1
|
Honorato L, Paião HGO, da Costa AC, Tozetto-Mendoza TR, Mendes-Correa MC, Witkin SS. Viruses in the female lower reproductive tract: a systematic descriptive review of metagenomic investigations. NPJ Biofilms Microbiomes 2024; 10:137. [PMID: 39587088 PMCID: PMC11589587 DOI: 10.1038/s41522-024-00613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
The lower female reproductive tract (FRT) hosts a complex microbial environment, including eukaryotic and prokaryotic viruses (the virome), whose roles in health and disease are not fully understood. This review consolidates findings on FRT virome composition, revealing the presence of various viral families and noting significant gaps in knowledge. Understanding interactions between the virome, microbiome, and immune system will provide novel insights for preventing and managing lower genital tract disorders.
Collapse
Affiliation(s)
- Layla Honorato
- Laboratory of Virology (LIM-52), Department of Infectious Diseases and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Heuder Gustavo Oliveira Paião
- Laboratory of Virology (LIM-52), Department of Infectious Diseases and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Antonio Charlys da Costa
- Laboratory of Virology (LIM-52), Department of Infectious Diseases and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tânia Regina Tozetto-Mendoza
- Laboratory of Virology (LIM-52), Department of Infectious Diseases and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Cássia Mendes-Correa
- Laboratory of Virology (LIM-52), Department of Infectious Diseases and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Steven S Witkin
- Laboratory of Virology (LIM-52), Department of Infectious Diseases and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Logel M, Tope P, El‐Zein M, Gonzalez E, Franco EL. A Narrative Review of the Putative Etiologic Role and Diagnostic Utility of the Cervicovaginal Microbiome in Human Papillomavirus-Associated Cervical Carcinogenesis. J Med Virol 2024; 96:e70027. [PMID: 39520096 PMCID: PMC11600484 DOI: 10.1002/jmv.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/12/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
The cervicovaginal microbiome (CVM) may contribute to human papillomavirus (HPV)-associated cervical carcinogenesis. We summarized the literature on the CVM in cervical carcinogenesis by searching Medline, Web of Science, and Embase for articles that sequenced the CVM using metagenomics. Additionally, we identified studies assessing the diagnostic role of the CVM in cervical carcinogenesis by searching PubMed. We performed an environmental scan of Google and Google Scholar to review common CVM characterization techniques. Twenty-eight records presented or summarized associations between the CVM and HPV acquisition, prevalence, persistence, clearance, and cervical lesions or cancer, while three studies identified bacterial taxa detecting high-risk HPV prevalence or cervical lesions. The area under the curve ranged from 0.802 to 0.952. 16S ribosomal RNA gene sequencing and whole metagenome sequencing have sufficient resolution to study the CVM bacteriome. Bacterial communities may have important implications in cervical cancer; however, there is a need for methodological standardization for CVM characterization.
Collapse
Affiliation(s)
- Margaret Logel
- Division of Cancer EpidemiologyMcGill UniversityMontrealQuebecCanada
| | - Parker Tope
- Division of Cancer EpidemiologyMcGill UniversityMontrealQuebecCanada
| | - Mariam El‐Zein
- Division of Cancer EpidemiologyMcGill UniversityMontrealQuebecCanada
| | - Emmanuel Gonzalez
- Department of Human GeneticsMicrobiome Unit, Canadian Centre for Computational Genomics (C3G), McGill UniversityMontrealQuebecCanada
- Centre for Microbiome ResearchMcGill University, MontrealMontrealQuebecCanada
| | - Eduardo L. Franco
- Division of Cancer EpidemiologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
3
|
Pavone G, Marino A, Fisicaro V, Motta L, Spata A, Martorana F, Spampinato S, Celesia BM, Cacopardo B, Vigneri P, Nunnari G. Entangled Connections: HIV and HPV Interplay in Cervical Cancer-A Comprehensive Review. Int J Mol Sci 2024; 25:10358. [PMID: 39408687 PMCID: PMC11477307 DOI: 10.3390/ijms251910358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cervical cancer (CC) remains a prevalent malignancy and a significant global public health concern, primarily driven by persistent human papillomavirus (HPV) infections. The infectious nature of HPV underscores the preventability of CC through vaccination and screening programs. In addition to HPV, factors such as age, parity, smoking, hormonal contraceptives, and HIV co-infection elevate the risk of CC. HIV-associated immunodeficiency exacerbates susceptibility to infections and cancers, making CC a defining condition for acquired immune deficiency syndrome (AIDS) and one of the most commonly diagnosed cancers among women living with HIV (WLWH). These women face higher risks of HPV exposure due to sexual behavior and often encounter economic, social, and psychological barriers to screening. HIV and HPV co-infection can potentially accelerate CC carcinogenesis, with WLWH typically being diagnosed with CC earlier than their HIV-negative counterparts. Antiretroviral therapy (ART), which reduces AIDS-related mortality, also lowers the risk of invasive CC. The interaction between HIV and HPV is intricate and bidirectional. This summary reviews current evidence on HPV infection and CC in WLWH, highlighting the connections across pathogenesis, prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Giuliana Pavone
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (G.P.); (L.M.); (F.M.); (P.V.)
- Medical Oncology Unit, Humanitas Istituto Clinico Catanese, 95045 Catania, Italy
| | - Andrea Marino
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS Garibaldi Hospital, University of Catania, 95123 Catania, Italy; (B.M.C.); (B.C.); (G.N.)
| | - Viviana Fisicaro
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (V.F.); (S.S.)
| | - Lucia Motta
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (G.P.); (L.M.); (F.M.); (P.V.)
- Medical Oncology Unit, Humanitas Istituto Clinico Catanese, 95045 Catania, Italy
| | - Alessandra Spata
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98124 Messina, Italy;
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (G.P.); (L.M.); (F.M.); (P.V.)
| | - Serena Spampinato
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (V.F.); (S.S.)
| | - Benedetto Maurizio Celesia
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS Garibaldi Hospital, University of Catania, 95123 Catania, Italy; (B.M.C.); (B.C.); (G.N.)
| | - Bruno Cacopardo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS Garibaldi Hospital, University of Catania, 95123 Catania, Italy; (B.M.C.); (B.C.); (G.N.)
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (G.P.); (L.M.); (F.M.); (P.V.)
- Medical Oncology Unit, Humanitas Istituto Clinico Catanese, 95045 Catania, Italy
| | - Giuseppe Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS Garibaldi Hospital, University of Catania, 95123 Catania, Italy; (B.M.C.); (B.C.); (G.N.)
| |
Collapse
|
4
|
Tuladhar ET, Shrestha S, Vernon S, Droit L, Mihindukulasuriya KA, Tamang M, Karki L, Elong Ngono A, Jha B, Awal BK, Chalise BS, Jha R, Shresta S, Wang D, Manandhar KD. Gemykibivirus detection in acute encephalitis patients from Nepal. mSphere 2024; 9:e0021924. [PMID: 38904383 PMCID: PMC11287993 DOI: 10.1128/msphere.00219-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024] Open
Abstract
Acute encephalitis syndrome (AES) causes significant morbidity and mortality worldwide. In Nepal, Japanese encephalitis virus (JEV) accounts for ~5-20% of AES cases, but ~75% of AES cases are of unknown etiology. We identified a gemykibivirus in CSF collected in 2020 from an 8-year-old male patient with AES using metagenomic next-generation sequencing. Gemykibiviruses are single stranded, circular DNA viruses in the family Genomoviridae. The complete genome of 2,211 nucleotides was sequenced, which shared 98.69% nucleotide identity to its closest relative, Human associated gemykibivirus 2 isolate SAfia-449D. Two real-time PCR assays were designed, and screening of 337 cerebrospinal fluid (CSF) and 164 serum samples from AES patients in Nepal collected in 2020 and 2022 yielded 11 CSF and 1 serum sample that were positive in both PCR assays. Complete genomes of seven of the positives were sequenced. These results identify a potential candidate etiologic agent of encephalitis in Nepal. IMPORTANCE Viral encephalitis is a devastating disease, but unfortunately, worldwide, the causative virus in many cases is unknown. Therefore, it is important to identify viruses that could be responsible for cases of human encephalitis. Here, using metagenomic sequencing of CSF, we identified a gemykibivirus in a male child from Nepal with acute encephalitis syndrome (AES). We subsequently detected gemykibivirus DNA in CSF or serum of 12 more encephalitis patients by real-time PCR. The virus genomes we identified are highly similar to gemykibiviruses previously detected in CSF of three encephalitis patients from Sri Lanka. These results raise the possibility that gemykibivirus could be an underrecognized human pathogen.
Collapse
Affiliation(s)
- Eans Tara Tuladhar
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | - Smita Shrestha
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | - Susan Vernon
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Lindsay Droit
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | | - Mamta Tamang
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | - Lata Karki
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | | | - Bimlesh Jha
- National Public Health Laboratory, Kathmandu, Nepal
| | | | | | - Runa Jha
- National Public Health Laboratory, Kathmandu, Nepal
| | - Sujan Shresta
- La Jolla Institute for Immunology, San Diego, California, USA
| | - David Wang
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | |
Collapse
|
5
|
Ramos EDSF, Tozetto-Mendoza TR, Bortoletto P, Ferreira NE, Honorato L, Barbosa EMG, Luchs A, Linhares IM, Spandorfer SD, Leal E, da Costa AC, Witkin SS, Mendes-Correa MC. Characterization of CRESS-DNA viruses in human vaginal secretions: An exploratory metagenomic investigation. J Med Virol 2024; 96:e29750. [PMID: 38953413 DOI: 10.1002/jmv.29750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
The Phylum Cressdnaviricota consists of a large number of circular Rep-encoding single-stranded (CRESS)-DNA viruses. Recently, metagenomic analyzes revealed their ubiquitous distribution in a diverse range of eukaryotes. Data relating to CRESS-DNA viruses in humans remains scarce. Our study investigated the presence and genetic diversity of CRESS-DNA viruses in human vaginal secretions. Vaginal swabs were collected from 28 women between 29 and 43 years old attending a fertility clinic in New York City. An exploratory metagenomic analysis was performed and detection of CRESS-DNA viruses was confirmed through analysis of near full-length sequences of the viral isolates. A phylogenetic tree was based on the REP open reading frame sequences of the CRESS-DNA virus genome. Eleven nearly complete CRESS-DNA viral genomes were identified in 16 (57.1%) women. There were no associations between the presence of these viruses and any demographic or clinical parameters. Phylogenetic analysis indicated that one of the sequences belonged to the genus Gemycircularvirus within the Genomoviridae family, while ten sequences represented previously unclassified species of CRESS-DNA viruses. Novel species of CRESS-DNA viruses are present in the vaginal tract of adult women. Although they be transient commensal agents, the potential clinical implications for their presence at this site cannot be dismissed.
Collapse
Affiliation(s)
- Endrya do Socorro Foro Ramos
- Laboratório de diversidade Viral, Instituto de Ciências Biológicas, Departamento de Virologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Tania Regina Tozetto-Mendoza
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Pietro Bortoletto
- Fertility department, Boston IVF-The Eugin Group, Waltham, Massachusetts, USA
- Medicine department, Harvard Medical School, Boston, Massachusetts, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Noely Evangelista Ferreira
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Layla Honorato
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Erick Matheus Garcia Barbosa
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Adriana Luchs
- Virology department, Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Sao Paulo, Brazil
| | - Iara M Linhares
- Department of Gynecology and Obstetrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Steven D Spandorfer
- Department of Gynecology and Obstetrics, Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York City, New York, USA
| | - Elcio Leal
- Laboratório de diversidade Viral, Instituto de Ciências Biológicas, Departamento de Virologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Antonio Charlys da Costa
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Steven S Witkin
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York City, New York, USA
| | - Maria Cassia Mendes-Correa
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Preechasuth K, Brazier L, Khamduang W, Hongjaisee S, Wangsaeng N, Ngo-Giang-Huong N. Analyzing Cervical Microbiome Composition in HIV-Infected Women with Different HPV Infection Profiles: A Pilot Study in Thailand. Microorganisms 2024; 12:1298. [PMID: 39065066 PMCID: PMC11278691 DOI: 10.3390/microorganisms12071298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
We conducted a pilot study to analyze the microbiome in cervical samples of women living with HIV with various profiles of HPV infections. The participants had an average age of 41.5 years. Sequence analysis of 16S rRNA V3 gene amplicons was performed using next-generation sequencing technology (Ion Torrent PGMTM). The bioinformatics pipeline was analyzed using the Find, Rapidly, OTUs with Galaxy Solution system (FROGS). Common genera were determined to identify Community State Types (CSTs). The cervical microbiome profiles showed a dominance of lactobacilli in 56% (five out of nine) of samples. All three women with normal cervical cells and high-risk HPV infection were classified as CST IV, characterized by anaerobic bacteria associated with bacterial vaginitis, such as Gardnerella, Prevotella, Atopobium, and Sneathia. Among the two women with abnormal cervical cells and high-risk HPV infection, one was classified as CST III, and the other had an unclassified profile dominated by L. helveticus. Four women with normal cervical cells and no HPV infection exhibited various CSTs. Our study demonstrated the feasibility of the protocol in analyzing the cervical microbiome. However, further analysis with a larger number of longitudinal samples is necessary to determine the role of cervical microbiota in HPV persistence, clearance, or the development of precancerous lesions.
Collapse
Affiliation(s)
- Kanya Preechasuth
- Division of Clinical Microbiology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Lionel Brazier
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS UMR5290), Institut de Recherche Pour le Développement (IRD224), Université of Montpellier, 34394 Montpellier CEDEX 5, France; (L.B.); (N.N.-G.-H.)
| | - Woottichai Khamduang
- Division of Clinical Microbiology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- LUCENT International Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sayamon Hongjaisee
- LUCENT International Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nantawan Wangsaeng
- AMS-PHPT Research Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nicole Ngo-Giang-Huong
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS UMR5290), Institut de Recherche Pour le Développement (IRD224), Université of Montpellier, 34394 Montpellier CEDEX 5, France; (L.B.); (N.N.-G.-H.)
- LUCENT International Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
7
|
Anqi-Liu, Jiali-Quan, Lingxian-Qiu, Yue-Huang, Wujian-Ke, Huachun-Zou, Ting-Wu, Xuqi-Ren. Attitudes toward an HPV vaccine for condyloma acuminata and willingness to undergo vaccination among STD clinic attendees in China: Focus on STI prevention with HPV vaccine. BMC Public Health 2024; 24:1610. [PMID: 38886680 PMCID: PMC11181624 DOI: 10.1186/s12889-024-18904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Condyloma acuminata (CA) is a common, and recurrent sexually transmitted disease (STD) that greatly contributes to direct health care costs and has a substantial psychosocial impact. Human papillomavirus (HPV) vaccination (containing L1 protein for HPV types 6 and 11) effectively controls CA. OBJECTIVES We investigated attitudes toward the HPV vaccine for CA and willingness to undergo vaccination among STD clinic attendees in China. METHODS Attendees at STD clinics at two selected hospitals in Guangdong and Jiangsu Provinces from May to September 2017 were requested to complete a self-administered questionnaire for this cross-sectional study. RESULTS The participants' median age was 28 years (IQR: 24.0-34.0), and the sex ratio was balanced; 63.5% were from Guangdong, 36.5% were from Jiangsu, and 44.5% had a history of CA. The vaccine acceptance rate was high among the participants (85.8%,235/274) to whom the HPV vaccine for CA was available, especially among those who had heard of CA (89.0%, AOR = 3.14, 95% CI: 1.29-7.63, p = 0.0114). 95 (34.7%) of 274 participants had a positive attitude toward the HPV vaccine for CA. STD clinic attendees who had heard of the connection between HPV and CA (AOR = 2.56, 95% CI: 1.31-5.00, p = 0.0060), had heard of the HPV vaccines or cervical cancer vaccines (AOR = 1.90, 95% CI: 1.02-3.54, p = 0.0444) and had ever proactively discussed CA or the vaccine with others (AOR = 1.95, 95% CI:1.00-3.79, p = 0.0488) had better attitudes toward the HPV vaccine for CA. Over half of the participants (52.5%) expected the price of the HPV vaccine for CA to be under $90. CONCLUSION The acceptance of the HPV vaccine for CA was high among STD clinic attendees in China, and the participants' self-perceived knowledge of CA and HPV was associated with better attitudes toward the HPV vaccine for CA. Education to improve knowledge is vital for reducing vaccine hesitancy.
Collapse
Affiliation(s)
- Anqi-Liu
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiali-Quan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, China
| | - Lingxian-Qiu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, China
| | - Yue-Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, China.
| | - Wujian-Ke
- Department of Sexually Transmitted Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Huachun-Zou
- School of Public Health, Fudan University, Shanghai, China
| | - Ting-Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, China
| | - Xuqi-Ren
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China.
- Department of Sexually Transmitted Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Kandathil AJ, Thomas DL. The Blood Virome: A new frontier in biomedical science. Biomed Pharmacother 2024; 175:116608. [PMID: 38703502 PMCID: PMC11184943 DOI: 10.1016/j.biopha.2024.116608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Recent advances in metagenomic testing opened a new window into the mammalian blood virome. Comprised of well-known viruses like human immunodeficiency virus, hepatitis C virus, and hepatitis B virus, the virome also includes many other eukaryotic viruses and phages whose medical significance, lifecycle, epidemiology, and impact on human health are less well known and thus regarded as commensals. This review synthesizes available information for the so-called commensal virome members that circulate in the blood of humans considering their restriction to and interaction with the human host, their natural history, and their impact on human health and physiology.
Collapse
Affiliation(s)
- Abraham J Kandathil
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David L Thomas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Tuladhar ET, Shrestha S, Vernon S, Droit L, Mihindukulasuriya KA, Tamang M, Karki L, Ngono AE, Jha B, Awal BK, Chalise BS, Jha R, Shresta S, Wang D, Manandhar KD. Gemykibivirus detection in acute encephalitis patients from Nepal. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.13.24302648. [PMID: 38405898 PMCID: PMC10889008 DOI: 10.1101/2024.02.13.24302648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Acute Encephalitis Syndrome (AES) causes significant morbidity and mortality worldwide. In Nepal, Japanese encephalitis virus (JEV) accounts for ~ 5-20% of AES cases, but ~75% of AES cases are of unknown etiology. We identified a gemykibivirus in CSF collected in 2020 from a male child with AES using metagenomic next-generation sequencing. Gemykibiviruses are single stranded, circular DNA viruses in the family Genomoviridae. The complete genome of 2211 nucleotides was sequenced which shared 98.69% nucleotide identity to its closest relative, Human associated gemykibivirus 2 isolate SAfia-449D. Two real-time PCR assays were designed, and screening of 337 CSF and 164 serum samples from AES patients in Nepal collected in 2020 and 2022 yielded 11 CSF and 1 serum sample that were positive in both PCR assays. Complete genomes of 7 of the positives were sequenced. These results identify a candidate etiologic agent of encephalitis in Nepal.
Collapse
Affiliation(s)
- Eans Tara Tuladhar
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | - Smita Shrestha
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | - Susan Vernon
- Washington University in St. Louis, Missouri, United States
| | - Lindsay Droit
- Washington University in St. Louis, Missouri, United States
| | | | - Mamta Tamang
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | - Lata Karki
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | | | - Bimlesh Jha
- National Public Health Laboratory, Kathmandu, Nepal
| | | | | | - Runa Jha
- National Public Health Laboratory, Kathmandu, Nepal
| | - Sujan Shresta
- La Jolla Institute for Immunology, California, United States
| | - David Wang
- Washington University in St. Louis, Missouri, United States
| | | |
Collapse
|
10
|
Du L, Dong X, Song J, Lei T, Liu X, Lan Y, Liu X, Wang J, Yue B, He M, Fan Z, Guo T. Temporal and spatial differences in the vaginal microbiome of Chinese healthy women. PeerJ 2023; 11:e16438. [PMID: 38054020 PMCID: PMC10695111 DOI: 10.7717/peerj.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023] Open
Abstract
Background Up the reproductive tract, there are large differences in the composition of vaginal microbes. Throughout the menstrual cycle, the structure of the vaginal microbiome shifts. Few studies have examined both in combination. Our study was designed to explore trends in the microbiome of different parts of the vagina in healthy women over the menstrual cycle. Methods We performed metagenomic sequencing to characterize the microbiome differences between the cervical orifice and mid-vagina throughout the menstrual cycle. Results Our results showed the vaginal microbiome of healthy women in the cervical orifice and the mid-vagina was similar during the periovulatory and luteal phases, with Lactobacillus being the dominant bacteria. In the follicular phase, Acinetobacter was detected in the cervical orifice. From the follicular phase to the luteal phase, the community state types (all five community status types were defined as CSTs) in samples No. 10 and No. 11 changed from CST III to CST I. In addition, the composition of the vaginal microbiome in healthy women from different regions of China was significantly different. We also detected viruses including Human alphaherpesvirus 1 (HSV-1) during periovulatory phase. Conclusion This study is valuable for understanding whether the microbial composition of the vagina is consistent in different parts of the menstrual cycle.
Collapse
Affiliation(s)
- Limin Du
- Sichuan University, Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Chengdu, China
| | - Xue Dong
- Ambulatory Surgery Department, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jiarong Song
- Sichuan University, Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Chengdu, China
| | - Tingting Lei
- Suining Municipal Hospital of Traditional Chinese Medicine, Suining, Sichuan, China
| | - Xianming Liu
- Mianyang Tumor Hospital, Sichuan Province, Mianyang, China
| | - Yue Lan
- Sichuan University, Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Chengdu, China
| | - Xu Liu
- Sichuan University, Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Chengdu, China
| | - Jiao Wang
- Sichuan University, Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Chengdu, China
| | - Bisong Yue
- Sichuan University, Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Chengdu, China
| | - Miao He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zhenxin Fan
- Sichuan University, Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Chengdu, China
| | - Tao Guo
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Wang H, Xu S, Li S, Su B, Sherrill-Mix S, Liang G. Virome in immunodeficiency: what we know currently. Chin Med J (Engl) 2023; 136:2647-2657. [PMID: 37914672 PMCID: PMC10684123 DOI: 10.1097/cm9.0000000000002899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/03/2023] Open
Abstract
ABSTRACT Over the past few years, the human virome and its complex interactions with microbial communities and the immune system have gained recognition as a crucial factor in human health. Individuals with compromised immune function encounter distinctive challenges due to their heightened vulnerability to a diverse range of infectious diseases. This review aims to comprehensively explore and analyze the growing evidence regarding the role of the virome in immunocompromised disease status. By surveying the latest literature, we present a detailed overview of virome alterations observed in various immunodeficiency conditions. We then delve into the influence and mechanisms of these virome changes on the pathogenesis of specific diseases in immunocompromised individuals. Furthermore, this review explores the clinical relevance of virome studies in the context of immunodeficiency, highlighting the potential diagnostic and therapeutic gains from a better understanding of virome contributions to disease manifestations.
Collapse
Affiliation(s)
- Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Siqi Xu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Scott Sherrill-Mix
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
12
|
Zhuang Z, Qian L, Lu J, Zhang X, Mahmood A, Cui L, Wang H, Wang X, Yang S, Ji L, Shan T, Shen Q, Zhang W. Comparison of viral communities in the blood, feces and various tissues of wild brown rats ( Rattus norvegicus). Heliyon 2023; 9:e17222. [PMID: 37389044 PMCID: PMC10300334 DOI: 10.1016/j.heliyon.2023.e17222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023] Open
Abstract
Viral diseases caused by new outbreaks of viral infections pose a serious threat to human health. Wild brown rats (Rattus norvegicus), considered one of the world's largest and most widely distributed rodents, are host to various zoonotic pathogens. To further understand the composition of the virus community in wild brown rats and explore new types of potentially pathogenic viruses, viral metagenomics was conducted to investigate blood, feces, and various tissues of wild brown rats captured from Zhenjiang, China. Results indicated that the composition of the virus community in different samples showed significant differences. In blood and tissue samples, members of the Parvoviridae and Anelloviridae form the main body of the virus community. Picornaviridae, Picobirnaviridae, and Astroviridae made up a large proportion of fecal samples. Several novel genome sequences from members of different families, including Anelloviridae, Parvoviridae, and CRESS DNA viruses, were detected in both blood and other samples, suggesting that they have the potential to spread across organs to cause viremia. These viruses included not only strains closely related to human viruses, but also a potential recombinant virus. Multiple dual-segment picornaviruses were obtained from fecal samples, as well as virus sequences from the Astroviridae and Picornaviridae. Phylogenetic analysis showed that these viruses belonged to different genera, with multiple viruses clustered with other animal viruses. Whether they have pathogenicity and the ability to spread across species needs further study.
Collapse
Affiliation(s)
- Zi Zhuang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Lingling Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Juan Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaodan Zhang
- Department of Clinical Laboratory, Zhenjiang Center for Disease Prevention and Control, Zhenjiang, 212002, China
| | - Asif Mahmood
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Lei Cui
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 200062, China
| | - Huiying Wang
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tongling Shan
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
13
|
Megremis S, Constantinides B, Xepapadaki P, Yap CF, Sotiropoulos AG, Bachert C, Finotto S, Jartti T, Tapinos A, Vuorinen T, Andreakos E, Robertson DL, Papadopoulos NG. Respiratory eukaryotic virome expansion and bacteriophage deficiency characterize childhood asthma. Sci Rep 2023; 13:8319. [PMID: 37221274 PMCID: PMC10205716 DOI: 10.1038/s41598-023-34730-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
Asthma development and exacerbation is linked to respiratory virus infections. There is limited information regarding the presence of viruses during non-exacerbation/infection periods. We investigated the nasopharyngeal/nasal virome during a period of asymptomatic state, in a subset of 21 healthy and 35 asthmatic preschool children from the Predicta cohort. Using metagenomics, we described the virome ecology and the cross-species interactions within the microbiome. The virome was dominated by eukaryotic viruses, while prokaryotic viruses (bacteriophages) were independently observed with low abundance. Rhinovirus B species consistently dominated the virome in asthma. Anelloviridae were the most abundant and rich family in both health and asthma. However, their richness and alpha diversity were increased in asthma, along with the co-occurrence of different Anellovirus genera. Bacteriophages were richer and more diverse in healthy individuals. Unsupervised clustering identified three virome profiles that were correlated to asthma severity and control and were independent of treatment, suggesting a link between the respiratory virome and asthma. Finally, we observed different cross-species ecological associations in the healthy versus the asthmatic virus-bacterial interactome, and an expanded interactome of eukaryotic viruses in asthma. Upper respiratory virome "dysbiosis" appears to be a novel feature of pre-school asthma during asymptomatic/non-infectious states and merits further investigation.
Collapse
Affiliation(s)
- Spyridon Megremis
- University of Manchester, Manchester, UK.
- University of Leicester, Leicester, UK.
| | | | | | | | | | | | - Susetta Finotto
- Friedrich Alexander University Erlangen-Nurnberg, Erlangen, Germany
| | - Tuomas Jartti
- University of Turku, Turku, Finland
- University of Oulu, Oulu, Finland
| | | | | | | | | | - Nikolaos G Papadopoulos
- University of Manchester, Manchester, UK.
- National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
14
|
Britto AMA, Siqueira JD, Curty G, Goes LR, Policarpo C, Meyrelles AR, Furtado Y, Almeida G, Giannini ALM, Machado ES, Soares MA. Microbiome analysis of Brazilian women cervix reveals specific bacterial abundance correlation to RIG-like receptor gene expression. Front Immunol 2023; 14:1147950. [PMID: 37180114 PMCID: PMC10167488 DOI: 10.3389/fimmu.2023.1147950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
The relationship among microbiome, immunity and cervical cancer has been targeted by several studies, yet many questions remain unanswered. We characterized herein the virome and bacteriome from cervical samples and correlated these findings with innate immunity gene expression in a Brazilian convenience sample of HPV-infected (HPV+) and uninfected (HPV-) women. For this purpose, innate immune gene expression data were correlated to metagenomic information. Correlation analysis showed that interferon (IFN) is able to differentially modulate pattern recognition receptors (PRRs) expression based on HPV status. Virome analysis indicated that HPV infection correlates to the presence of Anellovirus (AV) and seven complete HPV genomes were assembled. Bacteriome results unveiled that vaginal community state types (CST) distribution was independent of HPV or AV status, although bacterial phyla distribution differed between groups. Furthermore, TLR3 and IFNαR2 levels were higher in the Lactobacillus no iners-dominated mucosa and we detected correlations among RIG-like receptors (RLR) associated genes and abundance of specific anaerobic bacteria. Collectively, our data show an intriguing connection between HPV and AV infections that could foster cervical cancer development. Besides that, TLR3 and IFNαR2 seem to create a protective milieu in healthy cervical mucosa (L. no iners-dominated), and RLRs, known to recognize viral RNA, were correlated to anaerobic bacteria suggesting that they might be related to dysbiosis.
Collapse
Affiliation(s)
- Alan Messala A. Britto
- Departamento de Enfermagem Materno-Infantil (DEMI), Faculdade de Enfermagem (FEnf), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
- Programa de Oncovirologia, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Infecção HIV/aids e Hepatites Virais, Hospital Universitário Gaffrée e Guinle (HUGG/Ebserh), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Juliana D. Siqueira
- Programa de Oncovirologia, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Gislaine Curty
- Programa de Oncovirologia, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Livia R. Goes
- Programa de Oncovirologia, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Cintia Policarpo
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Angela R. Meyrelles
- Instituto de Ginecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yara Furtado
- Instituto de Ginecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Escola de Medicina e Cirurgia da Universidade Federal do Estado do Rio de Janeiro, Universidade Federal do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Gutemberg Almeida
- Instituto de Ginecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Lucia M. Giannini
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Elizabeth S. Machado
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo A. Soares
- Programa de Oncovirologia, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Orf GS, Olivo A, Harris B, Weiss SL, Achari A, Yu G, Federman S, Mbanya D, James L, Mampunza S, Chiu CY, Rodgers MA, Cloherty GA, Berg MG. Metagenomic Detection of Divergent Insect- and Bat-Associated Viruses in Plasma from Two African Individuals Enrolled in Blood-Borne Surveillance. Viruses 2023; 15:v15041022. [PMID: 37113001 PMCID: PMC10145552 DOI: 10.3390/v15041022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Metagenomic next-generation sequencing (mNGS) has enabled the high-throughput multiplexed identification of sequences from microbes of potential medical relevance. This approach has become indispensable for viral pathogen discovery and broad-based surveillance of emerging or re-emerging pathogens. From 2015 to 2019, plasma was collected from 9586 individuals in Cameroon and the Democratic Republic of the Congo enrolled in a combined hepatitis virus and retrovirus surveillance program. A subset (n = 726) of the patient specimens was analyzed by mNGS to identify viral co-infections. While co-infections from known blood-borne viruses were detected, divergent sequences from nine poorly characterized or previously uncharacterized viruses were also identified in two individuals. These were assigned to the following groups by genomic and phylogenetic analyses: densovirus, nodavirus, jingmenvirus, bastrovirus, dicistrovirus, picornavirus, and cyclovirus. Although of unclear pathogenicity, these viruses were found circulating at high enough concentrations in plasma for genomes to be assembled and were most closely related to those previously associated with bird or bat excrement. Phylogenetic analyses and in silico host predictions suggested that these are invertebrate viruses likely transmitted through feces containing consumed insects or through contaminated shellfish. This study highlights the power of metagenomics and in silico host prediction in characterizing novel viral infections in susceptible individuals, including those who are immunocompromised from hepatitis viruses and retroviruses, or potentially exposed to zoonotic viruses from animal reservoir species.
Collapse
Affiliation(s)
- Gregory S Orf
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Ana Olivo
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Barbara Harris
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Sonja L Weiss
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Asmeeta Achari
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
- Department of Laboratory Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Guixia Yu
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
- Department of Laboratory Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Scot Federman
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
- Department of Laboratory Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Dora Mbanya
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé P.O. Box 1364, Cameroon
| | - Linda James
- School of Medicine, Université Protestante au Congo, Kinshasa P.O. Box 4745, Democratic Republic of the Congo
| | - Samuel Mampunza
- School of Medicine, Université Protestante au Congo, Kinshasa P.O. Box 4745, Democratic Republic of the Congo
| | - Charles Y Chiu
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
- Department of Laboratory Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
- Department of Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Mary A Rodgers
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Gavin A Cloherty
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Michael G Berg
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| |
Collapse
|
16
|
Chávez-Torres M, Gómez-Palacio-Schjetnan M, Reyes-Terán G, Briceño O, Ávila-Ríos S, Romero-Mora KA, Pinto-Cardoso S. The vaginal microbiota of women living with HIV on suppressive antiretroviral therapy and its relation to high-risk human papillomavirus infection. BMC Microbiol 2023; 23:21. [PMID: 36658503 PMCID: PMC9850673 DOI: 10.1186/s12866-023-02769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Few studies have investigated the vaginal microbiota (VM) in women living with HIV (WLWH) in the context of high-risk human papillomavirus (HR-HPV) infection, even though WLWH are at an increased risk of HPV-related malignancies, including cervical cancer. To explore the impact of HIV and HPV infection on the VM in WLWH, we determined the prevalence of HR-HPV infection and cervical cytologic abnormalities in a cohort of 44 WLWH and 39 seronegative-women (SNW), characterized the vaginal microbiota by 16S sequencing, assessed genital inflammation and systemic immune activation by multiplex bead assay and flow cytometry, respectively. Finally, we explored relationships between bacterial richness and diversity, the top 20 bacterial genera, genital inflammation and systemic immune activation. RESULTS We found that HR-HPV prevalence was similar between WLWH and SNW. High-grade squamous intraepithelial lesions (HSIL) were only detected in WLWH negative for HR-HPV infection. In regression analyses, no risk factors were identified. Women co-infected with HIV and HR-HPV had the highest level of systemic immune activation, and these levels were significantly different compared with SNW without HR-HPV infection. Lactobacillus iners was the dominant Lactobacillus species in WLWH and SNW alike. CONCLUSION We found no evidence of differences in vaginal microbial richness and diversity, microbial community structure, and genital inflammation by HIV, HPV, or HIV and HPV status.
Collapse
Affiliation(s)
- Monserrat Chávez-Torres
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, 14080 Ciudad de México, México
| | - Maria Gómez-Palacio-Schjetnan
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, 14080 Ciudad de México, México
| | - Gustavo Reyes-Terán
- grid.415745.60000 0004 1791 0836Comisión Coordinadora de Institutos Nacionales de Salud Y Hospitales de Alta Especialidad, Secretaría de Salud, Ciudad de México, México
| | - Olivia Briceño
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, 14080 Ciudad de México, México
| | - Santiago Ávila-Ríos
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, 14080 Ciudad de México, México
| | - Karla Alejandra Romero-Mora
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, 14080 Ciudad de México, México
| | - Sandra Pinto-Cardoso
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, 14080 Ciudad de México, México
| |
Collapse
|
17
|
Altered vaginal eukaryotic virome is associated with different cervical disease status. Virol Sin 2022; 38:184-197. [PMID: 36565811 PMCID: PMC10176265 DOI: 10.1016/j.virs.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Viruses are important components of the human body. Growing evidence suggests that they are engaged in the physiology and disease status of the host. Even though the vaginal microbiome is involved in human papillomavirus (HPV) infection and cervical cancer (CC) progression, little is known about the role of the vaginal virome. In this pilot exploratory study, using unbiased viral metagenomics, we aim to investigate the vaginal eukaryotic virome in women with different levels of cervical lesions, and examine their associations with different cervical disease status. An altered eukaryotic virome was observed in women with different levels of lesions and Lactobacillus profiles. Anelloviruses and papillomaviruses are the most commonly detected eukaryotic viruses of the vaginal virome. Higher abundance and richness of anelloviruses and papillomaviruses were associated with low-grade squamous intraepithelial lesion (LSIL) and CC. Besides, higher anellovirus abundance was also associated with lactobacillus-depleted microbiome profiles and bacterial community state (CST) type IV. Furthermore, increased correlations between Anelloviridae and Papillomaviridae occurred in the women with increased cervical disease severity level from LSIL to CC. These data suggest underlying interactions between different microbes as well as the host physiology. Higher abundance and diversity of both anelloviruses and papillomaviruses shared by LSIL and CC suggest that anellovirus may be used as a potential adjunct biomarker to predict the risk of HPV persistent infection and/or CC. Future studies need to focus on the clinical relevance of anellovirus abundance with cervical disease status, and the evaluation of their potential as a new adjunct biomarker for the prediction and prognoses of CC.
Collapse
|
18
|
Impact of HIV infection and integrase strand transfer inhibitors-based treatment on the gut virome. Sci Rep 2022; 12:21658. [PMID: 36522388 PMCID: PMC9755154 DOI: 10.1038/s41598-022-25979-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Viruses are the most abundant components of the human gut microbiome with a significant impact on health and disease. The effects of human immunodeficiency virus (HIV) infection on gut virome has been scarcely analysed. Several studies suggested that integrase strand transfers inhibitors (INSTIs) are associated with a healthier gut. Thus, the objective of this work was to evaluate the effects of HIV infection and INSTIs on gut virome composition. 26 non-HIV-infected volunteers, 15 naive HIV-infected patients and 15 INSTIs-treated HIV-infected patients were recruited and their gut virome composition was analysed using shotgun sequencing. Bacteriophages were the most abundant and diverse viruses present in gut. HIV infection was accompanied by a decrease in phage richness which was reverted after INSTIs-based treatment. β-diversity of phages revealed that samples from HIV-infected patients clustered separately from those belonging to the control group. Differential abundant analysis showed an increase in phages belonging to Caudoviricetes class in the naive group and a decrease of Malgrandaviricetes class phages in the INSTIs-treated group compared to the control group. Besides, it was observed that INSTIs-based treatment was not able to reverse the increase of lysogenic phages associated with HIV infection or to modify the decrease observed on the relative abundance of Proteobacteria-infecting phages. Our study describes for the first time the impact of HIV and INSTIs on gut virome and demonstrates that INSTIs-based treatments are able to partially restore gut dysbiosis at the viral level, which opens several opportunities for new studies focused on microbiota-based therapies.
Collapse
|
19
|
Sasivimolrattana T, Chantratita W, Sensorn I, Chaiwongkot A, Oranratanaphan S, Bhattarakosol P, Bhattarakosol P. Cervical Microbiome in Women Infected with HPV16 and High-Risk HPVs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14716. [PMID: 36429432 PMCID: PMC9690271 DOI: 10.3390/ijerph192214716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Human papillomavirus type 16 (HPV16) and/or high-risk (Hr-) HPV are the main causes of cervical cancer. Another element that may contribute to the development of cervical cancer is the microbiota. To date, no study has investigated the entire cervical microbiome, which consists of bacteria, fungi, and viruses. In this study, cervical samples with different histopathology (CIN1, CIN2, and CIN3), with or without HPV16 and Hr-HPVs infection, were enrolled. From bacterial community analysis, 115 bacterial species were found and separated into 2 distinct categories based on Lactobacillus abundance: Lactobacilli-dominated (LD) and non-Lactobacilli-dominated (NLD) groups. The LD group had significantly less bacterial diversity than the NLD group. In addition, the variety of bacteria was contingent on the prevalence of HPV infection. Among distinct histological groups, an abundance of L. iners (>60% of total Lactobacillus spp.) was discovered in both groups. A few fungi, e.g., C. albicans, were identified in the fungal community. The viral community analysis revealed that the presence of HPV considerably reduced the diversity of human viruses. Taken together, when we analyzed all our results collectively, we discovered that HPV infection was a significant determinant in the diversity of bacteria and human viruses in the cervix.
Collapse
Affiliation(s)
- Thanayod Sasivimolrattana
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Insee Sensorn
- Center for Medical Genomics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Arkom Chaiwongkot
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Shina Oranratanaphan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pattarasinee Bhattarakosol
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Parvapan Bhattarakosol
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
20
|
Guo R, Li S, Zhang Y, Zhang Y, Wang G, Ullah H, Ma Y, Yan Q. Dysbiotic Oral and Gut Viromes in Untreated and Treated Rheumatoid Arthritis Patients. Microbiol Spectr 2022; 10:e0034822. [PMID: 36040159 PMCID: PMC9603985 DOI: 10.1128/spectrum.00348-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is influenced by oral and gut bacteria; however, much less is known about the relationship between oral or gut viromes and RA. Here, we performed whole-oral- and whole-gut-virome analyses based on shotgun sequencing of 497 samples. A comparative analysis of the oral and gut viromes in healthy controls and untreated and treated RA patients was performed, and system interaction networks among viruses, bacteria, and RA-associated clinical indices were constructed to address the potential relationship between the virome and RA by principal-coordinate analysis, distance-based redundancy analysis, permutational multivariate analysis, Spearman correlation coefficient analysis, and random-forest model analysis. The results showed that the viromes could be profiled in dental plaque, saliva, and fecal samples, among which saliva had the highest within-sample diversity. Importantly, significantly different diversities and compositions of the oral (i.e., dental plaque and saliva) viromes were observed not only between RA patients and healthy controls but also between untreated and treated RA patients, yet there were relatively minor differences in the gut viromes. Furthermore, to understand how these viruses affected the bacteriome, a virus-bacterium interaction network was constructed from dental plaque, saliva, and fecal samples of RA patients. Additionally, some RA-associated oral taxa, including Lactococcus phage (vOTU70), Bacteroides vulgatus, Lactococcus lactis, Escherichia coli, and Neisseria elongata, were correlated with the RA-related clinical indices. Whole-virome analysis illustrated the potential role of the oral and gut viromes in affecting our body either directly or via bacteria, which characterized neglected and new candidates contributing to the development of RA. IMPORTANCE Our results demonstrated community variation among dental plaque, saliva, and fecal viromes. In oral and gut samples from untreated and treated RA patients, the perturbance of viral composition and the correlation network of microbes and RA-associated clinical indices might be involved in the pathogenicity of RA. The findings in this study expand the knowledge of the potential role of oral and gut viral communities in the development of RA and may contribute to research on correlations between viruses and other diseases.
Collapse
Affiliation(s)
- Ruochun Guo
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Puensum Genetech Institute, Wuhan, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yu Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Guangyang Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hayan Ullah
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
21
|
Human Virome in Cervix Controlled by the Domination of Human Papillomavirus. Viruses 2022; 14:v14092066. [PMID: 36146871 PMCID: PMC9503738 DOI: 10.3390/v14092066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022] Open
Abstract
Although other co-viral infections could also be considered influencing factors, cervical human papillomavirus (HPV) infection is the main cause of cervical cancer. Metagenomics have been employed in the NGS era to study the microbial community in each habitat. Thus, in this investigation, virome capture sequencing was used to examine the virome composition in the HPV-infected cervix. Based on the amount of HPV present in each sample, the results revealed that the cervical virome of HPV-infected individuals could be split into two categories: HPV-dominated (HD; ≥60%) and non-HPV-dominated (NHD; <60%). Cervical samples contained traces of several human viral species, including the molluscum contagiosum virus (MCV), human herpesvirus 4 (HHV4), torque teno virus (TTV), and influenza A virus. When compared to the HD group, the NHD group had a higher abundance of several viruses. Human viral diversity appears to be influenced by HPV dominance. This is the first proof that the diversity of human viruses in the cervix is impacted by HPV abundance. However, more research is required to determine whether human viral variety and the emergence of cancer are related.
Collapse
|
22
|
Mizutani T, Ishizaka A, Koga M, Tsutsumi T, Yotsuyanagi H. Role of Microbiota in Viral Infections and Pathological Progression. Viruses 2022; 14:950. [PMID: 35632692 PMCID: PMC9144409 DOI: 10.3390/v14050950] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Viral infections are influenced by various microorganisms in the environment surrounding the target tissue, and the correlation between the type and balance of commensal microbiota is the key to establishment of the infection and pathogenicity. Some commensal microorganisms are known to resist or promote viral infection, while others are involved in pathogenicity. It is also becoming evident that the profile of the commensal microbiota under normal conditions influences the progression of viral diseases. Thus, to understand the pathogenesis underlying viral infections, it is important to elucidate the interactions among viruses, target tissues, and the surrounding environment, including the commensal microbiota, which should have different relationships with each virus. In this review, we outline the role of microorganisms in viral infections. Particularly, we focus on gaining an in-depth understanding of the correlations among viral infections, target tissues, and the surrounding environment, including the commensal microbiota and the gut virome, and discussing the impact of changes in the microbiota (dysbiosis) on the pathological progression of viral infections.
Collapse
Affiliation(s)
- Taketoshi Mizutani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
23
|
Madere FS, Monaco CL. The female reproductive tract virome: understanding the dynamic role of viruses in gynecological health and disease. Curr Opin Virol 2022; 52:15-23. [PMID: 34800892 PMCID: PMC8844092 DOI: 10.1016/j.coviro.2021.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 02/03/2023]
Abstract
The human body is inhabited by a large and complex network of commensal and predatory eukaryotic viruses and bacteriophages collectively termed the virome. Despite being the most abundant and genetically diverse biological entities on the planet, the impact of viruses on human health especially within the female reproductive tract (FRT) remains understudied. To better appreciate current knowledge regarding the dynamic role of viruses in FRT health and disease, in this review we highlight the known constituents of the FRT virome, transkingdom interactions within the FRT and their influence on gynecological disease. A better understanding of the FRT virome may pave the way toward improved outcomes in gynecological, reproductive, and neonatal health.
Collapse
Affiliation(s)
- Ferralita S Madere
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, USA
| | - Cynthia L Monaco
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, USA; Department of Internal Medicine, Division of Infectious Diseases, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, USA.
| |
Collapse
|
24
|
Bai GH, Lin SC, Hsu YH, Chen SY. The Human Virome: Viral Metagenomics, Relations with Human Diseases, and Therapeutic Applications. Viruses 2022; 14:278. [PMID: 35215871 PMCID: PMC8876576 DOI: 10.3390/v14020278] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
The human body is colonized by a wide range of microorganisms. The field of viromics has expanded since the first reports on the detection of viruses via metagenomic sequencing in 2002. With the continued development of reference materials and databases, viral metagenomic approaches have been used to explore known components of the virome and discover new viruses from various types of samples. The virome has attracted substantial interest since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic. Increasing numbers of studies and review articles have documented the diverse virome in various sites in the human body, as well as interactions between the human host and the virome with regard to health and disease. However, there have been few studies of direct causal relationships. Viral metagenomic analyses often lack standard references and are potentially subject to bias. Moreover, most virome-related review articles have focused on the gut virome and did not investigate the roles of the virome in other sites of the body in human disease. This review presents an overview of viral metagenomics, with updates regarding the relations between alterations in the human virome and the pathogenesis of human diseases, recent findings related to COVID-19, and therapeutic applications related to the human virome.
Collapse
Affiliation(s)
- Geng-Hao Bai
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Education, Taipei Medical University Hospital, Taipei City 11031, Taiwan
| | - Sheng-Chieh Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Pediatrics, Division of Allergy, Asthma and Immunology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yi-Hsiang Hsu
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA;
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shih-Yen Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
25
|
The Application of the Skin Virome for Human Identification. Forensic Sci Int Genet 2022; 57:102662. [DOI: 10.1016/j.fsigen.2022.102662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 01/03/2023]
|
26
|
Abstract
The family Genomoviridae (phylum Cressdnaviricota, class Repensiviricetes, order Geplafuvirales) includes viruses with circular single-stranded DNA genomes encoding two proteins, the capsid protein and the rolling-circle replication initiation protein. The genomes of the vast majority of members in this family have been sequenced directly from diverse environmental or animal- and plant-associated samples, but two genomoviruses have been identified infecting fungi. Since the last taxonomic update of the Genomoviridae, a number of new members of this family have been sequenced. Here, we report on the most recent taxonomic update, including the creation of one new genus, Gemytripvirus, and classification of ~420 new genomoviruses into 164 new species. We also announce the adoption of the "Genus + freeform epithet" binomial system for the naming of all 236 officially recognized species in the family Genomoviridae. The updated taxonomy presented in this article has been accepted by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France.
| |
Collapse
|
27
|
Mormando R, Wolfe AJ, Putonti C. Discriminating between JCPyV and BKPyV in Urinary Virome Data Sets. Viruses 2021; 13:v13061041. [PMID: 34072839 PMCID: PMC8230216 DOI: 10.3390/v13061041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/15/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022] Open
Abstract
Polyomaviruses are abundant in the human body. The polyomaviruses JC virus (JCPyV) and BK virus (BKPyV) are common viruses in the human urinary tract. Prior studies have estimated that JCPyV infects between 20 and 80% of adults and that BKPyV infects between 65 and 90% of individuals by age 10. However, these two viruses encode for the same six genes and share 75% nucleotide sequence identity across their genomes. While prior urinary virome studies have repeatedly reported the presence of JCPyV, we were interested in seeing how JCPyV prevalence compares to BKPyV. We retrieved all publicly available shotgun metagenomic sequencing reads from urinary microbiome and virome studies (n = 165). While one third of the data sets produced hits to JCPyV, upon further investigation were we able to determine that the majority of these were in fact BKPyV. This distinction was made by specifically mining for JCPyV and BKPyV and considering uniform coverage across the genome. This approach provides confidence in taxon calls, even between closely related viruses with significant sequence similarity.
Collapse
Affiliation(s)
- Rita Mormando
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA;
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stitch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA;
- Department of Microbiology and Immunology, Stitch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
- Correspondence:
| |
Collapse
|
28
|
Abstract
INTRODUCTION To test whether parechovirus and anellovirus, frequent enteric viruses, were associated with subsequent celiac disease (CD). We hypothesized that children who later developed CD would have increased frequency of parechovirus infections before transglutaminase 2 (TG2) antibody development. Anellovirus testing was exploratory, as a potential marker of immune status. METHODS Matched case-control design nested within a longitudinal birth cohort (the MIDIA study) of children at genetic risk of CD (carrying the human leukocyte antigen genotype DR4-DQ8/DR3-DQ2, recruited throughout Norway during 2001-2007). We retrospectively tested blood samples taken at age 3, 6, 9, and 12 months, and then annually, to determine when TG2 antibodies developed. Of 220 genetically at-risk children tested, 25 were diagnosed with CD (cases; ESPGHAN 2012 criteria) and matched for follow-up time, birthdate, and county of residence with 2 randomly selected children free from CD (controls) from the cohort. Viruses were quantified in monthly stool samples (collected from 3 through 35 months of age) using real-time polymerase chain reaction methods. RESULTS Parechovirus was detected in 222 of 2,005 stool samples (11.1%) and was more frequent in samples from cases before developing TG2 antibodies (adjusted odds ratio 1.67, 95% confidence interval 1.14-2.45, P = 0.01). The odds ratio was higher when a sample was positive for both parechovirus and enterovirus (adjusted odds ratio 4.73, 95% confidence interval 1.26-17.67, P = 0.02). Anellovirus was detected in 1,540 of 1,829 samples (84.2%), but did not differ significantly between case and control subjects. DISCUSSION Early-life parechovirus infections were associated with development of CD in genetically at-risk children.
Collapse
|
29
|
Chen Y, Qiu X, Wang W, Li D, Wu A, Hong Z, Di W, Qiu L. Human papillomavirus infection and cervical intraepithelial neoplasia progression are associated with increased vaginal microbiome diversity in a Chinese cohort. BMC Infect Dis 2020; 20:629. [PMID: 32842982 PMCID: PMC7449047 DOI: 10.1186/s12879-020-05324-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In this study, the association between human papillomavirus (HPV) infection and related cervical intraepithelial neoplasia (CIN) or cervical cancer and vaginal microbiome was evaluated in Chinese cohorts. METHODS The vaginal bacterial composition of five groups, HPV-infected women without CINs (HPV, n = 78), women with low-grade squamous intraepithelial lesions (LSIL, n = 51), women with high-grade squamous intraepithelial lesions (HSIL, n = 23), women with invasive cervical cancer (Cancer, n = 9) and healthy women without HPV infection (Normal, n = 68), was characterized by deep sequencing of barcoded 16S rRNA gene fragments (V3-4) using Illumina MiSeq. RESULTS HPV infection increased vaginal bacterial richness and diversity regardless of the status of CINs. The vaginal bacterial richness and diversity were further augmented in women with cervical cancer. Lactobacillus was the most abundant genus in all groups. HPV infection had a negative influence on the abundances of Lactobacillus, Gardnerella and Atopobium. Accordingly, HPV infection increased the relative abundance of Prevotella, Bacillus, Anaerococcus, Sneathia, Megasphaera, Streptococcus and Anaerococcus. The increased proportions of Bacillus, Anaerococcus and the reduced abundance of Gradnerella vaginalis were probably related with the progression of CINs severity. HPV infection without CINs or cancerous lesions was strongly associated with Megasphaera. The most abundant bacterium in the LSIL group was Prevotella amnii. However, Prevotella timonensis, Shuttleworthia and Streptococcaceae at the family level were three taxa related to HSIL. Furthermore, more taxa were associated with the Cancer group including Bacillus, Sneathia, Acidovorax, Oceanobacillus profundus, Fusobacterium, Veillonellaceae at the family level, Anaerococcus and Porphyromonas uenonis. Samples in the Normal group were mostly assigned to CST III. HPV infection converted the vaginal bacterial community structure from CST III to CST IV. Furthermore, the proportions of CST IV were gradually augmented with the progression of the severity of CINs. CONCLUSIONS This work interpreted the differential vaginal bacteria under HPV infection and various precancerous or cancerous lesions in a Chinese cohort. We distinguished the specific microbes and the vaginal bacterial structure that were related with the progression of CINs severity in Chinese women.
Collapse
Affiliation(s)
- Yulian Chen
- Department of Gynecology and Obstetrics, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xingdi Qiu
- Department of Gynecology and Obstetrics, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjing Wang
- Department of Gynecology and Obstetrics, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong Li
- Department of Gynecology and Obstetrics, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Anyue Wu
- Department of Gynecology and Obstetrics, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zubei Hong
- Department of Gynecology and Obstetrics, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Di
- Department of Gynecology and Obstetrics, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Lihua Qiu
- Department of Gynecology and Obstetrics, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
30
|
Happel AU, Varsani A, Balle C, Passmore JA, Jaspan H. The Vaginal Virome-Balancing Female Genital Tract Bacteriome, Mucosal Immunity, and Sexual and Reproductive Health Outcomes? Viruses 2020; 12:E832. [PMID: 32751611 PMCID: PMC7472209 DOI: 10.3390/v12080832] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Besides bacteria, fungi, protists and archaea, the vaginal ecosystem also contains a range of prokaryote- and eukaryote-infecting viruses, which are collectively referred to as the "virome". Despite its well-described role in the gut and other environmental niches, the vaginal virome remains understudied. With a focus on sexual and reproductive health, we summarize the currently known components of the vaginal virome, its relationship with other constituents of the vaginal microbiota and its association with adverse health outcomes. While a range of eukaryote-infecting viruses has been described to be present in the female genital tract (FGT), few prokaryote-infecting viruses have been described. Literature suggests that various vaginal viruses interact with vaginal bacterial microbiota and host immunity and that any imbalance thereof may contribute to the risk of adverse reproductive health outcomes, including infertility and adverse birth outcomes. Current limitations of vaginal virome research include experimental and analytical constraints. Considering the vaginal virome may represent the missing link in our understanding of the relationship between FGT bacteria, mucosal immunity, and adverse sexual and reproductive health outcomes, future studies evaluating the vaginal microbiome and its population dynamics holistically will be important for understanding the role of the vaginal virome in balancing health and disease.
Collapse
Affiliation(s)
- Anna-Ursula Happel
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (C.B.); (J.-A.P.); (H.J.)
| | - Arvind Varsani
- The Biodesign Center of Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287-5001, USA;
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Christina Balle
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (C.B.); (J.-A.P.); (H.J.)
| | - Jo-Ann Passmore
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (C.B.); (J.-A.P.); (H.J.)
- NRF-DST CAPRISA Centre of Excellence in HIV Prevention, 719 Umbilo Road, Congella, Durban 4013, South Africa
- National Health Laboratory Service, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Heather Jaspan
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (C.B.); (J.-A.P.); (H.J.)
- Department of Pediatrics and Global Health, University of Washington, 1510 San Juan Road NE, Seattle, WA 98195, USA
- Seattle Children’s Research Institute, 307 Westlake Ave N, Seattle, WA 98109, USA
| |
Collapse
|
31
|
Gupta P, Singh MP, Goyal K. Diversity of Vaginal Microbiome in Pregnancy: Deciphering the Obscurity. Front Public Health 2020; 8:326. [PMID: 32793540 PMCID: PMC7393601 DOI: 10.3389/fpubh.2020.00326] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Human microbiota plays an indispensable role in physiology, nutrition and most significantly, in imparting immunity. The role of microbiota has remained cryptic for years, until recently meticulous studies revealed the interaction and dynamics of these microbial communities. This diversified state is governed by hormonal, behavioral and physio-chemical changes in the genital tract. Many inclusive studies have revealed "Lactobacillus" to be the most dominant member of vaginal flora in most of the healthy, reproductive age group and pregnant females. A total of five community state types have been described, out of which four are dominated by Lactobacillus while the fifth one by facultative or strict anaerobic species. A variation between species stability and gestational age has also been revealed. Studies have divulged a significant higher stability of vaginal microbiota in early stages of pregnancy and the same increased subsequently. Inter-species and racial variation has shown women belonging to White, Asian, and Caucasian race to harbor more of the anaerobic flora. The vaginal microbiome in pregnancy play a significant role in preterm and spontaneous labor. This Lactobacillus-rich microbiome falls tremendously, becoming more diverse in post-partum period. Apart from these known bacterial communities in human vagina, other microbial communities have also been traced. The major fragment is constituted by vaginal viral virome and very little information exists in relation to vaginal mycobiome. Studies have revealed the abundance of ds DNA viruses in vaginal microbiome, followed by ssDNA, and few unidentified viruses. The eukaryotic viruses detected were very few, with Herpesvirales, and Papillomaviridae being the only pathogenic ones. This flora is transmitted to infants either via maternal gut, vagina or breast milk. Recent studies have given an insight for vaginal microbiome, dissociating the old concept of "healthy" and "diseased." However, more extensive studies are required to study evolution of virome and mycobiome in relation to their association with bacterial communities; to establish and decode full array of vaginal virome under the influence of genotypic and environmental factors, using novel bioinformatic, multi-omic, statistical model, and CRISPR/Cas approaches.
Collapse
|
32
|
Santiago-Rodriguez TM, Hollister EB. Human Virome and Disease: High-Throughput Sequencing for Virus Discovery, Identification of Phage-Bacteria Dysbiosis and Development of Therapeutic Approaches with Emphasis on the Human Gut. Viruses 2019; 11:v11070656. [PMID: 31323792 PMCID: PMC6669467 DOI: 10.3390/v11070656] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
The virome is comprised of endogenous retroviruses, eukaryotic viruses, and bacteriophages and is increasingly being recognized as an essential part of the human microbiome. The human virome is associated with Type-1 diabetes (T1D), Type-2 diabetes (T2D), Inflammatory Bowel Disease (IBD), Human Immunodeficiency Virus (HIV) infection, and cancer. Increasing evidence also supports trans-kingdom interactions of viruses with bacteria, small eukaryotes and host in disease progression. The present review focuses on virus ecology and biology and how this translates mostly to human gut virome research. Current challenges in the field and how the development of bioinformatic tools and controls are aiding to overcome some of these challenges are also discussed. Finally, the present review also focuses on how human gut virome research could result in translational and clinical studies that may facilitate the development of therapeutic approaches.
Collapse
Affiliation(s)
| | - Emily B Hollister
- Diversigen Inc., 2450 Holcombe Blvd, Suite BCMA, 77021 Houston, TX, USA.
| |
Collapse
|