobrial
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Nabil Killiny
- Department of Plant Protection, Faculty of Agriculture, Tanta University 31527, Egypt
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
48
|
Tia JPB, Tchicaya ESF, Zahouli JZB, Ouattara AF, Vavassori L, Assamoi JB, Small G, Koudou BG. Combined use of long-lasting insecticidal nets and Bacillus thuringiensis israelensis larviciding, a promising integrated approach against malaria transmission in northern Côte d'Ivoire. Malar J 2024; 23:168. [PMID: 38812003 PMCID: PMC11137964 DOI: 10.1186/s12936-024-04953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The recent reduction in malaria burden in Côte d'Ivoire is largely attributable to the use of long-lasting insecticidal nets (LLINs). However, this progress is threatened by insecticide resistance and behavioral changes in Anopheles gambiae sensu lato (s.l.) populations and residual malaria transmission, and complementary tools are required. Thus, this study aimed to assess the efficacy of the combined use of LLINs and Bacillus thuringiensis israelensis (Bti), in comparison with LLINs. METHODS This study was conducted in the health district of Korhogo, northern Côte d'Ivoire, within two study arms (LLIN + Bti arm and LLIN-only arm) from March 2019 to February 2020. In the LLIN + Bti arm, Anopheles larval habitats were treated every fortnight with Bti in addition to the use of LLINs. Mosquito larvae and adults were sampled and identified morphologically to genus and species using standard methods. The members of the An. gambiae complex were determined using a polymerase chain reaction technique. Plasmodium infection in An. gambiae s.l. and malaria incidence in local people was also assessed. RESULTS Overall, Anopheles spp. larval density was lower in the LLIN + Bti arm 0.61 [95% CI 0.41-0.81] larva/dip (l/dip) compared with the LLIN-only arm 3.97 [95% CI 3.56-4.38] l/dip (RR = 6.50; 95% CI 5.81-7.29; P < 0.001). The overall biting rate of An. gambiae s.l. was 0.59 [95% CI 0.43-0.75] biting/person/night in the LLIN + Bti arm against 2.97 [95% CI 2.02-3.93] biting/person/night in LLIN-only arm (P < 0.001). Anopheles gambiae s.l. was predominantly identified as An. gambiae sensu stricto (s.s.) (95.1%, n = 293), followed by Anopheles coluzzii (4.9%; n = 15). The human-blood index was 80.5% (n = 389) in study area. EIR was 1.36 infected bites/person/year (ib/p/y) in the LLIN + Bti arm against 47.71 ib/p/y in the LLIN-only arm. Malaria incidence dramatically declined from 291.8‰ (n = 765) to 111.4‰ (n = 292) in LLIN + Bti arm (P < 0.001). CONCLUSIONS The combined use of LLINs with Bti significantly reduced the incidence of malaria. The LLINs and Bti duo could be a promising integrated approach for effective vector control of An. gambiae for elimination of malaria.
Collapse
Affiliation(s)
- Jean-Philippe B Tia
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire.
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire.
| | - Emile S F Tchicaya
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Université Péléforo Gon Coulibaly, Korhogo, Côte d'Ivoire
| | - Julien Z B Zahouli
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Centre d'Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké, Côte d'Ivoire
| | - Allassane F Ouattara
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Laura Vavassori
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | | | - Graham Small
- Innovative Vector Control Consortium, Pembroke Place, Liverpool, L3 5QA, UK
| | - Benjamin G Koudou
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| |
Collapse
|
49
|
Wend K, Zorrilla L, Freimoser FM, Gallet A. Microbial pesticides - challenges and future perspectives for testing and safety assessment with respect to human health. Environ Health 2024; 23:49. [PMID: 38811948 PMCID: PMC11134743 DOI: 10.1186/s12940-024-01090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024]
Abstract
Plant protection measures are necessary to prevent pests and diseases from attacking and destroying crop plants and to meet consumer demands for agricultural produce. In the last decades the use of chemical pesticides has largely increased. Farmers are looking for alternatives. Biopesticides should be considered a sustainable solution. They may be less toxic than chemical pesticides, be very specific to the target pest, decompose quickly, and be less likely to cause resistance. On the other hand, lower efficacy and higher costs are two disadvantages of many biopesticides. Biopesticides include macroorganisms, natural compounds and microorganisms. Microbial pesticides are the most widely used and studied class of biopesticides. The greatest difference between microbial and chemical pesticides is the ability of the former to potentially multiply in the environment and on the crop plant after application. The data requirements for the European Union and the United States Environmental Protection Agency are highlighted, as these regulatory processes are the most followed in regions where local regulations for biopesticide products are not available or vague. New Approach Methods already proposed or harmonized for chemical pesticides are presented and discussed with respect to their use in evaluating microbial pesticide formulations. Evaluating the microbials themselves is not as simple as using the same validated New Approach Methods as for synthetic pesticides. Therefore, the authors suggest considering New Approach Method strategies specifically for microbials and global harmonization with acceptability with the advancements of such approaches. Further discussion is needed and greatly appreciated by the experts.
Collapse
Affiliation(s)
- K Wend
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin, 10589, Germany.
| | - L Zorrilla
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - F M Freimoser
- Agroscope, Research Division Plant Protection, Route de Duillier 60, Nyon 1, 1260, Switzerland
| | - A Gallet
- Université Côte d'Azur, CNRS, INRAE, ISA, Sophia-Antipolis, 06903, France
| |
Collapse
|
50
|
Ma T, Huang J, Xu P, Shu C, Wang Z, Geng L, Zhang J. In Vivo and In Vitro Interactions between Exopolysaccharides from Bacillus thuringensis HD270 and Vip3Aa11 Protein. Toxins (Basel) 2024; 16:215. [PMID: 38787067 PMCID: PMC11125869 DOI: 10.3390/toxins16050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Bacillus thuringiensis (Bt) secretes the nutritional insecticidal protein Vip3Aa11, which exhibits high toxicity against the fall armyworm (Spodoptera frugiperda). The Bt HD270 extracellular polysaccharide (EPS) enhances the toxicity of Vip3Aa11 protoxin against S. frugiperda by enhancing the attachment of brush border membrane vesicles (BBMVs). However, how EPS-HD270 interacts with Vip3Aa11 protoxin in vivo and the effect of EPS-HD270 on the toxicity of activated Vip3Aa11 toxin are not yet clear. Our results indicated that there is an interaction between mannose, a monosaccharide that composes EPS-HD270, and Vip3Aa11 protoxin, with a dissociation constant of Kd = 16.75 ± 0.95 mmol/L. When EPS-HD270 and Vip3Aa11 protoxin were simultaneously fed to third-instar larvae, laser confocal microscopy observations revealed the co-localization of the two compounds near the midgut wall, which aggravated the damage to BBMVs. EPS-HD270 did not have a synergistic insecticidal effect on the activated Vip3Aa11 protein against S. frugiperda. The activated Vip3Aa11 toxin demonstrated a significantly reduced binding capacity (548.73 ± 82.87 nmol/L) towards EPS-HD270 in comparison to the protoxin (34.96 ± 9.00 nmol/L). Furthermore, this activation diminished the affinity of EPS-HD270 for BBMVs. This study provides important evidence for further elucidating the synergistic insecticidal mechanism between extracellular polysaccharides and Vip3Aa11 protein both in vivo and in vitro.
Collapse
Affiliation(s)
- Tianjiao Ma
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.M.); (J.H.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinqiu Huang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.M.); (J.H.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pengdan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.M.); (J.H.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|