1
|
Martin MU, Tay CM, Siew TW. Continuous Treatment with IncobotulinumtoxinA Despite Presence of BoNT/A Neutralizing Antibodies: Immunological Hypothesis and a Case Report. Toxins (Basel) 2024; 16:422. [PMID: 39453199 PMCID: PMC11510976 DOI: 10.3390/toxins16100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Botulinum Neurotoxin A (BoNT/A) is a bacterial protein that has proven to be a valuable pharmaceutical in therapeutic indications and aesthetic medicine. One major concern is the formation of neutralizing antibodies (nAbs) to the core BoNT/A protein. These can interfere with the therapy, resulting in partial or complete antibody (Ab)-mediated secondary non-response (SNR) or immunoresistance. If titers of nAbs reach a level high enough that all injected BoNT/A molecules are neutralized, immunoresistance occurs. Studies have shown that continuation of treatment of neurology patients who had developed Ab-mediated partial SNR against complexing protein-containing (CPC-) BoNT/A was in some cases successful if patients were switched to complexing protein-free (CPF-) incobotulinumtoxinA (INCO). This seems to contradict the layperson's basic immunological understanding that repeated injection with the same antigen BoNT/A should lead to an increase in antigen-specific antibody titers. As such, we strive to explain how immunological memory works in general, and based on this, we propose a working hypothesis for this paradoxical phenomenon observed in some, but not all, neurology patients with immunoresistance. A critical factor is the presence of potentially immune-stimulatory components in CPC-BoNT/A products that can act as immunologic adjuvants and activate not only naïve, but also memory B lymphocyte responses. Furthermore, we propose that continuous injection of a BoN/TA formulation with low immunogenicity, e.g., INCO, may be a viable option for aesthetic patients with existing nAbs. These concepts are supported by a real-world case example of a patient with immunoresistance whose nAb levels declined with corresponding resumption of clinical response despite regular INCO injections.
Collapse
Affiliation(s)
| | | | - Tuck Wah Siew
- Radium Medical Aesthetics, 3 Temasek Boulevard #03-325/326/327/328, Suntec City Mall, Singapore 038983, Singapore
| |
Collapse
|
2
|
Martínez-Carranza M, Škerlová J, Lee PG, Zhang J, Krč A, Sirohiwal A, Burgin D, Elliott M, Philippe J, Donald S, Hornby F, Henriksson L, Masuyer G, Kaila VRI, Beard M, Dong M, Stenmark P. Activity of botulinum neurotoxin X and its structure when shielded by a non-toxic non-hemagglutinin protein. Commun Chem 2024; 7:179. [PMID: 39138288 PMCID: PMC11322297 DOI: 10.1038/s42004-024-01262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known and are used to treat an increasing number of medical disorders. All BoNTs are naturally co-expressed with a protective partner protein (NTNH) with which they form a 300 kDa complex, to resist acidic and proteolytic attack from the digestive tract. We have previously identified a new botulinum neurotoxin serotype, BoNT/X, that has unique and therapeutically attractive properties. We present the cryo-EM structure of the BoNT/X-NTNH/X complex and the crystal structure of the isolated NTNH protein. Unexpectedly, the BoNT/X complex is stable and protease-resistant at both neutral and acidic pH and disassembles only in alkaline conditions. Using the stabilizing effect of NTNH, we isolated BoNT/X and showed that it has very low potency both in vitro and in vivo. Given the high catalytic activity and translocation efficacy of BoNT/X, low activity of the full toxin is likely due to the receptor-binding domain, which presents very weak ganglioside binding and exposed hydrophobic surfaces.
Collapse
Affiliation(s)
| | - Jana Škerlová
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Pyung-Gang Lee
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Jie Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Ajda Krč
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Abhishek Sirohiwal
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | - Linda Henriksson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
3
|
Corduff N, Park JY, Calderon PE, Choi H, Dingley M, Ho WWS, Martin MU, Suseno LS, Tseng FW, Vachiramon V, Wanitphakdeedecha R, Yu JNT. Real-world Implications of Botulinum Neurotoxin A Immunoresistance for Consumers and Aesthetic Practitioners: Insights from ASCEND Multidisciplinary Panel. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5892. [PMID: 38903135 PMCID: PMC11188869 DOI: 10.1097/gox.0000000000005892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/24/2024] [Indexed: 06/22/2024]
Abstract
Background As long-term, regular aesthetic botulinum neurotoxin A (BoNT-A) use becomes more commonplace, it is vital to understand real-world risk factors and impact of BoNT-A immunoresistance. The first Aesthetic Council on Ethical Use of Neurotoxin Delivery panel discussed issues relating to BoNT-A immunoresistance from the health care professionals' (HCPs') perspective. Understanding the implications of BoNT-A immunoresistance from the aesthetic patient's viewpoint allows HCPs to better support patients throughout their aesthetic treatment journey. Methods A real-world consumer study surveyed 363 experienced aesthetic BoNT-A recipients across six Asia-Pacific territories. The survey mapped participants' BoNT-A aesthetic treatment journey and characterized awareness and attitudes relating to BoNT-A immunoresistance and treatment implications. At the second Aesthetic Council on Ethical use of Neurotoxin Delivery meeting, panelists discussed survey findings and developed consensus statements relating to the impact of BoNT-A immunoresistance on the aesthetic treatment journey. Results Aesthetic BoNT-A patients' depth of knowledge about BoNT-A immunoresistance remains low, and risk/benefit communications need to be more lay-friendly. The initial consultation is the most important touchpoint for HCPs to raise awareness of BoNT-A immunoresistance as a potential side effect considering increased risk with repeated high-dose treatments. HCPs should be cognizant of differences across BoNT-A formulations due to the presence of certain excipients and pharmacologically unnecessary components that can increase immunogenicity. Standardized screening for clinical signs of secondary nonresponse and a framework for diagnosing and managing immunoresistance-related secondary nonresponse were proposed. Conclusion These insights can help patients and HCPs make informed treatment decisions to achieve desired aesthetic outcomes while preserving future treatment options with BoNT-A.
Collapse
Affiliation(s)
| | | | - Pacifico E. Calderon
- Department of Professionalism, Medical Ethics and Humanities, College of Medicine, and Clinical Ethics Services, St. Luke’s Medical Center, Quezon City, the Philippines
| | | | - Mary Dingley
- The Cosmetic Medicine Centre, Toowong, Queensland, Australia
| | - Wilson W. S. Ho
- The Specialists: Lasers, Aesthetics and Plastic Surgery, Central, Hong Kong
| | | | - Lis S. Suseno
- Division of Cosmetic Dermatology, Department of Dermatology and Venereology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | | | - Vasanop Vachiramon
- Division of Dermatology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|
4
|
Hefter H, Rosenthal D, Samadzadeh S. "Pseudo"-Secondary Treatment Failure Explained via Disease Progression and Effective Botulinum Toxin Therapy: A Pilot Simulation Study. Toxins (Basel) 2023; 15:618. [PMID: 37888649 PMCID: PMC10610736 DOI: 10.3390/toxins15100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND The objective of this study was to provide evidence from a simple simulation. In patients with focal dystonia, an initial good response to botulinum neurotoxin (BoNT) injections followed by a secondary worsening does not necessarily arise from an antibody-induced secondary treatment failure (NAB-STF), but may stem from a "pseudo"-secondary treatment failure (PSEUDO-STF). METHODS The simulation of the outcome after BoNT long-term treatment was performed in four steps: 1. The effect of the first single BoNT injection (SI curve) was displayed as a 12-point graph, corresponding to the mean improvement from weeks 1 to 12. 2. The remaining severity of the dystonia during the nth injection cycle was calculated by subtracting the SI curve (weighted by the outcome after n - 1 cycles) from the outcome after week 12 of the (n - 1)th cycle. 3. A graph was chosen (the PRO curve), which represents the progression of the severity of the underlying disease during BoNT therapy. 4. The interaction between the outcome during the nth BoNT cycle and the PRO curve was determined. RESULTS When the long-term outcome after n cycles of BoNT injections (applied every 3 months) was simulated as an interactive process, subtracting the effect of the first cycle (weighted by the outcome after n - 1 cycles) and adding the progression of the disease, an initial good improvement followed by secondary worsening results. This long-term outcome depends on the steepness of the progression and the duration of action of the first injection cycle. We termed this response behavior a "pseudo"-secondary treatment failure, as it can be compensated via a dose increase. CONCLUSION A secondary worsening following an initial good response in BoNT therapy of focal dystonia might not necessarily indicate neutralizing antibody induction but could stem from a "PSEUDO"-STF (a combination of good response behavior and progression of the underlying disease). Thus, an adequate dose adaptation must be conducted before diagnosing a secondary treatment failure in the strict sense.
Collapse
Affiliation(s)
- Harald Hefter
- Departments of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany; (D.R.); (S.S.)
| | - Dietmar Rosenthal
- Departments of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany; (D.R.); (S.S.)
| | - Sara Samadzadeh
- Departments of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany; (D.R.); (S.S.)
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Unverstät zu Berlin, Experimental and Clinical Research Center, 13125 Berlin, Germany
- Department of Regional Health Research and Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
- Department of Neurology, Slagelse Hospital, 4200 Slagelse, Denmark
| |
Collapse
|
5
|
Ho WWS, Chan L, Corduff N, Lau WT, Martin MU, Tay CM, Wang S, Wu R. Addressing the Real-World Challenges of Immunoresistance to Botulinum Neurotoxin A in Aesthetic Practice: Insights and Recommendations from a Panel Discussion in Hong Kong. Toxins (Basel) 2023; 15:456. [PMID: 37505725 PMCID: PMC10467074 DOI: 10.3390/toxins15070456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
With increasing off-label aesthetic indications using higher botulinum neurotoxin A (BoNT-A) doses and individuals starting treatment at a younger age, particularly in Asia, there is a greater risk of developing immunoresistance to BoNT-A. This warrants more in-depth discussions by aesthetic practitioners to inform patients and guide shared decision-making. A panel comprising international experts and experienced aesthetic practitioners in Hong Kong discussed the implications and impact of immunoresistance to BoNT-A in contemporary aesthetic practice, along with practical strategies for risk management. Following discussions on a clinical case example and the results of an Asia-Pacific consumer study, the panel concurred that it is a priority to raise awareness of the possibility and long-term implications of secondary non-response due to immunoresistance to BoNT-A. Where efficacy and safety are comparable, a formulation with the lowest immunogenicity is preferred. The panel also strongly favored a thorough initial consultation to establish the patient's treatment history, explain treatment side effects, including the causes and consequences of immunoresistance, and discuss treatment goals. Patients look to aesthetic practitioners for guidance, placing an important responsibility on practitioners to adopt risk-mitigating strategies and adequately communicate important risks to patients to support informed and prudent BoNT-A treatment decisions.
Collapse
Affiliation(s)
- Wilson W. S. Ho
- The Specialists: Lasers, Aesthetic and Plastic Surgery, Central, Hong Kong
| | - Lisa Chan
- EverKeen Medical Centre, Tin Hau, Hong Kong;
| | - Niamh Corduff
- Cosmetic Refinement Clinic, Geelong, VIC 3220, Australia;
| | | | | | | | - Sandy Wang
- Independent Researcher, Causeway Bay, Hong Kong;
| | - Raymond Wu
- Asia Pacific Aesthetic Academy, Kowloon, Hong Kong;
| |
Collapse
|
6
|
Joensuu M, Syed P, Saber SH, Lanoue V, Wallis TP, Rae J, Blum A, Gormal RS, Small C, Sanders S, Jiang A, Mahrhold S, Krez N, Cousin MA, Cooper‐White R, Cooper‐White JJ, Collins BM, Parton RG, Balistreri G, Rummel A, Meunier FA. Presynaptic targeting of botulinum neurotoxin type A requires a tripartite PSG-Syt1-SV2 plasma membrane nanocluster for synaptic vesicle entry. EMBO J 2023; 42:e112095. [PMID: 37226896 PMCID: PMC10308369 DOI: 10.15252/embj.2022112095] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
The unique nerve terminal targeting of botulinum neurotoxin type A (BoNT/A) is due to its capacity to bind two receptors on the neuronal plasma membrane: polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Whether and how PSGs and SV2 may coordinate other proteins for BoNT/A recruitment and internalization remains unknown. Here, we demonstrate that the targeted endocytosis of BoNT/A into synaptic vesicles (SVs) requires a tripartite surface nanocluster. Live-cell super-resolution imaging and electron microscopy of catalytically inactivated BoNT/A wildtype and receptor-binding-deficient mutants in cultured hippocampal neurons demonstrated that BoNT/A must bind coincidentally to a PSG and SV2 to target synaptic vesicles. We reveal that BoNT/A simultaneously interacts with a preassembled PSG-synaptotagmin-1 (Syt1) complex and SV2 on the neuronal plasma membrane, facilitating Syt1-SV2 nanoclustering that controls endocytic sorting of the toxin into synaptic vesicles. Syt1 CRISPRi knockdown suppressed BoNT/A- and BoNT/E-induced neurointoxication as quantified by SNAP-25 cleavage, suggesting that this tripartite nanocluster may be a unifying entry point for selected botulinum neurotoxins that hijack this for synaptic vesicle targeting.
Collapse
Affiliation(s)
- Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
| | - Parnayan Syed
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Saber H Saber
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - James Rae
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Ailisa Blum
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Christopher Small
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Shanley Sanders
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Stefan Mahrhold
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Nadja Krez
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, Hugh Robson BuildingUniversity of EdinburghEdinburghUK
- Muir Maxwell Epilepsy CentreUniversity of EdinburghEdinburghUK
- Simons Initiative for the Developing BrainUniversity of EdinburghEdinburghUK
| | - Ruby Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLDAustralia
| | - Justin J Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLDAustralia
- UQ Centre for Stem Cell Ageing and Regenerative EngineeringThe University of QueenslandBrisbaneQLDAustralia
| | - Brett M Collins
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Robert G Parton
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
- Centre for Microscopy and MicroanalysisThe University of QueenslandBrisbaneQLDAustralia
| | - Giuseppe Balistreri
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Department of Virology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Andreas Rummel
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
7
|
Liu Z, Lee PG, Krez N, Lam KH, Liu H, Przykopanski A, Chen P, Yao G, Zhang S, Tremblay JM, Perry K, Shoemaker CB, Rummel A, Dong M, Jin R. Structural basis for botulinum neurotoxin E recognition of synaptic vesicle protein 2. Nat Commun 2023; 14:2338. [PMID: 37095076 PMCID: PMC10125960 DOI: 10.1038/s41467-023-37860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Botulinum neurotoxin E (BoNT/E) is one of the major causes of human botulism and paradoxically also a promising therapeutic agent. Here we determined the co-crystal structures of the receptor-binding domain of BoNT/E (HCE) in complex with its neuronal receptor synaptic vesicle glycoprotein 2A (SV2A) and a nanobody that serves as a ganglioside surrogate. These structures reveal that the protein-protein interactions between HCE and SV2 provide the crucial location and specificity information for HCE to recognize SV2A and SV2B, but not the closely related SV2C. At the same time, HCE exploits a separated sialic acid-binding pocket to mediate recognition of an N-glycan of SV2. Structure-based mutagenesis and functional studies demonstrate that both the protein-protein and protein-glycan associations are essential for SV2A-mediated cell entry of BoNT/E and for its potent neurotoxicity. Our studies establish the structural basis to understand the receptor-specificity of BoNT/E and to engineer BoNT/E variants for new clinical applications.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Pyung-Gang Lee
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Nadja Krez
- Institute of Toxicology, Hannover Medical School, Hannover, 30623, Germany
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Hao Liu
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Adina Przykopanski
- Institute of Toxicology, Hannover Medical School, Hannover, 30623, Germany
| | - Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Guorui Yao
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sicai Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, 60439, USA
| | | | - Andreas Rummel
- Institute of Toxicology, Hannover Medical School, Hannover, 30623, Germany
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
8
|
Ambrin G, Cai S, Singh BR. Critical analysis in the advancement of cell-based assays for botulinum neurotoxin. Crit Rev Microbiol 2023; 49:1-17. [PMID: 35212259 DOI: 10.1080/1040841x.2022.2035315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The study on botulinum neurotoxins (BoNTs) has rapidly evolved for their structure and functions as opposed to them being poisons or cures. Since their discoveries, the scientific community has come a long way in understanding BoNTs' structure and biological activity. Given its current application as a tool for understanding neurocellular activity and as a drug against over 800 neurological disorders, relevant and sensitive assays have become critical for biochemical, physiological, and pharmacological studies. The natural entry of the toxin being ingestion, it has also become important to examine its mechanism while crossing the epithelial cell barrier. Several techniques and methodologies have been developed, for its entry, pharmacokinetics, and biological activity for identification, and drug efficacy both in vivo and in vitro conditions. However, each of them presents its own challenges. The cell-based assay is a platform that exceeds the sensitivity of mouse bioassay while encompassing all the steps of intoxication including cell binding, transcytosis, endocytosis, translocation and proteolytic activity. In this article we review in detail both the neuronal and nonneuronal based cellular interaction of BoNT involving its transportation, and interaction with the targeted cells, and intracellular activities.
Collapse
Affiliation(s)
- Ghuncha Ambrin
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts, Dartmouth, MA, USA.,Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA, USA
| | - Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA, USA
| | - Bal Ram Singh
- Institute of Advanced Sciences, Botulinum Research Center, Dartmouth, MA, USA
| |
Collapse
|
9
|
Structure and activity of botulinum neurotoxin X. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523524. [PMID: 36712025 PMCID: PMC9882044 DOI: 10.1101/2023.01.11.523524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known and are used to treat an increasing number of medical disorders. All BoNTs are naturally co-expressed with a protective partner protein (NTNH) with which they form a 300 kDa complex, to resist acidic and proteolytic attack from the digestive tract. We have previously identified a new botulinum neurotoxin serotype, BoNT/X, that has unique and therapeutically attractive properties. We present the cryo-EM structure of the BoNT/X-NTNH/X complex at 3.1 Å resolution. Unexpectedly, the BoNT/X complex is stable and protease resistant at both neutral and acidic pH and disassembles only in alkaline conditions. Using the stabilizing effect of NTNH, we isolated BoNT/X and showed that it has very low potency both in vitro and in vivo . Given the high catalytic activity and translocation efficacy of BoNT/X, low activity of the full toxin is likely due to the receptor-binding domain, which presents weak ganglioside binding and exposed hydrophobic surfaces.
Collapse
|
10
|
Hefter H, Ürer B, Brauns R, Rosenthal D, Meuth SG, Lee JI, Albrecht P, Samadzadeh S. The complex relationship between antibody titers and clinical outcome in botulinum toxin type A long-term treated patients with cervical dystonia. J Neurol 2022; 269:5991-6002. [PMID: 35842881 PMCID: PMC9553769 DOI: 10.1007/s00415-022-11235-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/20/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Repeated injections with abo- or onabotulinumtoxin type A (aboBoNT/A, onaBoNT/A) may lead to induction of neutralizing antibodies (NABs) and/or a secondary treatment failure (STF). The relation between NABs and STF is still unclear. AIM OF THE STUDY To demonstrate that a significant improvement can be observed in patients with STF after abo- or onaBoNT/A-treatment when switched to incobotulinumtoxin type A (incoBoNT/A) and that in NAB-positive patients without STF abo- or onaBoNT/A-treatment can be continued without significant worsening. METHODS Paralysis times (PT) of the mouse hemidiaphragm assay (MHDA) and clinical outcome (TSUI-score) was analyzed in 60 patients with cervical dystonia (CD) and STF after abo- or onaBoNT/A-treatment (STF-group) who were switched to incobotulinumtoxin type A (incoBoNT/A). These data were compared to those of 34 patients who were exclusively treated with incoBoNT/A (INCO-group). Furthermore, PTs and TSUI-scores were followed up over 7 years in 9 patients with NABs but without STF who were switched to inco-BoNT/A (SWI-group) and 9 other patients with NABs who remained on their previous BoNT/A preparation (NO-SWI-group). RESULTS In the STF-group, a significant improvement of TSUI-scores could be detected after switch to incoBoNT/A. This improvement was less pronounced than in the INCO-group. There was no significant difference in long-term outcome between the SWI- and NO-SWI-group. CONCLUSION The best strategy is to avoid the induction of NABs. A switch to incoBoNT/A may lead to improvement in patients with STF. However, in some patients with NABs without STF, BoNT/A-treatment can be continued without significant worsening.
Collapse
Affiliation(s)
- Harald Hefter
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | - Beyza Ürer
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Raphaela Brauns
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Dietmar Rosenthal
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - John-Ih Lee
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Philipp Albrecht
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Sara Samadzadeh
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| |
Collapse
|
11
|
Dressler D, Bigalke H, Frevert J. The Immunology of Botulinum Toxin Therapy: A Brief Summary. Toxicology 2022; 481:153341. [PMID: 36191878 DOI: 10.1016/j.tox.2022.153341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022]
Abstract
Like all proteins foreign to the human body, also botulinum toxin (BT) is antigenic and may stimulate an immune response with formulation of antibodies (BT-AB). Affected patients may no longer respond to BT therapy and various degrees of BT-AB related therapy failure (ABF) may result. We want to review the immunological interactions between BT and BT-AB, the prevalence, the time course and the risk factors for BT-AB formation as they are related to the treatment algorithms, the patient's immune system and to exogenic factors. Special emphasis is placed on various features of the BT drugs including the specific biological activity (SBA) as a predictor of their antigenicity. Quantitative detection of BT-AB by the mouse diaphragm assay will be demonstrated. As ABF may have serious consequences for patients affected, careful risk factor analysis is warranted to reduce them wherever possible.
Collapse
Affiliation(s)
- Dirk Dressler
- Movement Disorders Section, Department of Neurology, Hannover Medical School, Hannover, Germany.
| | - Hans Bigalke
- Institute of Toxicology, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
12
|
Nowakowska MB, Selby K, Przykopanski A, Krüger M, Krez N, Dorner BG, Dorner MB, Jin R, Minton NP, Rummel A, Lindström M. Construction and validation of safe Clostridium botulinum Group II surrogate strain producing inactive botulinum neurotoxin type E toxoid. Sci Rep 2022; 12:1790. [PMID: 35110559 PMCID: PMC8810926 DOI: 10.1038/s41598-022-05008-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/24/2021] [Indexed: 01/05/2023] Open
Abstract
Botulinum neurotoxins (BoNTs), produced by the spore-forming bacterium Clostridium botulinum, cause botulism, a rare but fatal illness affecting humans and animals. Despite causing a life-threatening disease, BoNT is a multipurpose therapeutic. Nevertheless, as the most potent natural toxin, BoNT is classified as a Select Agent in the US, placing C. botulinum research under stringent governmental regulations. The extreme toxicity of BoNT, its impact on public safety, and its diverse therapeutic applications urge to devise safe solutions to expand C. botulinum research. Accordingly, we exploited CRISPR/Cas9-mediated genome editing to introduce inactivating point mutations into chromosomal bont/e gene of C. botulinum Beluga E. The resulting Beluga Ei strain displays unchanged physiology and produces inactive BoNT (BoNT/Ei) recognized in serological assays, but lacking biological activity detectable ex- and in vivo. Neither native single-chain, nor trypsinized di-chain form of BoNT/Ei show in vivo toxicity, even if isolated from Beluga Ei sub-cultured for 25 generations. Beluga Ei strain constitutes a safe alternative for the BoNT research necessary for public health risk management, the development of food preservation strategies, understanding toxinogenesis, and for structural BoNT studies. The example of Beluga Ei generation serves as template for future development of C. botulinum producing different inactive BoNT serotypes.
Collapse
Affiliation(s)
- Maria B Nowakowska
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Katja Selby
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Adina Przykopanski
- Institut Für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Maren Krüger
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Nadja Krez
- Institut Für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Martin B Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Nigel P Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Andreas Rummel
- Institut Für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
13
|
Human-Relevant Sensitivity of iPSC-Derived Human Motor Neurons to BoNT/A1 and B1. Toxins (Basel) 2021; 13:toxins13080585. [PMID: 34437455 PMCID: PMC8402508 DOI: 10.3390/toxins13080585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 01/31/2023] Open
Abstract
The application of botulinum neurotoxins (BoNTs) for medical treatments necessitates a potency quantification of these lethal bacterial toxins, resulting in the use of a large number of test animals. Available alternative methods are limited in their relevance, as they are based on rodent cells or neuroblastoma cell lines or applicable for single toxin serotypes only. Here, human motor neurons (MNs), which are the physiological target of BoNTs, were generated from induced pluripotent stem cells (iPSCs) and compared to the neuroblastoma cell line SiMa, which is often used in cell-based assays for BoNT potency determination. In comparison with the mouse bioassay, human MNs exhibit a superior sensitivity to the BoNT serotypes A1 and B1 at levels that are reflective of human sensitivity. SiMa cells were able to detect BoNT/A1, but with much lower sensitivity than human MNs and appear unsuitable to detect any BoNT/B1 activity. The MNs used for these experiments were generated according to three differentiation protocols, which resulted in distinct sensitivity levels. Molecular parameters such as receptor protein concentration and electrical activity of the MNs were analyzed, but are not predictive for BoNT sensitivity. These results show that human MNs from several sources should be considered in BoNT testing and that human MNs are a physiologically relevant model, which could be used to optimize current BoNT potency testing.
Collapse
|
14
|
Duchesne de Lamotte J, Perrier A, Martinat C, Nicoleau C. Emerging Opportunities in Human Pluripotent Stem-Cells Based Assays to Explore the Diversity of Botulinum Neurotoxins as Future Therapeutics. Int J Mol Sci 2021; 22:7524. [PMID: 34299143 PMCID: PMC8308099 DOI: 10.3390/ijms22147524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and are responsible for botulism, a fatal disorder of the nervous system mostly induced by food poisoning. Despite being one of the most potent families of poisonous substances, BoNTs are used for both aesthetic and therapeutic indications from cosmetic reduction of wrinkles to treatment of movement disorders. The increasing understanding of the biology of BoNTs and the availability of distinct toxin serotypes and subtypes offer the prospect of expanding the range of indications for these toxins. Engineering of BoNTs is considered to provide a new avenue for improving safety and clinical benefit from these neurotoxins. Robust, high-throughput, and cost-effective assays for BoNTs activity, yet highly relevant to the human physiology, have become indispensable for a successful translation of engineered BoNTs to the clinic. This review presents an emerging family of cell-based assays that take advantage of newly developed human pluripotent stem cells and neuronal function analyses technologies.
Collapse
Affiliation(s)
- Juliette Duchesne de Lamotte
- IPSEN Innovation, 91940 Les Ulis, France;
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
| | - Anselme Perrier
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
- Laboratoire des Maladies Neurodégénératives: Mécanismes, Thérapies, Imagerie, CEA/CNRS UMR9199, Université Paris Saclay, 92265 Fontenay-aux-Roses, France
| | - Cécile Martinat
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
| | | |
Collapse
|
15
|
The Extreme Ends of the Treatment Response Spectrum to Botulinum Toxin in Cervical Dystonia. Toxins (Basel) 2020; 13:toxins13010022. [PMID: 33396548 PMCID: PMC7824374 DOI: 10.3390/toxins13010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022] Open
Abstract
Background: The response to BoNT is not uniform; a broad spectrum of responses and side-effects usually occurs. This study aimed to show special cervical dystonia cases with therapy response very different to normal treatment course which indicate the extreme ends of therapy spectrum. Patients: Clinical data and course of treatment of five long-term treated patients with cervical dystonia out of therapy response norms are presented: a patient who was supersensitive to standard dose and has required dose adjustment to lower dose of BoNT; one patient who worsened under a standard dose, but responded excellently to twice the standard dose; one insensitive patient who responded poorly for years to a dose well above the standard dose, but responded when dose was further increased; and two patients with a totally different response pattern to BoNT/A preparation 1, but the development of a neutralizing antibody induced secondary treatment failure in both cases and a totally different response after switch to BoNT/A preparation 2. Conclusions: These five patients indicate that the response of a patient to a BoNT preparation may be unexpected. Therefore, cautious onset of BoNT therapy is recommended as well as consequent dose adjustment later on and even switch to another BoNT/A preparation when a patient has already developed NABs against BoNT/A.
Collapse
|
16
|
The 25 kDa H CN Domain of Clostridial Neurotoxins Is Indispensable for Their Neurotoxicity. Toxins (Basel) 2020; 12:toxins12120743. [PMID: 33255952 PMCID: PMC7760224 DOI: 10.3390/toxins12120743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
The extraordinarily potent clostridial neurotoxins (CNTs) comprise tetanus neurotoxin (TeNT) and the seven established botulinum neurotoxin serotypes (BoNT/A-G). They are composed of four structurally independent domains: the roles of the catalytically active light chain, the translocation domain HN, and the C-terminal receptor binding domain HCC are largely resolved, but that of the HCN domain sandwiched between HN and HCC has remained unclear. Here, mutants of BoNT/A, BoNT/B, and TeNT were generated by deleting their HCN domains or swapping HCN domains between each other. Both deletion and replacement of TeNT HCN domain by HCNA and HCNB reduced the biological activity similarly, by ~95%, whereas BoNT/A and B deletion mutants displayed >500-fold reduced activity in the mouse phrenic nerve hemidiaphragm assay. Swapping HCN domains between BoNT/A and B hardly impaired their biological activity, but substitution with HCNT did. Binding assays revealed that in the absence of HCN, not all receptor binding sites are equally well accessible. In conclusion, the presence of HCN is vital for CNTs to exert their neurotoxicity. Although structurally similar, the HCN domain of TeNT cannot equally substitute those of BoNT and vice versa, leaving the possibility that HCNT plays a different role in the intoxication mechanism of TeNT.
Collapse
|
17
|
Nepal MR, Jeong TC. Alternative Methods for Testing Botulinum Toxin: Current Status and Future Perspectives. Biomol Ther (Seoul) 2020; 28:302-310. [PMID: 32126735 PMCID: PMC7327137 DOI: 10.4062/biomolther.2019.200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 01/29/2023] Open
Abstract
Botulinum toxins are neurotoxic modular proteins composed of a heavy chain and a light chain connected by a disulfide bond and are produced by Clostridium botulinum. Although lethally toxic, botulinum toxin in low doses is clinically effective in numerous medical conditions, including muscle spasticity, strabismus, hyperactive urinary bladder, excessive sweating, and migraine. Globally, several companies are now producing products containing botulinum toxin for medical and cosmetic purposes, including the reduction of facial wrinkles. To test the efficacy and toxicity of botulinum toxin, animal tests have been solely and widely used, resulting in the inevitable sacrifice of hundreds of animals. Hence, alternative methods are urgently required to replace animals in botulinum toxin testing. Here, the various alternative methods developed to test the toxicity and efficacy of botulinum toxins have been briefly reviewed and future perspectives have been detailed.
Collapse
Affiliation(s)
- Mahesh Raj Nepal
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
18
|
Rezayi A, Razavilar V, Mashak Z, Anvar A. Effects of Citrus sinensis Essential Oil and Intrinsic and Extrinsic Factors on the Growth and ToxinProducing Ability of Clostridium botulinum Type A. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2020. [DOI: 10.34172/ijep.2020.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Considering the high fatality of botulism, the control of Clostridium botulinum and its neurotoxins has clinical importance. In this regard, using chemical preservatives, natural essential oils (Eos), and changes in the growth predisposing factors of bacteria are suitable methods to control the growth and toxin producing of C. botulinum in foods. Objective: The current survey was done to assess the effects of Citrus sinensis EO and intrinsic and extrinsic factors on the growth and toxin producing of C. botulinum type A. Materials and Methods: In this experiment with a factorial design, C. sinensis EO (0.0%, 0.015%, 0.03%, and 0.045%), nisin (0, 500, and 1500 IU/mL), nitrite (0, 20, and 60 ppm), pH (5.5 and 6.5), storage temperature (25 and 35° C), and sodium chloride (NaCl, 0.5% and 3%) were used to assess bacterial growth in the brain heart infusion medium. Finally, the mouse bioassay method was also used to assess toxicity. Results: Clostridium sinensis EO with a concentration of 0.045%, as well as the reduction of pH and temperature could significantly delay the growth of bacteria (P≤0.05) in contrast to the use of NaCl and nisin alone. However, all concentrations of sodium chloride (NaCl), nisin, and C. sinensis EO (< 0.045%) in interaction with each other, especially in combination with nitrite, showed good synergistic effects. Conclusion: These results suggested that using certain concentrations of C. sinensis EO and nisin, along with other suboptimal factors caused a significant decrease in the nitrite contents of foods with a significant reduction in the growth and toxin-producing ability of C. botulinum.
Collapse
Affiliation(s)
- Adel Rezayi
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vadood Razavilar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohreh Mashak
- Department of Food Hygiene, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Amirali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
19
|
Kutschenko A, Bigalke H, Wegner F, Wohlfarth K. The role of human serum albumin and neurotoxin associated proteins in the formulation of BoNT/A products. Toxicon 2019; 168:158-163. [PMID: 31323228 DOI: 10.1016/j.toxicon.2019.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 11/28/2022]
Abstract
Botulinum neurotoxin (BoNT) is synthesized as a progenitor toxin complex (PTC) by Clostridium botulinum. This PTC comprises, in addition to the neurotoxin itself, neurotoxin associated proteins (NAPs) which are composed of three hemagglutinins and one non-toxic, non-hemagglutinin protein. After oral ingestion, these NAPs protect the neurotoxin from the low pH and proteases in the gastrointestinal tract and play a role in the entry via the intestinal barrier. Two of the three therapeutically used botulinum neurotoxin serotype A (BoNT/A) products (onabotulinumtoxinA and abobotulinumtoxinA) contain different amounts of NAPs, while incobotulinumtoxinA, lacks these proteins. In addition, human serum albumin (HSA) that is supposed to stabilize BoNT/A is added at different concentrations. Up to now, the function of the NAPs and HSA after parenteral therapeutic application is not completely understood. To investigate the influence of NAPs and HSA on potency of BoNT/A, we used the ex vivo mouse phrenic nerve hemidiaphragm assay. Increasing doses of HSA resulted dose-dependently in a more pronounced effect of BoNT/A. Though, a plateau was reached with concentrations of 0.8 mg/ml HSA and higher, the accessory addition of NAPs in a relevant amount (4 ng/ml) did not further enhance the effect of BoNT/A. In conclusion, in our ex vivo assay an adequate concentration of HSA prevented BoNT/A from loss of effect and supplementary NAPs did not alter this effect. A confirmation of these data in an in vivo assay is still lacking. However, it might be supposed that even in clinically applied BoNT/A products an increase of HSA accompanied by the avoidance of NAPs could potentially reduce the injected dose and, thus, the risk of unwanted side effects, the treatment costs as well as the risk of a secondary therapy failure due to BoNT/A neutralizing antibodies.
Collapse
Affiliation(s)
- Anna Kutschenko
- Department of Neurology, Hannover Medical School, Hannover, Germany.
| | - Hans Bigalke
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Kai Wohlfarth
- Department of Neurology, BG Hospital Bergmannstrost, Halle (Saale), Germany
| |
Collapse
|
20
|
von Berg L, Stern D, Pauly D, Mahrhold S, Weisemann J, Jentsch L, Hansbauer EM, Müller C, Avondet MA, Rummel A, Dorner MB, Dorner BG. Functional detection of botulinum neurotoxin serotypes A to F by monoclonal neoepitope-specific antibodies and suspension array technology. Sci Rep 2019; 9:5531. [PMID: 30940836 PMCID: PMC6445094 DOI: 10.1038/s41598-019-41722-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/15/2019] [Indexed: 12/26/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known and cause the life threatening disease botulism. Sensitive and broad detection is extremely challenging due to the toxins' high potency and molecular heterogeneity with several serotypes and more than 40 subtypes. The toxicity of BoNT is mediated by enzymatic cleavage of different synaptic proteins involved in neurotransmitter release at serotype-specific cleavage sites. Hence, active BoNTs can be monitored and distinguished in vitro by detecting their substrate cleavage products. In this work, we developed a comprehensive panel of monoclonal neoepitope antibodies (Neo-mAbs) highly specific for the newly generated N- and/or C-termini of the substrate cleavage products of BoNT serotypes A to F. The Neo-mAbs were implemented in a set of three enzymatic assays for the simultaneous detection of two BoNT serotypes each by monitoring substrate cleavage on colour-coded magnetic Luminex-beads. For the first time, all relevant serotypes could be detected in parallel by a routine in vitro activity assay in spiked serum and food samples yielding excellent detection limits in the range of the mouse bioassay or better (0.3-80 pg/mL). Therefore, this work represents a major step towards the replacement of the mouse bioassay for botulism diagnostics.
Collapse
Affiliation(s)
- Laura von Berg
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany
| | - Daniel Stern
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany
| | - Diana Pauly
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, 93053, Germany
| | - Stefan Mahrhold
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30625, Hannover, Germany
| | - Jasmin Weisemann
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30625, Hannover, Germany
| | - Lisa Jentsch
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany
| | - Eva-Maria Hansbauer
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany
| | - Christian Müller
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, 3700, Switzerland
| | - Marc A Avondet
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, 3700, Switzerland
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30625, Hannover, Germany
| | - Martin B Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany
| | - Brigitte G Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany.
| |
Collapse
|
21
|
Kutschenko A, Weisemann J, Kollewe K, Fiedler T, Alvermann S, Böselt S, Escher C, Garde N, Gingele S, Kaehler SB, Karatschai R, Krüger THC, Sikorra S, Tacik P, Wegner F, Wollmann J, Bigalke H, Wohlfarth K, Rummel A. Botulinum neurotoxin serotype D - A potential treatment alternative for BoNT/A and B non-responding patients. Clin Neurophysiol 2019; 130:1066-1073. [PMID: 30871800 DOI: 10.1016/j.clinph.2019.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/28/2019] [Accepted: 02/10/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Botulinum neurotoxin serotypes A and B (BoNT/A & B) are highly effective medicines to treat hyperactive cholinergic neurons. Due to neutralizing antibody formation, some patients may become non-responders. In these cases, the serotypes BoNT/C-G might become treatment alternatives. BoNT/D is genetically least related to BoNT/A & B and thereby circumventing neutralisation in A/B non-responders. We produced BoNT/D and compared its pharmacology with BoNT/A ex vivo in mice tissue and in vivo in human volunteers. METHODS BoNT/D was expressed recombinantly in E. coli, isolated by chromatography and its ex vivo potency was determined at mouse phrenic nerve hemidiaphragm preparations. Different doses of BoNT/D or incobotulinumtoxinA were injected into the extensor digitorum brevis (EDB) muscles (n = 30) of human volunteers. Their compound muscle action potentials were measured 11 times by electroneurography within 220 days. RESULTS Despite a 3.7-fold lower ex vivo potency in mice, a 110-fold higher dosage of BoNT/D achieved the same clinical effect as incobotulinumtoxinA while showing a 50% shortened duration of action. CONCLUSIONS BoNT/D blocks dose-dependently acetylcholine release in human motoneurons upon intramuscular administration, but its potency and duration of action is inferior to approved BoNT/A based drugs. SIGNIFICANCE BoNT/D constitutes a potential treatment alternative for BoNT/A & B non-responders.
Collapse
Affiliation(s)
- Anna Kutschenko
- Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Jasmin Weisemann
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Katja Kollewe
- Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Thiemo Fiedler
- Kliniken für Neurologie, Frührehabilitation und Stroke Unit, Berufsgenossenschaftliche Kliniken Bergmannstrost, Halle (Saale), Germany
| | - Sascha Alvermann
- Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Sebastian Böselt
- Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Claus Escher
- Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Niklas Garde
- Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Stefan Gingele
- Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Stefan-Benno Kaehler
- Kliniken für Neurologie, Frührehabilitation und Stroke Unit, Berufsgenossenschaftliche Kliniken Bergmannstrost, Halle (Saale), Germany
| | - Ralf Karatschai
- Kliniken für Neurologie, Frührehabilitation und Stroke Unit, Berufsgenossenschaftliche Kliniken Bergmannstrost, Halle (Saale), Germany
| | - Tillmann H C Krüger
- Klinik für Psychiatrie, Sozialpsychiatrie und Psychotherapie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Stefan Sikorra
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Pawel Tacik
- Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Florian Wegner
- Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Johannes Wollmann
- Kliniken für Neurologie, Frührehabilitation und Stroke Unit, Berufsgenossenschaftliche Kliniken Bergmannstrost, Halle (Saale), Germany
| | - Hans Bigalke
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Kai Wohlfarth
- Kliniken für Neurologie, Frührehabilitation und Stroke Unit, Berufsgenossenschaftliche Kliniken Bergmannstrost, Halle (Saale), Germany.
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany.
| |
Collapse
|
22
|
A viral-fusion-peptide-like molecular switch drives membrane insertion of botulinum neurotoxin A1. Nat Commun 2018; 9:5367. [PMID: 30560862 PMCID: PMC6299077 DOI: 10.1038/s41467-018-07789-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/22/2018] [Indexed: 11/09/2022] Open
Abstract
Botulinum neurotoxin (BoNT) delivers its protease domain across the vesicle membrane to enter the neuronal cytosol upon vesicle acidification. This process is mediated by its translocation domain (HN), but the molecular mechanism underlying membrane insertion of HN remains poorly understood. Here, we report two crystal structures of BoNT/A1 HN that reveal a novel molecular switch (termed BoNT-switch) in HN, where buried α-helices transform into surface-exposed hydrophobic β-hairpins triggered by acidic pH. Locking the BoNT-switch by disulfide trapping inhibited the association of HN with anionic liposomes, blocked channel formation by HN, and reduced the neurotoxicity of BoNT/A1 by up to ~180-fold. Single particle counting studies showed that an acidic environment tends to promote BoNT/A1 self-association on liposomes, which is partly regulated by the BoNT-switch. These findings suggest that the BoNT-switch flips out upon exposure to the acidic endosomal pH, which enables membrane insertion of HN that subsequently leads to LC delivery. The translocation domain (HN) of Botulinum neurotoxins (BoNTs) mediates the delivery of the BoNT light chain (LC) into neuronal cytosol. Here the authors provide insights into HN membrane insertion by determining the crystal structure of BoNT/A1 HN at acidic pH, which reveals a molecular switch in HN, where buried α-helices are transformed into surface-exposed hydrophobic β-hairpins.
Collapse
|
23
|
Webb RP. Engineering of Botulinum Neurotoxins for Biomedical Applications. Toxins (Basel) 2018; 10:toxins10060231. [PMID: 29882791 PMCID: PMC6024800 DOI: 10.3390/toxins10060231] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/15/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) have been used as therapeutic agents in the clinical treatment of a wide array of neuromuscular and autonomic neuronal transmission disorders. These toxins contain three functional domains that mediate highly specific neuronal cell binding, internalization and cytosolic delivery of proteolytic enzymes that cleave proteins integral to the exocytosis of neurotransmitters. The exceptional cellular specificity, potency and persistence within the neuron that make BoNTs such effective toxins, also make them attractive models for derivatives that have modified properties that could potentially expand their therapeutic repertoire. Advances in molecular biology techniques and rapid DNA synthesis have allowed a wide variety of novel BoNTs with alternative functions to be assessed as potential new classes of therapeutic drugs. This review examines how the BoNTs have been engineered in an effort to produce new classes of therapeutic molecules to address a wide array of disorders.
Collapse
Affiliation(s)
- Robert P Webb
- The Division of Molecular and Translational Sciences, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD 21702, USA.
| |
Collapse
|
24
|
Stern D, Weisemann J, Le Blanc A, von Berg L, Mahrhold S, Piesker J, Laue M, Luppa PB, Dorner MB, Dorner BG, Rummel A. A lipid-binding loop of botulinum neurotoxin serotypes B, DC and G is an essential feature to confer their exquisite potency. PLoS Pathog 2018; 14:e1007048. [PMID: 29718991 PMCID: PMC5951583 DOI: 10.1371/journal.ppat.1007048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/14/2018] [Accepted: 04/19/2018] [Indexed: 11/21/2022] Open
Abstract
The exceptional toxicity of botulinum neurotoxins (BoNTs) is mediated by high avidity binding to complex polysialogangliosides and intraluminal segments of synaptic vesicle proteins embedded in the presynaptic membrane. One peculiarity is an exposed hydrophobic loop in the toxin’s cell binding domain HC, which is located between the ganglioside- and protein receptor-binding sites, and that is particularly pronounced in the serotypes BoNT/B, DC, and G sharing synaptotagmin as protein receptor. Here, we provide evidence that this HC loop is a critical component of their tripartite receptor recognition complex. Binding to nanodisc-embedded receptors and toxicity were virtually abolished in BoNT mutants lacking residues at the tip of the HC loop. Surface plasmon resonance experiments revealed that only insertion of the HC loop into the lipid-bilayer compensates for the entropic penalty inflicted by the dual-receptor binding. Our results represent a new paradigm of how BoNT/B, DC, and G employ ternary interactions with a protein, ganglioside, and lipids to mediate their extraordinary neurotoxicity. Botulinum neurotoxins are Janus-faced molecules: due to their exquisite toxicity, botulinum neurotoxins are considered as biological weapons, but they are also highly effective medicines for numerous neurological indications. However, what mediates their exquisite toxicity? The exclusive binding to neurons and the subsequent paralysis cuts off the host’s communication networks. The neurospecific binding is ensured by anchoring to two receptor molecules both embedded in the membrane: a complex ganglioside and a synaptic vesicle protein. Here, we reveal a third interaction between a hydrophobic so-called HC loop protruding from the surface of the serotypes BoNT/B, DC, and G into the lipid membrane. Only this HC loop ensures their high-affinity binding to the neuronal receptors also at physiological temperature (37°C). Hereby, BoNT/B, DC, and G prevent untimely dissociation prior to uptake into the neuron. Therefore, our study provides the mechanistic basis for the development of inhibitors to combat botulism, but it also has implications for engineering toxin—membrane interactions yielding optimized BoNT-based therapeutics to treat neuromuscular dysfunctions successfully. Intriguingly, a broadly neutralizing anti-HIV-1 antibody shares a similar strategy, emphasizing the general relevance of our results for host—pathogen interactions.
Collapse
Affiliation(s)
- Daniel Stern
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Jasmin Weisemann
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Alexander Le Blanc
- Institute for Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Laura von Berg
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Stefan Mahrhold
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Janett Piesker
- Advanced Light and Electron Microscopy (ZBS 4), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Michael Laue
- Advanced Light and Electron Microscopy (ZBS 4), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Peter B. Luppa
- Institute for Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Martin Bernhard Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Brigitte Gertrud Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
- * E-mail: (BGD); (AR)
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
- * E-mail: (BGD); (AR)
| |
Collapse
|
25
|
Zanetti G, Negro S, Pirazzini M, Caccin P. Mouse Phrenic Nerve Hemidiaphragm Assay (MPN). Bio Protoc 2018; 8:e2759. [PMID: 34179283 DOI: 10.21769/bioprotoc.2759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 11/02/2022] Open
Abstract
The neuromuscular junction (NMJ) is the specialized synapse by which peripheral motor neurons innervate muscle fibers and control skeletal muscle contraction. The NMJ is the target of several xenobiotics, including chemicals, plant, animal and bacterial toxins, as well as of autoantibodies raised against NMJ antigens. Depending on their biochemical nature, the site they target (either the nerve or the muscle) and their mechanism of action, substances affecting NMJ produce very specific alterations of neuromuscular functionality. Here we provide a detailed protocol to isolate the diaphragmatic muscle from mice and to set up two autonomously innervated hemidiaphragms. This preparation can be used to study bioactive substances like toxins, venoms and neuroactive molecules of various origin, or to measure the force of skeletal muscle contraction. The 'mouse phrenic nerve hemidiaphragm assay' (MPN) is an established model of ex vivo NMJ and recapitulates the complexity of neuromuscular transmission in a system easy to control and to manipulate, thus representing a valuable tool to study both NMJ physiology and the mechanism of action of toxins and other molecules acting at this synapse.
Collapse
Affiliation(s)
- Giulia Zanetti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paola Caccin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
26
|
Duracova M, Klimentova J, Fucikova A, Dresler J. Proteomic Methods of Detection and Quantification of Protein Toxins. Toxins (Basel) 2018; 10:toxins10030099. [PMID: 29495560 PMCID: PMC5869387 DOI: 10.3390/toxins10030099] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/11/2022] Open
Abstract
Biological toxins are a heterogeneous group of compounds that share commonalities with biological and chemical agents. Among them, protein toxins represent a considerable, diverse set. They cover a broad range of molecular weights from less than 1000 Da to more than 150 kDa. This review aims to compare conventional detection methods of protein toxins such as in vitro bioassays with proteomic methods, including immunoassays and mass spectrometry-based techniques and their combination. Special emphasis is given to toxins falling into a group of selected agents, according to the Centers for Disease Control and Prevention, such as Staphylococcal enterotoxins, Bacillus anthracis toxins, Clostridium botulinum toxins, Clostridium perfringens epsilon toxin, ricin from Ricinus communis, Abrin from Abrus precatorius or control of trade in dual-use items in the European Union, including lesser known protein toxins such as Viscumin from Viscum album. The analysis of protein toxins and monitoring for biological threats, i.e., the deliberate spread of infectious microorganisms or toxins through water, food, or the air, requires rapid and reliable methods for the early identification of these agents.
Collapse
Affiliation(s)
- Miloslava Duracova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Jana Klimentova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Alena Fucikova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Jiri Dresler
- Military Health Institute, Military Medical Agency, Tychonova 1, CZ-160 00 Prague 6, Czech Republic.
| |
Collapse
|
27
|
Liu J, Gao S, Kang L, Ji B, Xin W, Kang J, Li P, Gao J, Wang H, Wang J, Yang H. An Ultrasensitive Gold Nanoparticle-based Lateral Flow Test for the Detection of Active Botulinum Neurotoxin Type A. NANOSCALE RESEARCH LETTERS 2017; 12:227. [PMID: 28359137 PMCID: PMC5371539 DOI: 10.1186/s11671-017-1944-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/22/2017] [Indexed: 06/07/2023]
Abstract
Botulism is a severe and potentially lethal paralytic disease caused by several botulinum neurotoxin-producing Clostridia spp. In China, the majority of the cases caused by botulism were from less-developed rural areas. Here, we designed specific substrate peptides and reconfigured gold nanoparticle-based lateral flow test strip (LFTS) to develop an endopeptidase-based lateral flow assay for the diagnosis of botulism. We performed this lateral flow assay on botulinum neurotoxin-spiked human serum samples. The as-prepared LFTS had excellent performance in the detection of botulinum neurotoxin using only 1 μL of simulated serum, and its sensitivity and specificity were comparable to that of mouse lethality assay. Moreover, the assay takes only half a day and does not require highly trained laboratory staff, specialized facility, or equipment. Finally, our LFTS can be potentially extended to other serotypes of BoNTs by designing specific substrate peptides against the different types of BoNTs. Overall, we demonstrate a strategy by which LFTS and endopeptidase activity assays can be integrated to achieve facile and economic diagnosis of botulism in resource-limited settings.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
- The 307th Hospital of Military Chinese People's Liberation Army, Beijing, 100071, People's Republic of China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Bin Ji
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Jingjing Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Ping Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Jie Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Hanbin Wang
- The 307th Hospital of Military Chinese People's Liberation Army, Beijing, 100071, People's Republic of China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China.
| | - Hao Yang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China.
| |
Collapse
|
28
|
Zanetti G, Sikorra S, Rummel A, Krez N, Duregotti E, Negro S, Henke T, Rossetto O, Binz T, Pirazzini M. Botulinum neurotoxin C mutants reveal different effects of syntaxin or SNAP-25 proteolysis on neuromuscular transmission. PLoS Pathog 2017; 13:e1006567. [PMID: 28800600 PMCID: PMC5568444 DOI: 10.1371/journal.ppat.1006567] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/23/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022] Open
Abstract
Botulinum neurotoxin serotype C (BoNT/C) is a neuroparalytic toxin associated with outbreaks of animal botulism, particularly in birds, and is the only BoNT known to cleave two different SNARE proteins, SNAP-25 and syntaxin. BoNT/C was shown to be a good substitute for BoNT/A1 in human dystonia therapy because of its long lasting effects and absence of neuromuscular damage. Two triple mutants of BoNT/C, namely BoNT/C S51T/R52N/N53P (BoNT/C α-51) and BoNT/C L200W/M221W/I226W (BoNT/C α-3W), were recently reported to selectively cleave syntaxin and have been used here to evaluate the individual contribution of SNAP-25 and syntaxin cleavage to the effect of BoNT/C in vivo. Although BoNT/C α-51 and BoNT/C α-3W toxins cleave syntaxin with similar efficiency, we unexpectedly found also cleavage of SNAP-25, although to a lesser extent than wild type BoNT/C. Interestingly, the BoNT/C mutants exhibit reduced lethality compared to wild type toxin, a result that correlated with their residual activity against SNAP-25. In spite of this, a local injection of BoNT/C α-51 persistently impairs neuromuscular junction activity. This is due to an initial phase in which SNAP-25 cleavage causes a complete blockade of neurotransmission, and to a second phase of incomplete impairment ascribable to syntaxin cleavage. Together, these results indicate that neuroparalysis of BoNT/C at the neuromuscular junction is due to SNAP-25 cleavage, while the proteolysis of syntaxin provides a substantial, but incomplete, neuromuscular impairment. In light of this evidence, we discuss a possible clinical use of BoNT/C α-51 as a botulinum neurotoxin endowed with a wide safety margin and a long lasting effect. The seven established Botulinum Neurotoxins serotypes (BoNT/A to G) and the many BoNT subtypes, the causative agents of botulism, are the most poisonous substances known (lethal doses in the low ng/kg range). Due to their toxicological properties, BoNTs are Janus-faced toxins: potent pathogenic factors and potential bioterrorism agents as well as safe and efficacious therapeutics. BoNTs exert their neuroparalytic action by cleaving SNARE proteins, either SNAP-25 or synaptobrevin/VAMP, which mediate neurotransmitter release at the neuromuscular junction; BoNT/C is the only serotype shown to cleave SNAP-25 and syntaxin-1 in vitro. Our study shows for the first time that this parallel cleavage also occurs in vivo. By using mutated toxins reported to be syntaxin-selective, we found that SNAP-25 proteolysis at the neuromuscular junction is the key determinant of BoNT/C lethality as it completely blocks nerve-muscle transmission. Conversely, syntaxin-1 cleavage only attenuates nerve terminal activity without inactivating the synapse, leading to only a partial decrease of neuromuscular functionality. As a result, the BoNT/C mutants have dramatically reduced lethality, but still modulate neuromuscular junction activity upon intramuscular injection. This aspect is particularly relevant considering the possible use of syntaxin-specific BoNT/C derivatives to improve the present clinical utilization of BoNTs.
Collapse
Affiliation(s)
- Giulia Zanetti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefan Sikorra
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Nadja Krez
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Elisa Duregotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tina Henke
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Thomas Binz
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- * E-mail:
| |
Collapse
|
29
|
Yao G, Lam KH, Weisemann J, Peng L, Krez N, Perry K, Shoemaker CB, Dong M, Rummel A, Jin R. A camelid single-domain antibody neutralizes botulinum neurotoxin A by blocking host receptor binding. Sci Rep 2017; 7:7438. [PMID: 28785006 PMCID: PMC5547058 DOI: 10.1038/s41598-017-07457-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/23/2017] [Indexed: 01/07/2023] Open
Abstract
Antibody treatment is currently the only available countermeasure for botulism, a fatal illness caused by flaccid paralysis of muscles due to botulinum neurotoxin (BoNT) intoxication. Among the seven major serotypes of BoNT/A-G, BoNT/A poses the most serious threat to humans because of its high potency and long duration of action. Prior to entering neurons and blocking neurotransmitter release, BoNT/A recognizes motoneurons via a dual-receptor binding process in which it engages both the neuron surface polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Previously, we identified a potent neutralizing antitoxin against BoNT/A1 termed ciA-C2, derived from a camelid heavy-chain-only antibody (VHH). In this study, we demonstrate that ciA-C2 prevents BoNT/A1 intoxication by inhibiting its binding to neuronal receptor SV2. Furthermore, we determined the crystal structure of ciA-C2 in complex with the receptor-binding domain of BoNT/A1 (HCA1) at 1.68 Å resolution. The structure revealed that ciA-C2 partially occupies the SV2-binding site on HCA1, causing direct interference of HCA1 interaction with both the N-glycan and peptide-moiety of SV2. Interestingly, this neutralization mechanism is similar to that of a monoclonal antibody in clinical trials, despite that ciA-C2 is more than 10-times smaller. Taken together, these results enlighten our understanding of BoNT/A1 interactions with its neuronal receptor, and further demonstrate that inhibiting toxin binding to the host receptor is an efficient countermeasure strategy.
Collapse
Affiliation(s)
- Guorui Yao
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Jasmin Weisemann
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Lisheng Peng
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Nadja Krez
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois, USA
| | - Charles B Shoemaker
- Department of Infectious Diseases and Global Health, Tufts Clinical and Translational Science Institute, North Grafton, Massachusetts, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California, USA.
| |
Collapse
|
30
|
Zornetta I, Scorzeto M, Mendes Dos Reis PV, De Lima ME, Montecucco C, Megighian A, Rossetto O. Electrophysiological Characterization of the Antarease Metalloprotease from Tityus serrulatus Venom. Toxins (Basel) 2017; 9:E81. [PMID: 28264432 PMCID: PMC5371836 DOI: 10.3390/toxins9030081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 12/14/2022] Open
Abstract
Scorpions are among the oldest venomous living organisms and the family Buthidae is the largest and most medically relevant one. Scorpion venoms include many toxic peptides, but recently, a metalloprotease from Tityus serrulatus called antarease was reported to be capable of cleaving VAMP2, a protein involved in the neuroparalytic syndromes of tetanus and botulism. We have produced antarease and an inactive metalloprotease mutant in a recombinant form and analyzed their enzymatic activity on recombinant VAMP2 in vitro and on mammalian and insect neuromuscular junction. The purified recombinant antarease paralyzed the neuromuscular junctions of mice and of Drosophila melanogaster whilst the mutant was inactive. We were unable to demonstrate any cleavage of VAMP2 under conditions which leads to VAMP proteolysis by botulinum neurotoxin type B. Antarease caused a reduced release probability, mainly due to defects upstream of the synaptic vesicles fusion process. Paired pulse experiments indicate that antarease might proteolytically inactivate a voltage-gated calcium channel.
Collapse
Affiliation(s)
- Irene Zornetta
- Dipartimento di Scienze Biomediche and Istituto CNR di Neuroscienze, Università di Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Michele Scorzeto
- Dipartimento di Scienze Biomediche and Istituto CNR di Neuroscienze, Università di Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Pablo Victor Mendes Dos Reis
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| | - Maria E De Lima
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| | - Cesare Montecucco
- Dipartimento di Scienze Biomediche and Istituto CNR di Neuroscienze, Università di Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Aram Megighian
- Dipartimento di Scienze Biomediche and Istituto CNR di Neuroscienze, Università di Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Ornella Rossetto
- Dipartimento di Scienze Biomediche and Istituto CNR di Neuroscienze, Università di Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy.
| |
Collapse
|
31
|
BoNT/AB hybrid maintains similar duration of paresis as BoNT/A wild-type in murine running wheel assay. Neurotoxicology 2016; 59:1-8. [PMID: 28043867 DOI: 10.1016/j.neuro.2016.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/15/2016] [Accepted: 12/27/2016] [Indexed: 11/21/2022]
Abstract
The highly potent Botulinum neurotoxins (BoNT) are successful drugs to treat neuromuscular disorders. Efforts are being made to further reduce the injected BoNT dose and to lengthen the interval between treatments. Detailed knowledge of the BoNT structure-activity relationship (SAR) allows combining the best features of the different BoNT serotypes. Of all seven BoNT serotypes A-G, BoNT/A displays the highest potency despite low neuronal binding affinity, while BoNT/B exhibits much higher affinity. Recently, a new BoNT/AB hybrid (AABB) was constructed comprising the catalytic and translocation domain of BoNT/A and the 50kDa cell binding domain of BoNT/B. Here, we compared BoNT/A wild-type (AAAA) and AABB with regard to ex vivo potency and in vivo potency, efficacy and duration of action using the mouse phrenic nerve hemidiaphragm assay and the murine running wheel assay, respectively. The ex vivo potency of AABB was found to be 8.4-fold higher than that of AAAA. For the latter, two and 5 pg each of AAAA and AABB, respectively, were bilaterally injected into the calf muscles and mouse running wheel performance was automatically monitored during the following weeks to determine potency, efficacy and duration. Mice displayed a dose-dependent impairment of running performance. AABB showed potency, efficacy and duration equal to AAAA demonstrating successful exchange of the cell binding domain. AABB might combine the higher potency and longer duration of BoNT/A with the target specificity for the autonomic nervous system of BoNT/B. AABB might therefore constitute an improved treatment option for acetylcholine-mediated autonomic disorders such as hypersalivation or hyperhidrosis.
Collapse
|
32
|
Biological toxins of potential bioterrorism risk: Current status of detection and identification technology. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Yao G, Zhang S, Mahrhold S, Lam KH, Stern D, Bagramyan K, Perry K, Kalkum M, Rummel A, Dong M, Jin R. N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A. Nat Struct Mol Biol 2016; 23:656-62. [PMID: 27294781 PMCID: PMC5033645 DOI: 10.1038/nsmb.3245] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/13/2016] [Indexed: 02/01/2023]
Abstract
Botulinum neurotoxin serotype A1 (BoNT/A1), a licensed drug widely used for medical and cosmetic applications, exerts its action by invading motoneurons. Here we report a 2.0-Å-resolution crystal structure of the BoNT/A1 receptor-binding domain in complex with its neuronal receptor, glycosylated human SV2C. We found that the neuronal tropism of BoNT/A1 requires recognition of both the peptide moiety and an N-linked glycan on SV2. This N-glycan-which is conserved in all SV2 isoforms across vertebrates-is essential for BoNT/A1 binding to neurons and for its potent neurotoxicity. The glycan-binding interface on SV2 is targeted by a human BoNT/A1-neutralizing antibody currently licensed as an antibotulism drug. Our studies reveal a new paradigm of host-pathogen interactions, in which pathogens exploit conserved host post-translational modifications, thereby achieving highly specific receptor binding while also tolerating genetic changes across multiple isoforms of receptors.
Collapse
Affiliation(s)
- Guorui Yao
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Sicai Zhang
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefan Mahrhold
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Kwok-ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Daniel Stern
- Centre for Biological Threats and Special Pathogens - Biological Toxins (ZBS3), Robert Koch-Institut, Berlin, Germany
| | - Karine Bagramyan
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, California USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois USA
| | - Markus Kalkum
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, California USA
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| |
Collapse
|
34
|
Botulinum Neurotoxin Serotype A Recognizes Its Protein Receptor SV2 by a Different Mechanism than Botulinum Neurotoxin B Synaptotagmin. Toxins (Basel) 2016; 8:toxins8050154. [PMID: 27196927 PMCID: PMC4885069 DOI: 10.3390/toxins8050154] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 11/23/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) exhibit extraordinary potency due to their exquisite neurospecificity, which is achieved by dual binding to complex polysialo-gangliosides and synaptic vesicle proteins. The luminal domain 4 (LD4) of the three synaptic vesicle glycoprotein 2 isoforms, SV2A‐C, identified as protein receptors for the most relevant serotype BoNT/A, binds within the 50 kDa cell binding domain HC of BoNT/A. Here, we deciphered the BoNT/A‐SV2 interactions in more detail. In pull down assays, the binding of HCA to SV2-LD4 isoforms decreases from SV2C >> SV2A > SV2B. A binding constant of 200 nM was determined for BoNT/A to rat SV2C-LD4 in GST pull down assay. A similar binding constant was determined by surface plasmon resonance for HCA to rat SV2C and to human SV2C, the latter being slightly lower due to the substitution L563F in LD4. At pH 5, as measured in acidic synaptic vesicles, the binding constant of HCA to hSV2C is increased more than 10-fold. Circular dichroism spectroscopy reveals that the quadrilateral helix of SV2C-LD4 already exists in solution prior to BoNT/A binding. Hence, the BoNT/A‐SV2C interaction is of different nature compared to BoNT/B‐Syt-II. In particular, the preexistence of the quadrilateral β-sheet helix of SV2 and its pH-dependent binding to BoNT/A via backbone–backbone interactions constitute major differences. Knowledge of the molecular details of BoNT/A‐SV2 interactions drives the development of high affinity peptides to counteract BoNT/A intoxications or to capture functional BoNT/A variants in innovative detection systems for botulism diagnostic.
Collapse
|
35
|
Weisemann J, Krez N, Fiebig U, Worbs S, Skiba M, Endermann T, Dorner MB, Bergström T, Muñoz A, Zegers I, Müller C, Jenkinson SP, Avondet MA, Delbrassinne L, Denayer S, Zeleny R, Schimmel H, Åstot C, Dorner BG, Rummel A. Generation and Characterization of Six Recombinant Botulinum Neurotoxins as Reference Material to Serve in an International Proficiency Test. Toxins (Basel) 2015; 7:5035-54. [PMID: 26703728 PMCID: PMC4690111 DOI: 10.3390/toxins7124861] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 12/22/2022] Open
Abstract
The detection and identification of botulinum neurotoxins (BoNT) is complex due to the existence of seven serotypes, derived mosaic toxins and more than 40 subtypes. Expert laboratories currently use different technical approaches to detect, identify and quantify BoNT, but due to the lack of (certified) reference materials, analytical results can hardly be compared. In this study, the six BoNT/A1–F1 prototypes were successfully produced by recombinant techniques, facilitating handling, as well as improving purity, yield, reproducibility and biosafety. All six BoNTs were quantitatively nicked into active di-chain toxins linked by a disulfide bridge. The materials were thoroughly characterized with respect to purity, identity, protein concentration, catalytic and biological activities. For BoNT/A1, B1 and E1, serotypes pathogenic to humans, the catalytic activity and the precise protein concentration were determined by Endopep-mass spectrometry and validated amino acid analysis, respectively. In addition, BoNT/A1, B1, E1 and F1 were successfully detected by immunological assays, unambiguously identified by mass spectrometric-based methods, and their specific activities were assigned by the mouse LD50 bioassay. The potencies of all six BoNT/A1–F1 were quantified by the ex vivo mouse phrenic nerve hemidiaphragm assay, allowing a direct comparison. In conclusion, highly pure recombinant BoNT reference materials were produced, thoroughly characterized and employed as spiking material in a worldwide BoNT proficiency test organized by the EQuATox consortium.
Collapse
Affiliation(s)
| | - Nadja Krez
- Toxogen GmbH, Feodor-Lynen-Str. 35, 30625 Hannover, Germany.
| | - Uwe Fiebig
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| | - Martin Skiba
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| | - Tanja Endermann
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| | - Martin B Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| | - Tomas Bergström
- Division of CBRN Defence and Security, Swedish Defence Research Agency (FOI), Cementvägen 20, 90182 Umeå, Sweden.
| | - Amalia Muñoz
- Joint Research Centre, Institute for Reference Materials and Measurements, European Commission, Retieseweg 111, 2440 Geel, Belgium.
| | - Ingrid Zegers
- Joint Research Centre, Institute for Reference Materials and Measurements, European Commission, Retieseweg 111, 2440 Geel, Belgium.
| | - Christian Müller
- Federal Department of Defence, Civil Protection and Sport-Spiez Laboratory, Austrasse 1, 3700 Spiez, Switzerland.
| | - Stephen P Jenkinson
- Federal Department of Defence, Civil Protection and Sport-Spiez Laboratory, Austrasse 1, 3700 Spiez, Switzerland.
| | - Marc-Andre Avondet
- Federal Department of Defence, Civil Protection and Sport-Spiez Laboratory, Austrasse 1, 3700 Spiez, Switzerland.
| | - Laurence Delbrassinne
- Scientific Service of Food-Borne Pathogens, Operational Directorate of Communicable and Infectious Diseases, Scientific Institute of Public Health (WIV-ISP), 1050 Brussels, Belgium.
| | - Sarah Denayer
- Scientific Service of Food-Borne Pathogens, Operational Directorate of Communicable and Infectious Diseases, Scientific Institute of Public Health (WIV-ISP), 1050 Brussels, Belgium.
| | - Reinhard Zeleny
- Joint Research Centre, Institute for Reference Materials and Measurements, European Commission, Retieseweg 111, 2440 Geel, Belgium.
| | - Heinz Schimmel
- Joint Research Centre, Institute for Reference Materials and Measurements, European Commission, Retieseweg 111, 2440 Geel, Belgium.
| | - Crister Åstot
- Division of CBRN Defence and Security, Swedish Defence Research Agency (FOI), Cementvägen 20, 90182 Umeå, Sweden.
| | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| | - Andreas Rummel
- Toxogen GmbH, Feodor-Lynen-Str. 35, 30625 Hannover, Germany.
| |
Collapse
|
36
|
Worbs S, Fiebig U, Zeleny R, Schimmel H, Rummel A, Luginbühl W, Dorner BG. Qualitative and Quantitative Detection of Botulinum Neurotoxins from Complex Matrices: Results of the First International Proficiency Test. Toxins (Basel) 2015; 7:4935-66. [PMID: 26703724 PMCID: PMC4690107 DOI: 10.3390/toxins7124857] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 11/16/2022] Open
Abstract
In the framework of the EU project EQuATox, a first international proficiency test (PT) on the detection and quantification of botulinum neurotoxins (BoNT) was conducted. Sample materials included BoNT serotypes A, B and E spiked into buffer, milk, meat extract and serum. Different methods were applied by the participants combining different principles of detection, identification and quantification. Based on qualitative assays, 95% of all results reported were correct. Successful strategies for BoNT detection were based on a combination of complementary immunological, MS-based and functional methods or on suitable functional in vivo/in vitro approaches (mouse bioassay, hemidiaphragm assay and Endopep-MS assay). Quantification of BoNT/A, BoNT/B and BoNT/E was performed by 48% of participating laboratories. It turned out that precise quantification of BoNT was difficult, resulting in a substantial scatter of quantitative data. This was especially true for results obtained by the mouse bioassay which is currently considered as "gold standard" for BoNT detection. The results clearly demonstrate the urgent need for certified BoNT reference materials and the development of methods replacing animal testing. In this context, the BoNT PT provided the valuable information that both the Endopep-MS assay and the hemidiaphragm assay delivered quantitative results superior to the mouse bioassay.
Collapse
Affiliation(s)
- Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany.
| | - Uwe Fiebig
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany.
| | - Reinhard Zeleny
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, 2440 Geel, Belgium.
| | - Heinz Schimmel
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, 2440 Geel, Belgium.
| | - Andreas Rummel
- toxogen GmbH, Feodor-Lynen-Strasse 35, 30625 Hannover, Germany.
| | | | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany.
| |
Collapse
|
37
|
Simon S, Fiebig U, Liu Y, Tierney R, Dano J, Worbs S, Endermann T, Nevers MC, Volland H, Sesardic D, Dorner MB. Recommended Immunological Strategies to Screen for Botulinum Neurotoxin-Containing Samples. Toxins (Basel) 2015; 7:5011-34. [PMID: 26703727 PMCID: PMC4690110 DOI: 10.3390/toxins7124860] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) cause the life-threatening neurological illness botulism in humans and animals and are divided into seven serotypes (BoNT/A–G), of which serotypes A, B, E, and F cause the disease in humans. BoNTs are classified as “category A” bioterrorism threat agents and are relevant in the context of the Biological Weapons Convention. An international proficiency test (PT) was conducted to evaluate detection, quantification and discrimination capabilities of 23 expert laboratories from the health, food and security areas. Here we describe three immunological strategies that proved to be successful for the detection and quantification of BoNT/A, B, and E considering the restricted sample volume (1 mL) distributed. To analyze the samples qualitatively and quantitatively, the first strategy was based on sensitive immunoenzymatic and immunochromatographic assays for fast qualitative and quantitative analyses. In the second approach, a bead-based suspension array was used for screening followed by conventional ELISA for quantification. In the third approach, an ELISA plate format assay was used for serotype specific immunodetection of BoNT-cleaved substrates, detecting the activity of the light chain, rather than the toxin protein. The results provide guidance for further steps in quality assurance and highlight problems to address in the future.
Collapse
Affiliation(s)
- Stéphanie Simon
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Uwe Fiebig
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany.
| | - Yvonne Liu
- Division of Bacteriology, National Institute for Biological Standards and Control, a Centre of Medicines & Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Rob Tierney
- Division of Bacteriology, National Institute for Biological Standards and Control, a Centre of Medicines & Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Julie Dano
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany.
| | - Tanja Endermann
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany.
| | - Marie-Claire Nevers
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Hervé Volland
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Dorothea Sesardic
- Division of Bacteriology, National Institute for Biological Standards and Control, a Centre of Medicines & Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Martin B Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany.
| |
Collapse
|