1
|
Han M, Lee YJ, Ahn SM, Seong JE, Lee JA, Lee YS, Kim JH, Ahn JY, Jeong SJ, Ku NS, Yeom JS, Choi JY. Efficacy of CP-COV03 (a niclosamide-based inorganic nanohybrid product) against severe fever with thrombocytopenia syndrome virus in an in vitro model. Microbiol Spectr 2024; 12:e0139924. [PMID: 39404350 PMCID: PMC11537022 DOI: 10.1128/spectrum.01399-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/08/2024] [Indexed: 11/07/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne infectious disease caused by the SFTS virus (SFTSV). CP-COV03 is a novel antiviral candidate that significantly enhanced the bioavailability of niclosamide through inorganic-based drug delivery technology. The active pharmaceutical ingredient of CP-COV03, niclosamide, has been previously shown to possess broad-spectrum antiviral activity against over 30 different viruses in the in vitro tests. The aim of this study is to confirm the antiviral activity of CP-COV03 against the SFTSV in an in vitro model. Vero cells and SFTS viral stock NCCP43270, a 2015 Gangwon Province isolate, were used to obtain the 50% tissue culture infective dose of the virus. Vero cells seeded in 96-well plates were infected with SFTSV for 1 h. SFTSV-infected cells were treated with CP-COV03 at various concentrations of 0.1-100 μM and incubated for 7 days. On the seventh day of the culture, the cytopathic effect (CPE) of SFTSV was checked by microscopy and the cell viability was checked by using Cell Counting Kit-8 assay. The CPE reduced as the CP-COV03 concentration increased. The 50% inhibitory concentration (IC50) range of CP-COV03 was below 0.125 µM, as determined from the viral titers of culture supernatants collected on the third day posttreatment of CP-COV03. The plaque reduction assay showed that the IC50 of CP-COV03 was 1.893 µM, as determined from the percentage reduction of plaque counts for each drug concentration on the second day posttreatment with CP-COV03. This study suggests that CP-COV03 could be used as a potential antiviral agent for SFTS.IMPORTANCEWe demonstrated a concentration-dependent response and identified low a IC50 of CP-COV03. This result is comparable to other antiviral drugs used against viruses like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We believe that our study makes a significant contribution to the literature as our findings suggest that CP-COV03 may serve as a potential treatment for SFTS, highlighting its importance in the field of antiviral research.
Collapse
Affiliation(s)
- Min Han
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Youn-Jung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Min Ahn
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Eun Seong
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Ah Lee
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Seop Lee
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Ho Kim
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Young Ahn
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Su Jin Jeong
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam Su Ku
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Joon Sup Yeom
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jun Yong Choi
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Jitobaom K, Boonarkart C, Thongon S, Sirihongthong T, Sornwong A, Auewarakul P, Suptawiwat O. In vitro synergistic antiviral activity of repurposed drugs against enterovirus 71. Arch Virol 2024; 169:169. [PMID: 39078431 DOI: 10.1007/s00705-024-06097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/13/2024] [Indexed: 07/31/2024]
Abstract
Enteroviruses cause viral diseases that are harmful to children. Hand, foot, and mouth disease (HFMD) with neurological complications is mainly caused by enterovirus 71 (EV71). Despite its clinical importance, there is no effective antiviral drug against EV71. However, several repurposed drugs have been shown to have antiviral activity against related viruses. Treatments with single drugs and two-drug combinations were performed in vitro to assess anti-EV71 activity. Three repurposed drug candidates with broad-spectrum antiviral activity were found to demonstrate potent anti-EV71 activity: prochlorperazine, niclosamide, and itraconazole. To improve antiviral activity, combinations of two drugs were tested. Niclosamide and itraconazole showed synergistic antiviral activity in Vero cells, whereas combinations of niclosamide-prochlorperazine and itraconazole-prochlorperazine showed only additive effects. Furthermore, the combination of itraconazole and prochlorperazine showed an additive effect in neuroblastoma cells. Itraconazole and prochlorperazine exert their antiviral activities by inhibiting Akt phosphorylation. Repurposing of drugs can provide a treatment solution for HFMD, and our data suggest that combining these drugs can enhance that efficacy.
Collapse
Affiliation(s)
- Kunlakanya Jitobaom
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Songkran Thongon
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thanyaporn Sirihongthong
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Arpakorn Sornwong
- Department of Central instrument and Research Laboratory, Virology and Immunology Laboratory, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Ornpreya Suptawiwat
- Department of Central instrument and Research Laboratory, Virology and Immunology Laboratory, Chulabhorn Royal Academy, Bangkok, 10210, Thailand.
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand.
| |
Collapse
|
3
|
Lü Z, Dai X, Xu J, Liu Z, Guo Y, Gao Z, Meng F. Medicinal chemistry strategies toward broad-spectrum antiviral agents to prevent next pandemics. Eur J Med Chem 2024; 271:116442. [PMID: 38685143 DOI: 10.1016/j.ejmech.2024.116442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
The pandemic and tremendous impact of severe acute respiratory syndrome coronavirus 2 alert us, despite great achievements in prevention and control of infectious diseases, we still lack universal and powerful antiviral strategies to rapidly respond to the potential threat of serious infectious disease. Various highly contagious and pathogenic viruses, as well as other unknown viruses may appear or reappear in human society at any time, causing a catastrophic epidemic. Developing broad-spectrum antiviral drugs with high security and efficiency is of great significance for timely meeting public health emergency and protecting the lives and health of the people. Hence, in this review, we summarized diverse broad-spectrum antiviral targets and corresponding agents from a medicinal chemistry prospective, compared the pharmacological advantages and disadvantages of different targets, listed representative agents, showed their structures, pharmacodynamics and pharmacokinetics characteristics, and conducted a critical discussion on their development potential, in the hope of providing up-to-date guidance for the development of broad-spectrum antivirals and perspectives for applications of antiviral therapy.
Collapse
Affiliation(s)
- Zirui Lü
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xiandong Dai
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jianjie Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Yongbiao Guo
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhenhua Gao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Fanhua Meng
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
4
|
Serafim MSM, Kronenberger T, Rocha REO, Rosa ADRA, Mello TLG, Poso A, Ferreira RS, Abrahão JS, Kroon EG, Mota BEF, Maltarollo VG. Aminopyrimidine Derivatives as Multiflavivirus Antiviral Compounds Identified from a Consensus Virtual Screening Approach. J Chem Inf Model 2024; 64:393-411. [PMID: 38194508 DOI: 10.1021/acs.jcim.3c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Around three billion people are at risk of infection by the dengue virus (DENV) and potentially other flaviviruses. Worldwide outbreaks of DENV, Zika virus (ZIKV), and yellow fever virus (YFV), the lack of antiviral drugs, and limitations on vaccine usage emphasize the need for novel antiviral research. Here, we propose a consensus virtual screening approach to discover potential protease inhibitors (NS3pro) against different flavivirus. We employed an in silico combination of a hologram quantitative structure-activity relationship (HQSAR) model and molecular docking on characterized binding sites followed by molecular dynamics (MD) simulations, which filtered a data set of 7.6 million compounds to 2,775 hits. Lastly, docking and MD simulations selected six final potential NS3pro inhibitors with stable interactions along the simulations. Five compounds had their antiviral activity confirmed against ZIKV, YFV, DENV-2, and DENV-3 (ranging from 4.21 ± 0.14 to 37.51 ± 0.8 μM), displaying aggregator characteristics for enzymatic inhibition against ZIKV NS3pro (ranging from 28 ± 7 to 70 ± 7 μM). Taken together, the compounds identified in this approach may contribute to the design of promising candidates to treat different flavivirus infections.
Collapse
Affiliation(s)
- Mateus Sá Magalhães Serafim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), Tübingen 72076, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Rafael Eduardo Oliveira Rocha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Amanda Del Rio Abreu Rosa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Thaysa Lara Gonçalves Mello
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
- Department of Medical Oncology and Pneumology, University Hospital of Tübingen, Tübingen 70211, Germany
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Jonatas Santos Abrahão
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Erna Geessien Kroon
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Bruno Eduardo Fernandes Mota
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| |
Collapse
|
5
|
Odongo L, Habtegebrael BH, Kiessling V, White JM, Tamm LK. A novel in vitro system of supported planar endosomal membranes (SPEMs) reveals an enhancing role for cathepsin B in the final stage of Ebola virus fusion and entry. Microbiol Spectr 2023; 11:e0190823. [PMID: 37728342 PMCID: PMC10581071 DOI: 10.1128/spectrum.01908-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 09/21/2023] Open
Abstract
Ebola virus (EBOV) causes a hemorrhagic fever with fatality rates up to 90%. The EBOV entry process is complex and incompletely understood. Following attachment to host cells, EBOV is trafficked to late endosomes/lysosomes where its glycoprotein (GP) is processed to a 19-kDa form, which binds to the EBOV intracellular receptor Niemann-Pick type C1. We previously showed that the cathepsin protease inhibitor, E-64d, blocks infection by pseudovirus particles bearing 19-kDa GP, suggesting that further cathepsin action is needed to trigger fusion. This, however, has not been demonstrated directly. Since 19-kDa Ebola GP fusion occurs in late endosomes, we devised a system in which enriched late endosomes are used to prepare supported planar endosomal membranes (SPEMs), and fusion of fluorescent (pseudo)virus particles is monitored by total internal reflection fluorescence microscopy. We validated the system by demonstrating the pH dependencies of influenza virus hemagglutinin (HA)-mediated and Lassa virus (LASV) GP-mediated fusion. Using SPEMs, we showed that fusion mediated by 19-kDa Ebola GP is dependent on low pH, enhanced by Ca2+, and augmented by the addition of cathepsins. Subsequently, we found that E-64d inhibits full fusion, but not lipid mixing, mediated by 19-kDa GP, which we corroborated with the reversible cathepsin inhibitor VBY-825. Hence, we provide both gain- and loss-of-function evidence that further cathepsin action enhances the fusion activity of 19-kDa Ebola GP. In addition to providing new insights into how Ebola GP mediates fusion, the approach we developed employing SPEMs can now be broadly used for studies of virus and toxin entry through endosomes. IMPORTANCE Ebola virus is the causative agent of Ebola virus disease, which is severe and frequently lethal. EBOV gains entry into cells via late endosomes/lysosomes. The events immediately preceding fusion of the viral and endosomal membranes are incompletely understood. In this study, we report a novel in vitro system for studying virus fusion with endosomal membranes. We validated the system by demonstrating the low pH dependencies of influenza and Lassa virus fusion. Moreover, we show that further cathepsin B action enhances the fusion activity of the primed Ebola virus glycoprotein. Finally, this model endosomal membrane system should be useful in studying the mechanisms of bilayer breaching by other enveloped viruses, by non-enveloped viruses, and by acid-activated bacterial toxins.
Collapse
Affiliation(s)
- Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Betelihem H. Habtegebrael
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Judith M. White
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Lukas K. Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Wang Y, Huang H, Li D, Zhao C, Li S, Qin P, Li Y, Yang X, Du W, Li W, Li Y. Identification of niclosamide as a novel antiviral agent against porcine epidemic diarrhea virus infection by targeting viral internalization. Virol Sin 2023; 38:296-308. [PMID: 36702255 PMCID: PMC10176444 DOI: 10.1016/j.virs.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), an enteropathogenic coronavirus, has catastrophic impacts on the global pig industry. However, there remain no effective drugs against PEDV infection. In this study, we utilized a recombinant PEDV expressing renilla luciferase (PEDV-Rluc) to screen potential anti-PEDV agents from an FDA-approved drug library in Vero cells. Four compounds were identified that significantly decreased luciferase activity of PEDV-Rluc. Among them, niclosamide was further characterized because it exhibited the most potent antiviral activity with the highest selectivity index. It can efficiently inhibit viral RNA synthesis, protein expression and viral progeny production of classical and variant PEDV strains in a dose-dependent manner. Time of addition assay showed that niclosamide exhibited potent anti-PEDV activity when added simultaneously with or after virus infection. Furthermore, niclosamide significantly inhibited the entry stage of PEDV infection by affecting viral internalization rather than viral attachment to cells. In addition, a combination with other small molecule inhibitors of endosomal acidification enhanced the anti-PEDV effect of niclosamide in vitro. Taken together, these findings suggested that niclosamide is a novel antiviral agent that might provide a basis for the development of novel drug therapies against PEDV and other related pathogenic coronavirus infections.
Collapse
Affiliation(s)
- Yue Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huimin Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dongliang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuai Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Panpan Qin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yaqin Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenjuan Du
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, the Netherlands
| | - Wentao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China.
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China; Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, the Netherlands.
| |
Collapse
|
7
|
Chistov AA, Chumakov SP, Mikhnovets IE, Nikitin TD, Slesarchuk NA, Uvarova VI, Rubekina AA, Nikolaeva YV, Radchenko EV, Khvatov EV, Orlov AA, Frolenko VS, Sukhorukov MV, Kolpakova ES, Shustova EY, Galochkina AV, Streshnev PP, Osipov EM, Sapozhnikova KA, Moiseenko AV, Brylev VA, Proskurin GV, Dokukin YS, Kutyakov SV, Aralov AV, Korshun VA, Strelkov SV, Palyulin VA, Ishmukhametov AA, Shirshin EA, Osolodkin DI, Shtro AA, Kozlovskaya LI, Alferova VA, Ustinov AV. 5-(Perylen-3-ylethynyl)uracil as an antiviral scaffold: Potent suppression of enveloped virus reproduction by 3-methyl derivatives in vitro. Antiviral Res 2023; 209:105508. [PMID: 36581049 DOI: 10.1016/j.antiviral.2022.105508] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Amphipathic nucleoside and non-nucleoside derivatives of pentacyclic aromatic hydrocarbon perylene are known as potent non-cytotoxic broad-spectrum antivirals. Here we report 3-methyl-5-(perylen-3-ylethynyl)-uracil-1-acetic acid and its amides, a new series of compounds based on a 5-(perylen-3-ylethynyl)-uracil scaffold. The compounds demonstrate pronounced in vitro activity against arthropod-borne viruses, namely tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV), in plaque reduction assays with EC50 values below 1.9 and 1.3 nM, respectively, and Chikungunya virus (CHIKV) in cytopathic effect inhibition test with EC50 values below 3.2 μM. The compounds are active against respiratory viruses as well: severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in cytopathic effect inhibition test and influenza A virus (IAV) in virus titer reduction experiments are inhibited - EC50 values below 51 nM and 2.2 μM, respectively. The activity stems from the presence of a hydrophobic perylene core, and all of the synthesized compounds exhibit comparable 1O2 generation rates. Nonetheless, activity can vary by orders of magnitude depending on the hydrophilic part of the molecule, suggesting a complex mode of action. A time-of-addition experiment and fluorescent imaging indicate that the compounds inhibit viral fusion in a dose-dependent manner. The localization of the compound in the lipid bilayers and visible damage to the viral envelope suggest the membrane as the primary target. Dramatic reduction of antiviral activity with limited irradiation or under treatment with antioxidants further cements the idea of photoinduced ROS-mediated viral envelope damage being the mode of antiviral action.
Collapse
Affiliation(s)
- Alexey A Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Stepan P Chumakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Igor E Mikhnovets
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Timofei D Nikitin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikita A Slesarchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Victoria I Uvarova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia
| | - Anna A Rubekina
- Department of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yulia V Nikolaeva
- Smorodintsev Research Institute of Influenza, St. Petersburg, 197376, Russia
| | - Eugene V Radchenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Evgeny V Khvatov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia
| | - Alexey A Orlov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia; FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia; Skolkovo Institute of Science and Technology, 143026, Moscow Region, Russia
| | - Vasilisa S Frolenko
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia; Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Moscow, 119991, Russia
| | - Maksim V Sukhorukov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia; FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia
| | - Ekaterina S Kolpakova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia
| | - Elena Y Shustova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia
| | | | - Philipp P Streshnev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Eugene M Osipov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | | | | | - Vladimir A Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia; Lumiprobe RUS Ltd., Moscow, 121351, Russia
| | - Gleb V Proskurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Yuri S Dokukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Sergey V Kutyakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Vladimir A Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Sergei V Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Vladimir A Palyulin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Aydar A Ishmukhametov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia; Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Moscow, 119991, Russia
| | - Evgeny A Shirshin
- Department of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry I Osolodkin
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia; Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Moscow, 119991, Russia
| | - Anna A Shtro
- Smorodintsev Research Institute of Influenza, St. Petersburg, 197376, Russia
| | - Liubov I Kozlovskaya
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, 108819, Russia; Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Moscow, 119991, Russia.
| | - Vera A Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
| | - Alexey V Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia; Lumiprobe RUS Ltd., Moscow, 121351, Russia.
| |
Collapse
|
8
|
Wald ME, Claus C, Konrath A, Nieper H, Muluneh A, Schmidt V, Vahlenkamp TW, Sieg M. Ivermectin Inhibits the Replication of Usutu Virus In Vitro. Viruses 2022; 14:v14081641. [PMID: 36016263 PMCID: PMC9413757 DOI: 10.3390/v14081641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Usutu virus (USUV) is an emerging mosquito-borne arbovirus within the genus Flavivirus, family Flaviviridae. Similar to the closely related West Nile virus (WNV), USUV infections are capable of causing mass mortality in wild and captive birds, especially blackbirds. In the last few years, a massive spread of USUV was present in the avian population of Germany and other European countries. To date, no specific antiviral therapies are available. Nine different approved drugs were tested for their antiviral effects on the replication of USUV in vitro in a screening assay. Ivermectin was identified as a potent inhibitor of USUV replication in three cell types from different species, such as simian Vero CCL-81, human A549 and avian TME R. A 2- to 7-log10 reduction of the viral titer in the supernatant was detected at a non-cytotoxic concentration of 5 µM ivermectin dependent on the applied cell line. IC50 values of ivermectin against USUV lineage Africa 3 was found to be 0.55 µM in Vero CCL-81, 1.94 µM in A549 and 1.38 µM in TME-R cells. The antiviral efficacy was comparable between the USUV lineages Africa 2, Africa 3 and Europe 3. These findings show that ivermectin may be a candidate for further experimental and clinical studies addressing the treatment of USUV disease, especially in captive birds.
Collapse
Affiliation(s)
- Maria Elisabeth Wald
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany; (M.E.W.); (T.W.V.)
| | - Claudia Claus
- Institute of Virology, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Andrea Konrath
- Saxon State Laboratory of Health and Veterinary Affairs, 01099 Dresden, Germany; (A.K.); (H.N.); (A.M.)
| | - Hermann Nieper
- Saxon State Laboratory of Health and Veterinary Affairs, 01099 Dresden, Germany; (A.K.); (H.N.); (A.M.)
| | - Aemero Muluneh
- Saxon State Laboratory of Health and Veterinary Affairs, 01099 Dresden, Germany; (A.K.); (H.N.); (A.M.)
| | - Volker Schmidt
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Thomas Wilhelm Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany; (M.E.W.); (T.W.V.)
| | - Michael Sieg
- Institute of Virology, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany;
- Correspondence:
| |
Collapse
|
9
|
Zhang C, Meng X, Zhao H. Comparison of Cell Fusions Induced by Influenza Virus and SARS-CoV-2. Int J Mol Sci 2022; 23:ijms23137365. [PMID: 35806369 PMCID: PMC9266613 DOI: 10.3390/ijms23137365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
Virus–cell fusion is the key step for viral infection in host cells. Studies on virus binding and fusion with host cells are important for understanding the virus–host interaction and viral pathogenesis for the discovery of antiviral drugs. In this review, we focus on the virus–cell fusions induced by the two major pandemic viruses, including the influenza virus and SARS-CoV-2. We further compare the cell fusions induced by the influenza virus and SARS-CoV-2, especially the pH-dependent fusion of the influenza virus and the fusion of SARS-CoV-2 in the type-II transmembrane serine protease 2 negative (TMPRSS2-) cells with syncytia formation. Finally, we present the development of drugs used against SARA-CoV-2 and the influenza virus through the discovery of anti-fusion drugs and the prevention of pandemic respiratory viruses.
Collapse
Affiliation(s)
- Chuyuan Zhang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (C.Z.); (X.M.)
| | - Xinjie Meng
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (C.Z.); (X.M.)
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Hanjun Zhao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (C.Z.); (X.M.)
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Correspondence: or ; Tel.: +852-2255-4892
| |
Collapse
|
10
|
Singh S, Weiss A, Goodman J, Fisk M, Kulkarni S, Lu I, Gray J, Smith R, Sommer M, Cheriyan J. Niclosamide-A promising treatment for COVID-19. Br J Pharmacol 2022; 179:3250-3267. [PMID: 35348204 PMCID: PMC9111792 DOI: 10.1111/bph.15843] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022] Open
Abstract
Vaccines have reduced the transmission and severity of COVID-19, but there remains a paucity of efficacious treatment for drug-resistant strains and more susceptible individuals, particularly those who mount a suboptimal vaccine response, either due to underlying health conditions or concomitant therapies. Repurposing existing drugs is a timely, safe and scientifically robust method for treating pandemics, such as COVID-19. Here, we review the pharmacology and scientific rationale for repurposing niclosamide, an anti-helminth already in human use as a treatment for COVID-19. In addition, its potent antiviral activity, niclosamide has shown pleiotropic anti-inflammatory, antibacterial, bronchodilatory and anticancer effects in numerous preclinical and early clinical studies. The advantages and rationale for nebulized and intranasal formulations of niclosamide, which target the site of the primary infection in COVID-19, are reviewed. Finally, we give an overview of ongoing clinical trials investigating niclosamide as a promising candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Shivani Singh
- Division of Pulmonary and Critical Care MedicineNYU School of MedicineNew YorkNew YorkUSA
| | - Anne Weiss
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
- UNION Therapeutics Research ServicesHellerupDenmark
| | - James Goodman
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Marie Fisk
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Spoorthy Kulkarni
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Ing Lu
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Joanna Gray
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Rona Smith
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
- Cambridge Clinical Trials UnitCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Morten Sommer
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
- UNION TherapeuticsHellerupDenmark
| | - Joseph Cheriyan
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
- Cambridge Clinical Trials UnitCambridge University Hospitals NHS Foundation TrustCambridgeUK
| |
Collapse
|
11
|
Plescia CB, Lindstrom AR, Quintero MV, Keiser P, Anantpadma M, Davey R, Stahelin RV, Davisson VJ. Evaluation of Phenol-Substituted Diphyllin Derivatives as Selective Antagonists for Ebola Virus Entry. ACS Infect Dis 2022; 8:942-957. [PMID: 35357134 PMCID: PMC9112336 DOI: 10.1021/acsinfecdis.1c00474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Ebola
virus (EBOV) is an aggressive filoviral pathogen that can
induce severe hemorrhagic fever in humans with up to 90% fatality
rate. To date, there are no clinically effective small-molecule drugs
for postexposure therapies to treat filoviral infections. EBOV cellular
entry and infection involve uptake via macropinocytosis, navigation
through the endocytic pathway, and pH-dependent escape into the cytoplasm.
We report the inhibition of EBOV cell entry via selective inhibition
of vacuolar (V)-ATPase by a new series of phenol-substituted derivatives
of the natural product scaffold diphyllin. In cells challenged with
Ebola virus, the diphyllin derivatives inhibit viral entry dependent
upon structural variations to low nanomolar potencies. Mechanistically,
the diphyllin derivatives had no effect on uptake and colocalization
of viral particles with endocytic marker LAMP1 but directly modulated
endosomal pH. The most potent effects were reversible exhibiting higher
selectivity than bafilomycin or the parent diphyllin. Unlike general
lysosomotrophic agents, the diphyllin derivatives showed no major
disruptions of endocytic populations or morphology when examined with
Rab5 and LAMP1 markers. The dilated vacuole phenotype induced by apilimod
treatment or in constitutively active Rab5 mutant Q79L-expressing
cells was both blocked and reversed by the diphyllin derivatives.
The results are consistent with the action of the diphyllin scaffold
as a selective pH-dependent viral entry block in late endosomes. Overall,
the compounds show improved selectivity and minimal cytotoxicity relative
to classical endosomal acidification blocking agents.
Collapse
Affiliation(s)
| | | | - Maritza V. Quintero
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio 78229-3900, United States
| | - Patrick Keiser
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States
| | - Manu Anantpadma
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States
| | - Robert Davey
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States
| | | | | |
Collapse
|
12
|
Antiviral drug research for Japanese encephalitis: an updated review. Pharmacol Rep 2022; 74:273-296. [PMID: 35182390 PMCID: PMC8964565 DOI: 10.1007/s43440-022-00355-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 12/23/2022]
Abstract
Japanese encephalitis (JE) caused by the Japanese encephalitis virus (JEV) is one of Asia's most common viral encephalitis. JEV is a flavivirus, common in rural and sub-urban regions of Asian countries. Although only 1% of JEV-infected individuals develop JE, there is a 20-30% chance of death among these individuals and possible neurological sequelae post-infection. No licensed anti-JE drugs are currently available, despite extensive efforts to develop them. Literature search was performed using databases such as PubMed Central, Google Scholar, Wiley Online Library, etc. using keywords such as Japanese encephalitis virus, antiviral drugs, antiviral drug screening, antiviral drug targets, etc. From around 230 papers/abstracts and research reviews retrieved and reviewed for this study, approximately 180 most relevant and important ones have been cited. Different approaches in drug testing and various antiviral drug targets explored so far have been thoroughly searched from the literature and compiled, besides addressing the future perspectives of the antiviral drug development strategies. Although the development of effective anti-JE drugs is an urgent issue, only supportive care is currently available. Recent advancements in understanding the biology of infection and new drug targets have been promising improvements. Despite hindrances such as the unavailability of a proper drug delivery system or a treatment regimen irrespective of the stage of infection, several promising anti-JE candidate molecules are in different phases of clinical trials. Nonetheless, efficient therapy against JEV is expected to be achieved with drug combinations and a highly targeted drug delivery system soon.
Collapse
|
13
|
Young JM, Zine El Abidine A, Gómez-Martinez RA, Bondu V, Sterk RT, Surviladze Z, Ozbun MA. Protamine Sulfate Is a Potent Inhibitor of Human Papillomavirus Infection In Vitro and In Vivo. Antimicrob Agents Chemother 2022; 66:e0151321. [PMID: 34723633 PMCID: PMC8765401 DOI: 10.1128/aac.01513-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Human papillomavirus (HPV) infections are transmitted through sexual or other close contact and are etiologically associated with epithelial warts, papillomas, and intraepithelial lesions that may progress to cancer. Indeed, 4.8% of the global cancer burden is linked to HPV infection. Highly effective vaccines protect against two to nine of the most medically important HPV genotypes, yet vaccine uptake is inadequate and/or cost prohibitive in many settings. With HPV-related cancer incidence expected to rise over the coming decades, there is a need for effective HPV microbicides. Herein, we demonstrate the strong inhibitory activity of the heparin-neutralizing drug protamine sulfate (PS) against HPV infection. Pretreatment of cells with PS greatly reduced infection, regardless of HPV genotype or virus source. Vaginal application of PS prevented infection of the murine genital tract by HPV pseudovirions. Time-of-addition assays where PS was added to cells before infection, during infection, or after viral attachment demonstrated strong inhibitory activities on early infection steps. No effect on virus infection was found for cell lines deficient in heparan sulfate expression, suggesting that PS binds to heparan sulfate on the cell surface. Consistent with this, prophylactic PS exposure prevented viral attachment, including under low-pH conditions akin to the human vaginal tract. Our findings suggest PS acts dually to prevent HPV infection: prophylactic treatment prevents HPV attachment to host cells, and postattachment administration alters viral entry. Clinical trials are warranted to determine whether protamine-based products are effective as topical microbicides against genital HPVs.
Collapse
Affiliation(s)
- Jesse M. Young
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Amira Zine El Abidine
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Ricardo A. Gómez-Martinez
- Department of Obstetrics & Gynecology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Virginie Bondu
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Rosa T. Sterk
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Zurab Surviladze
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Michelle A. Ozbun
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Department of Obstetrics & Gynecology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| |
Collapse
|
14
|
Zhao H, Yuen KY. Broad-spectrum Respiratory Virus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:137-153. [DOI: 10.1007/978-981-16-8702-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
White JM, Schiffer JT, Bender Ignacio RA, Xu S, Kainov D, Ianevski A, Aittokallio T, Frieman M, Olinger GG, Polyak SJ. Drug Combinations as a First Line of Defense against Coronaviruses and Other Emerging Viruses. mBio 2021; 12:e0334721. [PMID: 34933447 PMCID: PMC8689562 DOI: 10.1128/mbio.03347-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The world was unprepared for coronavirus disease 2019 (COVID-19) and remains ill-equipped for future pandemics. While unprecedented strides have been made developing vaccines and treatments for COVID-19, there remains a need for highly effective and widely available regimens for ambulatory use for novel coronaviruses and other viral pathogens. We posit that a priority is to develop pan-family drug cocktails to enhance potency, limit toxicity, and avoid drug resistance. We urge cocktail development for all viruses with pandemic potential both in the short term (<1 to 2 years) and longer term with pairs of drugs in advanced clinical testing or repurposed agents approved for other indications. While significant efforts were launched against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in vitro and in the clinic, many studies employed solo drugs and had disappointing results. Here, we review drug combination studies against SARS-CoV-2 and other viruses and introduce a model-driven approach to assess drug pairs with the highest likelihood of clinical efficacy. Where component agents lack sufficient potency, we advocate for synergistic combinations to achieve therapeutic levels. We also discuss issues that stymied therapeutic progress against COVID-19, including testing of agents with low likelihood of efficacy late in clinical disease and lack of focus on developing virologic surrogate endpoints. There is a need to expedite efficient clinical trials testing drug combinations that could be taken at home by recently infected individuals and exposed contacts as early as possible during the next pandemic, whether caused by a coronavirus or another viral pathogen. The approach herein represents a proactive plan for global viral pandemic preparedness.
Collapse
Affiliation(s)
- Judith M. White
- University of Virginia, Department of Cell Biology, Charlottesville, Virginia, USA
- University of Virginia, Department of Microbiology, Charlottesville, Virginia, USA
| | - Joshua T. Schiffer
- University of Washington, Division of Allergy and Infectious Diseases, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Rachel A. Bender Ignacio
- University of Washington, Division of Allergy and Infectious Diseases, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Shuang Xu
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Technology, University of Tartu, Tartu, Estonia
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
- Oslo Centre for Biostatistics and Epidemiology (OCBE), University of Oslo, Oslo, Norway
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Stephen J. Polyak
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
17
|
Al-Karmalawy AA, Soltane R, Abo Elmaaty A, Tantawy MA, Antar SA, Yahya G, Chrouda A, Pashameah RA, Mustafa M, Abu Mraheil M, Mostafa A. Coronavirus Disease (COVID-19) Control between Drug Repurposing and Vaccination: A Comprehensive Overview. Vaccines (Basel) 2021; 9:1317. [PMID: 34835248 PMCID: PMC8622998 DOI: 10.3390/vaccines9111317] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023] Open
Abstract
Respiratory viruses represent a major public health concern, as they are highly mutated, resulting in new strains emerging with high pathogenicity. Currently, the world is suffering from the newly evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus is the cause of coronavirus disease 2019 (COVID-19), a mild-to-severe respiratory tract infection with frequent ability to give rise to fatal pneumonia in humans. The overwhelming outbreak of SARS-CoV-2 continues to unfold all over the world, urging scientists to put an end to this global pandemic through biological and pharmaceutical interventions. Currently, there is no specific treatment option that is capable of COVID-19 pandemic eradication, so several repurposed drugs and newly conditionally approved vaccines are in use and heavily applied to control the COVID-19 pandemic. The emergence of new variants of the virus that partially or totally escape from the immune response elicited by the approved vaccines requires continuous monitoring of the emerging variants to update the content of the developed vaccines or modify them totally to match the new variants. Herein, we discuss the potential therapeutic and prophylactic interventions including repurposed drugs and the newly developed/approved vaccines, highlighting the impact of virus evolution on the immune evasion of the virus from currently licensed vaccines for COVID-19.
Collapse
Affiliation(s)
- Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Biology, Faculty of Sciences, Tunis El Manar University, Tunis 1068, Tunisia
| | - Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Mohamed A Tantawy
- Hormones Department, Medical Research and Clinical Studies Research Institute, National Research Centre, Dokki 12622, Egypt
- Stem Cells Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, Dokki 12622, Egypt
| | - Samar A Antar
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Galal Yahya
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Amani Chrouda
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11932, Saudi Arabia
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, Monastir University, Monastir 5000, Tunisia
- Institute of Analytical Sciences, UMR CNRS-UCBL-ENS 5280, 5 Rue la Doua, CEDEX, 69100 Villeurbanne, France
| | - Rami Adel Pashameah
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Muhamad Mustafa
- Department of Medicinal Chemistry, Deraya University, Minia 61111, Egypt
| | - Mobarak Abu Mraheil
- German Center for Infection Research (DZIF), Institute of Medical Microbiology, Justus-Liebig University, 35392 Giessen, Germany
| | - Ahmed Mostafa
- German Center for Infection Research (DZIF), Institute of Medical Microbiology, Justus-Liebig University, 35392 Giessen, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki 12622, Egypt
| |
Collapse
|
18
|
Sierra B, Magalhães AC, Soares D, Cavadas B, Perez AB, Alvarez M, Aguirre E, Bracho C, Pereira L, Guzman MG. Multi-Tissue Transcriptomic-Informed In Silico Investigation of Drugs for the Treatment of Dengue Fever Disease. Viruses 2021; 13:v13081540. [PMID: 34452405 PMCID: PMC8402662 DOI: 10.3390/v13081540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/22/2021] [Accepted: 07/31/2021] [Indexed: 12/19/2022] Open
Abstract
Transcriptomics, proteomics and pathogen-host interactomics data are being explored for the in silico–informed selection of drugs, prior to their functional evaluation. The effectiveness of this kind of strategy has been put to the test in the current COVID-19 pandemic, and it has been paying off, leading to a few drugs being rapidly repurposed as treatment against SARS-CoV-2 infection. Several neglected tropical diseases, for which treatment remains unavailable, would benefit from informed in silico investigations of drugs, as performed in this work for Dengue fever disease. We analyzed transcriptomic data in the key tissues of liver, spleen and blood profiles and verified that despite transcriptomic differences due to tissue specialization, the common mechanisms of action, “Adrenergic receptor antagonist”, “ATPase inhibitor”, “NF-kB pathway inhibitor” and “Serotonin receptor antagonist”, were identified as druggable (e.g., oxprenolol, digoxin, auranofin and palonosetron, respectively) to oppose the effects of severe Dengue infection in these tissues. These are good candidates for future functional evaluation and clinical trials.
Collapse
Affiliation(s)
- Beatriz Sierra
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), Havana 11400, Cuba; (B.S.); (A.B.P.); (M.A.); (E.A.); (C.B.); (M.G.G.)
| | - Ana Cristina Magalhães
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (D.S.); (B.C.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Daniel Soares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (D.S.); (B.C.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Bruno Cavadas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (D.S.); (B.C.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana B. Perez
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), Havana 11400, Cuba; (B.S.); (A.B.P.); (M.A.); (E.A.); (C.B.); (M.G.G.)
| | - Mayling Alvarez
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), Havana 11400, Cuba; (B.S.); (A.B.P.); (M.A.); (E.A.); (C.B.); (M.G.G.)
| | - Eglis Aguirre
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), Havana 11400, Cuba; (B.S.); (A.B.P.); (M.A.); (E.A.); (C.B.); (M.G.G.)
| | - Claudia Bracho
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), Havana 11400, Cuba; (B.S.); (A.B.P.); (M.A.); (E.A.); (C.B.); (M.G.G.)
| | - Luisa Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (D.S.); (B.C.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-22-607-4900
| | - Maria G. Guzman
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), Havana 11400, Cuba; (B.S.); (A.B.P.); (M.A.); (E.A.); (C.B.); (M.G.G.)
| |
Collapse
|
19
|
Hansen MB, Postol M, Tvingsholm S, Nielsen IØ, Dietrich TN, Puustinen P, Maeda K, Dinant C, Strauss R, Egan D, Jäättelä M, Kallunki T. Identification of lysosome-targeting drugs with anti-inflammatory activity as potential invasion inhibitors of treatment resistant HER2 positive cancers. Cell Oncol (Dordr) 2021; 44:805-820. [PMID: 33939112 PMCID: PMC8090911 DOI: 10.1007/s13402-021-00603-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Most HER2 positive invasive cancers are either intrinsic non-responsive or develop resistance when treated with 1st line HER2 targeting drugs. Both 1st and 2nd line treatments of HER2 positive cancers are aimed at targeting the HER2 receptor directly, thereby strongly limiting the treatment options of HER2/ErbB2 inhibition resistant invasive cancers. METHODS We used phenotypic high throughput microscopy screening to identify efficient inhibitors of ErbB2-induced invasion using 1st line HER2 inhibitor trastuzumab- and pertuzumab-resistant, p95-ErbB2 expressing breast cancer cells in conjunction with the Prestwick Chemical Library®. The screening entailed a drug's ability to inhibit ErbB2-induced, invasion-promoting positioning of lysosomes at the cellular periphery, a phenotype that defines their invasiveness. In addition, we used high throughput microscopy and biochemical assays to assess the effects of the drugs on lysosomal membrane permeabilization (LMP) and autophagy, two features connected to cancer treatment. Using 2nd line HER2 inhibitor lapatinib resistant 3-dimensional model systems, we assessed the effects of the drugs on ErbB2 positive breast cancer spheroids and developed a high-throughput invasion assay for HER2 positive ovarian cancer organoids for further evaluation. RESULTS We identified Auranofin, Colchicine, Monensin, Niclosamide, Podophyllotoxin, Quinacrine and Thiostrepton as efficient inhibitors of invasive growth of 2nd line HER2 inhibitor lapatinib resistant breast cancer spheroids and ovarian cancer organoids. We classified these drugs into four groups based on their ability to target lysosomes by inducing autophagy and/or LMP, i.e., drugs inducing early LMP, early autophagy with late LMP, late LMP, or neither. CONCLUSIONS Our results indicate that targetable lysosome-engaging cellular pathways downstream of ErbB2 contribute to invasion. They support lysosomal trafficking as an attractive target for therapy aiming at preventing the spreading of cancer cells. Since these drugs additionally possess anti-inflammatory activities, they could serve as multipurpose drugs simultaneously targeting infection/inflammation and cancer spreading.
Collapse
Affiliation(s)
- Malene Bredahl Hansen
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Maria Postol
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Siri Tvingsholm
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Inger Ødum Nielsen
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Tiina Naumanen Dietrich
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Pietri Puustinen
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Christoffel Dinant
- Genome Integrity Group, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
- Core Facility for Bioimaging, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Robert Strauss
- Genome Integrity Group, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - David Egan
- Department of Cell Biology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
- Core Life Analytics, Padualaan, 83584 CH, Utrecht, The Netherlands
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Tuula Kallunki
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
20
|
Heparan Sulfate Proteoglycans in Viral Infection and Treatment: A Special Focus on SARS-CoV-2. Int J Mol Sci 2021; 22:ijms22126574. [PMID: 34207476 PMCID: PMC8235362 DOI: 10.3390/ijms22126574] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/27/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) encompass a group of glycoproteins composed of unbranched negatively charged heparan sulfate (HS) chains covalently attached to a core protein. The complex HSPG biosynthetic machinery generates an extraordinary structural variety of HS chains that enable them to bind a plethora of ligands, including growth factors, morphogens, cytokines, chemokines, enzymes, matrix proteins, and bacterial and viral pathogens. These interactions translate into key regulatory activity of HSPGs on a wide range of cellular processes such as receptor activation and signaling, cytoskeleton assembly, extracellular matrix remodeling, endocytosis, cell-cell crosstalk, and others. Due to their ubiquitous expression within tissues and their large functional repertoire, HSPGs are involved in many physiopathological processes; thus, they have emerged as valuable targets for the therapy of many human diseases. Among their functions, HSPGs assist many viruses in invading host cells at various steps of their life cycle. Viruses utilize HSPGs for the attachment to the host cell, internalization, intracellular trafficking, egress, and spread. Recently, HSPG involvement in the pathogenesis of SARS-CoV-2 infection has been established. Here, we summarize the current knowledge on the molecular mechanisms underlying HSPG/SARS-CoV-2 interaction and downstream effects, and we provide an overview of the HSPG-based therapeutic strategies that could be used to combat such a fearsome virus.
Collapse
|
21
|
Herring S, Oda JM, Wagoner J, Kirchmeier D, O'Connor A, Nelson EA, Huang Q, Liang Y, DeWald LE, Johansen LM, Glass PJ, Olinger GG, Ianevski A, Aittokallio T, Paine MF, Fink SL, White JM, Polyak SJ. Inhibition of Arenaviruses by Combinations of Orally Available Approved Drugs. Antimicrob Agents Chemother 2021; 65:e01146-20. [PMID: 33468464 PMCID: PMC8097473 DOI: 10.1128/aac.01146-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Neglected diseases caused by arenaviruses such as Lassa virus (LASV) and filoviruses like Ebola virus (EBOV) primarily afflict resource-limited countries, where antiviral drug development is often minimal. Previous studies have shown that many approved drugs developed for other clinical indications inhibit EBOV and LASV and that combinations of these drugs provide synergistic suppression of EBOV, often by blocking discrete steps in virus entry. We hypothesize that repurposing of combinations of orally administered approved drugs provides effective suppression of arenaviruses. In this report, we demonstrate that arbidol, an approved influenza antiviral previously shown to inhibit EBOV, LASV, and many other viruses, inhibits murine leukemia virus (MLV) reporter viruses pseudotyped with the fusion glycoproteins (GPs) of other arenaviruses (Junin virus [JUNV], lymphocytic choriomeningitis virus [LCMV], and Pichinde virus [PICV]). Arbidol and other approved drugs, including aripiprazole, amodiaquine, sertraline, and niclosamide, also inhibit infection of cells by infectious PICV, and arbidol, sertraline, and niclosamide inhibit infectious LASV. Combining arbidol with aripiprazole or sertraline results in the synergistic suppression of LASV and JUNV GP-bearing pseudoviruses. This proof-of-concept study shows that arenavirus infection in vitro can be synergistically inhibited by combinations of approved drugs. This approach may lead to a proactive strategy with which to prepare for and control known and new arenavirus outbreaks.
Collapse
Affiliation(s)
- Shawn Herring
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jessica M Oda
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jessica Wagoner
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Delaney Kirchmeier
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Aidan O'Connor
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Elizabeth A Nelson
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Qinfeng Huang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - Lisa Evans DeWald
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | | | - Pamela J Glass
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | | | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Oslo Centre for Biostatistics and Epidemiology (OCBE), University of Oslo, Oslo, Norway
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Mary F Paine
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Susan L Fink
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen J Polyak
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
22
|
Bazotte RB, Hirabara SM, Serdan TAD, Gritte RB, Souza-Siqueira T, Gorjao R, Masi LN, Antunes MM, Cruzat V, Pithon-Curi TC, Curi R. 4-Aminoquinoline compounds from the Spanish flu to COVID-19. Biomed Pharmacother 2021; 135:111138. [PMID: 33360781 PMCID: PMC7973050 DOI: 10.1016/j.biopha.2020.111138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022] Open
Abstract
In 1918, quinine was used as one of the unscientifically based treatments against the H1N1 virus during the Spanish flu pandemic. Originally, quinine was extracted from the bark of Chinchona trees by South American natives of the Amazon forest, and it has been used to treat fever since the seventeenth century. The recent COVID-19 pandemic caused by Sars-Cov-2 infection has forced researchers to search for ways to prevent and treat this disease. Based on the antiviral potential of two 4-aminoquinoline compounds derived from quinine, known as chloroquine (CQ) and hydroxychloroquine (HCQ), clinical investigations for treating COVID-19 are being conducted worldwide. However, there are some discrepancies among the clinical trial outcomes.Thus, even after one hundred years of quinine use during the Spanish flu pandemic, the antiviral properties promoted by 4-aminoquinoline compounds remain unclear. The underlying molecular mechanisms by which CQ and HCQ inhibit viral replication open up the possibility of developing novel analogs of these drugs to combat COVID-19 and other viruses.
Collapse
Affiliation(s)
| | - Sandro Massao Hirabara
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil.
| | | | - Raquel Bragante Gritte
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil.
| | - Talita Souza-Siqueira
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil.
| | - Renata Gorjao
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil.
| | - Laureane Nunes Masi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil.
| | | | - Vinicius Cruzat
- Faculty of Health, Torrens University Australia, Melbourne, Australia.
| | - Tania Cristina Pithon-Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil.
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil.
| |
Collapse
|
23
|
Carro SD, Cherry S. Beyond the Surface: Endocytosis of Mosquito-Borne Flaviviruses. Viruses 2020; 13:E13. [PMID: 33374822 PMCID: PMC7824540 DOI: 10.3390/v13010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Flaviviruses are a group of positive-sense RNA viruses that are primarily transmitted through arthropod vectors and are capable of causing a broad spectrum of diseases. Many of the flaviviruses that are pathogenic in humans are transmitted specifically through mosquito vectors. Over the past century, many mosquito-borne flavivirus infections have emerged and re-emerged, and are of global importance with hundreds of millions of infections occurring yearly. There is a need for novel, effective, and accessible vaccines and antivirals capable of inhibiting flavivirus infection and ameliorating disease. The development of therapeutics targeting viral entry has long been a goal of antiviral research, but most efforts are hindered by the lack of broad-spectrum potency or toxicities associated with on-target effects, since many host proteins necessary for viral entry are also essential for host cell biology. Mosquito-borne flaviviruses generally enter cells by clathrin-mediated endocytosis (CME), and recent studies suggest that a subset of these viruses can be internalized through a specialized form of CME that has additional dependencies distinct from canonical CME pathways, and antivirals targeting this pathway have been discovered. In this review, we discuss the role and contribution of endocytosis to mosquito-borne flavivirus entry as well as consider past and future efforts to target endocytosis for therapeutic interventions.
Collapse
Affiliation(s)
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
24
|
Verma AK, Aggarwal R. Repurposing potential of FDA-approved and investigational drugs for COVID-19 targeting SARS-CoV-2 spike and main protease and validation by machine learning algorithm. Chem Biol Drug Des 2020; 97:836-853. [PMID: 33289334 DOI: 10.1111/cbdd.13812] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/15/2020] [Accepted: 11/29/2020] [Indexed: 12/15/2022]
Abstract
The present study aimed to assess the repurposing potential of existing antiviral drug candidates (FDA-approved and investigational) against SARS-CoV-2 target proteins that facilitates viral entry and replication into the host body. To evaluate molecular affinities between antiviral drug candidates and SARS-CoV-2 associated target proteins such as spike protein (S) and main protease (Mpro ), a molecular interaction simulation was performed by docking software (MVD) and subsequently the applicability score was calculated by machine learning algorithm. Furthermore, the STITCH algorithm was used to predict the pharmacology network involving multiple pathways of active drug candidate(s). Pharmacophore features of active drug(s) molecule was also determined to predict structure-activity relationship (SAR). The molecular interaction analysis showed that cordycepin has strong binding affinities with S protein (-180) and Mpro proteins (-205) which were relatively highest among other drug candidates used. Interestingly, compounds with low IC50 showed high binding energy. Furthermore, machine learning algorithm also revealed high applicability scores (0.42-0.47) of cordycepin. It is worth mentioning that the pharmacology network depicted the involvement of cordycepin in different pathways associated with bacterial and viral diseases including tuberculosis, hepatitis B, influenza A, viral myocarditis, and herpes simplex infection. The embedded pharmacophore features with cordycepin also suggested strong SAR. Cordycepin's anti-SARS-CoV-2 activity indicated 65% (E-gene) and 42% (N-gene) viral replication inhibition after 48h of treatment. Since, cordycepin has both preclinical and clinical evidences on antiviral activity, in addition the present findings further validate and suggest repurposing potential of cordycepin against COVID-19.
Collapse
Affiliation(s)
- Akalesh Kumar Verma
- Cell and Biochemical Technology Laboratory, Department of Zoology, Cotton University, Guwahati, India
| | - Rohit Aggarwal
- Cosmic Cordycep Farms, Badarpur Said Tehsil Tigaon, Faridabad, Haryana, India
| |
Collapse
|
25
|
Zhang Y, Wen Z, Shi X, Liu YJ, Eriksson JE, Jiu Y. The diverse roles and dynamic rearrangement of vimentin during viral infection. J Cell Sci 2020; 134:134/5/jcs250597. [PMID: 33154171 DOI: 10.1242/jcs.250597] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epidemics caused by viral infections pose a significant global threat. Cytoskeletal vimentin is a major intermediate filament (IF) protein, and is involved in numerous functions, including cell signaling, epithelial-mesenchymal transition, intracellular organization and cell migration. Vimentin has important roles for the life cycle of particular viruses; it can act as a co-receptor to enable effective virus invasion and guide efficient transport of the virus to the replication site. Furthermore, vimentin has been shown to rearrange into cage-like structures that facilitate virus replication, and to recruit viral components to the location of assembly and egress. Surprisingly, vimentin can also inhibit virus entry or egress, as well as participate in host-cell defense. Although vimentin can facilitate viral infection, how this function is regulated is still poorly understood. In particular, information is lacking on its interaction sites, regulation of expression, post-translational modifications and cooperation with other host factors. This Review recapitulates the different functions of vimentin in the virus life cycle and discusses how they influence host-cell tropism, virulence of the pathogens and the consequent pathological outcomes. These insights into vimentin-virus interactions emphasize the importance of cytoskeletal functions in viral cell biology and their potential for the identification of novel antiviral targets.
Collapse
Affiliation(s)
- Yue Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Zeyu Wen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Xuemeng Shi
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku FI-20520, Finland .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20520, Finland
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China .,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| |
Collapse
|
26
|
Abstract
Alphaviruses cause severe human illnesses including persistent arthritis and fatal encephalitis. As alphavirus entry into target cells is the first step in infection, intensive research efforts have focused on elucidating aspects of this pathway, including attachment, internalization, and fusion. Herein, we review recent developments in the molecular understanding of alphavirus entry both in vitro and in vivo and how these advances might enable the design of therapeutics targeting this critical step in the alphavirus life cycle.
Collapse
|
27
|
Felicetti T, Manfroni G, Cecchetti V, Cannalire R. Broad-Spectrum Flavivirus Inhibitors: a Medicinal Chemistry Point of View. ChemMedChem 2020; 15:2391-2419. [PMID: 32961008 DOI: 10.1002/cmdc.202000464] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/16/2020] [Indexed: 12/16/2022]
Abstract
Infections by flaviviruses, such as Dengue, West Nile, Yellow Fever and Zika viruses, represent a growing risk for global health. There are vaccines only for few flaviviruses while no effective treatments are available. Flaviviruses share epidemiological, structural, and ecologic features and often different viruses can co-infect the same host. Therefore, the identification of broad-spectrum inhibitors is highly desirable either for known flaviviruses or for viruses that likely will emerge in the future. Strategies targeting both virus and host factors have been pursued to identify broad-spectrum antiflaviviral agents. In this review, we describe the most promising and best characterized targets and their relative broad-spectrum inhibitors, identified by drug repurposing/libraries screenings and by focused medicinal chemistry campaigns. Finally, we discuss about future strategies to identify new broad-spectrum antiflavivirus agents.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Napoli "Federico II", via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
28
|
Li Z, Xu J, Lang Y, Fan X, Kuo L, D'Brant L, Hu S, Samrat SK, Trudeau N, Tharappel AM, Rugenstein N, Koetzner CA, Zhang J, Chen H, Kramer LD, Butler D, Zhang QY, Zhou J, Li H. JMX0207, a Niclosamide Derivative with Improved Pharmacokinetics, Suppresses Zika Virus Infection Both In Vitro and In Vivo. ACS Infect Dis 2020; 6:2616-2628. [PMID: 32866370 PMCID: PMC7559020 DOI: 10.1021/acsinfecdis.0c00217] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Flaviviruses causes significant human disease. Recent outbreaks of the Zika virus highlight the need to develop effective therapies for this class of viruses. Previously we identified niclosamide as a broad-spectrum inhibitor for flaviviruses by targeting the interface between viral protease NS3 and its cofactor NS2B. Here, we screened a small library of niclosamide derivatives and identified a new analogue with improved pharmacokinetic properties. Compound JMX0207 showed improved efficacy in inhibition of the molecular interaction between NS3 and NS2B, better inhibition of viral protease function, and enhanced antiviral efficacy in the cell-based antiviral assay. The derivative also significantly reduced Zika virus infection on 3D mini-brain organoids derived from pluripotent neural stem cells. Intriguingly, the compound significantly reduced viremia in a Zika virus (ZIKV) animal model. In summary, a niclosamide derivative, JMX0207, was identified, which shows improved pharmacokinetics and efficacy against Zika virus both in vitro and in vivo.
Collapse
Affiliation(s)
- Zhong Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | - Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yuekun Lang
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | - Xiaoyu Fan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Lili Kuo
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | - Lianna D'Brant
- The Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, New York 12144, United States
| | - Saiyang Hu
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | - Subodh Kumar Samrat
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | - Nicole Trudeau
- The Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, New York 12144, United States
| | - Anil M Tharappel
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | - Natasha Rugenstein
- The Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, New York 12144, United States
| | - Cheri A Koetzner
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | - Jing Zhang
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Laura D Kramer
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York 12201, United States
| | - David Butler
- The Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, New York 12144, United States
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York 12201, United States
| |
Collapse
|
29
|
Gunesch AP, Zapatero-Belinchón FJ, Pinkert L, Steinmann E, Manns MP, Schneider G, Pietschmann T, Brönstrup M, von Hahn T. Filovirus Antiviral Activity of Cationic Amphiphilic Drugs Is Associated with Lipophilicity and Ability To Induce Phospholipidosis. Antimicrob Agents Chemother 2020; 64:e00143-20. [PMID: 32513799 PMCID: PMC7526846 DOI: 10.1128/aac.00143-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Several cationic amphiphilic drugs (CADs) have been found to inhibit cell entry of filoviruses and other enveloped viruses. Structurally unrelated CADs may have antiviral activity, yet the underlying common mechanism and structure-activity relationship are incompletely understood. We aimed to understand how widespread antiviral activity is among CADs and which structural and physico-chemical properties are linked to entry inhibition. We measured inhibition of Marburg virus pseudoparticle (MARVpp) cell entry by 45 heterogeneous and mostly FDA-approved CADs and cytotoxicity in EA.hy926 cells. We analyzed correlation of antiviral activity with four chemical properties: pKa, hydrophobicity (octanol/water partitioning coefficient; ClogP), molecular weight, and distance between the basic group and hydrophobic ring structures. Additionally, we quantified drug-induced phospholipidosis (DIPL) of a CAD subset by flow cytometry. Structurally similar compounds (derivatives) and those with similar chemical properties but unrelated structures (analogues) to those of strong inhibitors were obtained by two in silico similarity search approaches and tested for antiviral activity. Overall, 11 out of 45 (24%) CADs inhibited MARVpp by 40% or more. The strongest antiviral compounds were dronedarone, triparanol, and quinacrine. Structure-activity relationship studies revealed highly significant correlations between antiviral activity, hydrophobicity (ClogP > 4), and DIPL. Moreover, pKa and intramolecular distance between hydrophobic and hydrophilic moieties correlated with antiviral activity but to a lesser extent. We also showed that in contrast to analogues, derivatives had antiviral activity similar to that of the seed compound dronedarone. Overall, one-quarter of CADs inhibit MARVpp entry in vitro, and antiviral activity of CADs mostly relies on their hydrophobicity yet is promoted by the individual structure.
Collapse
Affiliation(s)
- Antonia P Gunesch
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover-Braunschweig Site, Braunschweig, Germany
- Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, Hannover, Germany
| | - Francisco J Zapatero-Belinchón
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover-Braunschweig Site, Braunschweig, Germany
- Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, Hannover, Germany
| | - Lukas Pinkert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr Universität Bochum, Bochum, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover-Braunschweig Site, Braunschweig, Germany
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Thomas Pietschmann
- German Center for Infection Research, Hannover-Braunschweig Site, Braunschweig, Germany
- Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, Hannover, Germany
| | - Mark Brönstrup
- German Center for Infection Research, Hannover-Braunschweig Site, Braunschweig, Germany
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas von Hahn
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover-Braunschweig Site, Braunschweig, Germany
- Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, Hannover, Germany
- Department of Gastroenterology and Interventional Endoscopy, Asklepios Hospital Barmbek, Semmelweis University, Hamburg, Germany
| |
Collapse
|
30
|
Potential Antiviral Options against SARS-CoV-2 Infection. Viruses 2020; 12:v12060642. [PMID: 32545799 PMCID: PMC7354438 DOI: 10.3390/v12060642] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023] Open
Abstract
As of June 2020, the number of people infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) continues to skyrocket, with more than 6.7 million cases worldwide. Both the World Health Organization (WHO) and United Nations (UN) has highlighted the need for better control of SARS-CoV-2 infections. However, developing novel virus-specific vaccines, monoclonal antibodies and antiviral drugs against SARS-CoV-2 can be time-consuming and costly. Convalescent sera and safe-in-man broad-spectrum antivirals (BSAAs) are readily available treatment options. Here, we developed a neutralization assay using SARS-CoV-2 strain and Vero-E6 cells. We identified the most potent sera from recovered patients for the treatment of SARS-CoV-2-infected patients. We also screened 136 safe-in-man broad-spectrum antivirals against the SARS-CoV-2 infection in Vero-E6 cells and identified nelfinavir, salinomycin, amodiaquine, obatoclax, emetine and homoharringtonine. We found that a combination of orally available virus-directed nelfinavir and host-directed amodiaquine exhibited the highest synergy. Finally, we developed a website to disseminate the knowledge on available and emerging treatments of COVID-19.
Collapse
|
31
|
Niyomdecha N, Suptawiwat O, Boonarkart C, Jitobaom K, Auewarakul P. Inhibition of human immunodeficiency virus type 1 by niclosamide through mTORC1 inhibition. Heliyon 2020; 6:e04050. [PMID: 32529067 PMCID: PMC7276449 DOI: 10.1016/j.heliyon.2020.e04050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/23/2019] [Accepted: 05/19/2020] [Indexed: 01/05/2023] Open
Abstract
Niclosamide has been known to inhibit a number of pH-dependent viruses via the neutralization of endosomal acidic pH. It has also been shown to disrupt the mTORC1 signaling pathway. The replication of many viruses requires mTORC1 activation. Here, we investigated the inhibitory activity of niclosamide against HIV-1, and determined whether mTORC1 inhibition was involved. The cytotoxicity and anti-HIV-1 activity of niclosamide were tested in TZM-bl and SupT1 cells. Niclosamide showed a dose- and time-dependent inhibitory activity against HIV-1 replication, but the inhibition did not involve the reverse transcription and transcription steps. The mechanism of mTORC1 inhibition was explored by using MHY1485, an mTORC1 activator, to reverse the mTORC1 inhibition, which could partially restore HIV-1 replication. In addition, niclosamide was found to downregulate mTORC1 via AMPK activation, resulting in a decreased phosphorylation of the downstream substrates of S6K and 4EBP1. Niclosamide could also reduce the synthesis of HIV-1 p24 protein. Likewise, MHY-1485 could partially reverse the inhibitory effect of niclosamide by increasing the phosphorylation in the mTORC1 pathway and HIV-1 viral protein synthesis. Our findings, therefore, demonstrated the antiviral mechanism of niclosamide is via the AMPK-mTORC1 pathway, which could be a common therapeutic target for various viruses.
Collapse
Affiliation(s)
- Nattamon Niyomdecha
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathumthani, Thailand
| | - Ornpreya Suptawiwat
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kunlakunya Jitobaom
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
32
|
Bugert JJ, Hucke F, Zanetta P, Bassetto M, Brancale A. Antivirals in medical biodefense. Virus Genes 2020; 56:150-167. [PMID: 32076918 PMCID: PMC7089181 DOI: 10.1007/s11262-020-01737-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
The viruses historically implicated or currently considered as candidates for misuse in bioterrorist events are poxviruses, filoviruses, bunyaviruses, orthomyxoviruses, paramyxoviruses and a number of arboviruses causing encephalitis, including alpha- and flaviviruses. All these viruses are of concern for public health services when they occur in natural outbreaks or emerge in unvaccinated populations. Recent events and intelligence reports point to a growing risk of dangerous biological agents being used for nefarious purposes. Public health responses effective in natural outbreaks of infectious disease may not be sufficient to deal with the severe consequences of a deliberate release of such agents. One important aspect of countermeasures against viral biothreat agents are the antiviral treatment options available for use in post-exposure prophylaxis. These issues were adressed by the organizers of the 16th Medical Biodefense Conference, held in Munich in 2018, in a special session on the development of drugs to treat infections with viruses currently perceived as a threat to societies or associated with a potential for misuse as biothreat agents. This review will outline the state-of-the-art methods in antivirals research discussed and provide an overview of antiviral compounds in the pipeline that are already approved for use or still under development.
Collapse
Affiliation(s)
- J J Bugert
- Bundeswehr Institute for Microbiology, Neuherbergstraße 11, 80937, Munich, Germany.
| | - F Hucke
- Bundeswehr Institute for Microbiology, Neuherbergstraße 11, 80937, Munich, Germany
| | - P Zanetta
- Bundeswehr Institute for Microbiology, Neuherbergstraße 11, 80937, Munich, Germany
| | - M Bassetto
- Department of Chemistry, Swansea University, Swansea, SA2 8PP, UK
| | - A Brancale
- Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| |
Collapse
|
33
|
Ekins S, Lane TR, Madrid PB. Tilorone: a Broad-Spectrum Antiviral Invented in the USA and Commercialized in Russia and beyond. Pharm Res 2020; 37:71. [PMID: 32215760 PMCID: PMC7100484 DOI: 10.1007/s11095-020-02799-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 12/05/2022]
Abstract
For the last 50 years we have known of a broad-spectrum agent tilorone dihydrochloride (Tilorone). This is a small-molecule orally bioavailable drug that was originally discovered in the USA and is currently used clinically as an antiviral in Russia and the Ukraine. Over the years there have been numerous clinical and non-clinical reports of its broad spectrum of antiviral activity. More recently we have identified additional promising antiviral activities against Middle East Respiratory Syndrome, Chikungunya, Ebola and Marburg which highlights that this old drug may have other uses against new viruses. This may in turn inform the types of drugs that we need for virus outbreaks such as for the new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Tilorone has been long neglected by the west in many respects but it deserves further reassessment in light of current and future needs for broad-spectrum antivirals.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC27606, USA.
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC27606, USA
| | - Peter B Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, California, 94025, USA
| |
Collapse
|
34
|
Discovery and development of safe-in-man broad-spectrum antiviral agents. Int J Infect Dis 2020; 93:268-276. [PMID: 32081774 PMCID: PMC7128205 DOI: 10.1016/j.ijid.2020.02.018] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
We reviewed the discovery and development process of broad-spectrum antiviral agents. We summarized the information on 120 safe-in-man agents in a freely accessible database. Further studies will increase the number of broad-spectrum antivirals, expand the spectrum of their indications, and identify drug combinations for treatment of emerging and re-emerging viral infections.
Viral diseases are one of the leading causes of morbidity and mortality in the world. Virus-specific vaccines and antiviral drugs are the most powerful tools to combat viral diseases. However, broad-spectrum antiviral agents (BSAAs, i.e. compounds targeting viruses belonging to two or more viral families) could provide additional protection of the general population from emerging and re-emerging viral diseases, reinforcing the arsenal of available antiviral options. Here, we review discovery and development of BSAAs and summarize the information on 120 safe-in-man agents in a freely accessible database (https://drugvirus.info/). Future and ongoing pre-clinical and clinical studies will increase the number of BSAAs, expand the spectrum of their indications, and identify drug combinations for treatment of emerging and re-emerging viral infections as well as co-infections.
Collapse
|
35
|
D’Alessandro S, Scaccabarozzi D, Signorini L, Perego F, Ilboudo DP, Ferrante P, Delbue S. The Use of Antimalarial Drugs against Viral Infection. Microorganisms 2020; 8:microorganisms8010085. [PMID: 31936284 PMCID: PMC7022795 DOI: 10.3390/microorganisms8010085] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
In recent decades, drugs used to treat malaria infection have been shown to be beneficial for many other diseases, including viral infections. In particular, they have received special attention due to the lack of effective antiviral drugs against new emerging viruses (i.e., HIV, dengue virus, chikungunya virus, Ebola virus, etc.) or against classic infections due to drug-resistant viral strains (i.e., human cytomegalovirus). Here, we reviewed the in vitro/in vivo and clinical studies conducted to evaluate the antiviral activities of four classes of antimalarial drugs: Artemisinin derivatives, aryl-aminoalcohols, aminoquinolines, and antimicrobial drugs.
Collapse
Affiliation(s)
- Sarah D’Alessandro
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milan, Italy; (S.D.); (L.S.); (F.P.); (P.F.)
| | - Diletta Scaccabarozzi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milan, Italy;
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milan, Italy; (S.D.); (L.S.); (F.P.); (P.F.)
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milan, Italy; (S.D.); (L.S.); (F.P.); (P.F.)
| | - Denise P. Ilboudo
- Département des Sciences de la Vie, University of Fada N’Gourma (UFDG), Fada N’Gourma BP 54, Burkina Faso;
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milan, Italy; (S.D.); (L.S.); (F.P.); (P.F.)
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milan, Italy; (S.D.); (L.S.); (F.P.); (P.F.)
- Correspondence: ; Tel.: +39-02-50315070
| |
Collapse
|
36
|
Benfield CT, MacKenzie F, Ritzefeld M, Mazzon M, Weston S, Tate EW, Teo BH, Smith SE, Kellam P, Holmes EC, Marsh M. Bat IFITM3 restriction depends on S-palmitoylation and a polymorphic site within the CD225 domain. Life Sci Alliance 2020; 3:e201900542. [PMID: 31826928 PMCID: PMC6907390 DOI: 10.26508/lsa.201900542] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
Host interferon-induced transmembrane proteins (IFITMs) are broad-spectrum antiviral restriction factors. Of these, IFITM3 potently inhibits viruses that enter cells through acidic endosomes, many of which are zoonotic and emerging viruses with bats (order Chiroptera) as their natural hosts. We previously demonstrated that microbat IFITM3 is antiviral. Here, we show that bat IFITMs are characterized by strong adaptive evolution and identify a highly variable and functionally important site-codon 70-within the conserved CD225 domain of IFITMs. Mutation of this residue in microbat IFITM3 impairs restriction of representatives of four different virus families that enter cells via endosomes. This mutant shows altered subcellular localization and reduced S-palmitoylation, a phenotype copied by mutation of conserved cysteine residues in microbat IFITM3. Furthermore, we show that microbat IFITM3 is S-palmitoylated on cysteine residues C71, C72, and C105, mutation of each cysteine individually impairs virus restriction, and a triple C71A-C72A-C105A mutant loses all restriction activity, concomitant with subcellular re-localization of microbat IFITM3 to Golgi-associated sites. Thus, we propose that S-palmitoylation is critical for Chiropteran IFITM3 function and identify a key molecular determinant of IFITM3 S-palmitoylation.
Collapse
Affiliation(s)
- Camilla To Benfield
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, UK
| | - Farrell MacKenzie
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | | | - Michela Mazzon
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Stuart Weston
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, London, UK
| | - Boon Han Teo
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, UK
| | - Sarah E Smith
- Kymab Ltd, The Bennet Building (B930), Babraham Research Campus, Cambridge, UK
| | - Paul Kellam
- Department of Infectious Disease, Imperial College Faculty of Medicine, Wright Fleming Institute, St Mary's Campus, London, UK
- Kymab Ltd, The Bennet Building (B930), Babraham Research Campus, Cambridge, UK
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
37
|
Novel Antiviral Activities of Obatoclax, Emetine, Niclosamide, Brequinar, and Homoharringtonine. Viruses 2019; 11:v11100964. [PMID: 31635418 PMCID: PMC6832696 DOI: 10.3390/v11100964] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Viruses are the major causes of acute and chronic infectious diseases in the world. According to the World Health Organization, there is an urgent need for better control of viral diseases. Repurposing existing antiviral agents from one viral disease to another could play a pivotal role in this process. Here, we identified novel activities of obatoclax and emetine against herpes simplex virus type 2 (HSV-2), echovirus 1 (EV1), human metapneumovirus (HMPV) and Rift Valley fever virus (RVFV) in cell cultures. Moreover, we demonstrated novel activities of emetine against influenza A virus (FLUAV), niclosamide against HSV-2, brequinar against human immunodeficiency virus 1 (HIV-1), and homoharringtonine against EV1. Our findings may expand the spectrum of indications of these safe-in-man agents and reinforce the arsenal of available antiviral therapeutics pending the results of further in vitro and in vivo tests.
Collapse
|
38
|
Abstract
The process of entry into a host cell is a key step in the life cycle of most viruses. In recent years, there has been a significant increase in our understanding of the routes and mechanisms of entry for a number of these viruses. This has led to the development of novel broad-spectrum antiviral approaches that target host cell proteins and pathways, in addition to strategies focused on individual viruses or virus families. Here we consider a number of these approaches and their broad-spectrum potential.
Collapse
Affiliation(s)
- Michela Mazzon
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
39
|
Therapeutic Advances Against ZIKV: A Quick Response, a Long Way to Go. Pharmaceuticals (Basel) 2019; 12:ph12030127. [PMID: 31480297 PMCID: PMC6789873 DOI: 10.3390/ph12030127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that spread throughout the American continent in 2015 causing considerable worldwide social and health alarm due to its association with ocular lesions and microcephaly in newborns, and Guillain-Barré syndrome (GBS) cases in adults. Nowadays, no licensed vaccines or antivirals are available against ZIKV, and thus, in this very short time, the scientific community has conducted enormous efforts to develop vaccines and antivirals. So that, different platforms (purified inactivated and live attenuated viruses, DNA and RNA nucleic acid based candidates, virus-like particles, subunit elements, and recombinant viruses) have been evaluated as vaccine candidates. Overall, these vaccines have shown the induction of vigorous humoral and cellular responses, the decrease of viremia and viral RNA levels in natural target organs, the prevention of vertical and sexual transmission, as well as that of ZIKV-associated malformations, and the protection of experimental animal models. Some of these vaccine candidates have already been assayed in clinical trials. Likewise, the search for antivirals have also been the focus of recent investigations, with dozens of compounds tested in cell culture and a few in animal models. Both direct acting antivirals (DAAs), directed to viral structural proteins and enzymes, and host acting antivirals (HAAs), directed to cellular factors affecting all steps of the viral life cycle (binding, entry, fusion, transcription, translation, replication, maturation, and egress), have been evaluated. It is expected that this huge collaborative effort will produce affordable and effective therapeutic and prophylactic tools to combat ZIKV and other related still unknown or nowadays neglected flaviviruses. Here, a comprehensive overview of the advances made in the development of therapeutic measures against ZIKV and the questions that still have to be faced are summarized.
Collapse
|