1
|
Shchelkunov SN, Yakubitskiy SN, Titova KA, Pyankov SA, Shulgina IS, Starostina EV, Borgoyakova MB, Kisakov DN, Karpenko LI, Shchelkunova GA, Sergeev AA. An Attenuated and Highly Immunogenic Variant of the Vaccinia Virus. Acta Naturae 2024; 16:82-89. [PMID: 39188266 PMCID: PMC11345087 DOI: 10.32607/actanaturae.27384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/05/2024] [Indexed: 08/28/2024] Open
Abstract
The vaccinia virus (VACV) has been used for prophylactic immunization against smallpox for many decades. However, the VACV-based vaccine had been highly reactogenic. Therefore, after the eradication of smallpox, the World Health Organization in 1980 recommended that vaccination against this infection be discontinued. As a result, there has been a rise in the occurrence of orthopoxvirus infections in humans in recent years, with the most severe being the 2022 monkeypox epidemic that reached all continents. Thus, it is crucial to address the pressing matter of developing safe and highly immunogenic vaccines for new generations to combat orthopoxvirus infections. In a previous study, we created a LAD strain by modifying the LIVP (L) VACV strain, which is used as a first-generation smallpox vaccine in Russia. This modification involved introducing mutations in the A34R gene to enhance extracellular virion production and deleting the A35R gene to counteract the antibody response to the viral infection. In this study, a strain LADA was created with an additional deletion in the DNA of the LAD strain ati gene. This ati gene directs the production of a major non-virion immunogen. The findings indicate that the LADA VACV variant exhibits lower levels of reactogenicity in BALB/c mice during intranasal infection, as compared to the original L strain. Following intradermal immunization with a 105 PFU dose, both the LAD and LADA strains were found to induce a significantly enhanced cellular immune response in mice when compared to the L strain. At the same time, the highest level of virus-specific IFN-γ producing cells for the LAD variant was detected on the 7th day post-immunization (dpi), whereas for LADA, it was observed on 14 dpi. The LAD and LADA strains induced significantly elevated levels of VACV-specific IgG compared to the original L strain, particularly between 28 and 56 dpi. The vaccinated mice were intranasally infected with the cowpox virus at a dose of 460 LD50 to assess the protective immunity at 62 dpi. The LADA virus conferred complete protection to mice, with the LAD strain providing 70% protection and the parent strain L offering protection to only 60% of the animals.
Collapse
Affiliation(s)
- S. N. Shchelkunov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - S. N. Yakubitskiy
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - K. A. Titova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - S. A. Pyankov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - I. S. Shulgina
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - E. V. Starostina
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - M. B. Borgoyakova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - D. N. Kisakov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - L. I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - G. A. Shchelkunova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - A. A. Sergeev
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| |
Collapse
|
2
|
Hwang YH, Byeon Y, Ahn SH, Kim MY, Byun SH, Lee HJ, Suh B, Kim D, Jung EJ, Kim YJ. Live attenuated smallpox vaccine candidate (KVAC103) efficiently induces protective immune responses in mice. Vaccine 2024; 42:1283-1291. [PMID: 38310019 DOI: 10.1016/j.vaccine.2024.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
Smallpox, caused by the variola virus belonging to the genus Orthopoxvirus, is an acute contagious disease that killed 300 million people in the 20th century. Since it was declared to be eradicated and the national immunization program against it was stopped, the variola virus has become a prospective bio-weapon. It is necessary to develop a safe vaccine that protects people from terrorism using this biological weapon and that can be administered to immunocompromised people. Our previous study reported on the development of an attenuated smallpox vaccine (KVAC103). This study evaluated cellular and humoral immune responses to various doses, frequencies, and routes of administration of the KVAC103 strain, compared to CJ-50300 vaccine, and its protective ability against the wild-type vaccinia virus Western Reserve (VACV-WR) strain was evaluated. The binding and neutralizing-antibody titers increased in a concentration-dependent manner in the second inoculation, which increased the neutralizing-antibody titer compared to those after the single injection. In contrast, the T-cell immune response (interferon-gamma positive cells) increased after the second inoculation compared to that of CJ-50300 after the first inoculation. Neutralizing-antibody titers and antigen-specific IgG levels were comparable in all groups administered KVAC103 intramuscularly, subcutaneously, and intradermally. In a protective immunity test using the VACV-WR strain, all mice vaccinated with CJ-50300 or KVAC103 showed 100% survival. KVAC103 could be a potent smallpox vaccine that efficiently induces humoral and cellular immune responses to protect mice against the VACV-WR strain.
Collapse
Affiliation(s)
- Yun-Ho Hwang
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu 28159, Republic of Korea
| | - Yeji Byeon
- BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea
| | - Sung Hyun Ahn
- BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea
| | - Mi-Young Kim
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu 28159, Republic of Korea
| | - Sung-Hyun Byun
- BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea
| | - Hyoung Jin Lee
- BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea
| | - Bohyun Suh
- BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea
| | - Dokeun Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu 28159, Republic of Korea
| | - Eun Ju Jung
- BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea.
| | - You-Jin Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu 28159, Republic of Korea.
| |
Collapse
|
3
|
Shchelkunov SN, Sergeev AA, Pyankov SA, Titova KA, Yakubitskiy SN. Smallpox vaccination in a mouse model. Vavilovskii Zhurnal Genet Selektsii 2023; 27:712-718. [PMID: 37965374 PMCID: PMC10641030 DOI: 10.18699/vjgb-23-82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 11/16/2023] Open
Abstract
The monkeypox epidemic, which became unusually widespread among humans in 2022, has brought awareness about the necessity of smallpox vaccination of patients in the risk groups. The modern smallpox vaccine variants are introduced either intramuscularly or by skin scarification. Intramuscular vaccination cannot elicit an active immune response, since tissues at the vaccination site are immunologically poor. Skin has evolved into an immunologically important organ in mammals; therefore, intradermal delivery of a vaccine can ensure reliable protective immunity. Historically, vaccine inoculation into scarified skin (the s.s. route) was the first immunization method. However, it does not allow accurate vaccine dosing, and high-dose vaccines need to be used to successfully complete this procedure. Intradermal (i.d.) vaccine injection, especially low-dose one, can be an alternative to the s.s. route. This study aimed to compare the s.s. and i.d. smallpox immunization routes in a mouse model when using prototypic second- and fourth-generation low-dose vaccines (104 pfu). Experiments were conducted using BALB/c mice; the LIVP or LIVP-GFP strains of the vaccinia virus (VACV) were administered into the tail skin via the s.s. or i.d. routes. After vaccination (7, 14, 21, 28, 42, and 56 days post inoculation (dpi)), blood samples were collected from the retro-orbital venous sinus; titers of VACV-specific IgM and IgG in the resulting sera were determined by ELISA. Both VACV strains caused more profound antibody production when injected via the i.d. route compared to s.s. inoculation. In order to assess the level of the elicited protective immunity, mice were intranasally infected with a highly lethal dose of the cowpox virus on 62 dpi. The results demonstrated that i.d. injection ensures a stronger protective immunity in mice compared to s.s. inoculation for both VACV variants.
Collapse
Affiliation(s)
- S N Shchelkunov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Sergeev
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - S A Pyankov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - K A Titova
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - S N Yakubitskiy
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
4
|
Yang S, Wang Y, Yu F, Cheng R, Zhang Y, Zhou D, Ren X, Deng Z, Zhao H. Structural and functional insights into the modulation of T cell costimulation by monkeypox virus protein M2. Nat Commun 2023; 14:5186. [PMID: 37626059 PMCID: PMC10457294 DOI: 10.1038/s41467-023-40748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The rapid spread of monkeypox in multiple countries has resulted in a global public health threat and has caused international concerns since May 2022. Poxvirus encoded M2 protein is a member of the poxvirus immune evasion family and plays roles in host immunomodulation via the regulation of innate immune response mediated by the NF-κB pathway and adaptive immune response mediated by B7 ligands. However, the interaction of monkeypox virus (MPXV) M2 with B7 ligands and structural insight into poxviral M2 function have remained elusive. Here we reveal that MPXV M2, co-existing as a hexamer and a heptamer, recognizes human B7.1 and B7.2 (hB7.1/2) with high avidities. The binding of oligomeric MPXV M2 interrupts the interactions of hB7.1/2 with CD28 and CTLA4 and subverts T cell activation mediated by B7.1/2 costimulatory signals. Cryo-EM structures of M2 in complex with hB7.1/2 show that M2 binds to the shallow concave face of hB7.1/2 and displays sterically competition with CD28 and CTLA4 for the binding to hB7.1/2. Our findings provide structural mechanisms of poxviral M2 function and immune evasion deployed by poxviruses.
Collapse
Affiliation(s)
- Shangyu Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yong Wang
- Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feiyang Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Rao Cheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yiwei Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Dan Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xuanxiu Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zengqin Deng
- Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Haiyan Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Wang Y. Rendezvous with Vaccinia Virus in the Post-smallpox Era: R&D Advances. Viruses 2023; 15:1742. [PMID: 37632084 PMCID: PMC10457812 DOI: 10.3390/v15081742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Smallpox was eradicated in less than 200 years after Edward Jenner's practice of cowpox variolation in 1796. The forty-three years of us living free of smallpox, beginning in 1979, never truly separated us from poxviruses. The recent outbreak of monkeypox in May 2022 might well warn us of the necessity of keeping up both the scientific research and public awareness of poxviruses. One of them in particular, the vaccinia virus (VACV), has been extensively studied as a vector given its broad host range, extraordinary thermal stability, and exceptional immunogenicity. Unceasing fundamental biological research on VACV provides us with a better understanding of its genetic elements, involvement in cellular signaling pathways, and modulation of host immune responses. This enables the rational design of safer and more efficacious next-generation vectors. To address the new technological advancement within the past decade in VACV research, this review covers the studies of viral immunomodulatory genes, modifications in commonly used vectors, novel mechanisms for rapid generation and purification of recombinant virus, and several other innovative approaches to studying its biology.
Collapse
Affiliation(s)
- Yuxiang Wang
- Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Orthopoxvirus Zoonoses—Do We Still Remember and Are Ready to Fight? Pathogens 2023; 12:pathogens12030363. [PMID: 36986285 PMCID: PMC10052541 DOI: 10.3390/pathogens12030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
The eradication of smallpox was an enormous achievement due to the global vaccination program launched by World Health Organization. The cessation of the vaccination program led to steadily declining herd immunity against smallpox, causing a health emergency of global concern. The smallpox vaccines induced strong, humoral, and cell-mediated immune responses, protecting for decades after immunization, not only against smallpox but also against other zoonotic orthopoxviruses that now represent a significant threat to public health. Here we review the major aspects regarding orthopoxviruses’ zoonotic infections, factors responsible for viral transmissions, as well as the emerging problem of the increased number of monkeypox cases recently reported. The development of prophylactic measures against poxvirus infections, especially the current threat caused by the monkeypox virus, requires a profound understanding of poxvirus immunobiology. The utilization of animal and cell line models has provided good insight into host antiviral defenses as well as orthopoxvirus evasion mechanisms. To survive within a host, orthopoxviruses encode a large number of proteins that subvert inflammatory and immune pathways. The circumvention of viral evasion strategies and the enhancement of major host defenses are key in designing novel, safer vaccines, and should become the targets of antiviral therapies in treating poxvirus infections.
Collapse
|
7
|
Shchelkunova GA, Shchelkunov SN. Smallpox, Monkeypox and Other Human Orthopoxvirus Infections. Viruses 2022; 15:103. [PMID: 36680142 PMCID: PMC9865299 DOI: 10.3390/v15010103] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Considering that vaccination against smallpox with live vaccinia virus led to serious adverse effects in some cases, the WHO, after declaration of the global eradication of smallpox in 1980, strongly recommended to discontinue the vaccination in all countries. This led to the loss of immunity against not only smallpox but also other zoonotic orthopoxvirus infections in humans over the past years. An increasing number of human infections with zoonotic orthopoxviruses and, first of all, monkeypox, force us to reconsider a possible re-emergence of smallpox or a similar disease as a result of natural evolution of these viruses. The review contains a brief analysis of the results of studies on genomic organization and evolution of human pathogenic orthopoxviruses, development of modern methods for diagnosis, vaccination, and chemotherapy of smallpox, monkeypox, and other zoonotic human orthopoxvirus infections.
Collapse
Affiliation(s)
| | - Sergei N. Shchelkunov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, 630559 Novosibirsk, Russia
| |
Collapse
|
8
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Ahmad S, Hasan H, Ahmad Suhaimi NA, Albakri KA, Abedalbaset Alzyoud A, Kadir R, Mohamud R. Comprehensive literature review of monkeypox. Emerg Microbes Infect 2022; 11:2600-2631. [PMID: 36263798 PMCID: PMC9627636 DOI: 10.1080/22221751.2022.2132882] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/02/2022] [Indexed: 11/03/2022]
Abstract
The current outbreak of monkeypox (MPX) infection has emerged as a global matter of concern in the last few months. MPX is a zoonosis caused by the MPX virus (MPXV), which is one of the Orthopoxvirus species. Thus, it is similar to smallpox caused by the variola virus, and smallpox vaccines and drugs have been shown to be protective against MPX. Although MPX is not a new disease and is rarely fatal, the current multi-country MPX outbreak is unusual because it is occurring in countries that are not endemic for MPXV. In this work, we reviewed the extensive literature available on MPXV to summarize the available data on the major biological, clinical and epidemiological aspects of the virus and the important scientific findings. This review may be helpful in raising awareness of MPXV transmission, symptoms and signs, prevention and protective measures. It may also be of interest as a basis for performance of studies to further understand MPXV, with the goal of combating the current outbreak and boosting healthcare services and hygiene practices.Trial registration: ClinicalTrials.gov identifier: NCT02977715..Trial registration: ClinicalTrials.gov identifier: NCT03745131..Trial registration: ClinicalTrials.gov identifier: NCT00728689..Trial registration: ClinicalTrials.gov identifier: NCT02080767..
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | | | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | | | | | | | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
9
|
Shmeleva EV, Syafiq D, Moldoveanu AL, Ferguson BJ, Smith GL. Suppression of innate immunity by the vaccinia virus protein N1 promotes skin microbiota expansion and increased immune infiltration following vaccination. J Gen Virol 2022; 103. [PMID: 36748513 PMCID: PMC7614846 DOI: 10.1099/jgv.0.001814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Vaccinia virus (VACV) protein N1 is an intracellular immunomodulator that contributes to virus virulence via inhibition of NF-κB. Intradermal infection with a VACV lacking gene N1L (vΔN1) results in smaller skin lesions than infection with wild-type virus (WT VACV), but the impact of N1 deletion on the local microbiota as well as the innate and cellular immune responses in infected ear tissue is mostly uncharacterized. Here, we analysed the bacterial burden and host immune response at the site of infection and report that the presence of protein N1 correlated with enhanced expansion of skin microbiota, even before lesion development. Furthermore, early after infection (days 1-3), prior to lesion development, the levels of inflammatory mediators were higher in vΔN1-infected tissue compared to WT VACV infection. In contrast, infiltration of ear tissue with myeloid and lymphoid cells was greater after WT VACV infection and there was significantly greater secondary bacterial infection that correlated with greater lesion size. We conclude that a more robust innate immune response to vΔN1 infection leads to better control of virus replication, less bacterial growth and hence an overall reduction of tissue damage and lesion size. This analysis shows the potent impact of a single viral immunomodulator on the host immune response and the pathophysiology of VACV infection in the skin.
Collapse
Affiliation(s)
- Evgeniya V Shmeleva
- Department of Pathology, University of Cambridge, Cambridge, UK
- Present address: Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Danial Syafiq
- Department of Pathology, University of Cambridge, Cambridge, UK
- Present address: Gonville and Caius College, University of Cambridge, Cambridge, UK
| | - Ana L Moldoveanu
- Department of Pathology, University of Cambridge, Cambridge, UK
- Present address: Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | | | | |
Collapse
|
10
|
Zhang RY, Pallett MA, French J, Ren H, Smith GL. Vaccinia virus BTB-Kelch proteins C2 and F3 inhibit NF-κB activation. J Gen Virol 2022; 103:10.1099/jgv.0.001786. [PMID: 36301238 PMCID: PMC7614845 DOI: 10.1099/jgv.0.001786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
Vaccinia virus (VACV) encodes scores of proteins that suppress host innate immunity and many of these target intracellular signalling pathways leading to activation of inflammation. The transcription factor NF-κB plays a critical role in the host response to infection and is targeted by many viruses, including VACV that encodes 12 NF-κB inhibitors that interfere at different stages in this signalling pathway. Here we report that VACV proteins C2 and F3 are additional inhibitors of this pathway. C2 and F3 are BTB-Kelch proteins that are expressed early during infection, are non-essential for virus replication, but affect the outcome of infection in vivo. Using reporter gene assays, RT-qPCR analyses of endogenous gene expression, and ELISA, these BTB-Kelch proteins are shown here to diminish NF-κB activation by reducing translocation of p65 into the nucleus. C2 and F3 are the 13th and 14th NF-κB inhibitors encoded by VACV. Remarkably, in every case tested, these individual proteins affect virulence in vivo and therefore have non-redundant functions. Lastly, immunisation with a VACV strain lacking C2 induced a stronger CD8+ T cell response and better protection against virus challenge.
Collapse
|
11
|
Strathdee SA, Smith DM, Halbrook M, Mbala-Kingebeni P, Abeles S, Torriani F, Rimoin A. The rapidly evolving monkeypox epidemic: A call to action to leave no one behind. PLoS Med 2022; 19:e1004128. [PMID: 36315599 PMCID: PMC9662950 DOI: 10.1371/journal.pmed.1004128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 11/14/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Steffanie A. Strathdee
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego School of Medicine, San Diego, California, United States of America
- * E-mail:
| | - Davey M. Smith
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego School of Medicine, San Diego, California, United States of America
| | - Megan Halbrook
- Fielding School of Public Health, University of California—Los Angeles, Los Angeles, California, United States of America
| | - Placide Mbala-Kingebeni
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of Congo
- University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Shira Abeles
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego School of Medicine, San Diego, California, United States of America
| | - Francesca Torriani
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego School of Medicine, San Diego, California, United States of America
| | - Anne Rimoin
- Fielding School of Public Health, University of California—Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
12
|
Poxviral ANKR/F-box Proteins: Substrate Adapters for Ubiquitylation and More. Pathogens 2022; 11:pathogens11080875. [PMID: 36014996 PMCID: PMC9414399 DOI: 10.3390/pathogens11080875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Poxviruses are double-stranded DNA viruses that infect insects and a variety of vertebrate species. The large genomes of poxviruses contain numerous genes that allow these viruses to successfully establish infection, including those that help evade the host immune response and prevent cell death. Ankyrin-repeat (ANKR)/F-box proteins are almost exclusively found in poxviruses, and they function as substrate adapters for Skp1-Cullin-1-F-box protein (SCF) multi-subunit E3 ubiquitin (Ub)-ligases. In this regard, they use their C-terminal F-box domain to bind Skp1, Cullin-1, and Roc1 to recruit cellular E2 enzymes to facilitate the ubiquitylation, and subsequent proteasomal degradation, of proteins bound to their N-terminal ANKRs. However, these proteins do not just function as substrate adapters as they also have Ub-independent activities. In this review, we examine both Ub-dependent and -independent activities of ANKR/F-box proteins and discuss how poxviruses use these proteins to counteract the host innate immune response, uncoat their genome, replicate, block cell death, and influence transcription. Finally, we consider important outstanding questions that need to be answered in order to better understand the function of this versatile protein family.
Collapse
|
13
|
Maksyutov RA, Yakubitskiy SN, Kolosova IV, Tregubchak TV, Shvalov AN, Gavrilova EV, Shchelkunov SN. Genome stability of the vaccine strain VAC∆6. Vavilovskii Zhurnal Genet Selektsii 2022; 26:394-401. [PMID: 35903306 PMCID: PMC9284249 DOI: 10.18699/vjgb-22-48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Due to cessation of mass smallpox vaccination in 1980, the collective immunity of humans against orthopoxvirus infections has virtually been lost. Therefore, the risk of spreading zoonotic human orthopoxvirus infections caused by monkeypox and cowpox viruses has increased in the world. First-generation smallpox vaccines based on Vaccinia virus (VAC) are reactogenic and therefore not suitable for mass vaccination under current conditions. This necessitates the development of modern safe live vaccines based on VAC using genetic engineering. We created the VACΔ6 strain by transient dominant selection. In the VACΔ6 genome, f ive virulence genes were intentionally deleted, and one gene was inactivated by inserting a synthetic DNA fragment. The virus was passaged 71 times in CV-1 cells to obtain the VACΔ6 strain from the VAC LIVP clonal variant. Such a long passage history might have led to additional off-target mutations in VACΔ6 compared to the original LIVP variant. To prevent this, we performed a genome-wide sequencing of VAC LIVP, VACΔ6, and f ive intermediate viral strains to assess possible off-target mutations. A comparative analysis of complete viral genomes showed that, in addition to target mutations, only two nucleotide substitutions occurred spontaneously when obtaining VACΔ4 from the VACΔ3 strain; the mutations persisting in the VACΔ5 and VACΔ6 genomes. Both nucleotide substitutions are located in intergenic regions (positions 1431 and 189738 relative to LIVP), which indicates an extremely rare occurrence of off-target mutations when using transient dominant selection to obtain recombinant VAC variants with multiple insertions/deletions. To assess the genome stability of the resulting attenuated vaccine strain, 15 consecutive cycles of cultivation of the industrial VACΔ6 strain
were performed in 4647 cells certif ied for vaccine production in accordance with the “Guidelines for Clinical Trials of
Medicinal Products”. PCR and sequencing analysis of six DNA fragments corresponding to the regions of disrupted
genes in VACΔ6 showed that all viral DNA sequences remained unchanged after 15 passages in 4647 cells.
Collapse
Affiliation(s)
- R. A. Maksyutov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
| | - S. N. Yakubitskiy
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
| | - I. V. Kolosova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
| | - T. V. Tregubchak
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
| | - A. N. Shvalov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
| | - E. V. Gavrilova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
| | - S. N. Shchelkunov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
| |
Collapse
|
14
|
Shchelkunov SN, Yakubitskiy SN, Sergeev AA, Starostina EV, Titova KA, Pyankov SA, Shchelkunova GA, Borgoyakova MB, Zadorozhny AM, Orlova LA, Kisakov DN, Karpenko LI. Enhancing the Immunogenicity of Vaccinia Virus. Viruses 2022; 14:v14071453. [PMID: 35891430 PMCID: PMC9317313 DOI: 10.3390/v14071453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
The conventional live smallpox vaccine based on the vaccinia virus (VACV) cannot be widely used today because it is highly reactogenic. Therefore, there is a demand for designing VACV variants possessing enhanced immunogenicity, making it possible to reduce the vaccine dose and, therefore, significantly eliminate the pathogenic effect of the VACV on the body. In this study, we analyzed the development of the humoral and T cell-mediated immune responses elicited by immunizing mice with low-dose VACV variants carrying the mutant A34R gene (which increases production of extracellular virions) or the deleted A35R gene (whose protein product inhibits antigen presentation by the major histocompatibility complex class II). The VACV LIVP strain, which is used as a smallpox vaccine in Russia, and its recombinant variants LIVP-A34R*, LIVP-dA35R, and LIVP-A34R*-dA35R, were compared upon intradermal immunization of BALB/c mice at a dose of 104 pfu/animal. The strongest T cell-mediated immunity was detected in mice infected with the LIVP-A34R*-dA35R virus. The parental LIVP strain induced a significantly lower antibody level compared to the strains carrying the modified A34R and A35R genes. Simultaneous modification of the A34R gene and deletion of the A35R gene in VACV LIVP synergistically enhanced the immunogenic properties of the LIVP-A34R*-dA35R virus.
Collapse
|
15
|
Depierreux DM, Altenburg AF, Soday L, Fletcher-Etherington A, Antrobus R, Ferguson BJ, Weekes MP, Smith GL. Selective modulation of cell surface proteins during vaccinia infection: A resource for identifying viral immune evasion strategies. PLoS Pathog 2022; 18:e1010612. [PMID: 35727847 PMCID: PMC9307158 DOI: 10.1371/journal.ppat.1010612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/22/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
The interaction between immune cells and virus-infected targets involves multiple plasma membrane (PM) proteins. A systematic study of PM protein modulation by vaccinia virus (VACV), the paradigm of host regulation, has the potential to reveal not only novel viral immune evasion mechanisms, but also novel factors critical in host immunity. Here, >1000 PM proteins were quantified throughout VACV infection, revealing selective downregulation of known T and NK cell ligands including HLA-C, downregulation of cytokine receptors including IFNAR2, IL-6ST and IL-10RB, and rapid inhibition of expression of certain protocadherins and ephrins, candidate activating immune ligands. Downregulation of most PM proteins occurred via a proteasome-independent mechanism. Upregulated proteins included a decoy receptor for TRAIL. Twenty VACV-encoded PM proteins were identified, of which five were not recognised previously as such. Collectively, this dataset constitutes a valuable resource for future studies on antiviral immunity, host-pathogen interaction, poxvirus biology, vector-based vaccine design and oncolytic therapy. Vaccinia virus (VACV) is the vaccine used to eradicate smallpox and an excellent model for studying host-pathogen interactions. Many VACV-mediated immune evasion strategies are known, however how immune cells recognise VACV-infected cells is incompletely understood because of the complexity of surface proteins regulating such interactions. Here, a systematic study of proteins on the cell surface at different times during infection with VACV is presented. This shows not only the precise nature and kinetics of appearance of VACV proteins, but also the selective alteration of cellular surface proteins. The latter thereby identified potential novel immune evasion strategies and host proteins regulating immune activation. Comprehensive comparisons with published datasets provided further insight into mechanisms used to regulate surface protein expression. Such comparisons also identified proteins that are targeted by both VACV and human cytomegalovirus (HCMV), and which are therefore likely to represent host proteins regulating immune recognition and activation. Collectively, this work provides a valuable resource for studying viral immune evasion mechanisms and novel host proteins critical in host immunity.
Collapse
Affiliation(s)
| | | | - Lior Soday
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
| | | | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
| | | | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
- * E-mail: (MPW); (GLS)
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, United Kingdom
- * E-mail: (MPW); (GLS)
| |
Collapse
|
16
|
Hood AJM, Sumner RP, Maluquer de Motes C. Disruption of the cGAS/STING axis does not impair sensing of MVA in BHK21 cells. J Gen Virol 2022; 103. [PMID: 35584007 DOI: 10.1099/jgv.0.001755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modified vaccinia Ankara (MVA) is an attenuated strain of vaccinia virus (VACV), a dsDNA virus that replicates its genome in the cytoplasm and as a result is canonically sensed by the cyclic GMP-AMP synthase (cGAS) and its downstream stimulator of interferon genes (STING). MVA has a highly restricted host range due to major deletions in its genome including inactivation of immunomodulatory genes, only being able to grow in avian cells and the hamster cell line BHK21. Here we studied the interplay between MVA and the cGAS/STING DNA in this permissive cell line and determined whether manipulation of this axis could impact MVA replication and cell responses. We demonstrate that BHK21 cells retain a functional cGAS/STING axis that responds to canonical DNA sensing agonists, upregulating interferon stimulated genes (ISGs). BHK21 cells also respond to MVA, but with a distinct ISG profile. This profile remains unaltered after CRISPR/Cas9 knock-out editing of STING and ablation of cytosolic DNA responses, indicating that MVA responses are independent of the cGAS/STING axis. Furthermore, infection by MVA diminishes the ability of BHK21 cells to respond to exogenous DNA suggesting that MVA still encodes uncharacterised inhibitors of DNA sensing. This suggests that using attenuated strains in permissive cell lines may assist in identification of novel host-virus interactions that may be of relevance to disease or the therapeutic applications of poxviruses.
Collapse
Affiliation(s)
- Alasdair J M Hood
- Department of Microbial Sciences, University of Surrey, Guildford, UK
| | - Rebecca P Sumner
- Department of Microbial Sciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
17
|
Shmeleva EV, Gomez de Agüero M, Wagner J, Enright AJ, Macpherson AJ, Ferguson BJ, Smith GL. Smallpox vaccination induces a substantial increase in commensal skin bacteria that promote pathology and influence the host response. PLoS Pathog 2022; 18:e1009854. [PMID: 35446919 PMCID: PMC9022886 DOI: 10.1371/journal.ppat.1009854] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/18/2022] [Indexed: 12/03/2022] Open
Abstract
Interactions between pathogens, host microbiota and the immune system influence many physiological and pathological processes. In the 20th century, widespread dermal vaccination with vaccinia virus (VACV) led to the eradication of smallpox but how VACV interacts with the microbiota and whether this influences the efficacy of vaccination are largely unknown. Here we report that intradermal vaccination with VACV induces a large increase in the number of commensal bacteria in infected tissue, which enhance recruitment of inflammatory cells, promote tissue damage and influence the host response. Treatment of vaccinated specific-pathogen-free (SPF) mice with antibiotic, or infection of genetically-matched germ-free (GF) animals caused smaller lesions without alteration in virus titre. Tissue damage correlated with enhanced neutrophil and T cell infiltration and levels of pro-inflammatory tissue cytokines and chemokines. One month after vaccination, GF and both groups of SPF mice had equal numbers of VACV-specific CD8+ T cells and were protected from disease induced by VACV challenge, despite lower levels of VACV-neutralising antibodies observed in GF animals. Thus, skin microbiota may provide an adjuvant-like stimulus during vaccination with VACV and influence the host response to vaccination.
Collapse
Affiliation(s)
| | - Mercedes Gomez de Agüero
- Maurice Müller Laboratories, Department for Biomedical Research, Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Josef Wagner
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Anton J. Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J. Macpherson
- Maurice Müller Laboratories, Department for Biomedical Research, Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Brian J. Ferguson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Talbot-Cooper C, Pantelejevs T, Shannon JP, Cherry CR, Au MT, Hyvönen M, Hickman HD, Smith GL. Poxviruses and paramyxoviruses use a conserved mechanism of STAT1 antagonism to inhibit interferon signaling. Cell Host Microbe 2022; 30:357-372.e11. [PMID: 35182467 PMCID: PMC8912257 DOI: 10.1016/j.chom.2022.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
Abstract
The induction of interferon (IFN)-stimulated genes by STATs is a critical host defense mechanism against virus infection. Here, we report that a highly expressed poxvirus protein, 018, inhibits IFN-induced signaling by binding to the SH2 domain of STAT1, thereby preventing the association of STAT1 with an activated IFN receptor. Despite encoding other inhibitors of IFN-induced signaling, a poxvirus mutant lacking 018 was attenuated in mice. The 2.0 Å crystal structure of the 018:STAT1 complex reveals a phosphotyrosine-independent mode of 018 binding to the SH2 domain of STAT1. Moreover, the STAT1-binding motif of 018 shows similarity to the STAT1-binding proteins from Nipah virus, which, similar to 018, block the association of STAT1 with an IFN receptor. Overall, these results uncover a conserved mechanism of STAT1 antagonism that is employed independently by distinct virus families.
Collapse
Affiliation(s)
- Callum Talbot-Cooper
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Teodors Pantelejevs
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - John P Shannon
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Christian R Cherry
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Marcus T Au
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
19
|
Albarnaz JD, Ren H, Torres AA, Shmeleva EV, Melo CA, Bannister AJ, Brember MP, Chung BYW, Smith GL. Molecular mimicry of NF-κB by vaccinia virus protein enables selective inhibition of antiviral responses. Nat Microbiol 2022; 7:154-168. [PMID: 34949827 PMCID: PMC7614822 DOI: 10.1038/s41564-021-01004-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 10/21/2021] [Indexed: 12/16/2022]
Abstract
Infection of mammalian cells with viruses activates NF-κB to induce the expression of cytokines and chemokines and initiate an antiviral response. Here, we show that a vaccinia virus protein mimics the transactivation domain of the p65 subunit of NF-κB to inhibit selectively the expression of NF-κB-regulated genes. Using co-immunoprecipitation assays, we found that the vaccinia virus protein F14 associates with NF-κB co-activator CREB-binding protein (CBP) and disrupts the interaction between p65 and CBP. This abrogates CBP-mediated acetylation of p65, after which it reduces promoter recruitment of the transcriptional regulator BRD4 and diminishes stimulation of NF-κB-regulated genes CXCL10 and CCL2. Recruitment of BRD4 to the promoters of NFKBIA and CXCL8 remains unaffected by either F14 or JQ1 (a competitive inhibitor of BRD4 bromodomains), indicating that BRD4 recruitment is acetylation-independent. Unlike other viral proteins that are general antagonists of NF-κB, F14 is a selective inhibitor of NF-κB-dependent gene expression. An in vivo model of infection demonstrated that F14 promotes virulence. Molecular mimicry of NF-κB may be conserved because other orthopoxviruses, including variola, monkeypox and cowpox viruses, encode orthologues of F14.
Collapse
Affiliation(s)
- Jonas D Albarnaz
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Hongwei Ren
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, London, UK
| | - Alice A Torres
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Evgeniya V Shmeleva
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Carlos A Melo
- The Gurdon Institute, University of Cambridge, Cambridge, UK
| | | | | | - Betty Y-W Chung
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
20
|
Shchelkunov SN, Bauer TV, Yakubitskiy SN, Sergeev AA, Kabanov AS, Pyankov SA. [Mutations in the A34R gene increase the immunogenicity of vaccinia virus]. Vavilovskii Zhurnal Genet Selektsii 2021; 25:139-146. [PMID: 34901711 PMCID: PMC8627874 DOI: 10.18699/vj21.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
Самым простым и надежным способом защиты от вирусных инфекций является вакцинопрофилактика. При этом наибольшей протективной эффективностью обладают живые вакцины, в основе которых
используют слабовирулентные для человека вирусы, близкородственные патогенным, или аттенуированные
(ослабленные за счет мутаций/делеций в вирусном геноме) варианты патогенного для человека вируса. Вакцинация против оспы с использованием живого вируса осповакцины (vaccinia virus, VACV), близкородственного вирусу натуральной оспы, сыграла важнейшую роль в успехе программы глобальной ликвидации оспы,
которая осуществлялась под эгидой Всемирной организации здравоохранения. Прекращение после 1980 г.
противооспенной вакцинации привело к тому, что огромная часть населения Земли в настоящее время не
имеет иммунитета не только к оспе, но и любым другим зоонозным ортопоксвирусным инфекциям. Это создает возможность циркуляции зоонозных ортопоксвирусов в человеческой популяции и, как следствие, приводит к изменению экологии и круга чувствительных хозяев для разных видов ортопоксвирусов. При этом
использование классической живой вакцины на основе VACV для защиты от этих инфекций в настоящее время не приемлемо, так как она может обусловливать тяжелые побочные реакции. В связи с этим все более
актуальной становится разработка новых безопасных вакцин против ортопоксвирусных инфекций человека
и животных. Аттенуация (ослабление вирулентности) VACV достигается в результате направленной инактивации определенных генов вируса и обычно приводит к уменьшению эффективности размножения VACV in vivo.
Следствием этого может быть снижение иммунного ответа при введении аттенуированного вируса пациентам в стандартных дозах. Часто используемым для встройки/инактивации в геноме VACV является ген тимидинкиназы, нарушение которого приводит к аттенуации вируса. В данной работе изучено, как введение двух
точечных мутаций в ген A34R аттенуированного штамма LIVP-GFP (ТК-), увеличивающих выход внеклеточных
оболочечных вирионов (EEV), влияет на свойства пато- и иммуногенности варианта VACV LIVP-GFP-A34R при
интраназальном заражении лабораторных мышей. Показано, что увеличение продукции EEV рекомбинантным штаммом VACV LIVP-GFP-A34R не меняет аттенуированный фенотип, характерный для родительского
штамма LIVP-GFP, но приводит к существенно большей продукции VACV-специфичных антител.
Ключевые слова: вирус осповакцины; направленные мутации; аттенуация; иммуногенность.
Collapse
Affiliation(s)
- S N Shchelkunov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T V Bauer
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - S N Yakubitskiy
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - A A Sergeev
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - A S Kabanov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - S A Pyankov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
21
|
Kaynarcalidan O, Moreno Mascaraque S, Drexler I. Vaccinia Virus: From Crude Smallpox Vaccines to Elaborate Viral Vector Vaccine Design. Biomedicines 2021; 9:1780. [PMID: 34944596 PMCID: PMC8698642 DOI: 10.3390/biomedicines9121780] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
Various vaccinia virus (VACV) strains were applied during the smallpox vaccination campaign to eradicate the variola virus worldwide. After the eradication of smallpox, VACV gained popularity as a viral vector thanks to increasing innovations in genetic engineering and vaccine technology. Some VACV strains have been extensively used to develop vaccine candidates against various diseases. Modified vaccinia virus Ankara (MVA) is a VACV vaccine strain that offers several advantages for the development of recombinant vaccine candidates. In addition to various host-restriction genes, MVA lacks several immunomodulatory genes of which some have proven to be quite efficient in skewing the immune response in an unfavorable way to control infection in the host. Studies to manipulate these genes aim to optimize the immunogenicity and safety of MVA-based viral vector vaccine candidates. Here we summarize the history and further work with VACV as a vaccine and present in detail the genetic manipulations within the MVA genome to improve its immunogenicity and safety as a viral vector vaccine.
Collapse
Affiliation(s)
| | | | - Ingo Drexler
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (O.K.); (S.M.M.)
| |
Collapse
|
22
|
Riederer S, Fux R, Lehmann MH, Volz A, Sutter G, Rojas JJ. Activation of interferon regulatory factor 3 by replication-competent vaccinia viruses improves antitumor efficacy mediated by T cell responses. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:399-409. [PMID: 34553028 PMCID: PMC8430050 DOI: 10.1016/j.omto.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
Recently, oncolytic vaccinia viruses (VACVs) have shown their potential to provide for clinically effective cancer treatments. The reason for this clinical usefulness is not only the direct destruction of infected cancer cells but also activation of immune responses directed against tumor antigens. For eliciting a robust antitumor immunity, a dominant T helper 1 (Th1) cell differentiation of the response is preferred, and such polarization can be achieved by activating the Toll-like receptor 3 (TLR3)-interferon regulatory factor 3 (IRF3) signaling pathway. However, current VACVs used as oncolytic viruses to date still encode several immune evasion proteins involved in the inhibition of this signaling pathway. By inactivating genes of selected regulatory virus proteins, we aimed for a candidate virus with increased potency to activate cellular antitumor immunity but at the same time with a fully maintained replicative capacity in cancer cells. The removal of up to three key genes (C10L, N2L, and C6L) from VACV did not reduce the strength of viral replication, both in vitro and in vivo, but resulted in the rescue of IRF3 phosphorylation upon infection of cancer cells. In syngeneic mouse tumor models, this activation translated to enhanced cytotoxic T lymphocyte (CTL) responses directed against tumor-associated antigens and neo-epitopes and improved antitumor activity.
Collapse
Affiliation(s)
- Stephanie Riederer
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany
| | - Robert Fux
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany
| | - Michael H Lehmann
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany
| | - Asisa Volz
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| | - Juan J Rojas
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany.,Department of Pathology and Experimental Therapies, IDIBELL, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| |
Collapse
|
23
|
Adaptive Immune Response to Vaccinia Virus LIVP Infection of BALB/c Mice and Protection against Lethal Reinfection with Cowpox Virus. Viruses 2021; 13:v13081631. [PMID: 34452494 PMCID: PMC8402668 DOI: 10.3390/v13081631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Mass vaccination has played a critical role in the global eradication of smallpox. Various vaccinia virus (VACV) strains, whose origin has not been clearly documented in most cases, have been used as live vaccines in different countries. These VACV strains differed in pathogenicity towards various laboratory animals and in reactogenicity exhibited upon vaccination of humans. In this work, we studied the development of humoral and cellular immune responses in BALB/c mice inoculated intranasally (i.n.) or intradermally (i.d.) with the VACV LIVP strain at a dose of 105 PFU/mouse, which was used in Russia as the first generation smallpox vaccine. Active synthesis of VACV-specific IgM in the mice occurred on day 7 after inoculation, reached a maximum on day 14, and decreased by day 29. Synthesis of virus-specific IgG was detected only from day 14, and the level increased significantly by day 29 after infection of the mice. Immunization (i.n.) resulted in significantly higher production of VACV-specific antibodies compared to that upon i.d. inoculation of LIVP. There were no significant differences in the levels of the T cell response in mice after i.n. or i.d. VACV administration at any time point. The maximum level of VACV-specific T-cells was detected on day 14. By day 29 of the experiment, the level of VACV-specific T-lymphocytes in the spleen of mice significantly decreased for both immunization procedures. On day 30 after immunization with LIVP, mice were infected with the cowpox virus at a dose of 46 LD50. The i.n. immunized mice were resistant to this infection, while 33% of i.d. immunized mice died. Our findings indicate that the level of the humoral immune response to vaccination may play a decisive role in protection of animals from orthopoxvirus reinfection.
Collapse
|
24
|
Yu H, Bruneau RC, Brennan G, Rothenburg S. Battle Royale: Innate Recognition of Poxviruses and Viral Immune Evasion. Biomedicines 2021; 9:biomedicines9070765. [PMID: 34356829 PMCID: PMC8301327 DOI: 10.3390/biomedicines9070765] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/17/2022] Open
Abstract
Host pattern recognition receptors (PRRs) sense pathogen-associated molecular patterns (PAMPs), which are molecular signatures shared by different pathogens. Recognition of PAMPs by PRRs initiate innate immune responses via diverse signaling pathways. Over recent decades, advances in our knowledge of innate immune sensing have enhanced our understanding of the host immune response to poxviruses. Multiple PRR families have been implicated in poxvirus detection, mediating the initiation of signaling cascades, activation of transcription factors, and, ultimately, the expression of antiviral effectors. To counteract the host immune defense, poxviruses have evolved a variety of immunomodulators that have diverse strategies to disrupt or circumvent host antiviral responses triggered by PRRs. These interactions influence the outcomes of poxvirus infections. This review focuses on our current knowledge of the roles of PRRs in the recognition of poxviruses, their elicited antiviral effector functions, and how poxviral immunomodulators antagonize PRR-mediated host immune responses.
Collapse
|
25
|
Barrado-Gil L, del Puerto A, Galindo I, Cuesta-Geijo MÁ, García-Dorival I, de Motes CM, Alonso C. African Swine Fever Virus Ubiquitin-Conjugating Enzyme Is an Immunomodulator Targeting NF-κB Activation. Viruses 2021; 13:v13061160. [PMID: 34204411 PMCID: PMC8233900 DOI: 10.3390/v13061160] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
African swine fever virus (ASFV) is an acute and persistent swine virus with a high economic burden that encodes multiple genes to evade host immune response. In this work, we have revealed that early viral protein UBCv1, the only known conjugating enzyme encoded by a virus, modulates innate immune and inflammatory signaling. Transient overexpression of UBCv1 impaired activation of NF-κB and AP-1 transcription factors induced by several agonists of these pathways. In contrast, activation of IRF3 and ISRE signaling upon stimulation with TRIFΔRIP, cGAS/STING or RIG-I-CARD remained unaltered. Experiments aimed at mapping UBCv1 inhibitory activity indicated that this viral protein acts upstream or at the level step of IKKβ. In agreement with this, UBCv1 was able to block p65 nuclear translocation upon cytokine stimulation, a key event in NF-ĸB signaling. Additionally, A549 stably transduced for UBCv1 showed a significant decrease in the levels of NF-ĸB dependent genes. Interestingly, despite the well-defined capacity of UBCv1 to conjugate ubiquitin chains, a mutant disabled for ubiquitylation activity retained similar immunomodulatory activity as the wild-type enzyme, suggesting that the two functions are segregated. Altogether these data suggest that ASFV UBCv1 manipulates the innate immune response targeting the NF-κB and AP-1 pathways and opens new questions about the multifunctionality of this enzyme.
Collapse
Affiliation(s)
- Lucía Barrado-Gil
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain; (L.B.-G.); (A.d.P.); (I.G.); (M.Á.C.-G.); (I.G.-D.)
| | - Ana del Puerto
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain; (L.B.-G.); (A.d.P.); (I.G.); (M.Á.C.-G.); (I.G.-D.)
| | - Inmaculada Galindo
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain; (L.B.-G.); (A.d.P.); (I.G.); (M.Á.C.-G.); (I.G.-D.)
| | - Miguel Ángel Cuesta-Geijo
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain; (L.B.-G.); (A.d.P.); (I.G.); (M.Á.C.-G.); (I.G.-D.)
| | - Isabel García-Dorival
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain; (L.B.-G.); (A.d.P.); (I.G.); (M.Á.C.-G.); (I.G.-D.)
| | - Carlos Maluquer de Motes
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Stag Hill, Guildford GU2 7XH, UK
- Correspondence: (C.M.d.M.); (C.A.)
| | - Covadonga Alonso
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain; (L.B.-G.); (A.d.P.); (I.G.); (M.Á.C.-G.); (I.G.-D.)
- Correspondence: (C.M.d.M.); (C.A.)
| |
Collapse
|
26
|
Shchelkunov SN, Shchelkunova GA. [We should be prepared to smallpox re-emergence.]. Vopr Virusol 2021; 64:206-214. [PMID: 32167685 DOI: 10.36233/0507-4088-2019-64-5-206-214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022]
Abstract
The review contains a brief analysis of the results of investigations conducted during 40 years after smallpox eradication and directed to study genomic organization and evolution of variola virus (VARV) and development of modern diagnostics, vaccines and chemotherapies of smallpox and other zoonotic orthopoxviral infections of humans. Taking into account that smallpox vaccination in several cases had adverse side effects, WHO recommended ceasing this vaccination after 1980 in all countries of the world. The result of this decision is that the mankind lost the collective immunity not only to smallpox, but also to other zoonotic orthopoxvirus infections. The ever more frequently recorded human cases of zoonotic orthopoxvirus infections force to renew consideration of the problem of possible smallpox reemergence resulting from natural evolution of these viruses. Analysis of the available archive data on smallpox epidemics, the history of ancient civilizations, and the newest data on the evolutionary relationship of orthopoxviruses has allowed us to hypothesize that VARV could have repeatedly reemerged via evolutionary changes in a zoonotic ancestor virus and then disappeared because of insufficient population size of isolated ancient civilizations. Only the historically last smallpox pandemic continued for a long time and was contained and stopped in the 20th century thanks to the joint efforts of medics and scientists from many countries under the aegis of WHO. Thus, there is no fundamental prohibition on potential reemergence of smallpox or a similar human disease in future in the course of natural evolution of the currently existing zoonotic orthopoxviruses. Correspondingly, it is of the utmost importance to develop and widely adopt state-of-the-art methods for efficient and rapid species-specific diagnosis of all orthopoxvirus species pathogenic for humans, VARV included. It is also most important to develop new safe methods for prevention and therapy of human orthopoxvirus infections.
Collapse
Affiliation(s)
- S N Shchelkunov
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk region, 630559, Russia
| | - G A Shchelkunova
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk region, 630559, Russia
| |
Collapse
|
27
|
Enhancing the Protective Immune Response to Administration of a LIVP-GFP Live Attenuated Vaccinia Virus to Mice. Pathogens 2021; 10:pathogens10030377. [PMID: 33801026 PMCID: PMC8004012 DOI: 10.3390/pathogens10030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
Following the WHO announcement of smallpox eradication, discontinuation of smallpox vaccination with vaccinia virus (VACV) was recommended. However, interest in VACV was soon renewed due to the opportunity of genetic engineering of the viral genome by directed insertion of foreign genes or introduction of mutations or deletions into selected viral genes. This genomic technology enabled production of stable attenuated VACV strains producing antigens of various infectious agents. Due to an increasing threat of human orthopoxvirus re-emergence, the development of safe highly immunogenic live orthopoxvirus vaccines using genetic engineering methods has been the challenge in recent years. In this study, we investigated an attenuated VACV LIVP-GFP (TK-) strain having an insertion of the green fluorescent protein gene into the viral thymidine kinase gene, which was generated on the basis of the LIVP (Lister-Institute for Viral Preparations) strain used in Russia as the first generation smallpox vaccine. We studied the effect of A34R gene modification and A35R gene deletion on the immunogenic and protective properties of the LIVP-GFP strain. The obtained data demonstrate that intradermal inoculation of the studied viruses induces higher production of VACV-specific antibodies compared to their levels after intranasal administration. Introduction of two point mutations into the A34R gene, which increase the yield of extracellular enveloped virions, and deletion of the A35R gene, the protein product of which inhibits presentation of antigens by MHC II, enhances protective potency of the created LIVP-TK--A34R*-dA35R virus against secondary lethal orthopoxvirus infection of BALB/c mice even at an intradermal dose as low as 103 plaque forming units (PFU)/mouse. This virus may be considered not only as a candidate attenuated live vaccine against smallpox and other human orthopoxvirus infections but also as a vector platform for development of safe multivalent live vaccines against other infectious diseases using genetic engineering methods.
Collapse
|
28
|
Hazlewood JE, Dumenil T, Le TT, Slonchak A, Kazakoff SH, Patch AM, Gray LA, Howley PM, Liu L, Hayball JD, Yan K, Rawle DJ, Prow NA, Suhrbier A. Injection site vaccinology of a recombinant vaccinia-based vector reveals diverse innate immune signatures. PLoS Pathog 2021; 17:e1009215. [PMID: 33439897 PMCID: PMC7837487 DOI: 10.1371/journal.ppat.1009215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/26/2021] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Poxvirus systems have been extensively used as vaccine vectors. Herein a RNA-Seq analysis of intramuscular injection sites provided detailed insights into host innate immune responses, as well as expression of vector and recombinant immunogen genes, after vaccination with a new multiplication defective, vaccinia-based vector, Sementis Copenhagen Vector. Chikungunya and Zika virus immunogen mRNA and protein expression was associated with necrosing skeletal muscle cells surrounded by mixed cellular infiltrates. The multiple adjuvant signatures at 12 hours post-vaccination were dominated by TLR3, 4 and 9, STING, MAVS, PKR and the inflammasome. Th1 cytokine signatures were dominated by IFNγ, TNF and IL1β, and chemokine signatures by CCL5 and CXCL12. Multiple signatures associated with dendritic cell stimulation were evident. By day seven, vaccine transcripts were absent, and cell death, neutrophil, macrophage and inflammation annotations had abated. No compelling arthritis signatures were identified. Such injection site vaccinology approaches should inform refinements in poxvirus-based vector design. Poxvirus vector systems have been widely developed for vaccine applications. Despite considerable progress, so far only one recombinant poxvirus vectored vaccine has to date been licensed for human use, with ongoing efforts seeking to enhance immunogenicity whilst minimizing reactogenicity. The latter two characteristics are often determined by early post-vaccination events at the injection site. We therefore undertook an injection site vaccinology approach to analyzing gene expression at the vaccination site after intramuscular inoculation with a recombinant, multiplication defective, vaccinia-based vaccine. This provided detailed insights into inter alia expression of vector-encoded immunoregulatory genes, as well as host innate and adaptive immune responses. We propose that such injection site vaccinology can inform rational vaccine vector design, and we discuss how the information and approach elucidated herein might be used to improve immunogenicity and limit reactogenicity of poxvirus-based vaccine vector systems.
Collapse
Affiliation(s)
- Jessamine E. Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Troy Dumenil
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Thuy T. Le
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Stephen H. Kazakoff
- Clinical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ann-Marie Patch
- Clinical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lesley-Ann Gray
- Australian Genome Research Facility Ltd., Melbourne, Australia
| | | | - Liang Liu
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - John D. Hayball
- Sementis Ltd., Hackney, Australia
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Daniel J. Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Natalie A. Prow
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Australian Infectious Disease Research Centre, Brisbane, Australia
- * E-mail:
| |
Collapse
|
29
|
Struzik J, Szulc-Dąbrowska L. NF-κB as an Important Factor in Optimizing Poxvirus-Based Vaccines against Viral Infections. Pathogens 2020; 9:pathogens9121001. [PMID: 33260450 PMCID: PMC7760304 DOI: 10.3390/pathogens9121001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Poxviruses are large dsDNA viruses that are regarded as good candidates for vaccine vectors. Because the members of the Poxviridae family encode numerous immunomodulatory proteins in their genomes, it is necessary to carry out certain modifications in poxviral candidates for vaccine vectors to improve the vaccine. Currently, several poxvirus-based vaccines targeted at viral infections are under development. One of the important aspects of the influence of poxviruses on the immune system is that they encode a large array of inhibitors of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which is the key element of both innate and adaptive immunity. Importantly, the NF-κB transcription factor induces the mechanisms associated with adaptive immunological memory involving the activation of effector and memory T cells upon vaccination. Since poxviruses encode various NF-κB inhibitor proteins, before the use of poxviral vaccine vectors, modifications that influence NF-κB activation and consequently affect the immunogenicity of the vaccine should be carried out. This review focuses on NF-κB as an essential factor in the optimization of poxviral vaccines against viral infections.
Collapse
|
30
|
Shchelkunov SN, Yakubitskiy SN, Bauer TV, Sergeev AA, Kabanov AS, Bulichev LE, Yurganova IA, Odnoshevskiy DA, Kolosova IV, Pyankov SA, Taranov OS. The Influence of an Elevated Production of Extracellular Enveloped Virions of the Vaccinia Virus on Its Properties in Infected Mice. Acta Naturae 2020; 12:120-132. [PMID: 33456984 PMCID: PMC7800600 DOI: 10.32607/actanaturae.10972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
The modern approach to developing attenuated smallpox vaccines usually consists in targeted inactivation of vaccinia virus (VACV) virulence genes. In this work, we studied how an elevated production of extracellular enveloped virions (EEVs) and the route of mouse infection can influence the virulence and immunogenicity of VACV. The research subject was the LIVP strain, which is used in Russia for smallpox vaccination. Two point mutations causing an elevated production of EEVs compared with the parental LIVP strain were inserted into the sequence of the VACV A34R gene. The created mutant LIVP-A34R strain showed lower neurovirulence in an intracerebral injection test and elevated antibody production in the intradermal injection method. This VACV variant can be a promising platform for developing an attenuated, highly immunogenic vaccine against smallpox and other orthopoxvirus infections. It can also be used as a vector for designing live-attenuated recombinant polyvalent vaccines against various infectious diseases.
Collapse
Affiliation(s)
- S. N. Shchelkunov
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - S. N. Yakubitskiy
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - T. V. Bauer
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - A. A. Sergeev
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - A. S. Kabanov
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - L. E. Bulichev
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - I. A. Yurganova
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - D. A. Odnoshevskiy
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - I. V. Kolosova
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - S. A. Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| | - O. S. Taranov
- State Research Center of Virology and Biotechnology VECTOR, Rospoterbnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| |
Collapse
|
31
|
El-Jesr M, Teir M, Maluquer de Motes C. Vaccinia Virus Activation and Antagonism of Cytosolic DNA Sensing. Front Immunol 2020; 11:568412. [PMID: 33117352 PMCID: PMC7559579 DOI: 10.3389/fimmu.2020.568412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Cells express multiple molecules aimed at detecting incoming virus and infection. Recognition of virus infection leads to the production of cytokines, chemokines and restriction factors that limit virus replication and activate an adaptive immune response offering long-term protection. Recognition of cytosolic DNA has become a central immune sensing mechanism involved in infection, autoinflammation, and cancer immunotherapy. Vaccinia virus (VACV) is the prototypic member of the family Poxviridae and the vaccine used to eradicate smallpox. VACV harbors enormous potential as a vaccine vector and several attenuated strains are currently being developed against infectious diseases. In addition, VACV has emerged as a popular oncolytic agent due to its cytotoxic capacity even in hypoxic environments. As a poxvirus, VACV is an unusual virus that replicates its large DNA genome exclusively in the cytoplasm of infected cells. Despite producing large amounts of cytosolic DNA, VACV efficiently suppresses the subsequent innate immune response by deploying an arsenal of proteins with capacity to disable host antiviral signaling, some of which specifically target cytosolic DNA sensing pathways. Some of these strategies are conserved amongst orthopoxviruses, whereas others are seemingly unique to VACV. In this review we provide an overview of the VACV replicative cycle and discuss the recent advances on our understanding of how VACV induces and antagonizes innate immune activation via cytosolic DNA sensing pathways. The implications of these findings in the rational design of vaccines and oncolytics based on VACV are also discussed.
Collapse
Affiliation(s)
- Misbah El-Jesr
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | - Muad Teir
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | | |
Collapse
|
32
|
Lothert K, Pagallies F, Eilts F, Sivanesapillai A, Hardt M, Moebus A, Feger T, Amann R, Wolff MW. A scalable downstream process for the purification of the cell culture-derived Orf virus for human or veterinary applications. J Biotechnol 2020; 323:221-230. [PMID: 32860824 DOI: 10.1016/j.jbiotec.2020.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/06/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
Abstract
The large demand for safe and efficient viral vector-based vaccines and gene therapies against both inherited and acquired diseases accelerates the development of viral vectors. One outstanding example, the Orf virus, has a wide range of applications, a superior efficacy and an excellent safety profile combined with a reduced pathogenicity compared to other viral vectors. However, besides these favorable attributes, an efficient and scalable downstream process still needs to be developed. Recently, we screened potential chromatographic stationary phases for Orf virus purification. Based on these previous accomplishments, we developed a complete downstream process for the cell culture-derived Orf virus. The described process comprises a membrane-based clarification step, a nuclease treatment, steric exclusion chromatography, and a secondary chromatographic purification step using Capto® Core 700 resin. The applicability of this process to a variety of diverse Orf virus vectors was shown, testing two different genotypes. These studies render the possibility to apply the developed downstream scheme for both genotypes, and lead to overall virus yields of about 64 %, with step recoveries of >70 % for the clarification, and >90 % for the chromatography train. Protein concentrations of the final product are below the detection limits, and the final DNA concentration of about 1 ng per 1E + 06 infective virus units resembles a total DNA depletion of 96-98 %.
Collapse
Affiliation(s)
- Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Arabi Sivanesapillai
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Martin Hardt
- Imaging Unit, Biomedical Research Centre Seltersberg, Justus Liebig University, Giessen, Germany
| | - Anna Moebus
- Imaging Unit, Biomedical Research Centre Seltersberg, Justus Liebig University, Giessen, Germany
| | - Thomas Feger
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany.
| |
Collapse
|
33
|
Shchelkunov SN, Yakubitskiy SN, Sergeev AA, Kabanov AS, Bauer TV, Bulychev LE, Pyankov SA. Effect of the Route of Administration of the Vaccinia Virus Strain LIVP to Mice on Its Virulence and Immunogenicity. Viruses 2020; 12:E795. [PMID: 32722032 PMCID: PMC7472337 DOI: 10.3390/v12080795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022] Open
Abstract
The mass smallpox vaccination campaign has played a crucial role in smallpox eradication. Various strains of the vaccinia virus (VACV) were used as a live smallpox vaccine in different countries, their origin being unknown in most cases. The VACV strains differ in terms of pathogenicity exhibited upon inoculation of laboratory animals and reactogenicity exhibited upon vaccination of humans. Therefore, each generated strain or clonal variant of VACV needs to be thoroughly studied in in vivo systems. The clonal variant 14 of LIVP strain (LIVP-14) was the study object in this work. A comparative analysis of the virulence and immunogenicity of LIVP-14 inoculated intranasally (i.n.), intradermally (i.d.), or subcutaneously (s.c.) to BALB/c mice at doses of 108, 107, and 106 pfu was carried out. Adult mice exhibited the highest sensitivity to the i.n. administered LIVP-14 strain, although the infection was not lethal. The i.n. inoculated LIVP-14 replicated efficiently in the lungs. Furthermore, this virus was accumulated in the brain at relatively high concentrations. Significantly lower levels of LIVP-14 were detected in the liver, kidneys, and spleen of experimental animals. No clinical manifestations of the disease were observed after i.d. or s.c. injection of LIVP-14 to mice. After s.c. inoculation, the virus was detected only at the injection site, while it could disseminate to the liver and lungs when delivered via i.d. administration. A comparative analysis of the production of virus-specific antibodies by ELISA and PRNT revealed that the highest level of antibodies was induced in i.n. inoculated mice; a lower level of antibodies was observed after i.d. administration of the virus and the lowest level after s.c. injection. Even at the lowest studied dose (106 pfu), i.n. or i.d. administered LIVP-14 completely protected mice against infection with the cowpox virus at the lethal dose. Our findings imply that, according to the ratio between such characteristics as pathogenicity/immunogenicity/protectivity, i.d. injection is the optimal method of inoculation with the VACV LIVP-14 strain to ensure the safe formation of immune defense after vaccination against orthopoxviral infections.
Collapse
Affiliation(s)
- Sergei N. Shchelkunov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia; (S.N.Y.); (A.A.S.); (A.S.K.); (T.V.B.); (L.E.B.); (S.A.P.)
| | | | | | | | | | | | | |
Collapse
|
34
|
Pérez P, Marín MQ, Lázaro-Frías A, Sorzano CÓS, Gómez CE, Esteban M, García-Arriaza J. Deletion of Vaccinia Virus A40R Gene Improves the Immunogenicity of the HIV-1 Vaccine Candidate MVA-B. Vaccines (Basel) 2020; 8:vaccines8010070. [PMID: 32041218 PMCID: PMC7158668 DOI: 10.3390/vaccines8010070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Development of a safe and efficacious vaccine against the HIV/AIDS pandemic remains a major scientific goal. We previously described an HIV/AIDS vaccine based on the modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120 and Gag-Pol-Nef (GPN) of clade B (termed MVA-B), which showed moderate immunogenicity in phase I prophylactic and therapeutic clinical trials. Here, to improve the immunogenicity of MVA-B, we generated a novel recombinant virus, MVA-B ΔA40R, by deleting in the MVA-B genome the vaccinia virus (VACV) A40R gene, which encodes a protein with unknown immune function. The innate immune responses triggered by MVA-B ΔA40R in infected human macrophages, in comparison to parental MVA-B, revealed an increase in the mRNA expression levels of interferon (IFN)-β, IFN-induced genes, and chemokines. Compared to priming with DNA-B (a mixture of DNA-gp120 plus DNA-GPN) and boosting with MVA-B, mice immunized with a DNA-B/MVA-B ΔA40R regimen induced higher magnitude of adaptive and memory HIV-1-specific CD4+ and CD8+ T-cell immune responses that were highly polyfunctional, mainly directed against Env. and of an effector memory phenotype, together with enhanced levels of antibodies against HIV-1 gp120. Reintroduction of the A40R gene into the MVA-B ΔA40R genome (virus termed MVA-B ΔA40R-rev) promoted in infected cells high mRNA and protein A40 levels, with A40 protein localized in the cell membrane. MVA-B ΔA40R-rev significantly reduced mRNA levels of IFN-β and of several other innate immune-related genes in infected human macrophages. In immunized mice, MVA-B ΔA40R-rev reduced the magnitude of the HIV-1-specific CD4+ and CD8+ T cell responses compared to MVA-B ΔA40R. These results revealed an immunosuppressive role of the A40 protein, findings relevant for the optimization of poxvirus vectors as vaccines.
Collapse
Affiliation(s)
- Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.); (M.E.)
| | - María Q. Marín
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.); (M.E.)
| | - Adrián Lázaro-Frías
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.); (M.E.)
| | - Carlos Óscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.); (M.E.)
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.); (M.E.)
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.); (M.E.)
- Correspondence: ; Tel.: +34-915-854-560
| |
Collapse
|
35
|
Shchelkunov SN, Shchelkunova GA. Genes that Control Vaccinia Virus Immunogenicity. Acta Naturae 2020; 12:33-41. [PMID: 32477596 PMCID: PMC7245956 DOI: 10.32607/actanaturae.10935] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
The live smallpox vaccine was a historical first and highly effective vaccine. However, along with high immunogenicity, the vaccinia virus (VACV) caused serious side effects in vaccinees, sometimes with lethal outcomes. Therefore, after global eradication of smallpox, VACV vaccination was stopped. For this reason, most of the human population worldwide lacks specific immunity against not only smallpox, but also other zoonotic orthopoxviruses. Outbreaks of diseases caused by these viruses have increasingly occurred in humans on different continents. However, use of the classical live VACV vaccine for prevention against these diseases is unacceptable because of potential serious side effects, especially in individuals with suppressed immunity or immunodeficiency (e.g., HIV-infected patients). Therefore, highly attenuated VACV variants that preserve their immunogenicity are needed. This review discusses current ideas about the development of a humoral and cellular immune response to orthopoxvirus infection/vaccination and describes genetic engineering approaches that could be utilized to generate safe and highly immunogenic live VACV vaccines.
Collapse
Affiliation(s)
- S. N. Shchelkunov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Novosibirsk region, Koltsovo, 630559 Russia
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, 630090 Russia
| | - G. A. Shchelkunova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| |
Collapse
|
36
|
Shmeleva EV, Smith GL, Ferguson BJ. Enhanced Efficacy of Vaccination With Vaccinia Virus in Old vs. Young Mice. Front Immunol 2019; 10:1780. [PMID: 31417558 PMCID: PMC6685358 DOI: 10.3389/fimmu.2019.01780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
Immunosenescence is believed to be responsible for poor vaccine efficacy in the elderly. To overcome this difficulty, research into vaccination strategies and the mechanisms of immune responses to vaccination is required. By analyzing the innate and adaptive immune responses to vaccination with vaccinia virus (VACV) in mice of different age groups, we found that immune cell recruitment, production of cytokines/chemokines and control of viral replication at the site of intradermal vaccination were preserved in aged mice and were comparable with younger groups. Analysis of cervical draining lymph nodes (dLN) collected after vaccination showed that numbers of germinal center B cells and follicular T helper cells were similar across different age groups. The number of VACV-specific CD8 T cells in the spleen and the levels of serum neutralizing antibodies 1 month after vaccination were also comparable across all age groups. However, following intranasal challenge of vaccinated mice, body weight loss was lower and virus was cleared more rapidly in aged mice than in younger animals. In conclusion, vaccination with VACV can induce an effective immune response and stronger protection in elderly animals. Thus, the development of recombinant VACV-based vaccines against different infectious diseases should be considered as a strategy for improving vaccine immunogenicity and efficacy in the elderly.
Collapse
Affiliation(s)
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Brian J. Ferguson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
37
|
By Binding CD80 and CD86, the Vaccinia Virus M2 Protein Blocks Their Interactions with both CD28 and CTLA4 and Potentiates CD80 Binding to PD-L1. J Virol 2019; 93:JVI.00207-19. [PMID: 30918073 PMCID: PMC6532080 DOI: 10.1128/jvi.00207-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/17/2019] [Indexed: 11/29/2022] Open
Abstract
The vaccinia virus harbors in its genome several genes dedicated to the inhibition of the host immune response. Among them, M2L was reported to inhibit the intracellular NF-κB pathway. We report here several new putative immunosuppressive activities of M2 protein. M2 protein is secreted and binds cornerstone costimulatory molecules (CD80/CD86). M2 binding to CD80/CD86 blocks their interaction with soluble CD28/CTLA4 but also favors the soluble PD-L1-CD80 association. These findings open the way for new investigations deciphering the immune system effects of soluble M2 protein. Moreover, a vaccinia virus with a deletion of its M2L has been generated and characterized as a new oncolytic platform. The replication and oncolytic activities of the M2L-deleted vaccinia virus are indistinguishable from those of the parental virus. More investigations are needed to characterize in detail the immune response triggered against both the tumor and the virus by this M2-defective vaccinia virus. In this article we report that the M2 protein encoded by the vaccinia virus is secreted as a homo-oligomer by infected cells and binds two central costimulation molecules, CD80 (B7-1) and CD86 (B7-2). These interactions block the ligation of the two B7 proteins to both soluble CD28 and soluble cytotoxic T-lymphocyte associated protein 4 (CTLA4) but favor the binding of soluble PD-L1 to soluble CD80. M2L gene orthologues are found in several other poxviruses, and the B7-CD28/CTLA4 blocking activity has been identified for several culture supernatants of orthopoxvirus-infected cells and for a recombinant myxoma virus M2 protein homolog (i.e., Gp120-like protein, or Gp120LP). Overall, these data indicate that the M2 poxvirus family of proteins may be involved in immunosuppressive activities broader than the NF-κB inhibition already reported (R. Gedey, X. L. Jin, O. Hinthong, and J. L. Shisler, J Virol 80:8676–8685, 2006, https://doi.org/10.1128/JVI.00935-06). A Copenhagen vaccinia virus with a deletion of the nonessential M2L locus was generated and compared with its parental virus. This M2L-deleted vaccinia virus, unlike the parental virus, does not generate interference with the B7-CD28/CTLA4/PD-L1 interactions. Moreover, this deletion did not affect any key features of the virus (in vitro replication, oncolytic activities in vitro and in vivo, and intratumoral expression of a transgene in an immunocompetent murine model). Altogether, these first results suggest that the M2 protein has the potential to be used as a new immunosuppressive biotherapeutic and that the M2L-deleted vaccinia virus represents an attractive new oncolytic platform with an improved immunological profile. IMPORTANCE The vaccinia virus harbors in its genome several genes dedicated to the inhibition of the host immune response. Among them, M2L was reported to inhibit the intracellular NF-κB pathway. We report here several new putative immunosuppressive activities of M2 protein. M2 protein is secreted and binds cornerstone costimulatory molecules (CD80/CD86). M2 binding to CD80/CD86 blocks their interaction with soluble CD28/CTLA4 but also favors the soluble PD-L1-CD80 association. These findings open the way for new investigations deciphering the immune system effects of soluble M2 protein. Moreover, a vaccinia virus with a deletion of its M2L has been generated and characterized as a new oncolytic platform. The replication and oncolytic activities of the M2L-deleted vaccinia virus are indistinguishable from those of the parental virus. More investigations are needed to characterize in detail the immune response triggered against both the tumor and the virus by this M2-defective vaccinia virus.
Collapse
|
38
|
Genomic Characterization of Orf Virus Strain D1701-V ( Parapoxvirus) and Development of Novel Sites for Multiple Transgene Expression. Viruses 2019; 11:v11020127. [PMID: 30704093 PMCID: PMC6409557 DOI: 10.3390/v11020127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
The Orf virus (ORFV; Parapoxvirus) strain D1701 with an attenuated phenotype and excellent immunogenic capacity is successfully used for the generation of recombinant vaccines against different viral infections. Adaption for growth in Vero cells was accompanied by additional major genomic changes resulting in ORFV strain variant D1701-V. In this study, restriction enzyme mapping, blot hybridization and DNA sequencing of the deleted region s (A, AT and D) in comparison to the predecessor strain D1701-B revealed the loss of 7 open reading frames (ORF008, ORF101, ORF102, ORF114, ORF115, ORF116, ORF117). The suitability of deletion site D for expression of foreign genes is demonstrated using novel synthetic early promoter eP1 and eP2. Comparison of promoter strength showed that the original vegf-e promoter Pv as well as promoter eP2 display an up to 11-fold stronger expression than promoter eP1, irrespective of the insertion site. Successful integration and expression of the fluorescent marker genes is demonstrated by gene- and insertion-site specific PCR assays, fluorescence microscopy and flow cytometry. For the first time ORFV recombinants are generated simultaneously expressing transgenes in two different insertion loci. That allows production of polyvalent vaccines containing several antigens against one or different pathogens in a single vectored ORFV vaccine.
Collapse
|
39
|
Prow NA, Jimenez Martinez R, Hayball JD, Howley PM, Suhrbier A. Poxvirus-based vector systems and the potential for multi-valent and multi-pathogen vaccines. Expert Rev Vaccines 2018; 17:925-934. [PMID: 30300041 DOI: 10.1080/14760584.2018.1522255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION With the increasing number of vaccines and vaccine-preventable diseases, the pressure to generate multi-valent and multi-pathogen vaccines grows. Combining individual established vaccines to generate single-shot formulations represents an established path, with significant ensuing public health and cost benefits. Poxvirus-based vector systems have the capacity for large recombinant payloads and have been widely used as platforms for the development of recombinant vaccines encoding multiple antigens, with considerable clinical trials activity and a number of registered and licensed products. AREAS COVERED Herein we discuss design strategies, production processes, safety issues, regulatory hurdles and clinical trial activities, as well as pertinent new technologies such as systems vaccinology and needle-free delivery. Literature searches used PubMed, Google Scholar and clinical trials registries, with a focus on the recombinant vaccinia-based systems, Modified Vaccinia Ankara and the recently developed Sementis Copenhagen Vector. EXPERT COMMENTARY Vaccinia-based platforms show considerable promise for the development of multi-valent and multi-pathogen vaccines, especially with recent developments in vector technologies and manufacturing processes. New methodologies for defining immune correlates and human challenge models may also facilitate bringing such vaccines to market.
Collapse
Affiliation(s)
- Natalie A Prow
- a Inflammation Biology , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,b Inflammation Biology , Australian Infectious Disease Research Centre , Brisbane , Australia
| | - Rocio Jimenez Martinez
- a Inflammation Biology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - John D Hayball
- c Experimental Therapeutics Laboratory, School of Pharmacy & Medical Sciences , University of South Australia Cancer Research Institute , Adelaide , Australia
| | - Paul M Howley
- d Inflammation Biology , Sementis Ltd , Berwick , Australia
| | - Andreas Suhrbier
- a Inflammation Biology , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,b Inflammation Biology , Australian Infectious Disease Research Centre , Brisbane , Australia
| |
Collapse
|
40
|
Removal of the C6 Vaccinia Virus Interferon-β Inhibitor in the Hepatitis C Vaccine Candidate MVA-HCV Elicited in Mice High Immunogenicity in Spite of Reduced Host Gene Expression. Viruses 2018; 10:v10080414. [PMID: 30096846 PMCID: PMC6116028 DOI: 10.3390/v10080414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C virus (HCV) represents a major global health problem for which a vaccine is not available. Modified vaccinia virus Ankara (MVA)-HCV is a unique HCV vaccine candidate based in the modified vaccinia virus Ankara (MVA) vector expressing the nearly full-length genome of HCV genotype 1a that elicits CD8⁺ T-cell responses in mice. With the aim to improve the immune response of MVA-HCV and because of the importance of interferon (IFN) in HCV infection, we deleted in MVA-HCV the vaccinia virus (VACV) C6L gene, encoding an inhibitor of IFN-β that prevents activation of the interferon regulatory factors 3 and 7 (IRF3 and IRF7). The resulting vaccine candidate (MVA-HCV ΔC6L) expresses all HCV antigens and deletion of C6L had no effect on viral growth in permissive chicken cells. In human monocyte-derived dendritic cells, infection with MVA-HCV ΔC6L triggered severe down-regulation of IFN-β, IFN-β-induced genes, and cytokines in a manner similar to MVA-HCV, as defined by real-time polymerase chain reaction (PCR) and microarray analysis. In infected mice, both vectors had a similar profile of recruited immune cells and induced comparable levels of adaptive and memory HCV-specific CD8⁺ T-cells, mainly against p7 + NS2 and NS3 HCV proteins, with a T cell effector memory (TEM) phenotype. Furthermore, antibodies against E2 were also induced. Overall, our findings showed that while these vectors had a profound inhibitory effect on gene expression of the host, they strongly elicited CD8⁺ T cell and humoral responses against HCV antigens and to the virus vector. These observations add support to the consideration of these vectors as potential vaccine candidates against HCV.
Collapse
|