1
|
Singh S, Kim GH, Baek KR, Seo SO. Anti-Cancer Strategies Using Anaerobic Spore-Forming Bacteria Clostridium: Advances and Synergistic Approaches. Life (Basel) 2025; 15:465. [PMID: 40141809 PMCID: PMC11943571 DOI: 10.3390/life15030465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Despite ongoing advancements, cancer remains a significant global health concern, with a persistent challenge in identifying a definitive cure. While various cancer therapies have been developed and approved, offering treatments for smaller neoplasms, their efficacy diminishes in solid tumors and hypoxic environments, particularly for chemotherapy and radiation therapy. A novel approach, Clostridium-based therapy, has emerged as a promising candidate for current solid tumor treatments due to its unique affinity for the hypoxic tumor microenvironment. This review examines the potential of Clostridium in cancer treatment, encompassing direct tumor lysis, immune modulation, and synergistic effects with existing cancer therapies. Advancements in synthetic biology have further enhanced its potential through genetic modifications, such as the removal of alpha toxin gene from Clostridium novyi-NT, the implementation of targeted approaches, and reduction in systemic toxicity. Although preclinical and clinical studies have demonstrated that Clostridium-based treatments combined with other therapies hold promise for complete cancer eradication, challenges persist. Through this review, we also propose that the integration of various methods and technologies together with Clostridium-based therapy may lead to the complete eradication of cancer in the future.
Collapse
Affiliation(s)
- Saloni Singh
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea (G.-H.K.); (K.-R.B.)
| | - Geun-Hyung Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea (G.-H.K.); (K.-R.B.)
| | - Kwang-Rim Baek
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea (G.-H.K.); (K.-R.B.)
| | - Seung-Oh Seo
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea (G.-H.K.); (K.-R.B.)
- Research Institute of Food and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
2
|
Zhang F, Wang S, Yang J, Fraser K, Gibson JM, Wang C, Dordick JS, Tomatsidou A, Linhardt RJ, Wang L, Sun X. Characterization of heparin interactions with Clostridioides difficile toxins and its potential as anti-CDI therapeutics. Carbohydr Polym 2025; 351:123143. [PMID: 39779041 PMCID: PMC11783924 DOI: 10.1016/j.carbpol.2024.123143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is a life-threatening healthcare-associated infection occurring worldwide. C. difficile toxins (toxin A and toxin B) are the major virulence factors, causing CDI-related diarrhea and complications. Recent studies have shown that sulfated glycosaminoglcans (GAGs) are involved in mediating the cellular entry of these toxins. Although interactions between GAGs and toxins were reported, their binding kinetics and the structure features of glycans that facilitate toxin interaction have not been thoroughly studied. This research utilized surface plasmon resonance (SPR) to directly measure the kinetics of interactions between heparin and various toxins. Both toxin A and toxin B bind to heparin with high affinity (KD = 3.3 nM and 13.5 nM, respectively). SPR competition assay showed that both toxin A and B prefer binding to longer heparin chains and that all sulfation on the heparin chain is crucial for the heparin-toxin interaction. Finally, an in vitro assay showed that heparin and non-anticoagulant heparin inhibit the cell rounding caused by toxin A in HeLa cells.
Collapse
Affiliation(s)
- Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida Tampa, FL 33620, USA
| | - Jiyuan Yang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Keith Fraser
- Department of Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - James M Gibson
- Department of Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Chunyu Wang
- Department of Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Anastasia Tomatsidou
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida Tampa, FL 33620, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida Tampa, FL 33620, USA.
| |
Collapse
|
3
|
L'Huillier JC, Guo WA. The always evolving diagnosis and management of Clostridioides difficile colitis: What you need to know. J Trauma Acute Care Surg 2025; 98:357-367. [PMID: 39509684 DOI: 10.1097/ta.0000000000004474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
ABSTRACT The diagnosis, pharmacologic management, and surgical options for Clostridioides difficile infection (CDI) are rapidly evolving, which presents a challenge for the busy surgeon to remain up to date on the latest clinical guidelines. This review provides an evidence-based practical guide for CDI management tailored to the needs of surgeons and surgical intensivists. Historically, the diagnosis of CDI relied on slow cell culture cytotoxicity neutralization assays, but now, the rapidly resulting nucleic acid amplification tests and enzyme immunoassays have become mainstream. In terms of antibiotic therapy, metronidazole and oral vancomycin were the main "workhorse" antibiotics in the early 2000s, but large randomized controlled trials have now demonstrated that fidaxomicin produces superior results. Regarding surgical intervention, total abdominal colectomy was once the only procedure of choice; however, diverting loop ileostomy with colonic lavage is emerging as a viable alternative. Finally, novel adjuncts such as fecal microbiota transplantation and targeted therapy against toxin B (bezlotoxumab) are playing an increasingly important role in the management of CDI.
Collapse
Affiliation(s)
- Joseph C L'Huillier
- From the Department of Surgery (J.C.L., W.A.G.), Jacobs School of Medicine and Biomedical Sciences, and Division of Health Services Policy and Practice, Department of Epidemiology and Environmental Health (J.C.L.), School of Public Health and Health Professions, University at Buffalo; and Division of Trauma, Critical Care, and Acute Care Surgery, Department of Surgery (J.C.L., W.A.G.), Erie County Medical Center, Buffalo, New York
| | | |
Collapse
|
4
|
Ptaszyńska A, Macieja A, Rosińska-Lewandoska D, Bielec F, Machnicki P, Brauncajs M, Pastuszak-Lewandoska D. Molecular Epidemiology of Clostridioides difficile Infections in Patients Hospitalized in 2017-2019 at the Central Teaching Hospital of Medical University of Lodz, Central Poland. Antibiotics (Basel) 2025; 14:219. [PMID: 40149031 PMCID: PMC11939216 DOI: 10.3390/antibiotics14030219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives:Clostridioides difficile infection (CDI) represents a significant public health challenge globally, driven by its increasing prevalence, hypervirulent strains like ribotype 027 (RT027), and growing antibiotic resistance. This study aimed to evaluate the prevalence of RT027 and analyze molecular markers of vancomycin and metronidazole resistance in stool samples from CDI patients hospitalized in Poland between 2017 and 2019. Methods: A total of 200 stool samples from confirmed CDI cases were analyzed for the presence of RT027, vanA (vancomycin resistance), and nim (metronidazole resistance) genes. DNA was extracted, and a polymerase chain reaction (PCR) was conducted using specific primers. Statistical associations between RT027 and resistance genes were evaluated using chi-square tests and logistic regression. Results: RT027 was detected in 14% of samples. The vanA gene, indicative of vancomycin resistance, was found in 52.5% of samples, while the nim gene, associated with metronidazole resistance, was present in 1.5% of cases. Co-occurrence of RT027 with vanA was not statistically significant. The study revealed no significant association between RT027 and vanA. Also, no significant association was observed between RT027 and nim due to the latter's low prevalence. Conclusions: This study highlights a concerning prevalence of vanA among CDI cases, indicating widespread vancomycin resistance and challenging current treatment guidelines. While RT027 prevalence was moderate, no significant associations with vancomycin or metronidazole resistance were observed. These findings emphasize the need for molecular surveillance and improved antimicrobial stewardship to manage CDI effectively.
Collapse
Affiliation(s)
- Agata Ptaszyńska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland (P.M.); (M.B.); (D.P.-L.)
| | - Anna Macieja
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Dominika Rosińska-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland (P.M.); (M.B.); (D.P.-L.)
| | - Filip Bielec
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland (P.M.); (M.B.); (D.P.-L.)
- Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Piotr Machnicki
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland (P.M.); (M.B.); (D.P.-L.)
| | - Małgorzata Brauncajs
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland (P.M.); (M.B.); (D.P.-L.)
- Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Dorota Pastuszak-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland (P.M.); (M.B.); (D.P.-L.)
| |
Collapse
|
5
|
Alexiou S, Diakou A, Kachrimanidou M. The Role of Clostridioides difficile Within the One Health Framework: A Review. Microorganisms 2025; 13:429. [PMID: 40005794 PMCID: PMC11858594 DOI: 10.3390/microorganisms13020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Clostridioides difficile is the leading cause of antibiotic-associated diarrhea in hospitalized patients. In recent years, the incidence of C. difficile infection (CDI) has increased globally, with a notable rise in community-associated CDI (CA-CDI). The presence of the microorganism in animals, the environment, and food suggests that these sources may contribute to the spread of the infection in the community. This review applies a One Health approach, integrating human, animal, and environmental health, to provide a comprehensive strategy for understanding and managing this pathogen. Findings reveal the widespread dissemination of C. difficile in animals, the environment, and food. The predominant PCR ribotypes identified were RTs 078 and 014/020, followed by RTs 126, 001, 002, 009, 010, and 033. C. difficile strains exhibited resistance to multiple antimicrobial agents, including clindamycin, erythromycin, fluoroquinolones, cephalosporins, and tetracyclines. Discriminative typing methods, such as whole-genome sequencing, revealed clonal relationships between C. difficile strains from humans and animals, indicating either direct transmission or a common environmental source of infection. The high genetic similarity between isolates from the environment and humans indicates potential environmental contamination. Additionally, clusters of C. difficile strains found in food and humans indicate a possible foodborne transmission route. This review summarizes the current knowledge on the role of Clostridioides difficile within the One Health framework.
Collapse
Affiliation(s)
- Sotiris Alexiou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anastasia Diakou
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Melania Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
6
|
Verhey JT, Boddu SP, Tarabichi S, Deckey DG, Christopher ZK, Spangehl MJ, Clarke HD, Bingham JS. Gut-Joint Axis: History of Clostridium Difficile Infection Increases the Risk of Periprosthetic Joint Infection After Total Knee Arthroplasty. J Arthroplasty 2025:S0883-5403(25)00142-1. [PMID: 39952304 DOI: 10.1016/j.arth.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Increasing evidence suggests that the gut microbiome is important in immune system function and influences the risk of periprosthetic joint infection (PJI) after total knee arthroplasty (TKA). A Clostridium difficile infection (CDI) is an indicator of poor gut microbiome health. However, no prior studies have evaluated the independent risk of CDI on the rates of PJI after TKA. METHODS Patients undergoing TKA from 2010 to 2021 were identified in a patient claims database (n = 1,416,362). Patients who had a history of CDI within 2 years prior to TKA (n = 5,170) were propensity-matched on a 1:4 basis to those who did not have a diagnosis of CDI. The exposed CDI cohort was also stratified into four groups by time of CDI before TKA (0 to 3 months, 3 to 6 months, 6 to 12 months, and 1 to 2 years). The risk of PJI within 2 years following TKA was compared between the exposed and control cohorts. Logistic regressions were used to evaluate the association of CDI occurring in each time interval prior to TKA and PJI after TKA. RESULTS A CDI within 2 years prior to TKA was independently associated with higher odds of PJI (odds ratio [OR]: 2.1; 95% confidence interval [CI]: 1.91 to 2.36). In addition, we observed a stepwise increase in the risk of PJI by the timing of preoperative CDI infection, with patients who had a diagnosis of CDI within 3 months of their primary TKA exhibiting the highest odds of developing PJI (OR: 4.19; 95% CI: 3.51 to 5.02). Additionally, patients who had a diagnosis of CDI within 2 years of undergoing primary TKA were significantly more likely to experience a subsequent episode of CDI at the latest follow-up (OR: 25.9; 95% CI: 22.3 to 30.1). CONCLUSIONS A CDI prior to TKA is an independent risk factor for PJI. Closer proximity of CDI to surgery is associated with a "dose-dependent" increased PJI risk. Surgeons should consider delaying TKA until a minimum of 1 year after a diagnosis of CDI.
Collapse
Affiliation(s)
- Jens T Verhey
- Department of Orthopaedic Surgery, Mayo Clinic Arizona, Phoenix, Arizona
| | - Sayi P Boddu
- Department of Orthopaedic Surgery, Mayo Clinic Arizona, Phoenix, Arizona
| | - Saad Tarabichi
- Department of Orthopaedic Surgery, Mayo Clinic Arizona, Phoenix, Arizona
| | - David G Deckey
- Department of Orthopaedic Surgery, Mayo Clinic Arizona, Phoenix, Arizona
| | | | - Mark J Spangehl
- Department of Orthopaedic Surgery, Mayo Clinic Arizona, Phoenix, Arizona
| | - Henry D Clarke
- Department of Orthopaedic Surgery, Mayo Clinic Arizona, Phoenix, Arizona
| | - Joshua S Bingham
- Department of Orthopaedic Surgery, Mayo Clinic Arizona, Phoenix, Arizona
| |
Collapse
|
7
|
Green SB, Albrecht B, Chapin R, Walters J. Toxin inhibition: Examining tetracyclines, clindamycin, and linezolid. Am J Health Syst Pharm 2025; 82:164-173. [PMID: 39244685 DOI: 10.1093/ajhp/zxae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
PURPOSE The purpose of this review is to discuss the role of toxin inhibition in select infections and to provide recommendations for appropriate antimicrobial selection when toxin inhibition is indicated. SUMMARY For select organisms, specifically Clostridioides difficile, Staphylococcus aureus, and Streptococcus pyogenes, toxin production plays an integral role in overall disease pathogenesis and progression. Some expert recommendations include utilization of an antimicrobial with toxin inhibition properties as primary or adjunctive therapy for certain infections due to these organisms, but evolving data have made the choice of antitoxin agent less clear. Clindamycin has been the long-standing standard of care agent for toxin inhibition in necrotizing S. aureus and S. pyogenes infections, but linezolid shows promise as an alternative either in the setting of drug shortages or simply when clindamycin is not optimal, while tetracyclines require further study for this indication. The role for adjunctive toxin inhibition in C. difficile infection (CDI) is less defined, as current first-line therapies already have antitoxin properties. CONCLUSION Toxin inhibition plays a key role in successful management of patients with infections due to toxin-producing organisms. Adjunctive therapy with a tetracycline could be considered in severe, fulminant CDI, but the associated benefit is variable. The benefit of antitoxin treatment for necrotizing S. aureus and S. pyogenes has been more consistently documented. Recent studies support linezolid as an alternative to clindamycin as an adjunctive S. aureus treatment or as monotherapy when appropriate.
Collapse
Affiliation(s)
- Sarah B Green
- Department of Pharmacy, Emory University Hospital, Atlanta, GA, USA
| | | | - Ryan Chapin
- Department of Pharmacy, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jillian Walters
- Department of Pharmacy, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| |
Collapse
|
8
|
Hasan MK, Alaribe O, Govind R. Regulatory networks: Linking toxin production and sporulation in Clostridioides difficile. Anaerobe 2025; 91:102920. [PMID: 39521117 PMCID: PMC11811957 DOI: 10.1016/j.anaerobe.2024.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Clostridioides difficile has been recognized as an important nosocomial pathogen that causes diarrheal disease as a consequence of antibiotic exposure and costs the healthcare system billions of dollars every year. C. difficile enters the host gut as dormant spores, germinates into vegetative cells, colonizes the gut, and produces toxins TcdA and/or TcdB, leading to diarrhea and inflammation. Spores are the primary transmission vehicle, while the toxins A and B directly contribute to the disease. Thus, toxin production and sporulation are the key traits that determine the success of C. difficile as a pathogen. Both toxins and spores are produced during the late stationary phase in response to various stimuli. This review provides a comprehensive analysis of the current knowledge on the molecular mechanisms, highlighting the regulatory pathways that interconnect toxin gene expression and sporulation in C. difficile. The roles of carbohydrates, amino acids and other nutrients and signals, in modulating these virulence traits through global regulatory networks are discussed. Understanding the links within the gene regulatory network is crucial for developing effective therapeutic strategies against C. difficile infections, potentially leading to targeted interventions that disrupt the co-regulation of toxin production and sporulation.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Oluchi Alaribe
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
9
|
Thomas S, Bittinger K, Livornese LL. Utilizing the biosimulator to analyze the environmental microbiome within the intensive care units of a hospital. Biotechniques 2025; 77:66-75. [PMID: 40012336 DOI: 10.1080/07366205.2025.2467550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/12/2025] [Indexed: 02/28/2025] Open
Abstract
Hospital-acquired infections (HAIs), also known as nosocomial infections, are illnesses contracted during treatment at a healthcare facility and can result in severe or life-threatening complications. HAIs are caused by microorganisms that exhibit resistance to standard antibiotics. HAIs can lead to severe complications, longer stays, and increased mortality, particularly in vulnerable patients. In our previous study, we demonstrated the ability of an engraved Petri dish, referred to as a "biosimulator," to induce adhesion of non-adherent cells and the microbiome. This paper explores the use of the biosimulator to elucidate the microbiome composition within intensive care units (ICUs) in a hospital setting. The biosimulator, with a nutrient-rich bacterial growth medium, was placed in ICUs for 24 h, then incubated for three days under aerobic and anaerobic conditions. Using 16S rRNA sequencing, we profiled the ICU microbiome from multiple samples. Our findings showed that ICU microbiomes closely mirrored those of patients, with microorganisms in the ICU exhibiting stronger interrelationships than in control conditions. The combined use of the biosimulator and profiling offers an effective approach for analyzing and understanding microbiome changes in healthcare settings, particularly in high-risk areas, such as ICUs.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
- Department of Gastroenterology, Lankenau Medical Center, Wynnewood, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
10
|
Andrei C, Zanfirescu A, Ormeneanu VP, Negreș S. Evaluating the Efficacy of Secondary Metabolites in Antibiotic-Induced Dysbiosis: A Narrative Review of Preclinical Studies. Antibiotics (Basel) 2025; 14:138. [PMID: 40001382 PMCID: PMC11852119 DOI: 10.3390/antibiotics14020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Drug-induced dysbiosis, particularly from antibiotics, has emerged as a significant contributor to chronic diseases by disrupting gut microbiota composition and function. Plant-derived secondary metabolites, such as polysaccharides, polyphenols, alkaloids, and saponins, show potential in mitigating antibiotic-induced dysbiosis. This review aims to consolidate evidence from preclinical studies on the therapeutic effects of secondary metabolites in restoring gut microbial balance, emphasizing their mechanisms and efficacy. METHODS A narrative review was conducted using PubMed, Scopus, and Web of Science. Studies were selected based on specific inclusion criteria, focusing on animal models treated with secondary metabolites for antibiotic-induced dysbiosis. The search terms included "gut microbiota", "antibiotics", and "secondary metabolites". Data extraction focused on microbial alterations, metabolite-specific effects, and mechanisms of action. Relevant findings were systematically analyzed and summarized. RESULTS Secondary metabolites demonstrated diverse effects in mitigating the impact of dysbiosis by modulating gut microbial composition, reducing inflammation, and supporting host biological markers. Polysaccharides and polyphenols restored the Firmicutes/Bacteroidetes ratio, increased beneficial taxa such as Lactobacillus and Bifidobacterium, and suppressed pathogenic bacteria like Escherichia-Shigella. Metabolites such as triterpenoid saponins enhanced gut barrier integrity by upregulating tight junction proteins, while alkaloids reduced inflammation by modulating proinflammatory cytokines (e.g., TNF-α, IL-1β). These metabolites also improved short-chain fatty acid production, which is crucial for gut and systemic health. While antibiotic-induced dysbiosis was the primary focus, other drug classes (e.g., PPIs, metformin) require further investigation. CONCLUSIONS Plant-derived secondary metabolites show promise in managing antibiotic-induced dysbiosis by restoring microbial balance, reducing inflammation, and improving gut barrier function. Future research should explore their applicability to other types of drug-induced dysbiosis and validate findings in human studies to enhance clinical relevance.
Collapse
Affiliation(s)
| | - Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.A.); (V.-P.O.); (S.N.)
| | | | | |
Collapse
|
11
|
Kim P, Joe S, Kim H, Jeong H, Park S, Song J, Kim W, Lee YG. Hidden Partner of Immunity: Microbiome as an Innovative Companion in Immunotherapy. Int J Mol Sci 2025; 26:856. [PMID: 39859572 PMCID: PMC11765694 DOI: 10.3390/ijms26020856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Recent studies have highlighted that the microbiome is the essential factor that can modulate the clinical activity of immunotherapy. However, the role of the microbiome varies significantly across different immunotherapies, suggesting that it is critical to understand the precise function of the microbiome in each type of immunotherapy. While many previous studies primarily focus on summarizing the role of the microbiome in immune checkpoint inhibitors, we seek to explore a novel aspect of the microbiome in other immunotherapies such as mesenchymal stem cell therapy, chimeric antigen receptor T cell therapy, and antibodies-based therapy (e.g., adalimumab, infliximab, bevacizumab, denosumab, etc.) which are rarely summarized in previous reviews. Moreover, we highlight innovative strategies for utilizing microbiome and microbial metabolites to enhance the clinical response of immunotherapy. Collectively, we believe that our manuscript will provide novel insights and innovative approaches to the researchers, which could drive the development of the next generation of personalized therapeutic interventions using microbiomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wondong Kim
- Correspondence: (W.K.); (Y.G.L.); Tel.: +82-31-400-5817 (W.K.); +82-31-400-5814 (Y.G.L.)
| | - Yong Gu Lee
- Correspondence: (W.K.); (Y.G.L.); Tel.: +82-31-400-5817 (W.K.); +82-31-400-5814 (Y.G.L.)
| |
Collapse
|
12
|
Sholeh M, Beig M, Kouhsari E, Rohani M, Katouli M, Badmasti F. Global insights into the genome dynamics of Clostridioides difficile associated with antimicrobial resistance, virulence, and genomic adaptations among clonal lineages. Front Cell Infect Microbiol 2025; 14:1493225. [PMID: 39882343 PMCID: PMC11774869 DOI: 10.3389/fcimb.2024.1493225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Background Clostridioides difficile is a significant cause of healthcare-associated infections, with rising antimicrobial resistance complicating treatment. This study offers a genomic analysis of C. difficile, focusing on sequence types (STs), global distribution, antibiotic resistance genes, and virulence factors in its chromosomal and plasmid DNA. Methods A total of 19,711 C. difficile genomes were retrieved from GenBank. Prokka was used for genome annotation, and multi-locus sequence typing (MLST) identified STs. Pan-genome analysis with Roary identified core and accessory genes. Antibiotic resistance genes, virulence factors, and toxins were detected using the CARD and VFDB databases, and the ABRicate software. Statistical analyses and visualizations were performed in R. Results Among 366 identified STs, ST1 (1,326 isolates), ST2 (1,141), ST11 (893), and ST42 (763) were predominant. Trends of genome streamlining included reductions in chromosomal length, gene count, protein-coding genes, and pseudogenes. Common antibiotic resistance genes-cdeA (99.46%), cplR (99.63%), and nimB (99.67%)-were nearly ubiquitous. Rare resistance genes like blaCTX-M-2, cfxA3, and blaZ appeared in only 0.005% of genomes. Vancomycin susceptibility-reducing vanG cluster genes were detected at low frequencies. Virulence factors showed variability, with highly prevalent genes such as zmp1 (99.62%), groEL (99.60%), and rpoB/rpoB2 (99.60%). Moderately distributed genes included cwp66 (54.61%) and slpA (79.02%). Toxin genes tcdE (91.26%), tcdC (89.67%), and tcdB (89.06%) were widespread, while binary toxin genes cdtA (26.19%) and cdtB (26.26%) were less common. Toxin gene prevalence, particularly tcdA and tcdB, showed a gradual decline over time, with sharper reductions for cdtA and cdtB. Gene presence patterns (GPP-1) for resistance, virulence, and toxin genes were primarily linked to ST2, ST42, and ST8. Conclusion This study highlights C. difficile's adaptability and genetic diversity. The decline in toxin genes reflects fewer toxigenic isolates, but the bacterium's increasing preserved resistance factors and virulence genes enable its rapid evolution. ST2, ST42, and ST8 dominate globally, emphasizing the need for ongoing monitoring.
Collapse
Affiliation(s)
- Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Katouli
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Darvishi M, Rafsanjani SMRH, Nouri M, Abbaszadeh S, Heidari-Soureshjani S, Kasiri K, Rahimian G. Biological Mechanisms of Polyphenols against Clostridium Difficile: A Systematic Review. Infect Disord Drug Targets 2025; 25:e18715265313944. [PMID: 39234903 DOI: 10.2174/0118715265313944240726115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Clostridium difficile is an opportunistic infection that can lead to antibiotic- associated diarrhea and toxic megacolon. OBJECTIVE This systematic review study aimed to investigate polyphenols' antibacterial and antitoxin properties and their effects on reducing complications related to C. difficile Infections (CDI). METHODS This systematic review was conducted following the PRISMA guideline 2020. Multiple databases, including Web of Science, PubMed, Cochrane Library, EMBASE, and Scopus, were searched thoroughly for existing literature. After considering the inclusion and exclusion criteria for the review, 18 articles were included. Data were collected and registered into an Excel file for further investigations and conclusions. RESULTS Polyphenols by reducing Reactive Oxygen Species (ROS) levels, increasing inflammatory factor Interleukin 10 (IL-10), reducing Nuclear Factor kappa B (NF-κB) and Tumour Necrosis Factor- α (TNF-α), IL-6, IL-1α, IL-1β, Granulocyte Colony-stimulating Factor (G-CSF), and Monocyte Chemoattractant Protein-1 (MCP-1) and Macrophage Inflammatory Protein-1 alpha (MIP-1α) levels, and regulating the expression of Bcl-2 and Bax, make the growth and replication conditions of C. difficile more difficult and prevent it from producing toxins. Furthermore, polyphenols can exhibit prebiotic properties, promoting the growth of beneficial Bifidobacterium and Lactobacillus species and consequently regulating gut microbiota, exerting antimicrobial activities against C. difficile. They also induce their beneficial effects by inhibiting the production of C. difficile TcdA and TcdB. CONCLUSION Polyphenols have been reported to inhibit C. difficile growth and toxin production by several mechanisms in preclinical studies. However, more clinical studies are needed to investigate their safety in humans.
Collapse
Affiliation(s)
- Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), School of Aerospace and Subaquatic Medicine, Aja University of Medical Sciences, Tehran, Iran
| | | | - Majid Nouri
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Aja University of Medical Sciences, Tehran, Iran
| | - Saber Abbaszadeh
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Karamali Kasiri
- Department of Pediatrics, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ghorbanali Rahimian
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
14
|
Conrad P, Brahmanand R, Yadav S, Gener KR, Biglione A. C. difficile Infection Complicated by a Large Pleural Effusion. Cureus 2025; 17:e77460. [PMID: 39958076 PMCID: PMC11826493 DOI: 10.7759/cureus.77460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2025] [Indexed: 02/18/2025] Open
Abstract
Clostridiodes difficile is a gram-positive, spore-forming obligate anaerobe bacillus found in the intestines of healthy individuals without signs of disease. It may cause diarrhea after antibiotic use due to the eradication of the normal gut flora. Most cases resolve with proper treatment, but complications may arise. This case report is about a hospitalized patient who acquired a C. difficile infection after taking ceftriaxone, vancomycin, and linezolid for a cellulitis infection. During his hospitalization, the patient developed dyspnea with decreased breath sounds in the right lower lung lobe. A large pleural effusion in the right lung was observed on imaging, and analysis of the pleural fluid after thoracentesis revealed an exudative pleural effusion likely resulting from the C. difficile infection. The possible physiopathological mechanisms of pleural effusion in the setting of C. difficile infection are discussed.
Collapse
Affiliation(s)
- Paige Conrad
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Ranjeeta Brahmanand
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Sudeep Yadav
- Medicine, Univsersity of Chicago Pritzker School of Medicine, Chicago, USA
- Internal Medicine, B. P. Koirala Institute of Health Sciences, Dharan, NPL
| | - Katrina R Gener
- Internal Medicine, Wellington Regional Medical Center, Wellington, USA
| | | |
Collapse
|
15
|
Wei J, Liu C, Qin D, Ren F, Duan J, Chen T, Wu A. Targeting inflammation and gut microbiota with antibacterial therapy: Implications for central nervous system health. Ageing Res Rev 2024; 102:102544. [PMID: 39419400 DOI: 10.1016/j.arr.2024.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The complex symbiotic relationship between inflammation, the gut microbiota, and the central nervous system (CNS) has become a pivotal focus of contemporary biomedical research. Inflammation, as a physiological defense mechanism, plays a dual role as both a protective and pathological factor, and is intricately associated with gut microbiota homeostasis, often termed the "second brain." The gutbrain axis (GBA) exemplifies this multifaceted interaction, where gut health exerts significantly regulatory effects on CNS functions. Antibacterial therapies represent both promising and challenging strategies for modulating inflammation and gut microbiota composition to confer CNS benefits. However, while such therapies may exert positive modulatory effects on the gut microbiota, they also carry the potential to disrupt microbial equilibrium, potentially exacerbating neurological dysfunction. Recent advances have provided critical insights into the therapeutic implications of antibacterial interventions; nevertheless, the application of these therapies in the context of CNS health warrants a judicious and evidence-based approach. As research progresses, deeper investigation into the microbial-neural interface is essential to fully realize the potential of therapies targeting inflammation and the gut microbiota for CNS health. Future efforts should focus on refining antibacterial interventions to modulate the gut microbiota while minimizing disruption to microbial balance, thereby reducing risks and enhancing efficacy in CNS-related conditions. In conclusion, despite challenges, a more comprehensive understanding of the GBA, along with precise modulation through targeted antibacterial therapies, offers significant promise for advancing CNS disorder treatment. Continued research in this area will lead to innovative interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Jing Wei
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China; School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Chunmeng Liu
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China.
| | - Junguo Duan
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Ting Chen
- School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Naz F, Hagspiel N, Young MK, Uddin J, Tyus D, Boone R, Brown AC, Ramakrishnan G, Rigo I, Madden GR, Petri WA. IL-33 protects from recurrent C. difficile infection by restoration of humoral immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.16.623943. [PMID: 39605647 PMCID: PMC11601440 DOI: 10.1101/2024.11.16.623943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Clostridioides difficile infection (CDI) recurs in one of five patients. Monoclonal antibodies targeting the virulence factor TcdB reduce disease recurrence, suggesting that an inadequate anti-TcdB response to CDI leads to recurrence. In patients with CDI, we discovered that IL-33 measured at diagnosis predicts future recurrence, leading us to test the role of IL-33 signaling in the induction of humoral immunity during CDI. Using a mouse recurrence model, IL-33 was demonstrated to be integral for anti-TcdB antibody production. IL-33 acted via ST2+ ILC2 cells, facilitating germinal center T follicular helper (GC-Tfh) cell generation of antibodies. IL-33 protection from reinfection was antibody-dependent, as μMT KO mice and mice treated with anti-CD20 mAb were not protected. These findings demonstrate the critical role of IL-33 in generating humoral immunity to prevent recurrent CDI.
Collapse
Affiliation(s)
- Farha Naz
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - Nicholas Hagspiel
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - Mary K. Young
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - Jashim Uddin
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - David Tyus
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - Rachel Boone
- Department of Microbiology, Immunology and Cancer Biology, Charlottesville, Virginia, USA
| | - Audrey C. Brown
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - Girija Ramakrishnan
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - Isaura Rigo
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - Gregory R. Madden
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - William A. Petri
- Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology and Cancer Biology, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
17
|
Franza M, Varricchio R, Alloisio G, De Simone G, Di Bella S, Ascenzi P, di Masi A. Zebrafish ( Danio rerio) as a Model System to Investigate the Role of the Innate Immune Response in Human Infectious Diseases. Int J Mol Sci 2024; 25:12008. [PMID: 39596075 PMCID: PMC11593600 DOI: 10.3390/ijms252212008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The zebrafish (Danio rerio) has emerged as a valuable model for studying host-pathogen interactions due to its unique combination of characteristics. These include extensive sequence and functional conservation with the human genome, optical transparency in larvae that allows for high-resolution visualization of host cell-microbe interactions, a fully sequenced and annotated genome, advanced forward and reverse genetic tools, and suitability for chemical screening studies. Despite anatomical differences with humans, the zebrafish model has proven instrumental in investigating immune responses and human infectious diseases. Notably, zebrafish larvae rely exclusively on innate immune responses during the early stages of development, as the adaptive immune system becomes fully functional only after 4-6 weeks post-fertilization. This window provides a unique opportunity to isolate and examine infection and inflammation mechanisms driven by the innate immune response without the confounding effects of adaptive immunity. In this review, we highlight the strengths and limitations of using zebrafish as a powerful vertebrate model to study innate immune responses in infectious diseases. We will particularly focus on host-pathogen interactions in human infections caused by various bacteria (Clostridioides difficile, Staphylococcus aureus, and Pseudomonas aeruginosa), viruses (herpes simplex virus 1, SARS-CoV-2), and fungi (Aspergillus fumigatus and Candida albicans).
Collapse
Affiliation(s)
- Maria Franza
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Romualdo Varricchio
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Giulia Alloisio
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy;
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
- Accademia Nazionale dei Lincei, 00165 Roma, Italy
| | - Alessandra di Masi
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
- Centro Linceo Interdisciplinare “Beniamino Segre”, Accademia Nazionale dei Lincei, 00165 Roma, Italy
| |
Collapse
|
18
|
Sariyati NH, Othman N, Abdullah-Fauzi NAF, Chan E, Md-Zain BM, Karuppannan KV, Abdul-Latiff MAB. Characterizing the gastrointestinal microbiome diversity in endangered Malayan Siamang (Symphalangus syndactylus): Insights into group composition, age variability and sex-related patterns. J Med Primatol 2024; 53:e12730. [PMID: 39148344 DOI: 10.1111/jmp.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND The gut morphology of Symphalangus syndactylus exhibits an intermediate structure that aligns with its consumption of fruit and ability to supplement its diet with leaves. The Siamang relies on its gut microbiome for energy extraction, immune system development, and the synthesis of micronutrients. Gut microbiome composition may be structured based on several factors such as age, sex, and habitat. No study has yet been carried out on the gut microbiota of the Hylobatidae members in Malaysia especially S. syndactylus. METHODS This study aims to resolve the gut microbiome composition of S. syndactylus by using a fecal sample as DNA source, adapting high-throughput sequencing, and 16S rRNA as the targeted region. RESULTS A total of 1 272 903 operational taxonomic units (OTUs) reads were assigned to 22 phyla, 139 families, and 210 genera of microbes. The {Unknown Phylum} Bacteria-2 is the dominant phyla found across all samples. Meanwhile, {Unknown Phylum} Bacteria-2 and Firmicutes are genera that have the highest relative abundance found in the Siamang gut. CONCLUSIONS This study yields nonsignificance relationship between Siamang gut microbiome composition with these three factors: group, sex, and age.
Collapse
Affiliation(s)
- Nur Hartini Sariyati
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nursyuhada Othman
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nurfatiha Akmal Fawwazah Abdullah-Fauzi
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Eddie Chan
- Treks Event Sdn Bhd, Lot AW/G5.00, GF, Awana Hotel Genting Highlands Resort, Genting Highlands, Pahang, Malaysia
| | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kayal Vizi Karuppannan
- National Wildlife Forensic Laboratory (NWFL), Department of Wildlife and National Parks (PERHILITAN), Kuala Lumpur, Malaysia
| | - Muhammad Abu Bakar Abdul-Latiff
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| |
Collapse
|
19
|
Aprile F, Vangeli M, Allocca M, Zilli A, Argollo MC, D’amico F, Parigi TL, Danese S, Furfaro F. Gastrointestinal Ultrasound in Infectious Diseases: A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1402. [PMID: 39336443 PMCID: PMC11434242 DOI: 10.3390/medicina60091402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
Infectious diseases affecting the gastrointestinal tract often present diagnostic challenges due to the variability in clinical manifestations and overlapping symptoms. Ultrasound imaging has emerged as a valuable tool in the assessment of gastrointestinal pathologies, offering non-invasive and real-time visualization of anatomical structures. This review aims to explore the role of ultrasound in the diagnosis and management of infectious diseases involving the gastrointestinal tract. We discuss the imaging features of various infectious etiologies, such as bacterial, viral, and parasitic infections, highlighting characteristic findings on ultrasound scans. Additionally, we provide insights into the utility of ultrasound for the assessment of treatment response. Through a comprehensive analysis of existing literature and clinical case studies, this review underscores the significance of ultrasound imaging as a frontline modality in the diagnosis and management of infectious diseases affecting the gastrointestinal tract.
Collapse
Affiliation(s)
- Francesca Aprile
- Department of Hepatology and Gastroenterology, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162 Milan, Italy; (F.A.); (M.V.)
| | - Marcello Vangeli
- Department of Hepatology and Gastroenterology, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162 Milan, Italy; (F.A.); (M.V.)
| | - Mariangela Allocca
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; (M.A.); (A.Z.); (T.L.P.); (S.D.); (F.F.)
| | - Alessandra Zilli
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; (M.A.); (A.Z.); (T.L.P.); (S.D.); (F.F.)
| | - Marjorie Costa Argollo
- Gastroenterology Department, Federal University of São Paulo, São Paulo 04021-001, Brazil;
| | - Ferdinando D’amico
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; (M.A.); (A.Z.); (T.L.P.); (S.D.); (F.F.)
| | - Tommaso Lorenzo Parigi
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; (M.A.); (A.Z.); (T.L.P.); (S.D.); (F.F.)
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; (M.A.); (A.Z.); (T.L.P.); (S.D.); (F.F.)
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federica Furfaro
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; (M.A.); (A.Z.); (T.L.P.); (S.D.); (F.F.)
| |
Collapse
|
20
|
Buratta S, Urbanelli L, Pellegrino RM, Alabed HBR, Latella R, Cerrotti G, Emiliani C, Bassotti G, Spaterna A, Marconi P, Fettucciari K. PhosphoLipidome Alteration Induced by Clostridioides difficile Toxin B in Enteric Glial Cells. Cells 2024; 13:1103. [PMID: 38994956 PMCID: PMC11240607 DOI: 10.3390/cells13131103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Clostridioides difficile (C. difficile) is responsible for a spectrum of nosocomial/antibiotic-associated gastrointestinal diseases that are increasing in global incidence and mortality rates. The C. difficile pathogenesis is due to toxin A and B (TcdA/TcdB), both causing cytopathic and cytotoxic effects and inflammation. Recently, we demonstrated that TcdB induces cytopathic and cytotoxic (apoptosis and necrosis) effects in enteric glial cells (EGCs) in a dose/time-dependent manner and described the underlying signaling. Despite the role played by lipids in host processes activated by pathogens, to counter infection and/or induce cell death, to date no studies have investigated lipid changes induced by TcdB/TcdA. Here, we evaluated the modification of lipid composition in our in vitro model of TcdB infection. Apoptosis, cell cycle, cell viability, and lipidomic profiles were evaluated in EGCs treated for 24 h with two concentrations of TcdB (0.1 ng/mL; 10 ng/mL). In EGCs treated with the highest concentration of TcdB, not only an increased content of total lipids was observed, but also lipidome changes, allowing the separation of TcdB-treated cells and controls into different clusters. The statistical analyses also allowed us to ascertain which lipid classes and lipid molecular species determine the clusterization. Changes in lipid species containing inositol as polar head and plasmalogen phosphatidylethanolamine emerged as key indicators of altered lipid metabolism in TcdB-treated EGCs. These results not only provide a picture of the phospholipid profile changes but also give information regarding the lipid metabolism pathways altered by TcdB, and this might represent an important step for developing strategies against C. difficile infection.
Collapse
Affiliation(s)
- Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Raffaella Latella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Giada Cerrotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Gabrio Bassotti
- Department of Medicine and Surgery, Gastroenterology, Hepatology & Digestive Endoscopy Section, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy;
- Santa Maria Della Misericordia Hospital, Gastroenterology & Hepatology Unit, Piazzale Menghini 1, 06129 Perugia, Italy
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Macerata, Italy
| | - Pierfrancesco Marconi
- Department of Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy;
| | - Katia Fettucciari
- Department of Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy;
| |
Collapse
|
21
|
Di Bella S, Sanson G, Monticelli J, Zerbato V, Principe L, Giuffrè M, Pipitone G, Luzzati R. Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clin Microbiol Rev 2024; 37:e0013523. [PMID: 38421181 PMCID: PMC11324037 DOI: 10.1128/cmr.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYClostridioides difficile infection (CDI) is one of the major issues in nosocomial infections. This bacterium is constantly evolving and poses complex challenges for clinicians, often encountered in real-life scenarios. In the face of CDI, we are increasingly equipped with new therapeutic strategies, such as monoclonal antibodies and live biotherapeutic products, which need to be thoroughly understood to fully harness their benefits. Moreover, interesting options are currently under study for the future, including bacteriophages, vaccines, and antibiotic inhibitors. Surveillance and prevention strategies continue to play a pivotal role in limiting the spread of the infection. In this review, we aim to provide the reader with a comprehensive overview of epidemiological aspects, predisposing factors, clinical manifestations, diagnostic tools, and current and future prophylactic and therapeutic options for C. difficile infection.
Collapse
Affiliation(s)
- Stefano Di Bella
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Gianfranco Sanson
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Jacopo Monticelli
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Verena Zerbato
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Luigi Principe
- Microbiology and
Virology Unit, Great Metropolitan Hospital
“Bianchi-Melacrino-Morelli”,
Reggio Calabria, Italy
| | - Mauro Giuffrè
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
- Department of Internal
Medicine (Digestive Diseases), Yale School of Medicine, Yale
University, New Haven,
Connecticut, USA
| | - Giuseppe Pipitone
- Infectious Diseases
Unit, ARNAS Civico-Di Cristina
Hospital, Palermo,
Italy
| | - Roberto Luzzati
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| |
Collapse
|
22
|
Duricek M, Halmova K, Krutova M, Sykorova B, Benes J. Is shorter also better in the treatment of Clostridioides difficile infection? J Antimicrob Chemother 2024; 79:1413-1417. [PMID: 38661207 PMCID: PMC11144488 DOI: 10.1093/jac/dkae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVES To assess the effectiveness of shortened regimens of vancomycin or fidaxomicin in the treatment of Clostridioides difficile infection (CDI). METHODS Adult patients with CDI hospitalized from January 2022 to May 2023 were included in this observational study. In patients with CDI treated with vancomycin or fidaxomicin, antibiotic treatment was discontinued after either 5 or 7 days of vancomycin or 5 days of fidaxomicin if there was a clinical response and improvement in laboratory parameters. The control cohort was treated with the standard 10 day regimen of either vancomycin or fidaxomicin. The follow-up was 60 days. Causative C. difficile strains were characterized by ribotyping and toxin gene detection when available. RESULTS Twenty-five patients (median age 76 years) received shortened treatment with vancomycin (n = 21), or fidaxomicin (n = 4). Five cases fulfilled the criteria for severe CDI. Twenty-three patients completed follow-up; two died from causes other than CDI, and two developed recurrent CDI (8.0%). Ribotypes (RTs) 001 and 014 were the most prevalent with 20% each. In two C. difficile isolates, binary toxin genes were detected (RTs 078 and 023). In the control group of 22 patients recurrent CDI developed in 5 patients (22.7%). No statistically significant differences were found between the groups. CONCLUSIONS Shortened treatment regimens for CDI with vancomycin and fidaxomicin were shown to be effective in our cohort of patients compared with 10 days of treatment. The recurrence rate was lower in the study group. A larger, prospective, double-blind, randomized, multicentre study is needed to support our findings.
Collapse
Affiliation(s)
- M Duricek
- Department of Infectious Diseases, 3rd Faculty of Medicine, Charles University and University Hospital Bulovka, Budínova 67/2, 180 81, Praha 8, Prague, Czech Republic
| | - K Halmova
- Department of Infectious Diseases, 3rd Faculty of Medicine, Charles University and University Hospital Bulovka, Budínova 67/2, 180 81, Praha 8, Prague, Czech Republic
| | - M Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - B Sykorova
- Department of Clinical Microbiology, University Hospital Bulovka, Prague, Czech Republic
| | - J Benes
- Department of Infectious Diseases, 3rd Faculty of Medicine, Charles University and University Hospital Bulovka, Budínova 67/2, 180 81, Praha 8, Prague, Czech Republic
| |
Collapse
|
23
|
Aguzie IO, Obioha AM, Unachukwu CE, Okpasuo OJ, Anunobi TJ, Ugwu KO, Ubachukwu PO, Dibua UME. Hand contamination and hand hygiene knowledge and practices among commercial transport users after the SARS-CoV-2 virus (COVID-19) scare, Enugu State, Nigeria. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002627. [PMID: 38820394 PMCID: PMC11142581 DOI: 10.1371/journal.pgph.0002627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Contaminated hands are one of the most common modes of microorganism transmission that are responsible for many associated infections in healthcare, food industries, and public places such as transportation parks. Public health approaches during COVID-19 pandemic have shown that hand hygiene practices and associated knowledge are critical measure to control the spread of infectious agent. Hence, assessment of commercial transport users' knowledge, belief and practices on hand hygiene, and potential contamination with infectious agents which is the aim of the study, aligns with general health concern of quantifying contamination risk levels to predict disease outbreaks. This study utilized a randomized sampling approach to select 10 frequently used commercial parks within two districts in the State: Enugu and Nsukka. The parameters analysed include a cross-sectional questionnaire survey, hand swab and hand washed samples collected from dominant hand of participants. A total of 600 participants responded to the questionnaire survey, while 100 participants' hand swabs were examined for microbial contamination. This study recorded a high prevalence of fungal (90.0%) and bacterial (87.0%) species; 20 species of fungus were identified with prevalence range of 1% to 14%; 21 bacterial species were isolated with prevalence range of 1% to 16%. These species were identified as either opportunistic, non-invasive, or pathogenic, which may constitute a health concern amongst immunocompromised individuals within the population. Aspergillus spp. (14%), was the most common fungal species that was exclusively found amongst Nsukka commercial users, while E. coli was the most prevalent isolated bacterial species amongst Nsukka (12%) and Enugu (20%) commercial park users. Prevalence of fungal contamination in Nsukka (94.0%; 47/50) and Enugu (86.0%; 43/50) were both high. Prevalence of bacterial contamination was higher in Enugu than Nsukka but not significantly (47[94.0%] vs. 40[80.0%], p = 0.583). A greater number of participants (99.3%) were aware of the importance of hand hygiene, however with low compliance rate aside "after using the toilet" (80%) and "before eating" (90%), other relevant hand washing and sanitizing practices were considered less important. With these observations, we can emphatically say that despite the COVID-19 scare, commercial park users within the sampled population do not efficiently practice quality hand wash and hygiene measures, hence, risking the widespread of infectious agents in situation of disease outbreak or among immunocompromised individuals.
Collapse
Affiliation(s)
- Ifeanyi O. Aguzie
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Ahaoma M. Obioha
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Chisom E. Unachukwu
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Onyekachi J. Okpasuo
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Toochukwu J. Anunobi
- Department of Science Laboratory Technology, Federal Polytechnic, Idah, Kogi State, Nigeria
| | - Kenneth O. Ugwu
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Patience O. Ubachukwu
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Uju M. E. Dibua
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
24
|
Norman KM, Lang GA, Shadid TM, Honold ST, Reel JM, Cox MA, Ballard JD, Lang ML. Clostridioides difficile toxin B subverts germinal center and antibody recall responses by stimulating a drug-treatable CXCR4-dependent mechanism. Cell Rep 2024; 43:114245. [PMID: 38761377 PMCID: PMC11210377 DOI: 10.1016/j.celrep.2024.114245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
Recurrent Clostridioides difficile infection (CDI) results in significant morbidity and mortality. We previously established that CDI in mice does not protect against reinfection and is associated with poor pathogen-specific B cell memory (Bmem), recapitulating our observations with human Bmem. Here, we demonstrate that the secreted toxin TcdB2 is responsible for subversion of Bmem responses. TcdB2 from an endemic C. difficile strain delayed immunoglobulin G (IgG) class switch following vaccination, attenuated IgG recall to a vaccine booster, and prevented germinal center formation. The mechanism of TcdB2 action included increased B cell CXCR4 expression and responsiveness to its ligand CXCL12, accounting for altered cell migration and a failure of germinal center-dependent Bmem. These results were reproduced in a C. difficile infection model, and a US Food and Drug Administration (FDA)-approved CXCR4-blocking drug rescued germinal center formation. We therefore provide mechanistic insights into C. difficile-associated pathogenesis and illuminate a target for clinical intervention to limit recurrent disease.
Collapse
Affiliation(s)
- Kaylee M Norman
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Gillian A Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Tyler M Shadid
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Sydney T Honold
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Jessica M Reel
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Maureen A Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Jimmy D Ballard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Mark L Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA.
| |
Collapse
|
25
|
Wood L, Hughes J, Trussell M, Bishop AL, Griffin R. Fasting before Intra-Gastric Dosing with Antigen Improves Intestinal Humoral Responses in Syrian Hamsters. Vaccines (Basel) 2024; 12:572. [PMID: 38932302 PMCID: PMC11209237 DOI: 10.3390/vaccines12060572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Oral vaccines, unlike injected, induce intestinal secretory immunoglobulin A (sIgA) mimicking our natural defense against gut pathogens. We previously observed sIgA responses after administering the Clostridioides difficile colonisation factor CD0873 orally in enteric capsules to hamsters. Enteric-coated capsules are designed to resist dissolution in the stomach and disintegrate only at the higher pH of the small intestine. However, the variable responses between animals led us to speculate suboptimal transit of antigens to the small intestine. The rate of gastric emptying is a controlling factor in the passage of oral drugs for subsequent availability in the small intestine for absorption. Whilst in humans, food delays gastric emptying, in rats, capsules can empty quicker from fed stomachs than from fasted. To test in hamsters if fasting improves the delivery of antigens to the small intestine, as inferred from the immune responses generated, 24 animals were dosed intragastrically with enteric capsules containing recombinant CD0873. Twelve hamsters were fasted for 12 h prior to each dose and the other 12 fed. Significantly higher sIgA titres, with significantly greater bacterial-adherence-blocking activity, were detected in small intestinal lavages in the fasted group. We conclude that fasting in hamsters improves intestinal delivery leading to more robust responses.
Collapse
Affiliation(s)
- Liam Wood
- Vaccines and Therapeutics Group, School of Life Sciences, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
- Clostridia Research Group, Synthetic Biology Research Centre (SBRC), The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Jaime Hughes
- School of Life Sciences, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Mark Trussell
- Bio Support Unit, The University of Nottingham Medical School, Nottingham NG7 2UH, UK
| | - Anne L. Bishop
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ruth Griffin
- Vaccines and Therapeutics Group, School of Life Sciences, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
- Clostridia Research Group, Synthetic Biology Research Centre (SBRC), The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, The University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
26
|
Pourliotopoulou E, Karampatakis T, Kachrimanidou M. Exploring the Toxin-Mediated Mechanisms in Clostridioides difficile Infection. Microorganisms 2024; 12:1004. [PMID: 38792835 PMCID: PMC11124097 DOI: 10.3390/microorganisms12051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of nosocomial antibiotic-associated diarrhea, and colitis, with increasing incidence and healthcare costs. Its pathogenesis is primarily driven by toxins produced by the bacterium C. difficile, Toxin A (TcdA) and Toxin B (TcdB). Certain strains produce an additional toxin, the C. difficile transferase (CDT), which further enhances the virulence and pathogenicity of C. difficile. These toxins disrupt colonic epithelial barrier integrity, and induce inflammation and cellular damage, leading to CDI symptoms. Significant progress has been made in the past decade in elucidating the molecular mechanisms of TcdA, TcdB, and CDT, which provide insights into the management of CDI and the future development of novel treatment strategies based on anti-toxin therapies. While antibiotics are common treatments, high recurrence rates necessitate alternative therapies. Bezlotoxumab, targeting TcdB, is the only available anti-toxin, yet limitations persist, prompting ongoing research. This review highlights the current knowledge of the structure and mechanism of action of C. difficile toxins and their role in disease. By comprehensively describing the toxin-mediated mechanisms, this review provides insights for the future development of novel treatment strategies and the management of CDI.
Collapse
Affiliation(s)
- Evdokia Pourliotopoulou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Melania Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| |
Collapse
|
27
|
Masset Z, Gunaratnam S, Millette M, McFarland LV, Lacroix M. Environmental and Nutritional Parameters Modulating Genetic Expression for Virulence Factors of Clostridioides difficile. Antibiotics (Basel) 2024; 13:365. [PMID: 38667041 PMCID: PMC11047382 DOI: 10.3390/antibiotics13040365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Clostridioides difficile infections (CDIs) continue to be a persistent healthcare concern despite newer antibiotic treatments, enhanced infection control practices, and preventive strategies focused on restoring the protective intestinal microbial barrier. Recent strides in gene sequencing research have identified many genes regulating diverse virulence factors for CDIs. These genes may be over- or under-expressed when triggered by various environmental and nutritional factors. The aims of this paper are to review the important genes involved in C. difficile pathogenesis and to identify modifiable environmental, nutritional, and other factors that may trigger the expression of these genes and thus offer new strategies to prevent CDIs.
Collapse
Affiliation(s)
- Zoe Masset
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, 531 des Prairies Blvd, Laval, QC H7V 1B7, Canada; (Z.M.); (M.L.)
| | - Sathursha Gunaratnam
- Bio-K+, a Kerry Company, Preclinical Research Division, 495 Armand-Frappier Blvd, Laval, QC H7V 4B3, Canada; (S.G.); (M.M.)
| | - Mathieu Millette
- Bio-K+, a Kerry Company, Preclinical Research Division, 495 Armand-Frappier Blvd, Laval, QC H7V 4B3, Canada; (S.G.); (M.M.)
| | - Lynne V. McFarland
- Public Health Reserves Corps, Seattle, WA 98115, USA
- McFarland Consulting, Seattle, WA 98115, USA
| | - Monique Lacroix
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, 531 des Prairies Blvd, Laval, QC H7V 1B7, Canada; (Z.M.); (M.L.)
| |
Collapse
|
28
|
Malakar S, Sutaoney P, Madhyastha H, Shah K, Chauhan NS, Banerjee P. Understanding gut microbiome-based machine learning platforms: A review on therapeutic approaches using deep learning. Chem Biol Drug Des 2024; 103:e14505. [PMID: 38491814 DOI: 10.1111/cbdd.14505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Human beings possess trillions of microbial cells in a symbiotic relationship. This relationship benefits both partners for a long time. The gut microbiota helps in many bodily functions from harvesting energy from digested food to strengthening biochemical barriers of the gut and intestine. But the changes in microbiota composition and bacteria that can enter the gastrointestinal tract can cause infection. Several approaches like culture-independent techniques such as high-throughput and meta-omics projects targeting 16S ribosomal RNA (rRNA) sequencing are popular methods to investigate the composition of the human gastrointestinal tract microbiota and taxonomically characterizing microbial communities. The microbiota conformation and diversity should be provided by whole-genome shotgun metagenomic sequencing of site-specific community DNA associating genome mapping, gene inventory, and metabolic remodelling and reformation, to ease the functional study of human microbiota. Preliminary examination of the therapeutic potency for dysbiosis-associated diseases permits investigation of pharmacokinetic-pharmacodynamic changes in microbial communities for escalation of treatment and dosage plan. Gut microbiome study is an integration of metagenomics which has influenced the field in the last two decades. And the incorporation of artificial intelligence and deep learning through "omics-based" methods and microfluidic evaluation enhanced the capability of identification of thousands of microbes.
Collapse
Affiliation(s)
- Shilpa Malakar
- Department of Microbiology, Kalinga University, Raipur, Chhattisgarh, India
| | - Priya Sutaoney
- Department of Microbiology, Kalinga University, Raipur, Chhattisgarh, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nagendra Singh Chauhan
- Department of Medical education, Drugs Testing Laboratory Avam Anusandhan Kendra, Raipur, Chhattisgarh, India
| | - Paromita Banerjee
- Department of Cardiology, AIIMS Rishikesh, Rishikesh, Uttarkhand, India
| |
Collapse
|
29
|
Fettucciari K, Spaterna A, Marconi P, Bassotti G. Pro-Inflammatory Cytokines Enhanced In Vitro Cytotoxic Activity of Clostridioides difficile Toxin B in Enteric Glial Cells: The Achilles Heel of Clostridioides difficile Infection? Int J Mol Sci 2024; 25:958. [PMID: 38256032 PMCID: PMC10815653 DOI: 10.3390/ijms25020958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Bacterial infections are characterized by an inflammatory response, which is essential for infection containment but is also responsible for negative effects on the host. The pathogen itself may have evolved molecular mechanisms to antagonize the antimicrobial effects of an inflammatory response and to enhance its pathogenicity using inflammatory response mediators, such as cytokines. Clostridioides difficile (C. difficile) infection (CDI) causes gastrointestinal diseases with markedly increasing global incidence and mortality rates. The main C. difficile virulence factors, toxin A and B (TcdA/TcdB), cause cytopathic/cytotoxic effects and inflammation. We previously demonstrated that TcdB induces enteric glial cell (EGC) apoptosis, which is enhanced by the pro-inflammatory cytokine tumor necrosis factor alpha plus interferon gamma (CKs). However, it is unknown whether CKs-enhanced TcdB cytotoxicity (apoptosis/necrosis) is affected by the timing of the appearance of the CKs. Thus, we simulated in vitro, in our experimental model with TcdB and EGCs, three main situations of possible interactions between TcdB and the timing of CK stimulation: before TcdB infection, concomitantly with infection, or at different times after infection and persisting over time. In these experimental conditions, which all represent situations of possible interactions between C. difficile and the timing of CK stimulation, we evaluated apoptosis, necrosis, and cell cycle phases. The CKs, in all of these conditions, enhanced TcdB cytotoxicity, which from apoptosis became necrosis when CK stimulation persisted over time, and was most relevant after 48 h of TcdB:EGCs interaction. Particularly, the enhancement of apoptosis by CKs was dependent on the TcdB dose and in a less relevant manner on the CK stimulation time, while the enhancement of necrosis occurred always independently of the TcdB dose and CK stimulation time. However, since in all conditions stimulation with CKs strongly enhanced the TcdB cytotoxicity, it always had a negative impact on C. difficile pathogenicity. This study might have important implications for the treatment of CDI.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Macerata, Italy
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
- Gastroenterology & Hepatology Unit, Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| |
Collapse
|
30
|
Lavoie T, Appaneal HJ, LaPlante KL. Advancements in Novel Live Biotherapeutic Products for Clostridioides difficile Infection Prevention. Clin Infect Dis 2023; 77:S447-S454. [PMID: 38051964 DOI: 10.1093/cid/ciad639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 12/07/2023] Open
Abstract
The profound impact of the human microbiome on health and disease has captivated the interest of clinical and scientific communities. The human body hosts a vast array of microorganisms collectively forming the human microbiome, which significantly influences various physiological processes and profoundly shapes overall well-being. Notably, the gut stands out as an exceptional reservoir, harboring the most significant concentration of microorganisms, akin to an organ in itself. The gut microbiome's composition and function are influenced by genetics, environment, age, underlying conditions, and antibiotic usage, leading to dysbiosis and pathogenesis, such as Clostridioides difficile infection (CDI). Conventional CDI treatment, involving antibiotics like oral vancomycin and fidaxomicin, fails to address dysbiosis and may further disrupt gut microbial communities. Consequently, emerging therapeutic strategies are focused on targeting dysbiosis and restoring gut microbiota to advance CDI therapeutics. Fecal microbiota transplantation (FMT) has demonstrated remarkable efficacy in treating recurrent CDI by transferring processed stool from a healthy donor to a recipient, restoring gut dysbiosis and enhancing bacterial diversity. Moreover, 2 newer Food and Drug Administration (FDA)-approved live biotherapeutic products (LBP), namely, Fecal Microbiota Live-JSLM and Fecal Microbiota Spores Live-BRPK, have shown promise in preventing CDI recurrence. This review explores the role of the gut microbiota in preventing and treating CDI, with an emphasis on gut-based interventions like FMT and fecal microbiota-based products that hold potential for gut restoration and prevention of CDI recurrence. Understanding the microbiome's impact on CDI prevention and treatment offers valuable insights for advancing future CDI therapeutics.
Collapse
Affiliation(s)
- Thomas Lavoie
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Haley J Appaneal
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- Center of Innovation in Long-Term Support Services, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Kerry L LaPlante
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
- Center of Innovation in Long-Term Support Services, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- Warren Alpert Medical School of Brown University, Division of Infectious Diseases, Providence, Rhode Island, USA
- School of Public Health, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
31
|
Filippidis P, Senn L, Poncet F, Grandbastien B, Prod'hom G, Greub G, Guery B, Blanc DS. Core genome multilocus sequence typing of Clostridioides difficile to investigate transmission in the hospital setting. Eur J Clin Microbiol Infect Dis 2023; 42:1469-1476. [PMID: 37870711 PMCID: PMC10651541 DOI: 10.1007/s10096-023-04676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE Traditional epidemiological investigations of healthcare-associated Clostridioides difficile infection (HA-CDI) are often insufficient. This study aimed to evaluate a procedure that includes secondary isolation and genomic typing of single toxigenic colonies using core genome multilocus sequence typing (cgMLST) for the investigation of C. difficile transmission. METHODS We analyzed retrospectively all toxigenic C. difficile-positive stool samples stored at the Lausanne University Hospital over 6 consecutive months. All isolates were initially typed and classified using a modified double-locus sequence typing (DLST) method. Genome comparison of isolates with the same DLST and clustering were subsequently performed using cgMLST. The electronic administrative records of patients with CDI were investigated for spatiotemporal epidemiological links supporting hospital transmission. A comparative descriptive analysis between genomic and epidemiological data was then performed. RESULTS From January to June 2021, 86 C. difficile isolates were recovered from thawed samples of 71 patients. Thirteen different DLST types were shared by > 1 patient, and 13 were observed in single patients. A genomic cluster was defined as a set of isolates from different patients with ≤ 3 locus differences, determined by cgMLST. Seven genomic clusters were identified, among which plausible epidemiological links were identified in only 4/7 clusters. CONCLUSION Among clusters determined by cgMLST analysis, roughly 40% included unexplained HA-CDI acquisitions, which may be explained by unidentified epidemiological links, asymptomatic colonization, and/or shared common community reservoirs. The use of DLST, followed by whole genome sequencing analysis, is a promising and cost-effective stepwise approach for the investigation of CDI transmission in the hospital setting.
Collapse
Affiliation(s)
- Paraskevas Filippidis
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurence Senn
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabrice Poncet
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Bruno Grandbastien
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Guy Prod'hom
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Benoit Guery
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dominique S Blanc
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
32
|
Raeisi H, Azimirad M, Abdemohamadi E, Pezzani R, Zali MR, Yadegar A. Pleiotropic effects of Mentha longifolia L. extract on the regulation of genes involved in inflammation and apoptosis induced by Clostridioides difficile ribotype 001. Front Microbiol 2023; 14:1273094. [PMID: 37965560 PMCID: PMC10641701 DOI: 10.3389/fmicb.2023.1273094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction The dramatic increase in multidrug-resistance of Clostridioides difficile isolates has led to the search for new complementary medicines against C. difficile infection (CDI). In this study, we aimed to examine the inhibitory effects of hydroethanolic extract of Mentha longifolia L. (ETOH-ML) on the growth of C. difficile RT001 and its toxigenic cell-free supernatant (Tox-S)-induced inflammation and apoptosis. Methods The active phytochemical components of ETOH-ML were detected using GC and HPLC. The antimicrobial properties of the extract were examined against C. difficile RT001. Furthermore, cell viability and cytotoxicity of Caco-2 and Vero cells treated with various concentrations of ETOH-ML, Tox-S of C. difficile RT001, and their combination were assessed. Anti-inflammatory and anti-apoptotic activities of ETOH-ML were explored in Tox-S stimulated Caco-2 cells using RT-qPCR. Results Based on our results, rosmarinic acid was the main phytochemical component of ETOH-ML. The extract showed significant antimicrobial activity against C. difficile RT001 by agar dilution and broth microdilution methods. Moreover, ETOH-ML at concentrations of <25 μg/ml had no significant effect on cell viability compared to untreated cells. Treatment cells with the extract (10 or 25 μg/ml) significantly increased the cell viability and reduced the percentage of cell rounding in Caco-2 and Vero cells treated by Tox-S, respectively (P < 0.0001). Co-treatment of Tox-S stimulated Caco-2 cells with ETOH-ML showed significant anti-inflammatory and anti-apoptotic activities by downregulating the gene expression level of IL-8, IL-1β, TNF-α, iNOS, TGF-β, NF-κB, Bax, and caspase-3, while upregulating the expression level of Bcl-2. Discussion Our results demonstrated for the first time the antimicrobial, anti-inflammatory, and anti-apoptotic effects of M. longifolia extract on C. difficile RT001 and its Tox-S. However, further research is needed to evaluate the potential application of M. longifolia extract on CDI treatment in clinical setting.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Abdemohamadi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raffaele Pezzani
- Phytotherapy Lab, Department of Medicine (DIMED), University of Padova, Padua, Italy
- Accademia Italiana di Fitoterapia, Brescia, Italy
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Rajkhowa S, Sonowal J, Borthakur U, Pegu SR, Deb R, Das PJ, Sengar GS, Gupta VK. Meta-Analysis of the Prevalence of Porcine Zoonotic Bacterial Pathogens in India: A 13-Year (2010-2023) Study. Pathogens 2023; 12:1266. [PMID: 37887783 PMCID: PMC10610365 DOI: 10.3390/pathogens12101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
The presence of bacterial pathogens such as Brucella spp., Clostridium spp., E. coli, Listeria monocytogenes, Salmonella spp., Staphylococcus spp., and Streptococcus suis not only hampers pig production but also carries significant zoonotic implications. The present study aims to conduct a comprehensive meta-analysis spanning over 13 years (2010-2023) to ascertain the prevalence of these zoonotic bacterial pathogens in Indian pig populations. The study seeks to synthesize data from diverse geographic regions within India and underscores the relevance of the One Health framework. A systematic search of electronic databases was meticulously performed. Inclusion criteria encompassed studies detailing zoonotic bacterial pathogen prevalence in pigs within India during the specified timeframe. Pertinent information including authors, publication year, geographical location, sampling techniques, sample sizes, and pathogen-positive case counts were meticulously extracted. The meta-analysis of zoonotic bacterial pathogens in Indian pig populations (2010-2023) unveiled varying prevalence rates: 9% Brucella spp., 22% Clostridium spp., 19% E. coli, 12% Listeria monocytogenes, 10% Salmonella spp. and Streptococcus suis, and 24% Staphylococcus spp. The application of random effects further revealed additional variability: 6% Brucella spp., 23% Clostridium spp., 24% E. coli, 14% Listeria monocytogenes, 10% Salmonella spp. and Streptococcus suis, and 35% Staphylococcus spp. Notably, the observed heterogeneity (I2) varied significantly from 87% to 99%. The meta-analysis findings underscore the pervasive nature of these diseases throughout India's pig populations, accentuating the substantial impact of these pathogens on pig health and the potential for zoonotic transmission. The present study reinforces the importance of the adoption of a comprehensive One Health approach that acknowledges the intricate interplay between animal, human and environmental health.
Collapse
Affiliation(s)
- Swaraj Rajkhowa
- ICAR-National Research Centre on Pig, Rani, Guwahati 781131, Assam, India; (J.S.); (S.R.P.); (R.D.); (P.J.D.); (G.S.S.); (V.K.G.)
| | - Joyshikh Sonowal
- ICAR-National Research Centre on Pig, Rani, Guwahati 781131, Assam, India; (J.S.); (S.R.P.); (R.D.); (P.J.D.); (G.S.S.); (V.K.G.)
| | - Udipta Borthakur
- Animal Husbandry and Veterinary Department, Guwahati 781003, Assam, India;
| | - Seema Rani Pegu
- ICAR-National Research Centre on Pig, Rani, Guwahati 781131, Assam, India; (J.S.); (S.R.P.); (R.D.); (P.J.D.); (G.S.S.); (V.K.G.)
| | - Rajib Deb
- ICAR-National Research Centre on Pig, Rani, Guwahati 781131, Assam, India; (J.S.); (S.R.P.); (R.D.); (P.J.D.); (G.S.S.); (V.K.G.)
| | - Pranab Jyoti Das
- ICAR-National Research Centre on Pig, Rani, Guwahati 781131, Assam, India; (J.S.); (S.R.P.); (R.D.); (P.J.D.); (G.S.S.); (V.K.G.)
| | - Gyanendra Singh Sengar
- ICAR-National Research Centre on Pig, Rani, Guwahati 781131, Assam, India; (J.S.); (S.R.P.); (R.D.); (P.J.D.); (G.S.S.); (V.K.G.)
| | - Vivek Kumar Gupta
- ICAR-National Research Centre on Pig, Rani, Guwahati 781131, Assam, India; (J.S.); (S.R.P.); (R.D.); (P.J.D.); (G.S.S.); (V.K.G.)
| |
Collapse
|
34
|
Rubio-Mendoza D, Martínez-Meléndez A, Maldonado-Garza HJ, Córdova-Fletes C, Garza-González E. Review of the Impact of Biofilm Formation on Recurrent Clostridioides difficile Infection. Microorganisms 2023; 11:2525. [PMID: 37894183 PMCID: PMC10609348 DOI: 10.3390/microorganisms11102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Clostridioides difficile infection (CDI) may recur in approximately 10-30% of patients, and the risk of recurrence increases with each successive recurrence, reaching up to 65%. C. difficile can form biofilm with approximately 20% of the bacterial genome expressed differently between biofilm and planktonic cells. Biofilm plays several roles that may favor recurrence; for example, it may act as a reservoir of spores, protect the vegetative cells from the activity of antibiotics, and favor the formation of persistent cells. Moreover, the expression of several virulence genes, including TcdA and TcdB toxins, has been associated with recurrence. Several systems and structures associated with adhesion and biofilm formation have been studied in C. difficile, including cell-wall proteins, quorum sensing (including LuxS and Agr), Cyclic di-GMP, type IV pili, and flagella. Most antibiotics recommended for the treatment of CDI do not have activity on spores and do not eliminate biofilm. Therapeutic failure in R-CDI has been associated with the inadequate concentration of drugs in the intestinal tract and the antibiotic resistance of a biofilm. This makes it challenging to eradicate C. difficile in the intestine, complicating antibacterial therapies and allowing non-eliminated spores to remain in the biofilm, increasing the risk of recurrence. In this review, we examine the role of biofilm on recurrence and the challenges of treating CDI when the bacteria form a biofilm.
Collapse
Affiliation(s)
- Daira Rubio-Mendoza
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| | - Adrián Martínez-Meléndez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico;
| | - Héctor Jesús Maldonado-Garza
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| | - Carlos Córdova-Fletes
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| | - Elvira Garza-González
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| |
Collapse
|
35
|
Mavrogeni ME, Asadpoor M, Judernatz JH, van Ark I, Wösten MMSM, Strijbis K, Pieters RJ, Folkerts G, Braber S. Protective Effects of Alginate and Chitosan Oligosaccharides against Clostridioides difficile Bacteria and Toxin. Toxins (Basel) 2023; 15:586. [PMID: 37888617 PMCID: PMC10610568 DOI: 10.3390/toxins15100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Clostridioides difficile infection is expected to become the most common healthcare-associated infection worldwide. C. difficile-induced pathogenicity is significantly attributed to its enterotoxin, TcdA, which primarily targets Rho-GTPases involved in regulating cytoskeletal and tight junction (TJ) dynamics, thus leading to cytoskeleton breakdown and ultimately increased intestinal permeability. This study investigated whether two non-digestible oligosaccharides (NDOs), alginate (AOS) and chitosan (COS) oligosaccharides, possess antipathogenic and barrier-protective properties against C. difficile bacteria and TcdA toxin, respectively. Both NDOs significantly reduced C. difficile growth, while cell cytotoxicity assays demonstrated that neither COS nor AOS significantly attenuated the TcdA-induced cell death 24 h post-exposure. The challenge of Caco-2 monolayers with increasing TcdA concentrations increased paracellular permeability, as measured by TEER and LY flux assays. In this experimental setup, COS completely abolished, and AOS mitigated, the deleterious effects of TcdA on the monolayer's integrity. These events were not accompanied by alterations in ZO-1 and occludin protein levels; however, immunofluorescence microscopy revealed that both AOS and COS prevented the TcdA-induced occludin mislocalization. Finally, both NDOs accelerated TJ reassembly upon a calcium-switch assay. Overall, this study established the antipathogenic and barrier-protective capacity of AOS and COS against C. difficile and its toxin, TcdA, while revealing their ability to promote TJ reassembly in Caco-2 cells.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jo H Judernatz
- Structural Biochemistry Group, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Ingrid van Ark
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Marc M S M Wösten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Karin Strijbis
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Roland J Pieters
- Division of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
36
|
DiBenedetto NV, Oberkampf M, Cersosimo L, Yeliseyev V, Bry L, Peltier J, Dupuy B. The TcdE holin drives toxin secretion and virulence in Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558055. [PMID: 37745472 PMCID: PMC10516005 DOI: 10.1101/2023.09.16.558055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Clostridioides difficile is the leading cause of healthcare associated infections. The Pathogenicity Locus (PaLoc) toxins TcdA and TcdB promote host disease. These toxins lack canonical N-terminal signal sequences for translocation across the bacterial membrane, suggesting alternate mechanisms of release, which have included targeted secretion and passive release from cell lysis. While the holin TcdE has been implicated in TcdA and TcdB release, its role in vivo remains unknown. Here, we show profound reductions in toxin secretion in ΔtcdE mutants in the highly virulent strains UK1 (epidemic ribotype 027, Clade 3) and VPI10463 (ribotype 087, Clade 1). Notably, tcdE deletion in either strain rescued highly susceptible gnotobiotic mice from lethal infection by reducing acute extracellular toxin to undetectable levels, limiting mucosal damage, and enabling long-term survival, in spite of continued toxin gene expression in ΔtcdE mutants. Our findings confirm TcdE's critical functions in vivo for toxin secretion and C. difficile virulence.
Collapse
Affiliation(s)
- N V DiBenedetto
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Oberkampf
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - L Cersosimo
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - V Yeliseyev
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - L Bry
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - J Peltier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - B Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| |
Collapse
|
37
|
Larsen IS, Chenaux M, Collins FWJ, Mandic A, Hansen LBS, Lauridsen CAS, Haller RF, Elvig-Jørgensen S, Horwell E, Christiansen J, Silva A, Vehreschild MJGT, Cutting SM, Roggenbuck-Wedemeyer M, Kristensen NN. Bacillus velezensis DSM 33864 reduces Clostridioides difficile colonization without disturbing commensal gut microbiota composition. Sci Rep 2023; 13:14941. [PMID: 37696924 PMCID: PMC10495459 DOI: 10.1038/s41598-023-42128-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
Up to 25% of the US population harbor Clostridioides difficile in the gut. Following antibiotic disruption of the gut microbiota, C. difficile can act as an opportunistic pathogen and induce potentially lethal infections. Consequently, reducing the colonization of C. difficile in at-risk populations is warranted, prompting us to identify and characterize a probiotic candidate specifically targeting C. difficile colonization. We identified Bacillus velezensis DSM 33864 as a promising strain to reduce C. difficile levels in vitro. We further investigated the effects of B. velezensis DSM 33864 in an assay including human fecal medium and in healthy or clindamycin-treated mouse models of C. difficile colonization. The addition of B. velezensis DSM 33864 to human fecal samples was shown to reduce the colonization of C. difficile in vitro. This was supported in vivo where orally administered B. velezensis DSM 33864 spores reduced C. difficile levels in clindamycin-treated mice. The commensal microbiota composition or post-antibiotic reconstitution was not impacted by B. velezensis DSM 33864 in human fecal samples, short-, or long-term administration in mice. In conclusion, oral administration of B. velezensis DSM 33864 specifically reduced C. difficile colonization in vitro and in vivo without adversely impacting the commensal gut microbiota composition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ed Horwell
- Bioscience Innovation Centre, Sporegen Ltd., 2 Royal College Street, London, NW1 0NH, UK
| | | | | | - Maria J G T Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Simon M Cutting
- Bioscience Innovation Centre, Sporegen Ltd., 2 Royal College Street, London, NW1 0NH, UK
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | | | | |
Collapse
|
38
|
Johnstone MA, Holman MA, Self WT. Inhibition of selenoprotein synthesis is not the mechanism by which auranofin inhibits growth of Clostridioides difficile. Sci Rep 2023; 13:14733. [PMID: 37679389 PMCID: PMC10484987 DOI: 10.1038/s41598-023-36796-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/12/2023] [Indexed: 09/09/2023] Open
Abstract
Clostridioides difficile infections (CDIs) are responsible for a significant number of antibiotic-associated diarrheal cases. The standard-of-care antibiotics for C. difficile are limited to fidaxomicin and vancomycin, with the recently obsolete metronidazole recommended if both are unavailable. No new antimicrobials have been approved for CDI since fidaxomicin in 2011, despite varying rates of treatment failure among all standard-of-care drugs. Drug repurposing is a rational strategy to generate new antimicrobials out of existing therapeutics approved for other indications. Auranofin is a gold-containing anti-rheumatic drug with antimicrobial activity against C. difficile and other microbes. In a previous report, our group hypothesized that inhibition of selenoprotein biosynthesis was auranofin's primary mechanism of action against C. difficile. However, in this study, we discovered that C. difficile mutants lacking selenoproteins are still just as sensitive to auranofin as their respective wild-type strains. Moreover, we found that selenite supplementation dampens the activity of auranofin against C. difficile regardless of the presence of selenoproteins, suggesting that selenite's neutralization of auranofin is not because of compensation for a chemically induced selenium deficiency. Our results clarify the findings of our original study and may aid drug repurposing efforts in discovering the compound's true mechanism of action against C. difficile.
Collapse
Affiliation(s)
- Michael A Johnstone
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Matthew A Holman
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - William T Self
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL, 32816, USA.
| |
Collapse
|
39
|
Jiang T, Hu X, Shen J. Establishment of a Novel Detection Platform for Clostridioides difficile Toxin Genes Based on Orthogonal CRISPR. Microbiol Spectr 2023; 11:e0188623. [PMID: 37378559 PMCID: PMC10434169 DOI: 10.1128/spectrum.01886-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Clostridioides difficile is one of the leading pathogens causing nosocomial infection. The infection can range from mild to severe, and rapid identification is pivotal for early clinical diagnosis and appropriate treatment. Here, a genetic testing platform for toxins, referred to as OC-MAB (orthogonal CRISPR system combined with multiple recombinase polymerase amplification [RPA]), was developed to detect the C. difficile toxin genes tcdA and tcdB. While recognizing the amplified products of the tcdA gene and the tcdB gene, Cas13a and Cas12a could activate their cleavage activities to cut labeled RNA and DNA probes, respectively. The cleaved products were subsequently identified by dual-channel fluorescence using a quantitative PCR (qPCR) instrument. Finally, they could also be combined with labeled antibodies on immunochromatographic test strips to achieve visual detection. The OC-MAB platform exhibited ultrahigh sensitivity in detecting the tcdA and tcdB genes at levels of as low as 102 to 101 copies/mL. When testing 72 clinical stool samples, the sensitivity (95% confidence interval [CI], 0.90, 1) and specificity (95% CI, 0.84, 1) of the single-tube method based on the fluorescence readout was 100%, with a positive predictive value (PPA) value of 100% (95% CI, 0.90, 1) and a negative predictive value (NPA) value of 100% (95% CI, 0.84, 1), compared to the results of qPCR. Likewise, the sensitivity of the 2-step method based on the test strip readout was 100% (95% CI, 0.90, 1), while the specificity was 96.3% (95% CI, 0.79, 0.99), with a PPA of 98% (95% CI, 0.87, 0.99) and an NPA of 100% (95% CI, 0.90, 1). In short, orthogonal CRISPR technology is a promising tool for the detection of C. difficile toxin genes. IMPORTANCE C. difficile is currently the primary causative agent of hospital-acquired antibiotic-induced diarrhea, and timely and accurate diagnosis is crucial for hospital-acquired infection control and epidemiological investigation. Here, a new method for the identification of C. difficile was developed based on the recently popular CRISPR technology, and an orthogonal CRISPR dual system was utilized for the simultaneous detection of toxin genes A and B. It also uses a currently rare CRISPR dual-target lateral flow strip with powerful color-changing capabilities, which is appropriate for point-of-care testing (POCT).
Collapse
Affiliation(s)
- Tong Jiang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Xinyi Hu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Jilu Shen
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| |
Collapse
|
40
|
Fettucciari K, Dini F, Marconi P, Bassotti G. Role of the Alteration in Calcium Homeostasis in Cell Death Induced by Clostridioides difficile Toxin A and Toxin B. BIOLOGY 2023; 12:1117. [PMID: 37627001 PMCID: PMC10452684 DOI: 10.3390/biology12081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Clostridioides difficile (C. difficile), responsible for 15-25% of gastrointestinal infections, causes health problems mainly due to the toxic activity of toxins A and B (Tcds). These are responsible for its clinical manifestations, including diarrhea, pseudomembranous colitis, toxic megacolon and death, with a mortality of 5-30% in primary infection, that increase following relapses. Studies on Tcd-induced cell death have highlighted a key role of caspases, calpains, and cathepsins, with involvement of mitochondria and reactive oxygen species (ROS) in a complex signaling pathway network. The complex response in the execution of various types of cell death (apoptosis, necrosis, pyroptosis and pyknosis) depends on the amount of Tcd, cell types, and Tcd receptors involved, and could have as initial/precocious event the alterations in calcium homeostasis. The entities, peculiarities and cell types involved in these alterations will decide the signaling pathways activated and cell death type. Calcium homeostasis alterations can be caused by calcium influx through calcium channel activation, transient intracellular calcium oscillations, and leakage of calcium from intracellular stores. These increases in cytoplasmic calcium have important effects on all calcium-regulated molecules, which may play a direct role in several cell death types and/or activate other cell death effectors, such as caspases, calpains, ROS and proapoptotic Bcl-2 family members. Furthermore, some support for the possible role of the calcium homeostasis alteration in Tcd-induced cell death originates from the similarity with cytotoxic effects that cause pore-forming toxins, based mainly on calcium influx through plasma membrane pores.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Fabrizio Dini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy;
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
- Gastroenterology & Hepatology Unit, Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| |
Collapse
|
41
|
Dupuy B. Regulation of Clostridial Toxin Gene Expression: A Pasteurian Tradition. Toxins (Basel) 2023; 15:413. [PMID: 37505682 PMCID: PMC10467148 DOI: 10.3390/toxins15070413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
The alarming symptoms attributed to several potent clostridial toxins enabled the early identification of the causative agent of tetanus, botulism, and gas gangrene diseases, which belongs to the most famous species of pathogenic clostridia. Although Clostridioides difficile was identified early in the 20th century as producing important toxins, it was identified only 40 years later as the causative agent of important nosocomial diseases upon the advent of antibiotic therapies in hospital settings. Today, C. difficile is a leading public health issue, as it is the major cause of antibiotic-associated diarrhea in adults. In particular, severe symptoms within the spectrum of C. difficile infections are directly related to the levels of toxins produced in the host. This highlights the importance of understanding the regulation of toxin synthesis in the pathogenicity process of C. difficile, whose regulatory factors in response to the gut environment were first identified at the Institut Pasteur. Subsequently, the work of other groups in the field contributed to further deciphering the complex mechanisms controlling toxin production triggered by the intestinal dysbiosis states during infection. This review summarizes the Pasteurian contribution to clostridial toxin regulation studies.
Collapse
Affiliation(s)
- Bruno Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| |
Collapse
|
42
|
Naz F, Petri WA. Host Immunity and Immunization Strategies for Clostridioides difficile Infection. Clin Microbiol Rev 2023; 36:e0015722. [PMID: 37162338 PMCID: PMC10283484 DOI: 10.1128/cmr.00157-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Clostridioides difficile infection (CDI) represents a significant challenge to public health. C. difficile-associated mortality and morbidity have led the U.S. CDC to designate it as an urgent threat. Moreover, recurrence or relapses can occur in up to a third of CDI patients, due in part to antibiotics being the primary treatment for CDI and the major cause of the disease. In this review, we summarize the current knowledge of innate immune responses, adaptive immune responses, and the link between innate and adaptive immune responses of the host against CDI. The other major determinants of CDI, such as C. difficile toxins, the host microbiota, and related treatments, are also described. Finally, we discuss the known therapeutic approaches and the current status of immunization strategies for CDI, which might help to bridge the knowledge gap in the generation of therapy against CDI.
Collapse
Affiliation(s)
- Farha Naz
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William A. Petri
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
43
|
Kitpipit W, Scholfield CN, Sangkanu S, Nissapatorn V, Pereira MDL, Paul AK, Mitsuwan W. Virulence factors and quorum sensing as targets of new therapeutic options by plant-derived compounds against bacterial infections caused by human and animal pathogens. Vet World 2023; 16:1346-1355. [PMID: 37577190 PMCID: PMC10421536 DOI: 10.14202/vetworld.2023.1346-1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/25/2023] [Indexed: 08/15/2023] Open
Abstract
The emergence of antibiotic-resistant bacteria and hospital-acquired bacterial infection has become rampant due to antibiotic overuse. Virulence factors are secondary to bacterial growth and are important in their pathogenesis, and therefore, new antimicrobial therapies to inhibit bacterial virulence factors are becoming important strategies against antibiotic resistance. Here, we focus on anti-virulence factors that act through anti-quorum sensing and the subsequent clearance of bacteria by antimicrobial compounds, especially active herbal extracts. These quorum sensing systems are based on toxins, biofilms, and efflux pumps, and bioactive compounds isolated from medicinal plants can treat bacterial virulence pathologies. Ideally, bacterial virulence factors are secondary growth factors of bacteria. Hence, inhibition of bacterial virulence factors could reduce bacterial pathogenesis. Furthermore, anti-virulence factors from herbal compounds can be developed as novel treatments for bacterial infection. Therefore, this narrative review aims to discuss bacterial virulence factors acting through quorum sensing systems that are preserved as targets for treating bacterial infection by plant-derived compounds.
Collapse
Affiliation(s)
- Warangkana Kitpipit
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Food Technology and Innovation Center of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - C. Norman Scholfield
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team, World Union for Herbal Drug Discovery, and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team, World Union for Herbal Drug Discovery, and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Maria de Lourdes Pereira
- Department of Medical Sciences, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Center of Excellence in Innovation of Essential Oil and Bioactive Compounds, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| |
Collapse
|
44
|
Gawey BJ, Khanna S. Clostridioides difficile Infection: Landscape and Microbiome Therapeutics. Gastroenterol Hepatol (N Y) 2023; 19:319-328. [PMID: 37706187 PMCID: PMC10496268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Clostridioides difficile infection (CDI) is the leading cause of hospital-acquired diarrhea and is common in the community. Both younger individuals who may be healthy otherwise and older individuals with comorbid conditions are at risk for developing CDI, with the predominant risk factor being antibiotic use. Unlike other gastrointestinal infections, CDI is not self-limited, requires antimicrobial therapy, and tends to recur at high rates even without additional risk factor exposure. The goals of CDI management include controlling active symptoms and using a recurrence prevention strategy such as a narrow-spectrum antibiotic, tapered and pulsed regimens, antibody- based therapies (directed against toxin B), or microbiome restoration. In recent years, fecal microbiota transplantation (FMT) has been the most used modality to prevent recurrent CDI with high cure rates. Heterogeneity, lack of scalability, and serious adverse events from FMT have led to development of standardized microbiota restoration therapies (MRTs). The US Food and Drug Administration has approved 2 stool-derived MRTs for prevention of recurrent CDI: fecal microbiota, live-jslm, an enema-based therapy; and fecal microbiota spores, live-brpk, an oral therapy. A phase 3 trial for a synthetic oral MRT is underway. This article outlines the pathophysiology and treatment of CDI, focusing primarily on the gut microbiome and standardized MRTs.
Collapse
Affiliation(s)
- Brent J. Gawey
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Sahil Khanna
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
45
|
Fettucciari K, Fruganti A, Stracci F, Spaterna A, Marconi P, Bassotti G. Clostridioides difficile Toxin B Induced Senescence: A New Pathologic Player for Colorectal Cancer? Int J Mol Sci 2023; 24:ijms24098155. [PMID: 37175861 PMCID: PMC10179142 DOI: 10.3390/ijms24098155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Clostridioides difficile (C. difficile) is responsible for a high percentage of gastrointestinal infections and its pathological activity is due to toxins A and B. C. difficile infection (CDI) is increasing worldwide due to the unstoppable spread of C. difficile in the anthropized environment and the progressive human colonization. The ability of C. difficile toxin B to induce senescent cells and the direct correlation between CDI, irritable bowel syndrome (IBS), and inflammatory bowel diseases (IBD) could cause an accumulation of senescent cells with important functional consequences. Furthermore, these senescent cells characterized by long survival could push pre-neoplastic cells originating in the colon towards the complete neoplastic transformation in colorectal cancer (CRC) by the senescence-associated secretory phenotype (SASP). Pre-neoplastic cells could appear as a result of various pro-carcinogenic events, among which, are infections with bacteria that produce genotoxins that generate cells with high genetic instability. Therefore, subjects who develop IBS and/or IBD after CDI should be monitored, especially if they then have further CDI relapses, waiting for the availability of senolytic and anti-SASP therapies to resolve the pro-carcinogenic risk due to accumulation of senescent cells after CDI followed by IBS and/or IBD.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Alessandro Fruganti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Fabrizio Stracci
- Public Health Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
- Gastroenterology & Hepatology Unit, Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| |
Collapse
|
46
|
Markovska R, Dimitrov G, Gergova R, Boyanova L. Clostridioides difficile, a New “Superbug”. Microorganisms 2023; 11:microorganisms11040845. [PMID: 37110267 PMCID: PMC10140992 DOI: 10.3390/microorganisms11040845] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Clostridioides difficile is a Gram-positive, spore-forming, anaerobic bacterium. The clinical features of C. difficile infections (CDIs) can vary, ranging from the asymptomatic carriage and mild self-limiting diarrhoea to severe and sometimes fatal pseudomembranous colitis. C. difficile infections (CDIs) are associated with disruption of the gut microbiota caused by antimicrobial agents. The infections are predominantly hospital-acquired, but in the last decades, the CDI patterns have changed. Their prevalence increased, and the proportion of community-acquired CDIs has also increased. This can be associated with the appearance of hypervirulent epidemic isolates of ribotype 027. The COVID-19 pandemic and the associated antibiotic overuse could additionally change the patterns of infections. Treatment of CDIs is a challenge, with only three appropriate antibiotics for use. The wide distribution of C. difficile spores in hospital environments, chronic persistence in some individuals, especially children, and the recent detection of C. difficile in domestic pets can furthermore worsen the situation. “Superbugs” are microorganisms that are both highly virulent and resistant to antibiotics. The aim of this review article is to characterise C. difficile as a new member of the “superbug” family. Due to its worldwide spread, the lack of many treatment options and the high rates of both recurrence and mortality, C. difficile has emerged as a major concern for the healthcare system.
Collapse
|
47
|
Tumor tissue microorganisms are closely associated with tumor immune subtypes. Comput Biol Med 2023; 157:106774. [PMID: 36931204 DOI: 10.1016/j.compbiomed.2023.106774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Studies have found that different immune subtypes are present in the same tumor. Different tumor subtypes have different tumor microenvironments (TME). This means that the efficacy of immunotherapy in actual applications will, therefore, have different results. Existing tumor immune subtype studies have mostly focused on immune cells, stromal cells, genes and molecules without considering the presence of microbes. Some studies have shown that microflora can strongly promote many gastrointestinal cancers. The microbiome has, therefore, become an important biomarker and regulatory factor of cancer progression and therapeutic responses. In addition, the presence of microflora can strongly regulate the host immune system, indirectly affecting tumor growth. Taken together, it is important to study the relationships that develop among tumor tissue microorganisms, tumor immune subtype, and the TME. In this study, correlations between microbial abundance, immune cell infiltration, immune gene expression and tumor immune subtype were studied. To accomplish this, tissue microorganisms and immune cell ratios with significant differences between the different cancers were obtained by comparing 203 gastric cancer and intestinal cancer samples. Two immune subtypes of intestinal samples were obtained by K-means clustering algorithm and tissue microorganisms, immune cell ratios and immune-related genes with significant differences between different immune subtypes were screened through Wilcoxon rank sum test. The results showed that Clostridioides difficile, Aspergillus fumigatus, Yarrowia lipolytica, and Fusarium pseudograminearum were all closely associated with the identified tumor immune subtypes. Our open-source software is freely available from GitHub at https://github.com/gutmicrobes/IMM-subtype.git.
Collapse
|
48
|
Jiang T, Hu X, Lin C, Xia Z, Yang W, Zhu Y, Xu H, Tang H, Shen J. Rapid visualization of Clostridioides difficile toxins A and B by multiplex RPA combined with CRISPR-Cas12a. Front Microbiol 2023; 14:1119395. [PMID: 36970685 PMCID: PMC10030577 DOI: 10.3389/fmicb.2023.1119395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
Purpose Clostridioides difficile (C. difficile) infection is the most common cause of nosocomial infection, which is a severe challenge in modern medical care. Currently, many laboratory diagnostic methods for C. difficile are available, such as PCR, culture-based tests, and antigen-based tests. However, these methods are not suitable for rapid point-of-care testing (POCT). Therefore, it is of great significance to develop a rapid, sensitive, and cost-effective method to detect C. difficile toxin genes. Methods Recently, the development of clustered regularly interspaced short palindromic repeats (CRISPR) technology has emerged as a promising tool for rapid POCT. In this study, we developed a rapid and specific detection platform for dual C. difficile toxins by combining recombinase polymerase amplification (RPA) and CRISPR/Cas12a. Results The platform includes multiplex RPA-cas12a-fluorescence assay and multiplex RPA-cas12a-LFS (Lateral flow strip) assay, through which the detection limit for tcdA and tcdB was 10 copies/μL and 1 copy/μL, respectively. The results can be more clearly distinguished using a violet flashlight, which realized a portable visual readout. The platform can be tested within 50 min. Furthermore, our method did not cross-react with other pathogens that cause intestinal diarrhea. The results of 10 clinical samples using our method was 100% consistent with those from real-time PCR detection. Conclusion In conclusion, the CRISPR-based double toxin gene detection platform for C. difficile is an effective, specific, and sensitive detection method, which can be used as a powerful on-site detection tool for POCT in the future.
Collapse
Affiliation(s)
- Tong Jiang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Xinyi Hu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Chunhui Lin
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Zhaoxin Xia
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Wensu Yang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Yi Zhu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Huaming Xu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Hao Tang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Jilu Shen
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| |
Collapse
|
49
|
The Environment, Farm Animals and Foods as Sources of Clostridioides difficile Infection in Humans. Foods 2023; 12:foods12051094. [PMID: 36900611 PMCID: PMC10000743 DOI: 10.3390/foods12051094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The recent discovery of the same Clostridioides difficile ribotypes associated with human infection in a broad range of environments, animals and foods, coupled with an ever-increasing rate of community-acquired infections, suggests this pathogen may be foodborne. The objective of this review was to examine the evidence supporting this hypothesis. A review of the literature found that forty-three different ribotypes, including six hypervirulent strains, have been detected in meat and vegetable food products, all of which carry the genes encoding pathogenesis. Of these, nine ribotypes (002, 003, 012, 014, 027, 029, 070, 078 and 126) have been isolated from patients with confirmed community-associated C. difficile infection (CDI). A meta-analysis of this data suggested there is a higher risk of exposure to all ribotypes when consuming shellfish or pork, with the latter being the main foodborne route for ribotypes 027 and 078, the hypervirulent strains that cause most human illnesses. Managing the risk of foodborne CDI is difficult as there are multiple routes of transmission from the farming and processing environment to humans. Moreover, the endospores are resistant to most physical and chemical treatments. The most effective current strategy is, therefore, to limit the use of broad-spectrum antibiotics while advising potentially vulnerable patients to avoid high-risk foods such as shellfish and pork.
Collapse
|
50
|
Uzal FA, Navarro MA, Asin J, Boix O, Ballarà-Rodriguez I, Gibert X. Clostridial diarrheas in piglets: A review. Vet Microbiol 2023; 280:109691. [PMID: 36870204 DOI: 10.1016/j.vetmic.2023.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
Clostridium perfringens type C and Clostridioides difficile are the main enteric clostridial pathogens of swine and are both responsible for neonatal diarrhea in this species. The role of Clostridum perfringes type A is under discussion. History, clinical signs, gross lesions and histological findings are the basis for a presumptive diagnosis of C. perfringens type C or C. difficile infection. Confirmation is based upon detection of beta toxin of C. perfringens type C or toxin A/B of C. difficile, respectively, in intestinal contents or feces. Isolation of C. perfringens type C and/or C. difficile is highly suggestive of infection by these microorganisms but it is not enough to confirm a diagnosis as they may be found in the intestine of some healthy individuals. Diagnosis of C. perfringens type A-associated diarrhea is more challenging because the diagnostic criteria have not been well defined and the specific role of alpha toxin (encoded by all strains of this microorganism) and beta 2 toxin (produced by some type A strains) is not clear. The goal of this paper is to describe the main clostridial enteric diseases of piglets, including etiology, epidemiology, pathogenesis, clinical signs, pathology and diagnosis.
Collapse
Affiliation(s)
- Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, 105 W Central Ave, San Bernardino, CA 92408, USA.
| | - Mauricio A Navarro
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Javier Asin
- California Animal Health and Food Safety Laboratory System, 105 W Central Ave, San Bernardino, CA 92408, USA
| | - Oriol Boix
- HIPRA, Avda. la Selva 135, CP 17170 Amer (Girona), Spain
| | | | - Xavier Gibert
- HIPRA, Avda. la Selva 135, CP 17170 Amer (Girona), Spain
| |
Collapse
|