1
|
Lim EHT, van de Beek D, de Bruin S, Rückinger S, Thielert C, Guo R, Burnett BP, Brouwer MC, Zerbib R, Chong C, Riedemann NC, Vlaar AP. Regional comparison of efficacy and safety for vilobelimab in critically ill, invasively mechanically ventilated COVID-19 patients. BMJ Open Respir Res 2025; 12:e002206. [PMID: 40250846 PMCID: PMC12010313 DOI: 10.1136/bmjresp-2023-002206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/01/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Vilobelimab, a first in class C5a-specific monoclonal antibody, improved 28-day and 60-day mortality in intubated COVID-19 patients in PANAMO, a phase 3 randomised, double-blind, placebo-controlled multicentre study. All-cause mortality was pre-specified to be analysed pooling by region (western Europe, South America, South Africa/Russia). METHODS Critically ill, invasively mechanically ventilated COVID-19 patients were randomised in a 1:1 ratio within 48 hours of intubation to receive vilobelimab treatment (six, 800 mg intravenous infusions) or placebo on top of standard of care. We analysed the efficacy and safety of vilobelimab based on prespecified geographic regions. RESULTS 368 patients were randomised and analysed: 177 in the vilobelimab group and 191 in the placebo group. In western Europe (n=209), 28-day all-cause mortality was significantly lower in the vilobelimab group (21%) compared with placebo (37%) (HR 0.51 (95% CI: 0.30, 0.87), p=0.014). In South America (n=126), mortality was similar between groups (40% vs 37%; HR 0.94 (95% CI: 0.53, 1.67), p=0.83). In South Africa/Russia (n=33), mortality was 69% in the vilobelimab group and 87% in the placebo group (HR 0.62 (95% CI: 0.28, 1.38), p=0.25). Within the Brazilian subpopulation (n=74), a significant age imbalance between the vilobelimab and placebo group was detected (median 53.5 years in the vilobelimab group vs 44.5 years in the placebo group). Occurrence of treatment-emergent adverse events between regions was similar. CONCLUSION The most apparent 28-day all-cause mortality benefit for vilobelimab was in western Europe. Age imbalance between treatment groups in Brazil may have resulted in a lower efficacy signal for vilobelimab in South America compared with other regions. Overall, vilobelimab demonstrated a favourable safety profile and reduced mortality in critically ill, intubated COVID-19 patients, with regional variations influencing outcomes.
Collapse
Affiliation(s)
- Endry H T Lim
- Department of Intensive Care Medicine, Amsterdam UMC Location AMC, Amsterdam, Noord-Holland, Netherlands
- Department of Neurology, Amsterdam UMC Location AMC, Amsterdam, Noord-Holland, Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC Location AMC, Amsterdam, Noord-Holland, Netherlands
| | - Sanne de Bruin
- Department of Intensive Care Medicine, Amsterdam UMC Location AMC, Amsterdam, Noord-Holland, Netherlands
| | | | | | - Renfeng Guo
- InflaRx Pharmaceuticals Inc, Ann Arbor, Michigan, USA
| | | | - Matthijs C Brouwer
- Department of Neurology, Amsterdam UMC Location AMC, Amsterdam, Noord-Holland, Netherlands
| | | | | | | | - Alexander P Vlaar
- Department of Intensive Care Medicine, Amsterdam UMC Location AMC, Amsterdam, Noord-Holland, Netherlands
| |
Collapse
|
2
|
Tian S, Si J, Zhang L, Zeng J, Zhang X, Huang C, Li G, Lei C, Zhou X, Geng R, Zhou P, Yan H, Rossiter SJ, Zhao H. Comparative genomics provides insights into chromosomal evolution and immunological adaptation in horseshoe bats. Nat Ecol Evol 2025; 9:705-720. [PMID: 39920351 DOI: 10.1038/s41559-025-02638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025]
Abstract
Horseshoe bats are natural hosts of zoonotic viruses, yet the genetic basis of their antiviral immunity is poorly understood. Here we generated two new chromosomal-level genome assemblies for horseshoe bat species (Rhinolophus) and three close relatives, and show that, during their diversification, horseshoe bats underwent extensive chromosomal rearrangements and gene expansions linked to segmental duplications. These expansions have generated new adaptive variations in type I interferons and the interferon-stimulated gene ANXA2R, which potentially enhance antiviral states, as suggested by our functional assays. Genome-wide selection screens, including of candidate introgressed regions, uncover numerous putative molecular adaptations linked to immunity, including in viral receptors. By expanding taxon coverage to ten horseshoe bat species, we identify new variants of the SARS-CoV-2 receptor ACE2, and report convergent functionally important residues that could explain wider patterns of susceptibility across mammals. We conclude that horseshoe bats have numerous signatures of adaptation, including some potentially related to immune response to viruses, in genomic regions with diverse and multiscale mutational changes.
Collapse
Affiliation(s)
- Shilin Tian
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- Novogene Bioinformatics Institute, Beijing, China
| | - Junyu Si
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiaming Zeng
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiangyi Zhang
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen Huang
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Caoqi Lei
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rong Geng
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Peng Zhou
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Huan Yan
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| | - Huabin Zhao
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Szachowicz PJ, Wohlford-Lenane C, Donelson CJ, Ghimire S, Thurman A, Xue B, Boly TJ, Verma A, MašinoviĆ L, Bermick JR, Rehman T, Perlman S, Meyerholz DK, Pezzulo AA, Zhang Y, Smith RJ, McCray PB. Complement is primarily activated in the lung in a mouse model of severe COVID-19. iScience 2025; 28:111930. [PMID: 40034849 PMCID: PMC11875145 DOI: 10.1016/j.isci.2025.111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/21/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
In vitro studies and observational human disease data suggest the complement system contributes to SARS-CoV-2 pathogenesis, although how complement dysregulation develops in severe COVID-19 is unknown. Here, using a mouse-adapted SARS-CoV-2 virus (SARS2-N501YMA30) and a mouse model of COVID-19, we identify significant serologic and pulmonary complement activation post-infection. We observed C3 activation in airway and alveolar epithelia, and pulmonary vascular endothelia. Our evidence suggests the alternative pathway is the primary route of complement activation, however, components of both the alternative and classical pathways are produced locally by respiratory epithelial cells following infection, and increased in primary cultures of human airway epithelia following cytokine and SARS-CoV-2 exposure. This tissue-specific complement response appears to precede lung injury and inflammation. Our results suggest that complement activation is a defining feature of severe COVID-19 in mice, agreeing with previous publications, and provide the basis for further investigation into the role of complement in COVID-19.
Collapse
Affiliation(s)
- Peter J. Szachowicz
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA 52242, USA
| | | | - Cobey J. Donelson
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shreya Ghimire
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA 52242, USA
| | - Andrew Thurman
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA 52242, USA
| | - Biyun Xue
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
| | - Timothy J. Boly
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
| | - Abhishek Verma
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | - Leila MašinoviĆ
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA 52242, USA
| | - Jennifer R. Bermick
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
| | - Tayyab Rehman
- Department of Inernal Medicine, University of Michigan, Division of Pulmonary and Critical Care Medicine, Ann Arbor, MI 48109, USA
| | - Stanley Perlman
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | - David K. Meyerholz
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
| | - Alejandro A. Pezzulo
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA 52242, USA
| | - Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Richard J.H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Fu X, Xu W, Yang Y, Li D, Shi W, Li X, Chen N, Lv Q, Shi Y, Xu J, Xu J, Yan Y, Shi F, Li X. Diverse strategies utilized by coronaviruses to evade antiviral responses and suppress pyroptosis. Int J Biol Macromol 2025; 296:139743. [PMID: 39798756 DOI: 10.1016/j.ijbiomac.2025.139743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Viral infections trigger inflammasome-mediated caspase-1 activation. Nevertheless, limited understanding exists regarding how viruses use the active caspase-1 to evade host immune response. Here, we use porcine epidemic diarrhea virus (PEDV) as a model of coronaviruses (CoVs) to illustrate the intricate regulation of CoVs to combat IFN-I signaling and pyroptosis. Our findings demonstrate that PEDV infection stabilizes caspase-1 expression via papain-like protease PLP2's deubiquitinase activity. This stabilization of caspase-1 disrupts IFN-I signaling by cleaving RIG-I at the D189 residue. Furthermore, we demonstrate that 6-thioguanine (6TG), a PLP2 inhibitor, reverses the inhibitory effect on IFN-I signaling mediated by PLP2 and significantly reduces PEDV replication. Additionally, PLP2 degrades GSDMD-p30 by removing its K27-linked ubiquitin chain at K275 to restrain pyroptosis. Papain-like proteases from other genera of CoVs (PDCoV and SARS-CoV-2) have the similar activity to degrade GSDMD-p30. We further demonstrate that SARS-CoV-2 N protein induced NLRP3 inflammasome activation also uses the active caspase-1 to counter IFN-I signaling by cleaving RIG-I. Therefore, our work unravels a novel antagonistic mechanism employed by CoVs to evade host antiviral response.
Collapse
Affiliation(s)
- Xinyu Fu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Weilv Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yang Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Danyue Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wen Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xinyue Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Nan Chen
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qian Lv
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuhua Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jinxia Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jidong Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Yuqi Yan
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China; Zhejiang University-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, China.
| | - Xiaoliang Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China; Zhejiang University-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, China.
| |
Collapse
|
5
|
Shen X, Zheng W, Du X, Chen Y, Song X, Yang L, Yuan Q. The role of C5aR1-mediated hepatic macrophage efferocytosis in NASH. Sci Rep 2024; 14:17232. [PMID: 39060563 PMCID: PMC11282180 DOI: 10.1038/s41598-024-68207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the first major chronic liver disease in developed countries. 10-20% of NAFLD patients will progress to non-alcoholic steatohepatitis (NASH), and up to 25% of NASH patients may develop cirrhosis within 10 years. Therefore, it is critical to find key targets that may treat this disease. Here, we identified C5aR1 as a highly-expressed gene in NASH mouse model through analyzing Gene Expression Omnibus (GEO) database and confirmed its higher expression in livers of NASH patients than that of NAFL patients. Meanwhile, we verified its positive correlation with patients' serum alanine transaminase (ALT) and aspartate transaminase (AST) levels. In vivo and in vitro experiments revealed that knocking down C5aR1 in liver significantly reduced liver weight ratio and serum ALT and AST levels and attenuated inflammatory cell infiltration and cell apoptosis in the liver of NASH mice as well as enhanced the efferocytotic ability of liver macrophages, suggesting that C5aR1 may play a crucial role in the efferocytosis of liver macrophages. Furthermore, we also found that the expression levels of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3), caspase-1, IL-1β and other inflammation-related factors in the liver were significantly reduced. Our work demonstrates a potential mechanism of how C5aR1 deficiency protects against diet-induced NASH by coordinating the regulation of inflammatory factors and affecting hepatic macrophage efferocytosis.
Collapse
Affiliation(s)
- Xuan Shen
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, 154000, Heilongjiang, China
| | - Wenxing Zheng
- Department of Endocrinology, The First Huaian Hospital Affiliated to Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Xinna Du
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
| | - Yuping Chen
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
| | - Xianping Song
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
| | - Liucai Yang
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China.
| | - Qi Yuan
- Department of Endocrinology, The First Huaian Hospital Affiliated to Nanjing Medical University, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
6
|
Szachowicz PJ, Wohlford-Lenane C, Heinen CJ, Ghimire S, Xue B, Boly TJ, Verma A, MašinoviĆ L, Bermick JR, Perlman S, Meyerholz DK, Pezzulo AA, Zhang Y, Smith RJ, McCray PB. A predominately pulmonary activation of complement in a mouse model of severe COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596892. [PMID: 38895461 PMCID: PMC11185570 DOI: 10.1101/2024.05.31.596892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Evidence from in vitro studies and observational human disease data suggest the complement system plays a significant role in SARS-CoV-2 pathogenesis, although how complement dysregulation develops in patients with severe COVID-19 is unknown. Here, using a mouse-adapted SARS-CoV-2 virus (SARS2-N501YMA30) and a mouse model of severe COVID-19, we identify significant serologic and pulmonary complement activation following infection. We observed C3 activation in airway and alveolar epithelia, and in pulmonary vascular endothelia. Our evidence suggests that while the alternative pathway is the primary route of complement activation, components of both the alternative and classical pathways are produced locally by respiratory epithelial cells following infection, and increased in primary cultures of human airway epithelia in response to cytokine exposure. This locally generated complement response appears to precede and subsequently drive lung injury and inflammation. Results from this mouse model recapitulate findings in humans, which suggest sex-specific variance in complement activation, with predilection for increased C3 activity in males, a finding that may correlate with more severe disease. Our findings indicate that complement activation is a defining feature of severe COVID-19 in mice and lay the foundation for further investigation into the role of complement in COVID-19.
Collapse
Affiliation(s)
- Peter J. Szachowicz
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA, 52242
| | | | - Cobey J. Heinen
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, USA
| | - Shreya Ghimire
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA, 52242
| | - Biyun Xue
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
| | - Timothy J. Boly
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
| | - Abhishek Verma
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, 52242
| | - Leila MašinoviĆ
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA, 52242
| | - Jennifer R. Bermick
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
| | - Stanley Perlman
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, 52242
| | | | - Alejandro A. Pezzulo
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA, 52242
| | - Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, USA
| | - Richard J.H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, 52242
| |
Collapse
|
7
|
Martiáñez-Vendrell X, Bloeme-ter Horst J, Hutchinson R, Guy C, Bowie AG, Kikkert M. Human Coronavirus 229E Infection Inactivates Pyroptosis Executioner Gasdermin D but Ultimately Leads to Lytic Cell Death Partly Mediated by Gasdermin E. Viruses 2024; 16:898. [PMID: 38932190 PMCID: PMC11209299 DOI: 10.3390/v16060898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Human coronavirus 229E (HCoV-229E) is associated with upper respiratory tract infections and generally causes mild respiratory symptoms. HCoV-229E infection can cause cell death, but the molecular pathways that lead to virus-induced cell death as well as the interplay between viral proteins and cellular cell death effectors remain poorly characterized for HCoV-229E. Studying how HCoV-229E and other common cold coronaviruses interact with and affect cell death pathways may help to understand its pathogenesis and compare it to that of highly pathogenic coronaviruses. Here, we report that the main protease (Mpro) of HCoV-229E can cleave gasdermin D (GSDMD) at two different sites (Q29 and Q193) within its active N-terminal domain to generate fragments that are now unable to cause pyroptosis, a form of lytic cell death normally executed by this protein. Despite GSDMD cleavage by HCoV-229E Mpro, we show that HCoV-229E infection still leads to lytic cell death. We demonstrate that during virus infection caspase-3 cleaves and activates gasdermin E (GSDME), another key executioner of pyroptosis. Accordingly, GSDME knockout cells show a significant decrease in lytic cell death upon virus infection. Finally, we show that HCoV-229E infection leads to increased lytic cell death levels in cells expressing a GSDMD mutant uncleavable by Mpro (GSDMD Q29A+Q193A). We conclude that GSDMD is inactivated by Mpro during HCoV-229E infection, preventing GSDMD-mediated cell death, and point to the caspase-3/GSDME axis as an important player in the execution of virus-induced cell death. In the context of similar reported findings for highly pathogenic coronaviruses, our results suggest that these mechanisms do not contribute to differences in pathogenicity among coronaviruses. Nonetheless, understanding the interactions of common cold-associated coronaviruses and their proteins with the programmed cell death machineries may lead to new clues for coronavirus control strategies.
Collapse
Affiliation(s)
- Xavier Martiáñez-Vendrell
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (X.M.-V.)
| | - Jonna Bloeme-ter Horst
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (X.M.-V.)
| | - Roy Hutchinson
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (X.M.-V.)
| | - Coralie Guy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin 2, Ireland (A.G.B.)
| | - Andrew G. Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin 2, Ireland (A.G.B.)
| | - Marjolein Kikkert
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin 2, Ireland (A.G.B.)
| |
Collapse
|
8
|
Li D, Wang L, Zhao Z, Bai C, Li X. Enhancing prognostic prediction of invasive candidiasis among cancer patients with a serum C5a-based scoring model. Support Care Cancer 2024; 32:356. [PMID: 38750396 DOI: 10.1007/s00520-024-08567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE Invasive candidiasis poses a life-threatening risk, and early prognosis assessment is vital for timely interventions to reduce mortality. Serum C5a levels have recently been linked to prognosis, but confirmation in cancer patients is pending. METHODS We detected the concentrations of serum C5a in hospitalized cancer patients with invasive candidiasis from 2020 to 2023, and retrospectively analyzed the clinical data. RESULTS 372 cases were included in this study, with a 90-day mortality rate of 21.8%. Candida albicans (48.7%) remained the predominant pathogen, followed by Candida glabrata (25.5%), Candida tropicalis (12.4%), and Candida parapsilosis (8.3%). Gastrointestinal cancer was the most diagnosed pathology type (37.6%). Serum C5a demonstrated a noteworthy correlation with 90-day mortality, and employing a cutoff value of 36.7 ng/ml revealed significantly higher 90-day mortality in low-C5a patients (41.2%) compared to high-C5a patients (6.3%) (p < 0.001). We also identified no source control, no surgery, metastasis, or chronic renal failure independently correlated with the 90-day mortality. Based on this, a prognostic model combining C5a and clinical parameters was constructed, which performed better than models built solely on C5a or clinical parameters. Furthermore, we weighted scores to each parameter in the model and presented diagnostic sensitivity and specificity corresponding to different score points calculated by the model. CONCLUSION We constructed a prognostic scoring model including serum C5a and clinical parameters, which would contribute to precise prognosis assessment and benefit the outcome among cancer patients.
Collapse
Affiliation(s)
- Ding Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, 300060, China.
| | - Lin Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Zhihong Zhao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Changsen Bai
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Binshuixi Road, Xiqing District, Tianjin, 300387, China.
| |
Collapse
|
9
|
Ge X, Yu Z, Guo X, Li L, Ye L, Ye M, Yuan J, Zhu C, Hu W, Hou Y. Complement and complement regulatory proteins are upregulated in lungs of COVID-19 patients. Pathol Res Pract 2023; 247:154519. [PMID: 37244049 PMCID: PMC10165854 DOI: 10.1016/j.prp.2023.154519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/18/2023] [Accepted: 05/06/2023] [Indexed: 05/29/2023]
Abstract
We explored the pathological changes and the activation of local complement system in COVID-19 pneumonia. Lung paraffin sections of COVID-19 infected patients were analyzed by HE (hematoxylin-eosin) staining. The deposition of complement C3, the deposition of C3b/iC3b/C3d and C5b-9, and the expression of complement regulatory proteins, CD59, CD46 and CD55 were detected by immunohistochemistry. In COVID-19 patients' lung tissues, fibrin exudation, mixed with erythrocyte, alveolar macrophage and shed pneumocyte are usually observed in the alveoli. The formation of an "alveolar emboli" structure may contribute to thrombosis and consolidation in lung tissue. In addition, we also found that compared to normal tissue, the lung tissues of COVID-19 patients displayed the hyper-activation of complement that is represented by extensive deposition of C3, C3b/iC3b/C3d and C5b-9, and the increased expression level of complement regulatory proteins CD55, and especially CD59 but not CD46. The thrombosis and consolidation in lung tissues may contribute to the pathogenesis of COVID-19. The increased expression of CD55 and CD59 may reflect a feedback of self-protection on the complement hyper-activation. Further, the increased C3 deposition and the strongly activated complement system in lung tissues may suggest the rationale of complement-targeted therapeutics in conquering COVID-19.
Collapse
Affiliation(s)
- Xiaowen Ge
- Department of Pathology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, PR China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Xinxin Guo
- Department of Pathology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, PR China
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Dongan Road 270, Shanghai 200032, PR China
| | - Ling Ye
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Maosong Ye
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Chouwen Zhu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Dongan Road 270, Shanghai 200032, PR China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, PR China.
| |
Collapse
|
10
|
Zelek WM, Harrison RA. Complement and COVID-19: Three years on, what we know, what we don't know, and what we ought to know. Immunobiology 2023; 228:152393. [PMID: 37187043 PMCID: PMC10174470 DOI: 10.1016/j.imbio.2023.152393] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus was identified in China in 2019 as the causative agent of COVID-19, and quickly spread throughout the world, causing over 7 million deaths, of which 2 million occurred prior to the introduction of the first vaccine. In the following discussion, while recognising that complement is just one of many players in COVID-19, we focus on the relationship between complement and COVID-19 disease, with limited digression into directly-related areas such as the relationship between complement, kinin release, and coagulation. Prior to the 2019 COVID-19 outbreak, an important role for complement in coronavirus diseases had been established. Subsequently, multiple investigations of patients with COVID-19 confirmed that complement dysregulation is likely to be a major driver of disease pathology, in some, if not all, patients. These data fuelled evaluation of many complement-directed therapeutic agents in small patient cohorts, with claims of significant beneficial effect. As yet, these early results have not been reflected in larger clinical trials, posing questions such as who to treat, appropriate time to treat, duration of treatment, and optimal target for treatment. While significant control of the pandemic has been achieved through a global scientific and medical effort to comprehend the etiology of the disease, through extensive SARS-CoV-2 testing and quarantine measures, through vaccine development, and through improved therapy, possibly aided by attenuation of the dominant strains, it is not yet over. In this review, we summarise complement-relevant literature, emphasise its main conclusions, and formulate a hypothesis for complement involvement in COVID-19. Based on this we make suggestions as to how any future outbreak might be better managed in order to minimise impact on patients.
Collapse
Affiliation(s)
- Wioleta M Zelek
- Dementia Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
11
|
Chen G, Li N, Dai X, Tu S, Shen Z, Wu K, Jin T, Wu J, Peng C, Sheng G, Zhu M, Tang L, Li L. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Anti-C5a Antibody BDB-001 for Severe COVID-19: A Randomized, Double-Blind, Placebo-Controlled Phase 1 Clinical Trial in Healthy Chinese Adults. Infect Dis Ther 2023; 12:663-675. [PMID: 36697937 PMCID: PMC9876408 DOI: 10.1007/s40121-023-00759-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Severe Coronavirus Disease 2019 (COVID-19) progresses with inflammation and coagulation, due to an overactive complement system. Complement component 5a (C5a) plays a key role in the complement system to trigger a powerful "cytokine and chemokine storm" in viral infection. BDB-001, a recombinant human immunoglobulin G4 (IgG4) that specially binds to C5a, has the potential to inhibit the C5a-triggered cytokine storm in treating COVID-19 patients and other inflammation diseases. Here, we have explored its safety, tolerability, pharmacokinetics, and pharmacodynamics in healthy adults. This trial is registered with http://www.chinadrugtrials.org.cn/(CTR20200429 ). METHODS Thirty-two enrolled participants were randomized into three single-dose cohorts (2, 4, and 8 mg/kg) and 1 multi-dose cohort (4 mg/kg), and received either BDB-001 or placebo (3:1) double-blindly. The safety and tolerability after administration were evaluated for 21 days for single-dose cohorts and 28 days for the multi-dose cohort. The pharmacokinetics of BDB-001 in plasma and pharmacodynamics as free C5a in plasma were analyzed. RESULTS The incidence of drug-related adverse events (AEs) was low, and all AEs were mild or moderate: neither AEs ≥ 3 (NCI-Common Terminology Criteria For Adverse Events, CTCAE 5.0) nor serious adverse events (SAEs) were found. The area under the concentration-time curve from time zero to 480 h (AUC0-480h), that from time zero to infinity (AUCinf), and peak plasma concentration ©max) increased dose-dependently from 2 to 8 mg/kg in the single-dose cohorts and were characterized by a nonlinear pharmacokinetics of target-mediated drug disposal (TMDD). The accumulation index by AUC0-tau after five administrations (4 mg/kg) from the multi-dose cohort was 6.42, suggesting an accumulation effect. Furthermore, inhibition of C5a at the plasma level was observed. CONCLUSION The results of this phase I study supported that BDB-001 is a potent anti-C5a inhibitor with safety, tolerability, and no immunogenicity. TRIAL REGISTRATION NUMBER: CTR20200429.
Collapse
Affiliation(s)
- Guiling Chen
- Phase I Clinical Trial Unit, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Dongxin Road, 848, Hangzhou, 310000 China
| | - Nan Li
- Phase I Clinical Trial Unit, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Dongxin Road, 848, Hangzhou, 310000 China
| | - Xiahong Dai
- Phase I Clinical Trial Unit, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Dongxin Road, 848, Hangzhou, 310000 China
| | - Shiyan Tu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu China
| | - Zhenwei Shen
- Zhejiang Shuren University, Hangzhou, Zhejiang China
| | - Kaiqi Wu
- Phase I Clinical Trial Unit, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Dongxin Road, 848, Hangzhou, 310000 China
| | - Tinghan Jin
- Phase I Clinical Trial Unit, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Dongxin Road, 848, Hangzhou, 310000 China
| | - Jiajun Wu
- Phase I Clinical Trial Unit, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Dongxin Road, 848, Hangzhou, 310000 China
| | - Conggao Peng
- Phase I Clinical Trial Unit, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Dongxin Road, 848, Hangzhou, 310000 China
| | - Guoping Sheng
- Phase I Clinical Trial Unit, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Dongxin Road, 848, Hangzhou, 310000, China.
| | - Mengfei Zhu
- Phase I Clinical Trial Unit, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Dongxin Road, 848, Hangzhou, 310000, China.
| | - Lingling Tang
- Phase I Clinical Trial Unit, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Dongxin Road, 848, Hangzhou, 310000, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
12
|
Thomas S, Smatti MK, Ouhtit A, Cyprian FS, Almaslamani MA, Thani AA, Yassine HM. Antibody-Dependent Enhancement (ADE) and the role of complement system in disease pathogenesis. Mol Immunol 2022; 152:172-182. [PMID: 36371813 PMCID: PMC9647202 DOI: 10.1016/j.molimm.2022.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Antibody-dependent enhancement (ADE) has been associated with severe disease outcomes in several viral infections, including respiratory infections. In vitro and in vivo studies showed that antibody-response to SARS-CoV and MERS-CoV could exacerbate infection via ADE. Recently in SARS CoV-2, the in vitro studies and structural analysis shows a risk of disease severity via ADE. This phenomenon is partially attributed to non-neutralizing antibodies or antibodies at sub-neutralizing levels. These antibodies result in antigen-antibody complexes' deposition and propagation of a chronic inflammatory process that destroys affected tissues. Further, antigen-antibody complexes may enhance the internalization of the virus into cells through the Fc gamma receptor (FcγR) and lead to further virus replication. Thus, ADE occur via two mechanisms; 1. Antibody mediated replication and 2. Enhanced immune activation. Antibody-mediated effector functions are mainly driven by complement activation, and the first complement in the cascade is complement 1q (C1q) which binds to the virus-antibody complex. Reports say that deficiency in circulating plasma levels of C1q, an independent predictor of mortality in high-risk patients, including diabetes, is associated with severe viral infections. Complement mediated ADE is reported in several viral infections such as dengue, West Nile virus, measles, RSV, Human immunodeficiency virus (HIV), and Ebola virus. This review discusses ADE in viral infections and the in vitro evidence of ADE in coronaviruses. We outline the mechanisms of ADE, emphasizing the role of complements, especially C1q in the outcome of the enhanced disease.
Collapse
Affiliation(s)
- Swapna Thomas
- Biomedical Research Center, Qatar University, Qatar; Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Qatar.
| | | | - Allal Ouhtit
- Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Qatar.
| | - Farhan S Cyprian
- Basic Medical Science Department, College of Medicine-QU Health, Qatar University, Qatar.
| | | | - Asmaa Al Thani
- Biomedical Research Center, Qatar University, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Qatar.
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Qatar.
| |
Collapse
|
13
|
Tong X, Ping H, Gong X, Zhang K, Chen Z, Cai C, Lu Z, Yang R, Gao S, Wang Y, Wang X, Liu L, Ke H. Pyroptosis in the lung and spleen of patients died from
COVID-19. EUR J INFLAMM 2022; 20:1721727X221140661. [PMCID: PMC9702972 DOI: 10.1177/1721727x221140661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
The purpose of this study was to investigate the expression of pyroptosis-related factors (NLRP3, IL-18, NF-κB, HMGB-1, and GSDMD) in patients who died of COVID-19. The expression levels of NLRP3, IL-18, NF-κB, HMGB-1, and GSDMD in lung and spleen tissues of the COVID-19 group and the control group were detected by tissue immunofluorescence. The control group includes lung tissues and spleen tissues of two patients who died unexpectedly without SARS-CoV-2 infection, and the COVID-19 group includes the lung and spleen tissues of three patients who died of SARS-CoV-2 virus infection. The positive rates of NF-κB, NLRP3, IL-18, and GSDMD in the lung tissues from the control group and COVID-19 group were 9.8% vs 73.4% (p = 0.000), 5.5% vs 63.6% (p = 0.000), 24.4% vs 76.2% (p = 0.000), and 17.5% and 46.8% (p = 0.000) respectively. The positive rates of NF-κB, NLRP3, IL-18, HMGB-1, and GSDMD in the spleen tissues from the control group and COVID-19 group were 20.6% vs 71.2% (p = 0.000), 18.9% vs 72.0% (p = 0.000), 15.2% vs 64.8% (p = 0.000), 27.6% vs 69.2% (p = 0.000), and 23% and 48.8% (p = 0.000), respectively. The positive rates of SARS-CoV-2 spike protein in the CD68 positive cells of the lung and spleen in the control group and COVID-19 group were 2.5% vs 56.8% (p = 0.000); 3.0% vs 64.9% (p = 0.000) respectively. The rates of NF-κB positive nuclei in the control group and COVID-19 group were 13.4% vs 51.4% (p = 0.000) in the lung and 38.2% vs 59.3% (p = 0.000) in the spleen. The rates of HMGB-1 positive cytoplasm in the control and the COVID-19 group were 19.7% vs 50.3% (p = 0.000) in the lung and 12.3% vs 45.2% (p = 0.000) in the spleen. The targets of SARS-CoV-2 are the lung and spleen, where increased macrophages could be involved in the up-regulation of pyroptosis-related inflammatory factors such as NF-κB, HMGB-1, NLRP3, IL-18, and GSDMD.
Collapse
Affiliation(s)
- Xin Tong
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| | - Haiqin Ping
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| | - Xiaoming Gong
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| | - Kai Zhang
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| | - Zhaojun Chen
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| | - Caiyun Cai
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| | - Zhiyan Lu
- Department of Radiology, Zhongnan Hospital of Wuhan
University, Wuhan, China
| | - Rongrong Yang
- Department of Radiology, Zhongnan Hospital of Wuhan
University, Wuhan, China
| | - Shicheng Gao
- Department of infectious disease, Zhongnan Hospital of Wuhan
University, Wuhan, China
| | - Yunyun Wang
- Department of Forensic Medicine,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan
University, Wuhan, China
| | - Liang Liu
- Department of Forensic Medicine,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, China
| | - Hengning Ke
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| |
Collapse
|
14
|
Trivedi VS, Magnusen AF, Rani R, Marsili L, Slavotinek AM, Prows DR, Hopkin RJ, McKay MA, Pandey MK. Targeting the Complement-Sphingolipid System in COVID-19 and Gaucher Diseases: Evidence for a New Treatment Strategy. Int J Mol Sci 2022; 23:14340. [PMID: 36430817 PMCID: PMC9695449 DOI: 10.3390/ijms232214340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)-induced disease (COVID-19) and Gaucher disease (GD) exhibit upregulation of complement 5a (C5a) and its C5aR1 receptor, and excess synthesis of glycosphingolipids that lead to increased infiltration and activation of innate and adaptive immune cells, resulting in massive generation of pro-inflammatory cytokines, chemokines and growth factors. This C5a-C5aR1-glycosphingolipid pathway- induced pro-inflammatory environment causes the tissue damage in COVID-19 and GD. Strikingly, pharmaceutically targeting the C5a-C5aR1 axis or the glycosphingolipid synthesis pathway led to a reduction in glycosphingolipid synthesis and innate and adaptive immune inflammation, and protection from the tissue destruction in both COVID-19 and GD. These results reveal a common involvement of the complement and glycosphingolipid systems driving immune inflammation and tissue damage in COVID-19 and GD, respectively. It is therefore expected that combined targeting of the complement and sphingolipid pathways could ameliorate the tissue destruction, organ failure, and death in patients at high-risk of developing severe cases of COVID-19.
Collapse
Affiliation(s)
- Vyoma Snehal Trivedi
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Albert Frank Magnusen
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Reena Rani
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Luca Marsili
- Department of Neurology, James J. and Joan A. Gardner Center for Parkinson’s Disease and Movement Disorders, University of Cincinnati, 3113 Bellevue Ave, Cincinnati, OH 45219, USA
| | - Anne Michele Slavotinek
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Daniel Ray Prows
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Robert James Hopkin
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Mary Ashley McKay
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| |
Collapse
|
15
|
Potere N, Del Buono MG, Caricchio R, Cremer PC, Vecchié A, Porreca E, Dalla Gasperina D, Dentali F, Abbate A, Bonaventura A. Interleukin-1 and the NLRP3 inflammasome in COVID-19: Pathogenetic and therapeutic implications. EBioMedicine 2022; 85:104299. [PMID: 36209522 PMCID: PMC9536001 DOI: 10.1016/j.ebiom.2022.104299] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022] Open
Abstract
A hyperinflammatory response during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection crucially worsens clinical evolution of coronavirus disease 2019 (COVID-19). The interaction between SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2) triggers the activation of the NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Enhanced inflammasome activity has been associated with increased disease severity and poor prognosis. Evidence suggests that inflammasome activation and interleukin-1β (IL-1β) release aggravate pulmonary injury and induce hypercoagulability, favoring progression to respiratory failure and widespread thrombosis eventually leading to multiorgan failure and death. Observational studies with the IL-1 blockers anakinra and canakinumab provided promising results. In the SAVE-MORE trial, early treatment with anakinra significantly shortened hospital stay and improved survival in patients with moderate-to-severe COVID-19. In this review, we summarize current evidence supporting the pathogenetic role of the NLRP3 inflammasome and IL-1β in COVID-19, and discuss clinical trials testing IL-1 inhibition in COVID-19.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences and Department of Innovative Technologies in Medicine and Dentistry, G. D'Annunzio University, Chieti, Italy
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Paul C. Cremer
- Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alessandra Vecchié
- Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, Department of Internal Medicine, ASST Sette Laghi, Varese, Italy
| | - Ettore Porreca
- Department of Medicine and Ageing Sciences and Department of Innovative Technologies in Medicine and Dentistry, G. D'Annunzio University, Chieti, Italy
| | | | - Francesco Dentali
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center and Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Aldo Bonaventura
- Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, Department of Internal Medicine, ASST Sette Laghi, Varese, Italy,Corresponding author.
| |
Collapse
|
16
|
Song D, Yeh CT, Wang J, Guo F. Perspectives on the mechanism of pyroptosis after intracerebral hemorrhage. Front Immunol 2022; 13:989503. [PMID: 36131917 PMCID: PMC9484305 DOI: 10.3389/fimmu.2022.989503] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/17/2022] [Indexed: 12/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a highly harmful neurological disorder with high rates of mortality, disability, and recurrence. However, effective therapies are not currently available. Secondary immune injury and cell death are the leading causes of brain injury and a poor prognosis. Pyroptosis is a recently discovered form of programmed cell death that differs from apoptosis and necrosis and is mediated by gasdermin proteins. Pyroptosis is caused by multiple pathways that eventually form pores in the cell membrane, facilitating the release of inflammatory substances and causing the cell to rupture and die. Pyroptosis occurs in neurons, glial cells, and endothelial cells after ICH. Furthermore, pyroptosis causes cell death and releases inflammatory factors such as interleukin (IL)-1β and IL-18, leading to a secondary immune-inflammatory response and further brain damage. The NOD-like receptor protein 3 (NLRP3)/caspase-1/gasdermin D (GSDMD) pathway plays the most critical role in pyroptosis after ICH. Pyroptosis can be inhibited by directly targeting NLRP3 or its upstream molecules, or directly interfering with caspase-1 expression and GSDMD formation, thus significantly improving the prognosis of ICH. The present review discusses key pathological pathways and regulatory mechanisms of pyroptosis after ICH and suggests possible intervention strategies to mitigate pyroptosis and brain dysfunction after ICH.
Collapse
Affiliation(s)
- Dengpan Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- *Correspondence: Fuyou Guo, ; Jian Wang, ; Chi-Tai Yeh,
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Fuyou Guo, ; Jian Wang, ; Chi-Tai Yeh,
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Fuyou Guo, ; Jian Wang, ; Chi-Tai Yeh,
| |
Collapse
|
17
|
Sun C, Zhao H, Han Y, Wang Y, Sun X. The Role of Inflammasomes in COVID-19: Potential Therapeutic Targets. J Interferon Cytokine Res 2022; 42:406-420. [PMID: 35984324 DOI: 10.1089/jir.2022.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The coronavirus 2019 disease (COVID-19) pandemic has caused massive morbidity and mortality worldwide. In severe cases, it is mainly associated with acute pneumonia, cytokine storm, and multi-organ dysfunction. Inflammasomes play a primary role in various pathological processes such as infection, injury, and cancer. However, their role in COVID-19-related complications has not been explored. In addition, the role of underlying medical conditions on COVID-19 disease severity remains unclear. Therefore, this review expounds on the mechanisms of inflammasomes following COVID-19 infection and provides recent evidence on the potential double-edged sword effect of inflammasomes during COVID-19 pathogenesis. The assembly and activation of inflammasomes are critical for inducing effective antiviral immune responses and disease resolution. However, uncontrolled activation of inflammasomes causes excessive production of proinflammatory cytokines (cytokine storm), increased risk of acute respiratory distress syndrome, and death. Therefore, discoveries in the role of the inflammasome in mediating organ injury are key to identifying therapeutic targets and treatment modifications to prevent or reduce COVID-19-related complications.
Collapse
Affiliation(s)
- Chen Sun
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hangyuan Zhao
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yunze Han
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yiqing Wang
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao Sun
- Department of Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Li W, Wang H, Zheng SJ. Roles of RNA Sensors in Host Innate Response to Influenza Virus and Coronavirus Infections. Int J Mol Sci 2022; 23:8285. [PMID: 35955436 PMCID: PMC9368391 DOI: 10.3390/ijms23158285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza virus and coronavirus are two important respiratory viruses, which often cause serious respiratory diseases in humans and animals after infection. In recent years, highly pathogenic avian influenza virus (HPAIV) and SARS-CoV-2 have become major pathogens causing respiratory diseases in humans. Thus, an in-depth understanding of the relationship between viral infection and host innate immunity is particularly important to the stipulation of effective control strategies. As the first line of defense against pathogens infection, innate immunity not only acts as a natural physiological barrier, but also eliminates pathogens through the production of interferon (IFN), the formation of inflammasomes, and the production of pro-inflammatory cytokines. In this process, the recognition of viral pathogen-associated molecular patterns (PAMPs) by host pattern recognition receptors (PRRs) is the initiation and the most important part of the innate immune response. In this review, we summarize the roles of RNA sensors in the host innate immune response to influenza virus and coronavirus infections in different species, with a particular focus on innate immune recognition of viral nucleic acids in host cells, which will help to develop an effective strategy for the control of respiratory infectious diseases.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.L.); (H.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hongnuan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.L.); (H.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.L.); (H.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
House RV, Broge TA, Suscovich TJ, Snow DM, Tomic MT, Nonet G, Bajwa K, Zhu G, Martinez Z, Hackett K, Earnhart CG, Dorsey NM, Hopkins SA, Natour DS, Davis HD, Anderson MS, Gainey MR, Cobb RR. Evaluation of strategies to modify Anti-SARS-CoV-2 monoclonal antibodies for optimal functionality as therapeutics. PLoS One 2022; 17:e0267796. [PMID: 35657812 PMCID: PMC9165815 DOI: 10.1371/journal.pone.0267796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 04/15/2022] [Indexed: 01/08/2023] Open
Abstract
The current global COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a public health crisis with more than 168 million cases reported globally and more than 4.5 million deaths at the time of writing. In addition to the direct impact of the disease, the economic impact has been significant as public health measures to contain or reduce the spread have led to country wide lockdowns resulting in near closure of many sectors of the economy. Antibodies are a principal determinant of the humoral immune response to COVID-19 infections and may have the potential to reduce disease and spread of the virus. The development of monoclonal antibodies (mAbs) represents a therapeutic option that can be produced at large quantity and high quality. In the present study, a mAb combination mixture therapy was investigated for its capability to specifically neutralize SARS-CoV-2. We demonstrate that each of the antibodies bind the spike protein and neutralize the virus, preventing it from infecting cells in an in vitro cell-based assay, including multiple viral variants that are currently circulating in the human population. In addition, we investigated the effects of two different mutations in the Fc portion (YTE and LALA) of the antibody on Fc effector function and the ability to alleviate potential antibody-dependent enhancement of disease. These data demonstrate the potential of a combination of two mAbs that target two different epitopes on the SARS-CoV2 spike protein to provide protection against SARS-CoV-2 infection in humans while extending serum half-life and preventing antibody-dependent enhancement of disease.
Collapse
Affiliation(s)
| | | | | | - Doris M. Snow
- Ology Bioservices, Frederick, MD, United States of America
| | - Milan T. Tomic
- Research and Development, Ology Bioservices, Inc., Alameda, CA, United States of America
| | - Genevieve Nonet
- Research and Development, Ology Bioservices, Inc., Alameda, CA, United States of America
| | - Kamaljit Bajwa
- Research and Development, Ology Bioservices, Inc., Alameda, CA, United States of America
| | - Guangyu Zhu
- Research and Development, Ology Bioservices, Inc., Alameda, CA, United States of America
| | - Zachary Martinez
- Research and Development, Ology Bioservices, Inc., Alameda, CA, United States of America
| | - Kyal Hackett
- Ology Bioservices, Frederick, MD, United States of America
| | - Christopher G. Earnhart
- US Department of Defense, Joint Program Executive Office for Chemical, Biological, Radiological, Nuclear Defense (JPEO-CBRND), Washington, DC, United States of America
| | - Nicole M. Dorsey
- US Department of Defense, Joint Program Executive Office for Chemical, Biological, Radiological, Nuclear Defense (JPEO-CBRND), Washington, DC, United States of America
| | | | - Dalia S. Natour
- Battelle Biomedical Research Center, West Jefferson, Columbus, Ohio, United States of America
| | - Heather D. Davis
- Battelle Biomedical Research Center, West Jefferson, Columbus, Ohio, United States of America
| | - Michael S. Anderson
- Battelle Biomedical Research Center, West Jefferson, Columbus, Ohio, United States of America
| | - Melicia R. Gainey
- Battelle Biomedical Research Center, West Jefferson, Columbus, Ohio, United States of America
| | - Ronald R. Cobb
- Process Development, Ology Bioservices, Alachua, FL, United States of America
| |
Collapse
|
20
|
Hamdy NM, Shaker FH, Zhan X, Basalious EB. Tangled quest of post-COVID-19 infection-caused neuropathology and what 3P nano-bio-medicine can solve? EPMA J 2022; 13:261-284. [PMID: 35668839 PMCID: PMC9160520 DOI: 10.1007/s13167-022-00285-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
COVID-19-caused neurological problems are the important post-CoV-2 infection complications, which are recorded in ~ 40% of critically ill COVID-19 patients. Neurodegeneration (ND) is one of the most serious complications. It is necessary to understand its molecular mechanism(s), define research gaps to direct research to, hopefully, design new treatment modalities, for predictive diagnosis, patient stratification, targeted prevention, prognostic assessment, and personalized medical services for this type of complication. Individualized nano-bio-medicine combines nano-medicine (NM) with clinical and molecular biomarkers based on omics data to improve during- and post-illness management or post-infection prognosis, in addition to personalized dosage profiling and drug selection for maximum treatment efficacy, safety with least side-effects. This review will enumerate proteins, receptors, and enzymes involved in CoV-2 entrance into the central nervous system (CNS) via the blood–brain barrier (BBB), and list the repercussions after that entry, ranging from neuroinflammation to neurological symptoms disruption mechanism. Moreover, molecular mechanisms that mediate the host effect or viral detrimental effect on the host are discussed here, including autophagy, non-coding RNAs, inflammasome, and other molecular mechanisms of CoV-2 infection neuro-affection that are defined here as hallmarks of neuropathology related to COVID-19 infection. Thus, a couple of questions are raised; for example, “What are the hallmarks of neurodegeneration during COVID-19 infection?” and “Are epigenetics promising solution against post-COVID-19 neurodegeneration?” In addition, nano-formulas might be a better novel treatment for COVID-19 neurological complications, which raises one more question, “What are the challenges of nano-bio-based nanocarriers pre- or post-COVID-19 infection?” especially in the light of omics-based changes/challenges, research, and clinical practice in the framework of predictive preventive personalized medicine (PPPM / 3P medicine).
Collapse
Affiliation(s)
- Nadia M Hamdy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo Egypt
| | - Fatma H Shaker
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo Egypt
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China.,Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117 People's Republic of China.,Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031 People's Republic of China
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Al Kasr AlAiny, Cairo, 11562 Egypt
| |
Collapse
|
21
|
Soraci L, Lattanzio F, Soraci G, Gambuzza ME, Pulvirenti C, Cozza A, Corsonello A, Luciani F, Rezza G. COVID-19 Vaccines: Current and Future Perspectives. Vaccines (Basel) 2022; 10:608. [PMID: 35455357 PMCID: PMC9025326 DOI: 10.3390/vaccines10040608] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
Currently available vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are highly effective but not able to keep the coronavirus disease 2019 (COVID-19) pandemic completely under control. Alternative R&D strategies are required to induce a long-lasting immunological response and to reduce adverse events as well as to favor rapid development and large-scale production. Several technological platforms have been used to develop COVID-19 vaccines, including inactivated viruses, recombinant proteins, DNA- and RNA-based vaccines, virus-vectored vaccines, and virus-like particles. In general, mRNA vaccines, protein-based vaccines, and vectored vaccines have shown a high level of protection against COVID-19. However, the mutation-prone nature of the spike (S) protein affects long-lasting vaccine protection and its effectiveness, and vaccinated people can become infected with new variants, also showing high virus levels. In addition, adverse effects may occur, some of them related to the interaction of the S protein with the angiotensin-converting enzyme 2 (ACE-2). Thus, there are some concerns that need to be addressed and challenges regarding logistic problems, such as strict storage at low temperatures for some vaccines. In this review, we discuss the limits of vaccines developed against COVID-19 and possible innovative approaches.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy; (L.S.); (A.C.)
| | - Fabrizia Lattanzio
- Scientific Direction, Italian National Research Center on Aging (IRCCS INRCA), 60121 Ancona, Italy;
| | - Giulia Soraci
- Department of Obstetrics and Gynecology, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Elsa Gambuzza
- Territorial Office of Messina, Italian Ministry of Health, 98122 Messina, Italy
| | | | - Annalisa Cozza
- Laboratory of Pharmacoepidemiology and Biostatistics, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy;
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy; (L.S.); (A.C.)
- Laboratory of Pharmacoepidemiology and Biostatistics, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy;
| | - Filippo Luciani
- Infectious Diseases Unit of Annunziata Hospital, 87100 Cosenza, Italy;
| | - Giovanni Rezza
- Health Prevention Directorate, Italian Ministry of Health, 00144 Rome, Italy;
| |
Collapse
|
22
|
Yu C, Zhao W, Duan C, Xie J, Yin W. Poly-l-lysine-caused cell adhesion induces pyroptosis in THP-1 monocytes. Open Life Sci 2022; 17:279-283. [PMID: 35415237 PMCID: PMC8951213 DOI: 10.1515/biol-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/21/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
Pyroptosis is a kind of cell necrosis mediated by inflammasomes. The caspase 1-induced cleavage of gasdermin D (GSDMD) is a canonical pathway to cause membrane pores and eventually cell pyroptosis. Poly-l-lysine (PLL) is widely used to enhance cell adhesion during experiments. Human THP-1 cells are a typical cell line used to study pyroptosis due to their monocytic and macrophage-like characteristics. However, it was found that THP-1 cells seeded on the PLL-coated slides died. To figure out the reason, we observed the morphology of THP-1 cells on PLL-coated slides, which showed obvious pore forming on the cell membranes and cell swelling. The indicated pyroptosis-related protein expression was evaluated and it showed that the conventional caspase-1 pathway of pyroptosis was activated through the NLRP3 inflammasome in THP-1 monocytes on the PLL-coated slides. Hence, PLL-guided cell adhesion induces cell pyroptosis in THP-1 monocytes, which calls for THP-1 dominant studies of pyroptosis to avoid the use of PLL-coated slides or PLL-related drugs.
Collapse
Affiliation(s)
- Chaoping Yu
- Department of Emergency, Xijing Hospital, Fourth Military Medical University , 127 West Changle Road , Xi’an , Shaanxi 710032 , China
| | - Wei Zhao
- Department of Emergency, Xijing Hospital, Fourth Military Medical University , 127 West Changle Road , Xi’an , Shaanxi 710032 , China
| | - Chujun Duan
- Department of Emergency, Xijing Hospital, Fourth Military Medical University , 127 West Changle Road , Xi’an , Shaanxi 710032 , China
| | - Jiangang Xie
- Department of Emergency, Xijing Hospital, Fourth Military Medical University , 127 West Changle Road , Xi’an , Shaanxi 710032 , China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, Fourth Military Medical University , 127 West Changle Road , Xi’an , Shaanxi 710032 , China
| |
Collapse
|
23
|
Ostrycharz E, Hukowska-Szematowicz B. New Insights into the Role of the Complement System in Human Viral Diseases. Biomolecules 2022; 12:226. [PMID: 35204727 PMCID: PMC8961555 DOI: 10.3390/biom12020226] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
The complement system (CS) is part of the human immune system, consisting of more than 30 proteins that play a vital role in the protection against various pathogens and diseases, including viral diseases. Activated via three pathways, the classical pathway (CP), the lectin pathway (LP), and the alternative pathway (AP), the complement system leads to the formation of a membrane attack complex (MAC) that disrupts the membrane of target cells, leading to cell lysis and death. Due to the increasing number of reports on its role in viral diseases, which may have implications for research on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this review aims to highlight significant progress in understanding and defining the role of the complement system in four groups of diseases of viral etiology: (1) respiratory diseases; (2) acute liver failure (ALF); (3) disseminated intravascular coagulation (DIC); and (4) vector-borne diseases (VBDs). Some of these diseases already present a serious global health problem, while others are a matter of concern and require the collaboration of relevant national services and scientists with the World Health Organization (WHO) to avoid their spread.
Collapse
Affiliation(s)
- Ewa Ostrycharz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
- Doctoral School of the University of Szczecin, University of Szczecin, 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| | - Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| |
Collapse
|
24
|
Jiang H, Chen Q, Zheng S, Guo C, Luo J, Wang H, Zheng X, Weng Z. Association of Complement C3 with Clinical Deterioration Among Hospitalized Patients with COVID-19. Int J Gen Med 2022; 15:849-857. [PMID: 35115811 PMCID: PMC8801723 DOI: 10.2147/ijgm.s348519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
Background The role of the complement system in coronavirus disease 2019 (COVID-19) remains controversial. This study aimed to evaluate the relationship between serum complement C3 levels, clinical worsening, and risk of death in hospitalized patients with COVID-19. Methods Data were collected from 216 adults with COVID-19 admitted to a designated clinical center in Wuhan Union Hospital (China) between February 13, 2020, and February 29, 2020. Their complement C3 levels were measured within 24 h of admission. The primary outcome was a clinical worsening of 2 points on a 6-point ordinal scale. The secondary outcome was all-causes of death. Inverse probability of treatment weighting (IPTW) analysis was conducted to adjust for the baseline confounders. Results The median value of C3 was 0.89 (interquartile range, 0.78–1.01) g/L. Clinical worsening occurred in 12.3% (7/57) and 2.5% (4/159) of patients with baseline C3 levels < and ≥0.79 g/L, respectively (hazard ratio [HR], 5.22; 95% confidence interval [CI], 1.53–17.86). After IPTW adjustment, the risk for clinical worsening was 4-fold greater (weighted HR, 4.61; 95% CI, 1.16–18.4) in patients with C3 levels less than 0.79 g/L comparatively. The sensitivity analyses revealed the robustness of the results. No significant associations between C3 levels and death were observed on unadjusted (HR, 2.92; 95% CI, 0.73–11.69) and IPTW analyses (weighted HR, 3.78; 95% CI, 0.84–17.04). Conclusion Low complement C3 levels are associated with a higher risk for clinical worsening among inpatients with COVID-19. The serum C3 levels may contribute to the identification of patient populations that could benefit from therapeutic complement inhibition.
Collapse
Affiliation(s)
- Hongbo Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Qiaosen Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shaoping Zheng
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chunxia Guo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jinzhuo Luo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hua Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhihong Weng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Correspondence: Zhihong Weng, Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, People’s Republic of China, Email
| |
Collapse
|
25
|
Gallo CG, Fiorino S, Posabella G, Antonacci D, Tropeano A, Pausini E, Pausini C, Guarniero T, Hong W, Giampieri E, Corazza I, Federico L, de Biase D, Zippi M, Zancanaro M. COVID-19, what could sepsis, severe acute pancreatitis, gender differences, and aging teach us? Cytokine 2021; 148:155628. [PMID: 34411989 PMCID: PMC8343368 DOI: 10.1016/j.cyto.2021.155628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a potentially life-threatening disease, defined as Coronavirus Disease 19 (COVID-19). The most common signs and symptoms of this pathological condition include cough, fever, shortness of breath, and sudden onset of anosmia, ageusia, or dysgeusia. The course of COVID-19 is mild or moderate in more than 80% of cases, but it is severe or critical in about 14% and 5% of infected subjects respectively, with a significant risk of mortality. SARS-CoV-2 related infection is characterized by some pathogenetic events, resembling those detectable in other pathological conditions, such as sepsis and severe acute pancreatitis. All these syndromes are characterized by some similar features, including the coexistence of an exuberant inflammatory- as well as an anti-inflammatory-response with immune depression. Based on current knowledge concerning the onset and the development of acute pancreatitis and sepsis, we have considered these syndromes as a very interesting paradigm for improving our understanding of pathogenetic events detectable in patients with COVID-19. The aim of our review is: 1)to examine the pathogenetic mechanisms acting during the emergence of inflammatory and anti-inflammatory processes in human pathology; 2)to examine inflammatory and anti-inflammatory events in sepsis, acute pancreatitis, and SARS-CoV-2 infection and clinical manifestations detectable in patients suffering from these syndromes also according to the age and gender of these individuals; as well as to analyze the possible common and different features among these pathological conditions; 3)to obtain insights into our knowledge concerning COVID-19 pathogenesis. This approach may improve the management of patients suffering from this disease and it may suggest more effective diagnostic approaches and schedules of therapy, depending on the different phases and/or on the severity of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Claudio G Gallo
- Emilian Physiolaser Therapy Center, Castel S. Pietro Terme, Bologna, Italy.
| | - Sirio Fiorino
- Internal Medicine Unit, Budrio Hospital Azienda USL, Bologna, Italy
| | | | - Donato Antonacci
- Medical Science Department, "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo (FG), Italy
| | | | | | | | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang, The People's Republic of China
| | - Enrico Giampieri
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Ivan Corazza
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Lari Federico
- Internal Medicine Unit, Budrio Hospital Azienda USL, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | | |
Collapse
|
26
|
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), results in life-threatening disease in a minority of patients, especially elderly people and those with co-morbidities such as obesity and diabetes. Severe disease is characterized by dysregulated cytokine release, pneumonia and acute lung injury, which can rapidly progress to acute respiratory distress syndrome, disseminated intravascular coagulation, multisystem failure and death. However, a mechanistic understanding of COVID-19 progression remains unclear. Here we review evidence that SARS-CoV-2 directly or indirectly activates inflammasomes, which are large multiprotein assemblies that are broadly responsive to pathogen-associated and stress-associated cellular insults, leading to secretion of the pleiotropic IL-1 family cytokines (IL-1β and IL-18), and pyroptosis, an inflammatory form of cell death. We further discuss potential mechanisms of inflammasome activation and clinical efforts currently under way to suppress inflammation to prevent or ameliorate severe COVID-19.
Collapse
Affiliation(s)
- Setu M Vora
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
27
|
Morais da Silva M, Lira de Lucena AS, Paiva Júnior SDSL, Florêncio De Carvalho VM, Santana de Oliveira PS, da Rosa MM, Barreto de Melo Rego MJ, Pitta MGDR, Pereira MC. Cell death mechanisms involved in cell injury caused by SARS-CoV-2. Rev Med Virol 2021; 32:e2292. [PMID: 34590761 PMCID: PMC8646768 DOI: 10.1002/rmv.2292] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022]
Abstract
Coronavirus disease 2019 (Covid‐19) is an emerging novel respiratory infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) that rapidly spread worldwide. In addition to lung injury, Covid‐19 patients may develop extrapulmonary symptoms, including cardiac, liver, kidney, digestive tract, and neurological injuries. Angiotensin converting enzyme 2 is the major receptor for the entry of SARS‐CoV‐2 into host cells. The specific mechanisms that lead to cell death in different tissues during infection by SARS‐CoV‐2 remains unknown. Based on data of the previous human coronavirus SARS‐CoV together with information about SARS‐CoV‐2, this review provides a summary of the mechanisms involved in cell death, including apoptosis, autophagy, and necrosis, provoked by severe acute respiratory syndrome coronavirus.
Collapse
Affiliation(s)
- Maríllya Morais da Silva
- Research Center for Therapeutic Innovation Suely Galdino, Federal University of Pernambuco, Recife, Brazil
| | - André Silva Lira de Lucena
- Research Center for Therapeutic Innovation Suely Galdino, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | - Michelle Melgarejo da Rosa
- Research Center for Therapeutic Innovation Suely Galdino, Federal University of Pernambuco, Recife, Brazil
| | | | | | - Michelly Cristiny Pereira
- Research Center for Therapeutic Innovation Suely Galdino, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
28
|
Sahu SK, Kulkarni DH, Ozanturk AN, Ma L, Kulkarni HS. Emerging roles of the complement system in host-pathogen interactions. Trends Microbiol 2021; 30:390-402. [PMID: 34600784 DOI: 10.1016/j.tim.2021.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022]
Abstract
The complement system has historically been entertained as a fluid-phase, hepatically derived system which protects the intravascular space from encapsulated bacteria. However, there has been an increasing appreciation for its role in protection against non-encapsulated pathogens. Specifically, we have an improved understanding of how pathogens are recognized by specific complement proteins, as well as how they trigger and evade them. Additionally, we have an improved understanding of locally derived complement proteins, many of which promote host defense. Moreover, intracellular complement proteins have been identified that facilitate local protection and barrier function despite pathogen invasion. Our review aims to summarize these advances in the field as well as provide an insight into the pathophysiological changes occurring when the system is dysregulated in infection.
Collapse
Affiliation(s)
- Sanjaya K Sahu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Devesha H Kulkarni
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ayse N Ozanturk
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lina Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
29
|
Welcome MO, Mastorakis NE. Neuropathophysiology of coronavirus disease 2019: neuroinflammation and blood brain barrier disruption are critical pathophysiological processes that contribute to the clinical symptoms of SARS-CoV-2 infection. Inflammopharmacology 2021; 29:939-963. [PMID: 33822324 PMCID: PMC8021940 DOI: 10.1007/s10787-021-00806-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) first discovered in Wuhan, Hubei province, China in December 2019. SARS-CoV-2 has infected several millions of people, resulting in a huge socioeconomic cost and over 2.5 million deaths worldwide. Though the pathogenesis of COVID-19 is not fully understood, data have consistently shown that SARS-CoV-2 mainly affects the respiratory and gastrointestinal tracts. Nevertheless, accumulating evidence has implicated the central nervous system in the pathogenesis of SARS-CoV-2 infection. Unfortunately, however, the mechanisms of SARS-CoV-2 induced impairment of the central nervous system are not completely known. Here, we review the literature on possible neuropathogenic mechanisms of SARS-CoV-2 induced cerebral damage. The results suggest that downregulation of angiotensin converting enzyme 2 (ACE2) with increased activity of the transmembrane protease serine 2 (TMPRSS2) and cathepsin L in SARS-CoV-2 neuroinvasion may result in upregulation of proinflammatory mediators and reactive species that trigger neuroinflammatory response and blood brain barrier disruption. Furthermore, dysregulation of hormone and neurotransmitter signalling may constitute a fundamental mechanism involved in the neuropathogenic sequelae of SARS-CoV-2 infection. The viral RNA or antigenic peptides also activate or interact with molecular signalling pathways mediated by pattern recognition receptors (e.g., toll-like receptors), nuclear factor kappa B, Janus kinase/signal transducer and activator of transcription, complement cascades, and cell suicide molecules. Potential molecular targets and therapeutics of SARS-CoV-2 induced neurologic damage are also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, 1000, Sofia, Bulgaria
| |
Collapse
|
30
|
Mehrzadi S, Karimi MY, Fatemi A, Reiter RJ, Hosseinzadeh A. SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control: beneficial effects of melatonin. Pharmacol Ther 2021; 224:107825. [PMID: 33662449 PMCID: PMC7919585 DOI: 10.1016/j.pharmthera.2021.107825] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/25/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
Coronaviruses (CoVs) are a group of single stranded RNA viruses, of which some of them such as SARS-CoV, MERS-CoV, and SARS-CoV-2 are associated with deadly worldwide human diseases. Coronavirus disease-2019 (COVID-19), a condition caused by SARS-CoV-2, results in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) associated with high mortality in the elderly and in people with underlying comorbidities. Results from several studies suggest that CoVs localize in mitochondria and interact with mitochondrial protein translocation machinery to target their encoded products to mitochondria. Coronaviruses encode a number of proteins; this process is essential for viral replication through inhibiting degradation of viral proteins and host misfolded proteins including those in mitochondria. These viruses seem to maintain their replication by altering mitochondrial dynamics and targeting mitochondrial-associated antiviral signaling (MAVS), allowing them to evade host innate immunity. Coronaviruses infections such as COVID-19 are more severe in aging patients. Since endogenous melatonin levels are often dramatically reduced in the aged and because it is a potent anti-inflammatory agent, melatonin has been proposed to be useful in CoVs infections by altering proteasomal and mitochondrial activities. Melatonin inhibits mitochondrial fission due to its antioxidant and inhibitory effects on cytosolic calcium overload. The collective data suggests that melatonin may mediate mitochondrial adaptations through regulating both mitochondrial dynamics and biogenesis. We propose that melatonin may inhibit SARS-CoV-2-induced cell damage by regulating mitochondrial physiology.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Fatemi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Zhang H, Tang Y, Tao J. Sex-Related Overactivation of NLRP3 Inflammasome Increases Lethality of the Male COVID-19 Patients. Front Mol Biosci 2021; 8:671363. [PMID: 34150848 PMCID: PMC8212049 DOI: 10.3389/fmolb.2021.671363] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2 infection, remains a dramatic threat to human life and economic well-being worldwide. Significant heterogeneity in the severity of disease was observed for patients infected with SARS-CoV-2 ranging from asymptomatic to severe cases. Moreover, male patients had a higher probability of suffering from high mortality and severe symptoms linked to cytokine storm and excessive inflammation. The NLRP3 inflammasome is presumably critical to this process. Sex differences may directly affect the activation of NLRP3 inflammasome, impacting the severity of observed COVID-19 symptoms. To elucidate the potential mechanisms underlying sex based differences in NLRP3 activation during SARS-CoV-2 infection, this review summarizes the reported mechanisms and identifies potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
32
|
Saghazadeh A, Rezaei N. How COVID-19 Has Globalized: Unknown Origin, Rapid Transmission, and the Immune System Nourishment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:119-147. [PMID: 33973176 DOI: 10.1007/978-3-030-63761-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The novel coronavirus disease (COVID-19) profoundly influences T-cell immunity. The counts of total T cells and T-cell subsets, especially CD4+ and CD8+ T cells, are decreased in patients with COVID-19. Also, the function of these cells becomes less effective as the expression of immune inhibitory receptors, such as Tim3 and PD-1, increases over time during the disease. Kinetic analyses show that the T-cell profile changes dynamically, so does the COVID-19 stages. As COVID-19 continues to deteriorate and progresses to severe/critical condition, the lymphocyte count steadily decreases. Therefore, the ability of COVID-19 to escape the immune system might lie in its power to profoundly diminish T-cell effective function, which is necessary for the establishment of a robust antiviral immunity. Also, COVID-19 is associated with increased numbers of monocytes and macrophages, and as the disease progresses from a mild form to a severe/critical condition, the macrophage population becomes denser. Monitoring the expression of cytokines associated with macrophage activation, mainly interleukin (IL)-6 and IL-10, indicates that the course of COVID-19 consists of two stages and the transition between disease stages occurs by the end of the first week after onset of symptoms. At the initial stage, the immune military recognizes the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as nonself and thus fires macrophages at the lungs against the virus. The first flame can control disease progression effectively. However, a trained immunocompetent system would maintain the fire of macrophages over an extended time. It lies in its immune memory in tissue-resident macrophages, especially alveolar macrophages, making a professionally trained immune system more likely to be feared by COVID-19 than an untrained immune system. In this manner, the trained immunocompetent system commits such a failure that causes the lungs to come down rapidly. The fact that younger age groups, including neonates and children, are less susceptible to COVID-19 than older age groups reflects that the natural affinities of the immune system that has not been trained thoroughly would be standard in combatting against COVID-19 whereas the higher affinities of the trained immune system for rapid activation of immune responses might raise faults - the lungs come down.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
33
|
Ghosh R, Roy D, Mandal A, Pal SK, Chandra Swaika B, Naga D, Pandit A, Ray BK, Benito-León J. Cerebral venous thrombosis in COVID-19. Diabetes Metab Syndr 2021; 15:1039-1045. [PMID: 34015627 PMCID: PMC8128714 DOI: 10.1016/j.dsx.2021.04.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Initially, novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) was considered primarily a respiratory pathogen. However, with time it has behaved as a virus with the potential to cause multi-system involvement, including neurological manifestations. Cerebral venous sinus thrombosis (CVT) has increasingly been reported in association with coronavirus infectious disease of 2019 (COVID-19). Here, we have shed light upon CVT and its possible mechanisms in the backdrop of the ongoing COVID-19 pandemic. METHODS In this review, data were collected from PubMed, EMBASE and Web of Science, until March 30, 2021, using pre-specified searching strategies. The search strategy consisted of a variation of keywords of relevant medical subject headings and keywords, including "COVID-19", "SARS-CoV-2", "coronavirus", and "cerebral venous sinus thrombosis". RESULTS COVID-19 has a causal association with a plethora of neurological, neuropsychiatric and psychological effects. CVT has gained particular importance in this regard. The known hypercoagulable state in SARS-CoV-2 infection is thought to be the main mechanism in COVID-19 related CVT. Other plausible mechanisms may include vascular endothelial dysfunction and altered flow dynamics. CONCLUSIONS Although there are no specific clinical characteristics, insidious or acute onset headache, seizures, stroke-like, or encephalopathy symptoms in a patient with, or who has suffered COVID-19, should prompt the attending physician to investigate for CVT. The treatment of COVID-19 associated CVT does not differ radically from the therapy of CVT without the infection, i.e. urgent initiation of parenteral unfractionated heparin or low molecular weight heparin followed by conventional or mostly newer oral anticoagulants.
Collapse
Affiliation(s)
- Ritwik Ghosh
- Department of General Medicine, Burdwan Medical College and Hospital, Burdwan, West Bengal, India
| | - Dipayan Roy
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Arpan Mandal
- Department of General Medicine, Burdwan Medical College and Hospital, Burdwan, West Bengal, India
| | - Shyamal Kanti Pal
- Department of General Medicine, Burdwan Medical College and Hospital, Burdwan, West Bengal, India
| | - Bikash Chandra Swaika
- Department of General Medicine, Burdwan Medical College and Hospital, Burdwan, West Bengal, India
| | - Dinabandhu Naga
- Department of General Medicine, Burdwan Medical College and Hospital, Burdwan, West Bengal, India
| | - Alak Pandit
- Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| | - Biman Kanti Ray
- Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| | - Julián Benito-León
- Department of Neurology, University Hospital "12 de Octubre", Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Medicine, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
34
|
Santiesteban-Lores LE, Amamura TA, da Silva TF, Midon LM, Carneiro MC, Isaac L, Bavia L. A double edged-sword - The Complement System during SARS-CoV-2 infection. Life Sci 2021; 272:119245. [PMID: 33609539 PMCID: PMC7889033 DOI: 10.1016/j.lfs.2021.119245] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
In the past 20 years, infections caused by coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2 have posed a threat to public health since they may cause severe acute respiratory syndrome (SARS) in humans. The Complement System is activated during viral infection, being a central protagonist of innate and acquired immunity. Here, we report some interactions between these three coronaviruses and the Complement System, highlighting the central role of C3 with the severity of these infections. Although it can be protective, its role during coronavirus infections seems to be contradictory. For example, during SARS-CoV-2 infection, Complement System can control the viral infection in asymptomatic or mild cases; however, it can also intensify local and systemic damage in some of severe COVID-19 patients, due to its potent proinflammatory effect. In this last condition, the activation of the Complement System also amplifies the cytokine storm and the pathogenicity of coronavirus infection. Experimental treatment with Complement inhibitors has been an enthusiastic field of intense investigation in search of a promising additional therapy in severe COVID-19 patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Brazil.
| | - Lorena Bavia
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Brazil.
| |
Collapse
|
35
|
Wang R, Wang Y, Hu L, Lu Z, Wang X. Inhibition of complement C5a receptor protects lung cells and tissues against lipopolysaccharide-induced injury via blocking pyroptosis. Aging (Albany NY) 2021; 13:8588-8598. [PMID: 33714207 PMCID: PMC8034960 DOI: 10.18632/aging.202671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022]
Abstract
Acute lung injury (ALI) is the injury of alveolar epithelial cells and capillary endothelial cells caused by various factors. Complement system and pyroptosis have been proved to be involved in ALI, and inhibition of C5a/C5a receptor (C5aR) could alleviate ALI. This study aimed to investigate whether C5a/C5aR inhibition could protect against LPS-induced ALI via mediating pyroptosis. Rats were assigned into four groups: Control, LPS, LPS+W-54011 1mg/kg, and LPS+W-54011 5mg/kg. Beas-2B cells pretreated with or without C5a and W-54011, alone and in combination, were challenged with LPS+ATP. Results unveiled that LPS caused lung tissue injury and inflammatory response, increased pyroptotic and apoptotic factors, along with elevated C5a concentration and C5aR expressions. However, W-54011 pretreatment alleviated lung damage and pulmonary edema, reduced inflammation and prevented cell pyroptosis. In vitro studies confirmed that LPS+ATP reduced cell viability, promoted cell death, generated inflammatory factors and promoted expressions of pyroptosis-related proteins, which could be prevented by W-54011 pretreatment while intensified by C5a pretreatment. The co-treatment of C5a and W-54011 could blunt the effects of C5a on LPS+ATP-induced cytotoxicity. In conclusion, inhibition of C5a/C5aR developed protective effects against LPS-induced ALI and the cytotoxicity of Beas-2B cells, and these effects may depend on blocking pyroptosis.
Collapse
Affiliation(s)
- Renying Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201801, China
| | - Yunxing Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201801, China
| | - Lan Hu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201801, China
| | - Zhenbing Lu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201801, China
| | - Xiaoshan Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201801, China
| |
Collapse
|
36
|
Mdkhana B, Saheb Sharif-Askari N, Ramakrishnan RK, Goel S, Hamid Q, Halwani R. Nucleic Acid-Sensing Pathways During SARS-CoV-2 Infection: Expectations versus Reality. J Inflamm Res 2021; 14:199-216. [PMID: 33531826 PMCID: PMC7847386 DOI: 10.2147/jir.s277716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected millions of people and crippled economies worldwide. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for this pandemic has triggered avid research on its pathobiology to better understand the pathophysiology of COVID-19. In the absence of approved antiviral therapeutic strategies or vaccine platforms capable of effectively targeting this global threat, the hunt for effective therapeutics has led to many candidates being actively evaluated for their efficacy in controlling or preventing COVID-19. In this review, we gathered current evidence on the innate nucleic acid-sensing pathways expected to be elicited by SARS-CoV-2 and the immune evasion mechanisms they have developed to promote viral replication and infection. Within the nucleic acid-sensing pathways, SARS-CoV-2 infection and evasion mechanisms trigger the activation of NOD-signaling and NLRP3 pathways leading to the production of inflammatory cytokines, IL-1β and IL-6, while muting or blocking cGAS-STING and interferon type I and III pathways, resulting in decreased production of antiviral interferons and delayed innate response. Therefore, blocking the inflammatory arm and boosting the interferon production arm of nucleic acid-sensing pathways could facilitate early control of viral replication and dissemination, prevent disease progression, and cytokine storm development. We also discuss the rationale behind therapeutic modalities targeting these sensing pathways and their implications in the treatment of COVID-19.
Collapse
Affiliation(s)
- Bushra Mdkhana
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Swati Goel
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Rabih Halwani
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
37
|
Tomo S, Kumar KP, Roy D, Sankanagoudar S, Purohit P, Yadav D, Banerjee M, Sharma P, Misra S. Complement activation and coagulopathy - an ominous duo in COVID19. Expert Rev Hematol 2021; 14:155-173. [PMID: 33480807 DOI: 10.1080/17474086.2021.1875813] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION COVID-19 has similarities to the Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) outbreaks, as severe patients and non-survivors have frequently shown abnormal coagulation profiles. Immune-mediated pathology is a key player in this disease; hence, the role of the complement system needs assessment. The complement system and the coagulation cascade share an intricate network, where multiple mediators maintain a balance between both pathways. Coagulopathy in COVID-19, showing mixed features of complement-mediated and consumption coagulopathy, creates a dilemma in diagnosis and management. AREAS COVERED Pathophysiology of coagulopathy in COVID-19 patients, with a particular focus on D-dimer and its role in predicting the severity of COVID-19 has been discussed. A comprehensive search of the medical literature on PubMed was done till May 30th, 2020 with the keywords 'COVID-19', 'SARS-CoV-2', 'Coronavirus', 'Coagulopathy', and 'D-dimer'. Twenty-two studies were taken for weighted pooled analysis of D-dimer. EXPERT OPINION A tailored anticoagulant regimen, including intensification of standard prophylactic regimens with low-molecular-weight heparin is advisable for COVID-19 patients. Atypical manifestations and varying D-dimer levels seen in different populations bring forth the futility of uniform recommendations for anticoagulant therapy. Further, direct thrombin inhibitors and platelet inhibitors in a patient-specific manner should also be considered.
Collapse
Affiliation(s)
- Sojit Tomo
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Kiran Pvsn Kumar
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Dipayan Roy
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | | | - Purvi Purohit
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Dharamveer Yadav
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Mithu Banerjee
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Praveen Sharma
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Sanjeev Misra
- Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
38
|
Elyaspour Z, Zibaeenezhad MJ, Razmkhah M, Razeghian-Jahromi I. Is It All About Endothelial Dysfunction and Thrombosis Formation? The Secret of COVID-19. Clin Appl Thromb Hemost 2021; 27:10760296211042940. [PMID: 34693754 PMCID: PMC8543709 DOI: 10.1177/10760296211042940] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/12/2021] [Indexed: 01/08/2023] Open
Abstract
The world is in a hard battle against COVID-19. Endothelial cells are among the most critical targets of SARS-CoV-2. Dysfunction of endothelium leads to vascular injury following by coagulopathies and thrombotic conditions in the vital organs increasing the risk of life-threatening events. Growing evidences revealed that endothelial dysfunction and consequent thrombotic conditions are associated with the severity of outcomes. It is not yet fully clear that these devastating sequels originate directly from the virus or a side effect of virus-induced cytokine storm. Due to endothelial dysfunction, plasma levels of some biomarkers are changed and relevant clinical manifestations appear as well. Stabilization of endothelial integrity and supporting its function are among the promising therapeutic strategies. Other than respiratory, COVID-19 could be called a systemic vascular disease and this aspect should be scrutinized in more detail in order to reduce related mortality. In the present investigation, the effects of COVID-19 on endothelial function and thrombosis formation are discussed. In this regard, critical players, laboratory findings, clinical manifestation, and suggestive therapies are presented.
Collapse
Affiliation(s)
- Zahra Elyaspour
- Cardiovascular Research Center, Shiraz
University of Medical Sciences, Shiraz, Iran
| | | | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research,
Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
39
|
Sadeghmousavi S, Rezaei N. COVID-19 infection and stroke risk. Rev Neurosci 2020; 32:341-349. [PMID: 33580645 DOI: 10.1515/revneuro-2020-0066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022]
Abstract
Coronavirus disease 2019 (COVID-19), due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in Wuhan city, China in December 2019 and rapidly spread to other countries. The most common reported symptoms are fever, dry cough, myalgia and fatigue, headache, anorexia, and breathlessness. Anosmia and dysgeusia as well as gastrointestinal symptoms including nausea and diarrhea are other notable symptoms. This virus also can exhibit neurotropic properties and may also cause neurological diseases, including epileptic seizures, cerebrovascular accident, Guillian barre syndrome, acute transverse myelitis, and acute encephalitis. In this study, we discuss stroke as a complication of the new coronavirus and its possible mechanisms of damage.
Collapse
Affiliation(s)
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Children's Medical Center, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 14194, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran1419783151, Iran
| |
Collapse
|
40
|
Ort M, Dingemanse J, van den Anker J, Kaufmann P. Treatment of Rare Inflammatory Kidney Diseases: Drugs Targeting the Terminal Complement Pathway. Front Immunol 2020; 11:599417. [PMID: 33362783 PMCID: PMC7758461 DOI: 10.3389/fimmu.2020.599417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The complement system comprises the frontline of the innate immune system. Triggered by pathogenic surface patterns in different pathways, the cascade concludes with the formation of a membrane attack complex (MAC; complement components C5b to C9) and C5a, a potent anaphylatoxin that elicits various inflammatory signals through binding to C5a receptor 1 (C5aR1). Despite its important role in pathogen elimination, priming and recruitment of myeloid cells from the immune system, as well as crosstalk with other physiological systems, inadvertent activation of the complement system can result in self-attack and overreaction in autoinflammatory diseases. Consequently, it constitutes an interesting target for specialized therapies. The paradigm of safe and efficacious terminal complement pathway inhibition has been demonstrated by the approval of eculizumab in paroxysmal nocturnal hematuria. In addition, complement contribution in rare kidney diseases, such as lupus nephritis, IgA nephropathy, atypical hemolytic uremic syndrome, C3 glomerulopathy, or antineutrophil cytoplasmic antibody-associated vasculitis has been demonstrated. This review summarizes the involvement of the terminal effector agents of the complement system in these diseases and provides an overview of inhibitors for complement components C5, C5a, C5aR1, and MAC that are currently in clinical development. Furthermore, a link between increased complement activity and lung damage in severe COVID-19 patients is discussed and the potential for use of complement inhibitors in COVID-19 is presented.
Collapse
Affiliation(s)
- Marion Ort
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland.,Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - John van den Anker
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.,Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, United States
| | - Priska Kaufmann
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
41
|
Lee S, Channappanavar R, Kanneganti TD. Coronaviruses: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. Trends Immunol 2020; 41:1083-1099. [PMID: 33153908 PMCID: PMC7561287 DOI: 10.1016/j.it.2020.10.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
The innate immune system acts as the first line of defense against pathogens, including coronaviruses (CoVs). Severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV are epidemic zoonotic CoVs that emerged at the beginning of the 21st century. The recently emerged virus SARS-CoV-2 is a novel strain of CoV that has caused the coronavirus 2019 (COVID-19) pandemic. Scientific advancements made by studying the SARS-CoV and MERS-CoV outbreaks have provided a foundation for understanding pathogenesis and innate immunity against SARS-CoV-2. In this review, we focus on our present understanding of innate immune responses, inflammasome activation, inflammatory cell death pathways, and cytokine secretion during SARS-CoV, MERS-CoV, and SARS-CoV-2 infection. We also discuss how the pathogenesis of these viruses influences these biological processes.
Collapse
Affiliation(s)
- SangJoon Lee
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rudragouda Channappanavar
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA; Department of Acute and Tertiary Care, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | | |
Collapse
|
42
|
Mannino F, Bitto A, Irrera N. Severe Acute Respiratory Syndrome Coronavirus-2 Induces Cytokine Storm and Inflammation During Coronavirus Disease 19: Perspectives and Possible Therapeutic Approaches. Front Pharmacol 2020; 11:592169. [PMID: 33633566 PMCID: PMC7902081 DOI: 10.3389/fphar.2020.592169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
The new coronavirus outbreak was first identified in Wuhan, China, in December 2019, and has turned out to be a global health emergency, affecting millions of people worldwide. Coronavirus disease 19 (COVID-19), caused by the SARS-CoV-2 virus, can manifest with flu-like symptoms and can be complicated by severe pneumonia with acute respiratory distress syndrome (ARDS); however a large percentage of infected individuals do not have symptoms but contribute to the spread of the disease. Severe acute respiratory syndrome coronavirus-2 infection has become a global public health emergency since no available treatment seems effective and it is hard to manage the several complications caused by an intense release of cytokines. This paper reviews the current options on drugs used to reduce the deadly effects of the cytokine storm.
Collapse
Affiliation(s)
- Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
43
|
Ram Kumar Pandian S, Arunachalam S, Deepak V, Kunjiappan S, Sundar K. Targeting complement cascade: an alternative strategy for COVID-19. 3 Biotech 2020; 10:479. [PMID: 33088671 PMCID: PMC7571295 DOI: 10.1007/s13205-020-02464-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/03/2020] [Indexed: 12/27/2022] Open
Abstract
The complement system is a stakeholder of the innate and adaptive immune system and has evolved as a crucial player of defense with multifaceted biological effects. Activation of three complement pathways leads to consecutive enzyme reactions resulting in complement components (C3 and C5), activation of mast cells and neutrophils by anaphylatoxins (C3a and C5a), the formation of membrane attack complex (MAC) and end up with opsonization. However, the dysregulation of complement cascade leads to unsolicited cytokine storm, inflammation, deterioration of alveolar lining cells, culminating in acquired respiratory destructive syndrome (ARDS). Similar pathogenesis is observed with the middle east respiratory syndrome (MERS), severe acquired respiratory syndrome (SARS), and SARS-CoV-2. Activation of the lectin pathway via mannose-binding lectin associated serine protease 2 (MASP2) is witnessed under discrete viral infections including COVID-19. Consequently, the spontaneous activation and deposits of complement components were traced in animal models and autopsy of COVID-19 patients. Pre-clinical and clinical studies evidence that the inhibition of complement components results in reduced complement deposits on target and non-target tissues, and aid in recovery from the pathological conditions of ARDS. Complement inhibitors (monoclonal antibody, protein, peptide, small molecules, etc.) exhibit great promise in blocking the activity of complement components and its downstream effects under various pathological conditions including SARS-CoV. Therefore, we hypothesize that targeting the potential complement inhibitors and complement cascade to counteract lung inflammation would be a better strategy to treat COVID-19.
Collapse
Affiliation(s)
- Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| | - Sankarganesh Arunachalam
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| | - Venkataraman Deepak
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
- Department of Human Sciences, University of Derby, London, United Kingdom
| | - Selvaraj Kunjiappan
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| | - Krishnan Sundar
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| |
Collapse
|
44
|
de Oliveira PG, Termini L, Durigon EL, Lepique AP, Sposito AC, Boccardo E. Diacerein: A potential multi-target therapeutic drug for COVID-19. Med Hypotheses 2020; 144:109920. [PMID: 32534337 PMCID: PMC7263256 DOI: 10.1016/j.mehy.2020.109920] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 19 (COVID-19), was declared pandemic by the World Health Organization in March 2020. SARS-CoV-2 binds its host cell receptor, angiotensin-converting enzyme 2 (ACE2), through the viral spike (S) protein. The mortality related to severe acute respiratory distress syndrome (ARDS) and multi-organ failure in COVID-19 patients has been suggested to be connected with cytokine storm syndrome (CSS), an excessive immune response that severely damages healthy lung tissue. In addition, cardiac symptoms, including fulminant myocarditis, are frequent in patients in a severe state of illness. Diacerein (DAR) is an anthraquinone derivative drug whose active metabolite is rhein. Different studies have shown that this compound inhibits the IL-1, IL-2, IL-6, IL-8, IL-12, IL-18, TNF-α, NF-κB and NALP3 inflammasome pathways. The antiviral activity of rhein has also been documented. This metabolite prevents hepatitis B virus (HBV) replication and influenza A virus (IAV) adsorption and replication through mechanisms involving regulation of oxidative stress and alterations of the TLR4, Akt, MAPK, and NF-κB signalling pathways. Importantly, rhein inhibits the interaction between the SARS-CoV S protein and ACE2 in a dose-dependent manner, suggesting rhein as a potential therapeutic agent for the treatment of SARS-CoV infection. Based on these findings, we hypothesize that DAR is a multi-target drug useful for COVID-19 treatment. This anthraquinone may control hyperinflammatory conditions by multi-faceted cytokine inhibition and by reducing viral infection.
Collapse
Affiliation(s)
- Pedro Gonçalves de Oliveira
- Instituto de Ortopedia e Traumatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP 01246-903, Brazil; Sport Traumatology Group, Department of Orthopaedics and Traumatology, Santa Casa de São Paulo School of Medical Sciences , São Paulo, SP 01221-020, Brazil.
| | - Lara Termini
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246-000, Brazil
| | - Edison Luiz Durigon
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Ana Paula Lepique
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Andrei C Sposito
- Laboratório de Biologia Vascular e Aterosclerose (Aterolab), Faculdade de Ciências Médicas da UNICAMP, Campinas, SP 13083-887, Brazil
| | - Enrique Boccardo
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| |
Collapse
|
45
|
Saleemi MA, Ahmad B, Benchoula K, Vohra MS, Mea HJ, Chong PP, Palanisamy NK, Wong EH. Emergence and molecular mechanisms of SARS-CoV-2 and HIV to target host cells and potential therapeutics. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104583. [PMID: 33035643 PMCID: PMC7536551 DOI: 10.1016/j.meegid.2020.104583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
The emergence of a new coronavirus, in around late December 2019 which had first been reported in Wuhan, China has now developed into a massive threat to global public health. The World Health Organization (WHO) has named the disease caused by the virus as COVID-19 and the virus which is the culprit was renamed from the initial novel respiratory 2019 coronavirus to SARS-CoV-2. The person-to-person transmission of this virus is ongoing despite drastic public health mitigation measures such as social distancing and movement restrictions implemented in most countries. Understanding the source of such an infectious pathogen is crucial to develop a means of avoiding transmission and further to develop therapeutic drugs and vaccines. To identify the etiological source of a novel human pathogen is a dynamic process that needs comprehensive and extensive scientific validations, such as observed in the Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS), and human immunodeficiency virus (HIV) cases. In this context, this review is devoted to understanding the taxonomic characteristics of SARS-CoV-2 and HIV. Herein, we discuss the emergence and molecular mechanisms of both viral infections. Nevertheless, no vaccine or therapeutic drug is yet to be approved for the treatment of SARS-CoV-2, although it is highly likely that new effective medications that target the virus specifically will take years to establish. Therefore, this review reflects the latest repurpose of existing antiviral therapeutic drug choices available to combat SARS-CoV-2.
Collapse
Affiliation(s)
- Mansab Ali Saleemi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Hing Jian Mea
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Navindra Kumari Palanisamy
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
46
|
Complement activation and endothelial perturbation parallel COVID-19 severity and activity. J Autoimmun 2020; 116:102560. [PMID: 33139116 PMCID: PMC7598768 DOI: 10.1016/j.jaut.2020.102560] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023]
Abstract
Background Animal models and few clinical reports suggest the involvement of the complement system in the onset of severe manifestations of coronavirus disease-2019 (COVID-19). However, complement contribution to endotheliopathy and hypercoagulability has not been elucidated yet. Objective To evaluate the association among complement activation, endothelial damage and disease severity or activity in COVID-19 patients. Methods In this single-centre cohort study, 148 patients with COVID-19 of different severity were evaluated upon hospital admission and 30 days later. Markers of complement activation (SC5b-9 and C5a) and endothelial perturbation (von Willebrand factor [vWF], tissue-type plasminogen activator [t-PA], plasminogen activator inhibitor-1 [PAI-1], soluble thrombomodulin [sTM], and soluble endothelial selectin [sE-selectin]) were measured in plasma. Results The patients had high plasma levels of SC5b-9 and C5a (p = 0.0001 for both) and vWF, t-PA and PAI-1 (p = 0.0001 for all). Their SC5b-9 levels correlated with those of vWF (r = 0.517, p = 0.0001) and paralleled disease severity (severe vs mild p = 0.0001, severe vs moderate p = 0.026 and moderate vs mild p = 0.001). The levels of sE-selectin were significantly increased only in the patients with severe disease. After 30 days, plasma SC5b-9, C5a and vWF levels had significantly decreased (p = 0.0001 for all), and 43% of the evaluated patients had normal levels. Conclusions Complement activation is boosted during the progression of COVID-19 and dampened during remission, thus indicating its role in the pathophysiology of the disease. The association between complement activation and the biomarkers of endothelial damage suggests that complement may contribute to tissue injury and could be the target of specific therapy. Levels of complement activation products increase with COVID19 severity and activity. Complement activation is correlated with endothelium damage in COVID19. Complement mediates the response to SARSCoV2 and gives a rationale for target therapy.
Collapse
|
47
|
Osuchowski MF, Aletti F, Cavaillon JM, Flohé SB, Giamarellos-Bourboulis EJ, Huber-Lang M, Relja B, Skirecki T, Szabó A, Maegele M. SARS-CoV-2/COVID-19: Evolving Reality, Global Response, Knowledge Gaps, and Opportunities. Shock 2020; 54:416-437. [PMID: 32433217 PMCID: PMC7363382 DOI: 10.1097/shk.0000000000001565] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Approximately 3 billion people around the world have gone into some form of social separation to mitigate the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The uncontrolled influx of patients in need of emergency care has rapidly brought several national health systems to near-collapse with deadly consequences to those afflicted by Coronavirus Disease 2019 (COVID-19) and other critical diseases associated with COVID-19. Solid scientific evidence regarding SARS-CoV-2/COVID-19 remains scarce; there is an urgent need to expand our understanding of the SARS-CoV-2 pathophysiology to facilitate precise and targeted treatments. The capacity for rapid information dissemination has emerged as a double-edged sword; the existing gap of high-quality data is frequently filled by anecdotal reports, contradictory statements, and misinformation. This review addresses several important aspects unique to the SARS-CoV-2/COVID-19 pandemic highlighting the most relevant knowledge gaps and existing windows-of-opportunity. Specifically, focus is given on SARS-CoV-2 immunopathogenesis in the context of experimental therapies and preclinical evidence and their applicability in supporting efficacious clinical trial planning. The review discusses the existing challenges of SARS-CoV-2 diagnostics and the potential application of translational technology for epidemiological predictions, patient monitoring, and treatment decision-making in COVID-19. Furthermore, solutions for enhancing international strategies in translational research, cooperative networks, and regulatory partnerships are contemplated.
Collapse
Affiliation(s)
- Marcin F. Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Center, Vienna, Austria
| | - Federico Aletti
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | | | - Stefanie B. Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Andrea Szabó
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Marc Maegele
- Department of Trauma and Orthopaedic Surgery, Cologne-Merheim Medical Center (CMMC), University of Witten/Herdecke, Cologne-Merheim Campus, Cologne, Germany
- Institute for Research in Operative Medicine (IFOM), University of Witten/Herdecke, Cologne-Merheim Campus, Cologne, Germany
| |
Collapse
|
48
|
Elrashdy F, Redwan EM, Uversky VN. Why COVID-19 Transmission Is More Efficient and Aggressive Than Viral Transmission in Previous Coronavirus Epidemics? Biomolecules 2020; 10:E1312. [PMID: 32933047 PMCID: PMC7565143 DOI: 10.3390/biom10091312] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a pandemic of coronavirus disease 2019 (COVID-19). The worldwide transmission of COVID-19 from human to human is spreading like wildfire, affecting almost every country in the world. In the past 100 years, the globe did not face a microbial pandemic similar in scale to COVID-19. Taken together, both previous outbreaks of other members of the coronavirus family (severe acute respiratory syndrome (SARS-CoV) and middle east respiratory syndrome (MERS-CoV)) did not produce even 1% of the global harm already inflicted by COVID-19. There are also four other CoVs capable of infecting humans (HCoVs), which circulate continuously in the human population, but their phenotypes are generally mild, and these HCoVs received relatively little attention. These dramatic differences between infection with HCoVs, SARS-CoV, MERS-CoV, and SARS-CoV-2 raise many questions, such as: Why is COVID-19 transmitted so quickly? Is it due to some specific features of the viral structure? Are there some specific human (host) factors? Are there some environmental factors? The aim of this review is to collect and concisely summarize the possible and logical answers to these questions.
Collapse
Affiliation(s)
- Fatma Elrashdy
- Department of Endemic Medicine and Hepatogastroenterology, Kasr Alainy School of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Vladimir N. Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow, Russia
| |
Collapse
|
49
|
Zheng M, Williams EP, Malireddi RKS, Karki R, Banoth B, Burton A, Webby R, Channappanavar R, Jonsson CB, Kanneganti TD. Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase-8/RIPK3 during coronavirus infection. J Biol Chem 2020; 295:14040-14052. [PMID: 32763970 PMCID: PMC7549031 DOI: 10.1074/jbc.ra120.015036] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Coronaviruses have caused several zoonotic infections in the past two decades, leading to significant morbidity and mortality globally. Balanced regulation of cell death and inflammatory immune responses is essential to promote protection against coronavirus infection; however, the underlying mechanisms that control these processes remain to be resolved. Here we demonstrate that infection with the murine coronavirus mouse hepatitis virus (MHV) activated the NLRP3 inflammasome and inflammatory cell death in the form of PANoptosis. Deleting NLRP3 inflammasome components or the downstream cell death executioner gasdermin D (GSDMD) led to an initial reduction in cell death followed by a robust increase in the incidence of caspase-8– and receptor-interacting serine/threonine-protein kinase 3 (RIPK3)–mediated inflammatory cell deathafter coronavirus infection. Additionally, loss of GSDMD promoted robust NLRP3 inflammasome activation. Moreover, the amounts of some cytokines released during coronavirus infection were significantly altered in the absence of GSDMD. Altogether, our findings show that inflammatory cell death, PANoptosis, is induced by coronavirus infection and that impaired NLRP3 inflammasome function or pyroptosis can lead to negative consequences for the host. These findings may have important implications for studies of coronavirus-induced disease.
Collapse
Affiliation(s)
- Min Zheng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Evan Peter Williams
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Balaji Banoth
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Amanda Burton
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard Webby
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rudragouda Channappanavar
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Colleen Beth Jonsson
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | |
Collapse
|
50
|
Noris M, Benigni A, Remuzzi G. The case of complement activation in COVID-19 multiorgan impact. Kidney Int 2020; 98:314-322. [PMID: 32461141 PMCID: PMC7246017 DOI: 10.1016/j.kint.2020.05.013] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
Abstract
The novel coronavirus disease COVID-19 originates in the lungs, but it may extend to other organs, causing, in severe cases, multiorgan damage, including cardiac injury and acute kidney injury. In severe cases, the presence of kidney injury is associated with increased risk of death, highlighting the relevance of this organ as a target of SARS-CoV-2 infection. COVID-19-associated tissue injury is not primarily mediated by viral infection, but rather is a result of the inflammatory host immune response, which drives hypercytokinemia and aggressive inflammation that affect lung parenchymal cells, diminishing oxygen uptake, but also endothelial cells, resulting in endotheliitis and thrombotic events and intravascular coagulation. The complement system represents the first response of the host immune system to SARS-CoV-2 infection, but there is growing evidence that unrestrained activation of complement induced by the virus in the lungs and other organs plays a major role in acute and chronic inflammation, endothelial cell dysfunction, thrombus formation, and intravascular coagulation, and ultimately contributes to multiple organ failure and death. In this review, we discuss the relative role of the different complement activation products in the pathogenesis of COVID-19-associated tissue inflammation and thrombosis and propose the hypothesis that blockade of the terminal complement pathway may represent a potential therapeutic option for the prevention and treatment of lung and multiorgan damage.
Collapse
Affiliation(s)
- Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.
| |
Collapse
|