1
|
Jiao Y, Yang M, Fang L, Yan Y, Fu Z, Li M, Li L, Liu Z, Hu X, Wu B, Shi Y, Kang C, Shen Z, Peng G. Serum proteomic analysis identified ITIH4 as a potential novel biomarker for feline infectious peritonitis. J Proteomics 2024; 310:105338. [PMID: 39454824 DOI: 10.1016/j.jprot.2024.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Feline infectious peritonitis (FIP) is a fatal feline disease. At present, the reference standard for FIP diagnosis is immunohistochemistry (IHC) of organs, but this method involves high time-related costs, invasive sampling procedures and professional requirements. Serological detection is a common auxiliary method for diagnosing diseases. As a result, we assessed the changes in the serum proteome of FIP patients with the aim of identifying novel specific serum biomarkers that could aid in the clinical diagnosis of FIP. Pre- and postinfection groups were compared and 92 differentially expressed proteins (DEPs) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEPs revealed that the enriched GO terms and KEGG pathways among the DEPs were immune activation, peptidase regulator activity and the complement and coagulation cascade pathways. The level of peptidase regulator interalpha-trypsin inhibitor heavy chain 4 (ITIH4) in cat serum was significantly correlated with FIP. The areas under the ROC curve (AUCs) of full-length ITIH4 (f-ITIH4) and cleaved ITIH4 (c-ITIH4) expression were 0.922 and 1.000, respectively, which allowed the discrimination of FIP cats from healthy cats. These results suggest that ITIH4 may be a potential serum biomarker for detecting early FIP. SIGNIFICANCE: FIP causes fatal disease in cats of almost all ages, and there is currently no effective vaccine or treatment for FIP. Therefore, early diagnosis is extremely important for disease prevention and control. The results of the model and clinical samples revealed that ITIH4 was significantly increased in the serum of FIP cats. This study is the first to propose ITIH4 as a diagnostic biomarker in cats with FIP and our results suggest that serum ITIH4 levels might identify cats with FIP during the early stage.
Collapse
Affiliation(s)
- Yuzhou Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lingying Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuanyuan Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhen Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengxia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lisha Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zirui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaoshuai Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Benyuan Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chao Kang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
2
|
Shi K, He M, Shi Y, Long F, Shi Y, Yin Y, Pan Y, Li Z, Feng S. Genetic and Phylogenetic Analysis of Feline Coronavirus in Guangxi Province of China from 2021 to 2024. Vet Sci 2024; 11:455. [PMID: 39453047 PMCID: PMC11512343 DOI: 10.3390/vetsci11100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Feline coronavirus (FCoV), as one of the important pathogens of feline viral gastroenteritis, has been attracting great attention. A total of 1869 rectal and nasal swabs, feces, and ascites samples were collected from eight regions in Guangxi province during 2021-2024. The multiplex RT-qPCR established in our laboratory was used to test these samples for FCoV, and 17.66% (330/1869) of the samples were positive for FCoV. The S, M, and N genes of 63 FCoV-positive samples were amplified and sequenced, and the genetic and evolutionary characteristics were analyzed. Similarity analysis showed that the nucleotide and amino acid homologies of S, M, and N genes were 81.2-99.6% and 70.2-99.5%, 89.9-100% and 91.6-100%, and 90.1-100% and 91.5-100%, respectively. Phylogenetic analysis revealed that all 63 FCoV strains, based on S gene sequences, belonged to type I FCoV (FCoV-I), and were clustered with Chinese strains and the Netherlands UU strains. Recombinant signals were detected in the S gene of strains GXLZ03-2022, GXLZ08-2022, and CCoV GD/2020/X9. The results suggest that FCoV is still prevalent in the Guangxi province of southern China, and the prevalent FCoV strains show high genetic diversity and novel epidemic characteristics.
Collapse
Affiliation(s)
- Kaichuang Shi
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China;
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (M.H.); (Y.S.); (Y.S.); (Z.L.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| | - Mengyi He
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (M.H.); (Y.S.); (Y.S.); (Z.L.)
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (M.H.); (Y.S.); (Y.S.); (Z.L.)
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| | - Yandi Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (M.H.); (Y.S.); (Y.S.); (Z.L.)
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| | - Yi Pan
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China;
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (M.H.); (Y.S.); (Y.S.); (Z.L.)
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| |
Collapse
|
3
|
Zhou Q, Song X, Li Y, Huang J, Yu QS, Den GN, Zhang JQ, Zhu CX, Zhang B. Preparation of a novel type I feline coronavirus virus-like particle vaccine and its immunogenicity in mice and cats. Microb Pathog 2024; 194:106795. [PMID: 39019122 DOI: 10.1016/j.micpath.2024.106795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/10/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Feline coronavirus (FCoV) infection is a leading cause of death in cats. In this study, we produced FCoV-I virus-like particles (VLPs) containing E, M, N, and S proteins using a baculovirus expression system and mixed VLPs with the adjuvants MF59 and CpG 55.2 to prepare an VLP/MF59/CpG vaccine. After immunization of mice with the vaccine, IgG specific antibodies titers against S and N proteins increased to 1:12,800, and IFN-γ+ and IL-4+ splenocytes were significantly increased. Following immunization of FCoV-negative cats, the S protein antibodies in immunized cats (5/5) increased significantly, with a peak of 1:12,800. Notably, after booster vaccination in FCoV-positive cats, a significant reduction in viral load was observed in the feces of partial cats (4/5), and the FCoV-I negative conversion was found in two immunized cats (2/5). Therefore, the VLP/MF59/CpG vaccine is a promising candidate vaccine to prevent the FCoV infection.
Collapse
MESH Headings
- Animals
- Cats
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Mice
- Coronavirus, Feline/immunology
- Immunoglobulin G/blood
- Adjuvants, Immunologic/administration & dosage
- Viral Load
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Interleukin-4/metabolism
- Interferon-gamma/metabolism
- Mice, Inbred BALB C
- Feces/virology
- Adjuvants, Vaccine
- Polysorbates/administration & dosage
- Female
- Coronavirus Infections/prevention & control
- Coronavirus Infections/immunology
- Coronavirus Infections/veterinary
- Immunogenicity, Vaccine
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Spleen/immunology
- Cat Diseases/prevention & control
- Cat Diseases/immunology
- Cat Diseases/virology
- Baculoviridae/genetics
- Vaccination
- Immunization, Secondary
- Squalene
Collapse
Affiliation(s)
- Qun Zhou
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Xin Song
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China; Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China
| | - Jian Huang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China; Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China
| | - Qi-Sheng Yu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Gu-Nan Den
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Jia-Qi Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Chen-Xi Zhu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Bin Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China; Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China.
| |
Collapse
|
4
|
Murphy BG, Castillo D, Neely NE, Kol A, Brostoff T, Grant CK, Reagan KL. Serologic, Virologic and Pathologic Features of Cats with Naturally Occurring Feline Infectious Peritonitis Enrolled in Antiviral Clinical Trials. Viruses 2024; 16:462. [PMID: 38543827 PMCID: PMC10975727 DOI: 10.3390/v16030462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a multisystemic, generally lethal immuno-inflammatory disease of domestic cats caused by an infection with a genetic variant of feline coronavirus, referred to as the FIP virus (FIPV). We leveraged data from four different antiviral clinical trials performed at the University of California, Davis. Collectively, a total of 60 client-owned domestic cats, each with a confirmed diagnosis of naturally occurring FIP, were treated with a variety of antiviral compounds. The tested therapies included the antiviral compounds GS-441524, remdesivir, molnupiravir and allogeneic feline mesenchymal stem/stroma cell transfusions. Four client-owned cats with FIP did not meet the inclusion criteria for the trials and were not treated with antiviral therapies; these cats were included in the data set as untreated FIP control cats. ELISA and Western blot assays were performed using feline serum/plasma or ascites effusions obtained from a subset of the FIP cats. Normalized tissue/effusion viral loads were determined in 34 cats by a quantitative RT-PCR of nucleic acids isolated from either effusions or abdominal lymph node tissue. Twenty-one cats were PCR "serotyped" (genotyped) and had the S1/S2 region of the coronaviral spike gene amplified, cloned and sequenced from effusions or abdominal lymph node tissue. In total, 3 untreated control cats and 14 (23.3%) of the 60 antiviral-treated cats died or were euthanized during (13) or after the completion of (1) antiviral treatment. Of these 17 cats, 13 had complete necropsies performed (10 cats treated with antivirals and 3 untreated control cats). We found that anticoronaviral serologic responses were persistent and robust throughout the treatment period, primarily the IgG isotype, and focused on the viral structural Nucleocapsid and Membrane proteins. Coronavirus serologic patterns were similar for the effusions and serum/plasma of cats with FIP and in cats entering remission or that died. Viral RNA was readily detectable in the majority of the cats in either abdominal lymph node tissue or ascites effusions, and all of the viral isolates were determined to be serotype I FIPV. Viral nucleic acids in cats treated with antiviral compounds became undetectable in ascites or abdominal lymph node tissue by 11 days post-treatment using a sensitive quantitative RT-PCR assay. The most common pathologic lesions identified in the necropsied cats were hepatitis, abdominal effusion (ascites), serositis, pancreatitis, lymphadenitis, icterus and perivasculitis. In cats treated with antiviral compounds, gross and histological lesions characteristic of FIP persisted for several weeks, while the viral antigen became progressively less detectable.
Collapse
Affiliation(s)
- Brian G. Murphy
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Diego Castillo
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - N E Neely
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Amir Kol
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Terza Brostoff
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Chris K. Grant
- Custom Monoclonals International, 813 Harbor Boulevard, West Sacramento, CA 95691, USA
| | - Krystle L. Reagan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Salajegheh Tazerji S, Gharieb R, Ardestani MM, Akhtardanesh B, Kabir F, Vazir B, Duarte PM, Saberi N, Khaksar E, Haerian S, Fawzy M. The risk of pet animals in spreading severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and public health importance: An updated review. Vet Med Sci 2024; 10:e1320. [PMID: 38066661 PMCID: PMC10766024 DOI: 10.1002/vms3.1320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 01/06/2024] Open
Abstract
Since the outbreak of SARS-CoV-2 was first identified in 2019, it has been reported that the virus could infect a variety of animals either naturally or experimentally. This review discusses the occurrence SARS-CoV-2 in dogs and cats and the role of these animals in transmitting coronavirus disease 2019 (COVID-19) to their owners. The data were collected from epidemiological studies and case reports that focused on studying the occurrence of SARS-CoV-2 in pet animals and their owners. Epidemiological studies and case reports indicate that dogs and cats are infected with SARS-CoV-2 either naturally or experimentally; however, the global number of naturally infected animals is far lower than the number of people who have COVID-19. These studies demonstrate that pet animals acquire the infection from direct contact with COVID-19-infected owners. Currently, there are no studies reporting that dogs and cats can transmit SARS-CoV-2 to other animals and humans, under natural conditions. The emergence of SARS-CoV-2 infection in companion animals (dogs and cats) in different countries worldwide raises concerns that pets are at higher risk for spreading and transmitting SARS-CoV-2 to humans and other animals, which poses a hazard to the public health. Therefore, investigating the role of dogs and cats in the transmission and epidemiology of SARS-CoV-2 will help us to design and implement appropriate preventive measures against the further transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Sina Salajegheh Tazerji
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research BranchIslamic Azad UniversityTehranIran
- Young Researchers and Elites Club, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Rasha Gharieb
- Department of Zoonoses, Faculty of Veterinary MedicineZagazig UniversityZagazigEgypt
| | | | - Baharak Akhtardanesh
- Department of Clinical Science, Faculty of Veterinary MedicineShahid Bahonar UniversityKermanIran
| | - Farrokhreza Kabir
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Bita Vazir
- Department of Basic Science, Faculty of Veterinary Medicine, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Phelipe Magalhães Duarte
- Postgraduate Program in Animal BioscienceFederal Rural University of Pernambuco (UFRPE)RecifePernambucoBrazil
| | - Niloufar Saberi
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Ehsan Khaksar
- Department of Clinical Science, Faculty of Veterinary Medicine, Garmsar BranchIslamic Azad UniversityGarmsarIran
| | - Sadegh Haerian
- Department of Clinical Science, Faculty of Veterinary Medicine, Karaj BranchIslamic Azad UniversityKarajIran
| | - Mohamed Fawzy
- Department of Virology, Faculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
| |
Collapse
|
6
|
Olarte-Castillo XA, Plimpton L, McQueary H, Sun Y, Yu YT, Cover S, Richardson AN, Jin Y, Grenier JK, Cummings KJ, Bunting E, Diuk-Wasser M, Needle D, Schuler K, Stanhope MJ, Whittaker G, Goodman LB. Detection and characterization of novel luchacoviruses, genus Alphacoronavirus, in saliva and feces of meso-carnivores in the northeastern United States. J Virol 2023; 97:e0082923. [PMID: 37882520 PMCID: PMC10688340 DOI: 10.1128/jvi.00829-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Several coronaviruses (CoVs) have been detected in domesticated, farmed, and wild meso-carnivores, causing a wide range of diseases and infecting diverse species, highlighting their important but understudied role in the epidemiology of these viruses. Assessing the viral diversity hosted in wildlife species is essential to understand their significance in the cross-species transmission of CoVs. Our focus here was on CoV discovery in meso-carnivores in the Northeast United States as a potential "hotspot" area with high density of humans and urban wildlife. This study identifies novel alphacoronaviruses circulating in multiple free-ranging wild and domestic species in this area and explores their potential epidemiological importance based on regions of the Spike gene, which are relevant for virus-host interactions.
Collapse
Affiliation(s)
- Ximena A. Olarte-Castillo
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Laura Plimpton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, USA
| | - Holly McQueary
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Yining Sun
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Y. Tina Yu
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Sarah Cover
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Amy N. Richardson
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Yuhan Jin
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jennifer K. Grenier
- Transcriptional Regulation and Expression Facility, Biotechnology Resource Center, Institute of Biotechnology, Cornell University, Ithaca, New York, USA
| | - Kevin J. Cummings
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Elizabeth Bunting
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Maria Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, USA
| | - David Needle
- New Hampshire Veterinary Diagnostic Laboratory, College of Life Sciences and Agriculture, University of New Hampshire, Durham, USA
| | - Krysten Schuler
- Cornell Wildlife Health Lab, Animal Health Diagnostic Center, Cornell College of Veterinary Medicine, Ithaca, New York, USA
| | - Michael J. Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Gary Whittaker
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Laura B. Goodman
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
7
|
Olarte-Castillo XA, Plimpton L, McQueary H, Sun Y, Yu YT, Cover S, Richardson AN, Jin Y, Grenier JK, Cummings KJ, Bunting E, Diuk-Wasser M, Needle D, Schuler K, Stanhope MJ, Whittaker G, Goodman LB. Detection and characterization of novel luchacoviruses, genus Alphacoronavirus, shed in saliva and feces of meso-carnivores in the northeastern United States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.541188. [PMID: 37745528 PMCID: PMC10515766 DOI: 10.1101/2023.05.31.541188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Small to mid-sized carnivores, or meso-carnivores, comprise a group of diverse mammals, many of which can adapt to anthropogenically disturbed environments. Wild meso-carnivores living in urban areas may get exposed to or spread pathogens to other species, including stray/feral domestic animals. Several coronaviruses (CoVs) have been detected in domesticated and farmed meso-carnivores, but knowledge of CoVs circulating in free-ranging wild meso-carnivores remains limited. In this study, we analyzed 321 samples collected between 2016 and 2022 from 9 species of free-ranging wild meso-carnivores and stray/feral domestic cats in the northeastern United States. Using a pan-CoV PCR, we screened tissues, feces, and saliva, nasal, and rectal swabs. We detected CoV RNA in fecal and saliva samples of animals in four species: fisher (Pekania pennanti), bobcat (Lynx rufus), red fox (Vulpes vulpes), and domestic cat (Felis catus). Next-generation sequencing revealed that all these viruses belonged to the Luchacovirus subgenus (Alphacoronavirus genus), previously reported only in rodents and lagomorphs (i.e., rabbits). Genetic comparison of the 3'-end of the genome (~12,000bp) revealed that although the viruses detected group with, and have a genetic organization similar to other luchacoviruses, they are genetically distinct from those from rodents and lagomorphs. Genetic characterization of the spike protein revealed that the meso-carnivore luchacoviruses do not have an S1/S2 cleavage motif but do have highly variable structural loops containing cleavage motifs similar to those identified in certain pathogenic CoVs. This study highlights the importance of characterizing the spike protein of CoVs in wild species for further targeted epidemiologic monitoring.
Collapse
Affiliation(s)
- Ximena A. Olarte-Castillo
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Laura Plimpton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Holly McQueary
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Yining Sun
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Y. Tina Yu
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sarah Cover
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Amy N. Richardson
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Yuhan Jin
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jennifer K. Grenier
- Transcriptional Regulation and Expression Facility, Biotechnology Resource Center, Institute of Biotechnology, Cornell University
| | - Kevin J. Cummings
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Elizabeth Bunting
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Maria Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - David Needle
- New Hampshire Veterinary Diagnostic Laboratory, College of Life Sciences and Agriculture, University of New Hampshire
| | - Krysten Schuler
- Cornell Wildlife Health Lab, Animal Health Diagnostic Center, Cornell College of Veterinary Medicine, 240 Farrier Road, Ithaca, NY 14853
| | - Michael J. Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gary Whittaker
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Laura B. Goodman
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
8
|
Bakshi SS, Mangayarkarasi V, Dash D, Das S, Ramesh S, Jayam C, Kalidoss VK. Comparative study on Saliva and Nasopharyngeal swabs and the outcome of RT-PCR test in patients with mild symptoms of SARS-CoV-2. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2023; 74:315-319. [PMID: 36965822 DOI: 10.1016/j.otoeng.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/01/2022] [Accepted: 12/06/2022] [Indexed: 03/27/2023]
Abstract
AIM A simple and reliable method for diagnosing COVID 19 infections is the needed. The role of saliva in the transmission of the infection has already been established. METHOD Saliva and nasopharyngeal swabs from patients suspected to have COVID 19 infections were taken simultaneously, and the results of the RT-PCR were compared. RESULT Total 405 samples were collected, of which 250 males and 155 females. In the 391 samples included for analysis, 370 (94.63%) samples were found to have concordance results, and 21 (5.37%) samples had discordant results. CONCLUSION The use of saliva to diagnose COVID 19 infection is reliable, and its use can be recommended.
Collapse
Affiliation(s)
- Satvinder Singh Bakshi
- Department of ENT and Head & Neck Surgery, All India Institute of Medical Sciences Mangalagiri, Guntur, Andhra Pradesh, India.
| | - V Mangayarkarasi
- Department of Microbiology, AIIMS Mangalagiri, Guntur, Andhra Pradesh, India.
| | - Debabrata Dash
- Department of Microbiology, AIIMS Mangalagiri, Guntur, Andhra Pradesh, India.
| | - Soumyajit Das
- Department of ENT and Head & Neck Surgery, All India Institute of Medical Sciences Mangalagiri, Guntur, Andhra Pradesh, India.
| | - Seepana Ramesh
- Department of ENT and Head & Neck Surgery, All India Institute of Medical Sciences Mangalagiri, Guntur, Andhra Pradesh, India.
| | - Cheeranjeevi Jayam
- Department of Dentistry, AIIMS Mangalagiri, Guntur, Andhra Pradesh, India.
| | - Vinoth Kumar Kalidoss
- Department of Community and Family Medicine, AIIMS Mangalagiri, Guntur, Andhra Pradesh, India.
| |
Collapse
|
9
|
Tasker S, Addie DD, Egberink H, Hofmann-Lehmann R, Hosie MJ, Truyen U, Belák S, Boucraut-Baralon C, Frymus T, Lloret A, Marsilio F, Pennisi MG, Thiry E, Möstl K, Hartmann K. Feline Infectious Peritonitis: European Advisory Board on Cat Diseases Guidelines. Viruses 2023; 15:1847. [PMID: 37766254 PMCID: PMC10535984 DOI: 10.3390/v15091847] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Feline coronavirus (FCoV) is a ubiquitous RNA virus of cats, which is transmitted faeco-orally. In these guidelines, the European Advisory Board on Cat Diseases (ABCD) presents a comprehensive review of feline infectious peritonitis (FIP). FCoV is primarily an enteric virus and most infections do not cause clinical signs, or result in only enteritis, but a small proportion of FCoV-infected cats develop FIP. The pathology in FIP comprises a perivascular phlebitis that can affect any organ. Cats under two years old are most frequently affected by FIP. Most cats present with fever, anorexia, and weight loss; many have effusions, and some have ocular and/or neurological signs. Making a diagnosis is complex and ABCD FIP Diagnostic Approach Tools are available to aid veterinarians. Sampling an effusion, when present, for cytology, biochemistry, and FCoV RNA or FCoV antigen detection is very useful diagnostically. In the absence of an effusion, fine-needle aspirates from affected organs for cytology and FCoV RNA or FCoV antigen detection are helpful. Definitive diagnosis usually requires histopathology with FCoV antigen detection. Antiviral treatments now enable recovery in many cases from this previously fatal disease; nucleoside analogues (e.g., oral GS-441524) are very effective, although they are not available in all countries.
Collapse
Affiliation(s)
- Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK
- Linnaeus Veterinary Limited, Shirley, Solihull B90 4BN, UK
| | - Diane D. Addie
- Independent Researcher, 64000 Pyrénées Aquitaine, France;
| | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK;
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), P.O. Box 7036, 750 07 Uppsala, Sweden;
| | | | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland;
| | - Albert Lloret
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università Degli Studi di Teramo, 64100 Teramo, Italy;
| | - Maria Grazia Pennisi
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168 Messina, Italy;
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B-4000 Liège, Belgium;
| | - Karin Möstl
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| |
Collapse
|
10
|
Olarte-Castillo XA, Licitra BN, André NM, Sierra MA, Mason CE, Goodman LB, Whittaker GR. Intra-host variation in the spike S1/S2 region of a feline coronavirus type-1 in a cat with persistent infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551356. [PMID: 37577589 PMCID: PMC10418068 DOI: 10.1101/2023.07.31.551356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Feline coronavirus type 1 (FCoV-1) is widely known for causing feline infectious peritonitis (FIP), a systemic infection that is often fatal, with the virus known as the FIPV biotype. However, subclinical disease also occurs, in which cats may not show signs and intermittently shed the virus, including in feces, possibly for long periods of time. This virus is known as the FECV biotype. Progression of FECV to FIPV has been linked to several genomic changes, however a specific region of the viral spike protein at the interface of the spike S1 and S2 domains has been especially implicated. In this study, we followed a cat (#576) for six years from 2017, at which time FCoV-1 was detected in feces and conjunctival swabs, until 2022, when the animal was euthanized based on a diagnosis of alimentary small cell lymphoma. Over this time period, the cat was clinically diagnosed with inflammatory bowel disease and chronic rhinitis, and cardiac problems were also suspected. Using hybridization capture targeting the spike (S) gene of FCoV followed by next-generation sequencing, we screened 27 clinical samples. We detected FCoV-1 in 4 samples taken in 2017 (intestine and nasal tissue, feces, and conjunctiva), and 3 samples taken in 2022 (feces, and intestinal and heart tissue), but not in fecal samples taken in 2019 and 2020. Next, we focused on the S1/S2 region within S, which contains the furin cleavage site (FCS), a key regulator of viral transmission and pathogenesis. We show that the FCoV-1 variants obtained from feces in 2017 and 2022 were identical, while the ones from conjunctiva (2017), heart (2022), and intestine (2017 and 2022) were distinct. Sequence comparison of all the variants obtained showed that most of the non-synonymous changes in the S1/S2 region occur within the FCS. In the heart, we found two variants that differed by a single nucleotide, resulting in distinct FCS motifs that differ in one amino acid. It is predicted that one of these FCS motifs will down-regulate spike cleavability. The variant from the conjunctiva (2017) had a 6-nucleotide in-frame insertion that resulted in a longer and more exposed S1/S2 loop, which is predicted to be more accessible to the furin protease. Our studies indicate that FCoV-1 can independently persist in the gastrointestinal tract and heart of a cat over a long period of time without evidence of typical FIP signs, with intermittent viral shedding from the gastrointestinal and respiratory tracts.
Collapse
|
11
|
Silva Júnior JVJ, Durães-Carvalho R, de Souza JR, Ramos Janini LM, Weiblen R, Flores EF. Emergence of SARS-CoV-2 serotype(s): Is it a matter of time? Virology 2023; 585:78-81. [PMID: 37321144 PMCID: PMC10240909 DOI: 10.1016/j.virol.2023.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 06/17/2023]
Abstract
Since its identification in late 2019, SARS-CoV-2 has undergone numerous mutations, resulting in the emergence of several viral variants, which may differ in transmissibility, virulence and/or evasion from host immunity. Particularly, immunity-related changes have been well documented in the Omicron variant, including reports of escaping neutralizing antibodies induced by infection/vaccination with heterologous SARS-CoV-2 or used in serological therapy. These findings may encourage some discussions about the possibility that Omicron is a distinct SARS-CoV-2 serotype. To contribute to this issue, we combined concepts from immunology, virology and evolution and performed an interesting brainstorm on the hypothesis that Omicron is a distinct SARS-CoV-2 serotype. Furthermore, we also discussed the likelihood of emergence of SARS-CoV-2 serotypes over time, which may not necessarily be related to Omicron. Finally, insights into this topic may have direct implications for vaccine formulations, immunodiagnostic platforms and serological therapies, contributing to better management of future outbreaks or waves.
Collapse
Affiliation(s)
- José Valter Joaquim Silva Júnior
- Virology Sector, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Rio Grande do Sul, Brazil; Virology Sector, Keizo Asami Institute, Federal University of Pernambuco, Pernambuco, Brazil; Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Maria, Rio Grande do Sul, Brazil.
| | - Ricardo Durães-Carvalho
- São Paulo School of Medicine, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil; Graduate Program in Structural and Functional Biology, Federal University of São Paulo, São Paulo, Brazil.
| | | | - Luiz Mário Ramos Janini
- São Paulo School of Medicine, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Rudi Weiblen
- Virology Sector, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Eduardo Furtado Flores
- Virology Sector, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
12
|
de Vries EM, Cogan NOI, Gubala AJ, Rodoni BC, Lynch SE. Fine-scale genomic tracking of Ross River virus using nanopore sequencing. Parasit Vectors 2023; 16:186. [PMID: 37280650 PMCID: PMC10243270 DOI: 10.1186/s13071-023-05734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/11/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Ross River virus (RRV) is Australia's most common and widespread mosquito-transmitted arbovirus and is of significant public health concern. With increasing anthropogenic impacts on wildlife and mosquito populations, it is important that we understand how RRV circulates in its endemic hotspots to determine where public health efforts should be directed. Current surveillance methods are effective in locating the virus but do not provide data on the circulation of the virus and its strains within the environment. This study examined the ability to identify single nucleotide polymorphisms (SNPs) within the variable E2/E3 region by generating full-length haplotypes from a range of mosquito trap-derived samples. METHODS A novel tiled primer amplification workflow for amplifying RRV was developed with analysis using Oxford Nanopore Technology's MinION and a custom ARTIC/InterARTIC bioinformatic protocol. By creating a range of amplicons across the whole genome, fine-scale SNP analysis was enabled by specifically targeting the variable region that was amplified as a single fragment and established haplotypes that informed spatial-temporal variation of RRV in the study site in Victoria. RESULTS A bioinformatic and laboratory pipeline was successfully designed and implemented on mosquito whole trap homogenates. Resulting data showed that genotyping could be conducted in real time and that whole trap consensus of the viruses (with major SNPs) could be determined in a timely manner. Minor variants were successfully detected from the variable E2/E3 region of RRV, which allowed haplotype determination within complex mosquito homogenate samples. CONCLUSIONS The novel bioinformatic and wet laboratory methods developed here will enable fast detection and characterisation of RRV isolates. The concepts presented in this body of work are transferable to other viruses that exist as quasispecies in samples. The ability to detect minor SNPs, and thus haplotype strains, is critically important for understanding the epidemiology of viruses their natural environment.
Collapse
Affiliation(s)
- Ellen M. de Vries
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
| | - Noel O. I. Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
| | - Aneta J. Gubala
- Sensors and Effectors Division, Defence Science & Technology Group, Fishermans Bend, VIC 3207 Australia
| | - Brendan C. Rodoni
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
| | - Stacey E. Lynch
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| |
Collapse
|
13
|
Focosi D, Maggi F. Second-Generation SARS-CoV-2 Recombinants: Lessons from Other Viruses. Viruses 2023; 15:v15051063. [PMID: 37243149 DOI: 10.3390/v15051063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
RNA viruses have developed notable strategies to evolve and escape host immunity [...].
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Fabrizio Maggi
- National Institute for Infectious Diseases "Lazzaro Spallanzani", 00149 Rome, Italy
| |
Collapse
|
14
|
Bhattacharjee B, Ikbal AMA, Farooqui A, Sahu RK, Ruhi S, Syed A, Miatmoko A, Khan D, Khan J. Superior possibilities and upcoming horizons for nanoscience in COVID-19: noteworthy approach for effective diagnostics and management of SARS-CoV-2 outbreak. CHEMICKE ZVESTI 2023; 77:1-24. [PMID: 37362791 PMCID: PMC10072050 DOI: 10.1007/s11696-023-02795-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/18/2023] [Indexed: 04/07/2023]
Abstract
The outbreak of COVID-19 has caused great havoc and affected many parts of the world. It has imposed a great challenge to the medical and health fraternity with its ability to continue mutating and increasing the transmission rate. Some challenges include the availability of current knowledge of active drugs against the virus, mode of delivery of the medicaments, its diagnosis, which are relatively limited and do not suffice for further prognosis. One recently developed drug delivery system called nanoparticles is currently being utilized in combating COVID-19. This article highlights the existing methods for diagnosis of COVID-19 such as computed tomography scan, reverse transcription-polymerase chain reaction, nucleic acid sequencing, immunoassay, point-of-care test, detection from breath, nanotechnology-based bio-sensors, viral antigen detection, microfluidic device, magnetic nanosensor, magnetic resonance platform and internet-of-things biosensors. The latest detection strategy based on nanotechnology, biosensor, is said to produce satisfactory results in recognizing SARS-CoV-2 virus. It also highlights the successes in the research and development of COVID-19 treatments and vaccines that are already in use. In addition, there are a number of nanovaccines and nanomedicines currently in clinical trials that have the potential to target COVID-19.
Collapse
Affiliation(s)
- Bedanta Bhattacharjee
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, Assam 784501 India
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, 788011 India
| | - Atika Farooqui
- The Deccan College of Medical Sciences, Kanchan Bagh, Hyderabad, Telangana 500058 India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand 249161 India
| | - Sakina Ruhi
- Department of Biochemistry, IMS, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Ayesha Syed
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java 60115 Indonesia
| | - Danish Khan
- Panineeya Institute of Dental Science and Research Centre, Kalonji Narayana Rao University of Health Sciences, Warangal, Telangana 506007 India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, 40100 Shah Alam, Selangor Malaysia
| |
Collapse
|
15
|
Zehr JD, Kosakovsky Pond SL, Millet JK, Olarte-Castillo XA, Lucaci AG, Shank SD, Ceres KM, Choi A, Whittaker GR, Goodman LB, Stanhope MJ. Natural selection differences detected in key protein domains between non-pathogenic and pathogenic feline coronavirus phenotypes. Virus Evol 2023; 9:vead019. [PMID: 37038392 PMCID: PMC10082545 DOI: 10.1093/ve/vead019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Feline coronaviruses (FCoVs) commonly cause mild enteric infections in felines worldwide (termed feline enteric coronavirus [FECV]), with around 12 per cent developing into deadly feline infectious peritonitis (FIP; feline infectious peritonitis virus [FIPV]). Genomic differences between FECV and FIPV have been reported, yet the putative genotypic basis of the highly pathogenic phenotype remains unclear. Here, we used state-of-the-art molecular evolutionary genetic statistical techniques to identify and compare differences in natural selection pressure between FECV and FIPV sequences, as well as to identify FIPV- and FECV-specific signals of positive selection. We analyzed full-length FCoV protein coding genes thought to contain mutations associated with FIPV (Spike, ORF3abc, and ORF7ab). We identified two sites exhibiting differences in natural selection pressure between FECV and FIPV: one within the S1/S2 furin cleavage site (FCS) and the other within the fusion domain of Spike. We also found fifteen sites subject to positive selection associated with FIPV within Spike, eleven of which have not previously been suggested as possibly relevant to FIP development. These sites fall within Spike protein subdomains that participate in host cell receptor interaction, immune evasion, tropism shifts, host cellular entry, and viral escape. There were fourteen sites (twelve novel sites) within Spike under positive selection associated with the FECV phenotype, almost exclusively within the S1/S2 FCS and adjacent to C domain, along with a signal of relaxed selection in FIPV relative to FECV, suggesting that furin cleavage functionality may not be needed for FIPV. Positive selection inferred in ORF7b was associated with the FECV phenotype and included twenty-four positively selected sites, while ORF7b had signals of relaxed selection in FIPV. We found evidence of positive selection in ORF3c in FCoV-wide analyses, but no specific association with the FIPV or FECV phenotype. We hypothesize that some combination of mutations in FECV may contribute to FIP development, and that it is unlikely to be one singular 'switch' mutational event. This work expands our understanding of the complexities of FIP development and provides insights into how evolutionary forces may alter pathogenesis in coronavirus genomes.
Collapse
Affiliation(s)
- Jordan D Zehr
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Sergei L Kosakovsky Pond
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas 78352, France
| | - Ximena A Olarte-Castillo
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Alexander G Lucaci
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Stephen D Shank
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Kristina M Ceres
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Gary R Whittaker
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Laura B Goodman
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Ehtesabi H, Afzalpour E. Smartphone-based corona virus detection using saliva: A mini-review. Heliyon 2023; 9:e14380. [PMID: 36919087 PMCID: PMC9991337 DOI: 10.1016/j.heliyon.2023.e14380] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
During the ongoing worldwide epidemic, SARS-CoV-2 has infected millions of individuals and taken the lives of numerous victims. It is clear that early detection of infected individuals, especially asymptomatic carriers, is possible with the development of innovative analytical tools for rapid identification of COVID-19 present in nasopharyngeal swabs, serum, and saliva. The saliva, as a diagnostic sample, can be easily collected by the patient with almost no discomfort and needs specialized healthcare personnel to manage, which reduces the risks for the operator. Moreover, smartphone-based sensing systems are one of the most attractive techniques that can speed up the detection time of COVID-19 agents without the need for professional staff and clinical centers. In this review, recent advances in precise salivary-based SARS-CoV-2 diagnosis using smartphones via viral RNA detection, antibody identification, and viral antigen identification were summarized. Finally, the conclusion and future perspective of this field are described in brief.
Collapse
Affiliation(s)
- Hamide Ehtesabi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Elham Afzalpour
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
17
|
Borborema MEDA, de Lucena TMC, Silva JDA. Vitamin D and estrogen steroid hormones and their immunogenetic roles in Infectious respiratory (TB and COVID-19) diseases. Genet Mol Biol 2023; 46:e20220158. [PMID: 36745756 PMCID: PMC9901533 DOI: 10.1590/1415-4757-gmb-2022-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/07/2022] [Indexed: 02/08/2023] Open
Abstract
The role of steroid hormones against infectious diseases has been extensively studied. From immunomodulatory action to direct inhibition of microorganism growth, hormones D3 (VD3) and 17β-estradiol (E2), and the genetic pathways modulated by them, are key targets for a better understanding pathogenesis of infectious respiratory diseases (IRD) such as tuberculosis (TB) and the coronavirus disease-19 (COVID-19). Currently, the world faces two major public health problems, the outbreak of COVID-19, accounting for more than 6 million so far, and TB, more than 1 million deaths per year. Both, although resulting from different pathogens, the Mtb and the SARS-CoV-2, respectively, are considered serious and epidemic. TB and COVID-19 present similar infection rates between men and women, however the number of complications and deaths resulting from the two infections is higher in men when compared to women in childbearing age, which may indicate a role of the sex hormone E2 in the context of these diseases. E2 and VD3 act upon key gene pathways as important immunomodulatory players and supporting molecules in IRDs. This review summarizes the main roles of these hormones (VD3 and E2) in modulating immune and inflammatory responses and their relationship with TB and COVID-19.
Collapse
Affiliation(s)
- Maria Eduarda de Albuquerque Borborema
- Universidade Federal de Pernambuco, Departamento de Genética, Laboratório de Genética e Biologia Molecular Humana (LGBMH), Recife, PE, Brazil
- Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo Asami (LIKA), Recife, PE, Brazil
| | - Thays Maria Costa de Lucena
- Universidade Federal de Pernambuco, Departamento de Genética, Laboratório de Genética e Biologia Molecular Humana (LGBMH), Recife, PE, Brazil
- Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo Asami (LIKA), Recife, PE, Brazil
| | - Jaqueline de Azevêdo Silva
- Universidade Federal de Pernambuco, Departamento de Genética, Laboratório de Genética e Biologia Molecular Humana (LGBMH), Recife, PE, Brazil
- Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo Asami (LIKA), Recife, PE, Brazil
| |
Collapse
|
18
|
Abstract
The existence of coronaviruses has been known for many years. These viruses cause significant disease that primarily seems to affect agricultural species. Human coronavirus disease due to the 2002 outbreak of Severe Acute Respiratory Syndrome and the 2012 outbreak of Middle East Respiratory Syndrome made headlines; however, these outbreaks were controlled, and public concern quickly faded. This complacency ended in late 2019 when alarms were raised about a mysterious virus responsible for numerous illnesses and deaths in China. As we now know, this novel disease called Coronavirus Disease 2019 (COVID-19) was caused by Severe acute respiratory syndrome-related-coronavirus-2 (SARS-CoV-2) and rapidly became a worldwide pandemic. Luckily, decades of research into animal coronaviruses hastened our understanding of the genetics, structure, transmission, and pathogenesis of these viruses. Coronaviruses infect a wide range of wild and domestic animals, with significant economic impact in several agricultural species. Their large genome, low dependency on host cellular proteins, and frequent recombination allow coronaviruses to successfully cross species barriers and adapt to different hosts including humans. The study of the animal diseases provides an understanding of the virus biology and pathogenesis and has assisted in the rapid development of the SARS-CoV-2 vaccines. Here, we briefly review the classification, origin, etiology, transmission mechanisms, pathogenesis, clinical signs, diagnosis, treatment, and prevention strategies, including available vaccines, for coronaviruses that affect domestic, farm, laboratory, and wild animal species. We also briefly describe the coronaviruses that affect humans. Expanding our knowledge of this complex group of viruses will better prepare us to design strategies to prevent and/or minimize the impact of future coronavirus outbreaks.
Collapse
Key Words
- bcov, bovine coronavirus
- ccov, canine coronavirus
- cov(s), coronavirus(es)
- covid-19, coronavirus disease 2019
- crcov, canine respiratory coronavirus
- e, coronaviral envelope protein
- ecov, equine coronavirus
- fcov, feline coronavirus
- fipv, feline infectious peritonitis virus
- gfcov, guinea fowl coronavirus
- hcov, human coronavirus
- ibv, infectious bronchitis virus
- m, coronaviral membrane protein
- mers, middle east respiratory syndrome-coronavirus
- mhv, mouse hepatitis virus
- pedv, porcine epidemic diarrhea virus
- pdcov, porcine deltacoronavirus
- phcov, pheasant coronavirus
- phev, porcine hemagglutinating encephalomyelitis virus
- prcov, porcine respiratory coronavirus
- rt-pcr, reverse transcriptase polymerase chain reaction
- s, coronaviral spike protein
- sads-cov, swine acute diarrhea syndrome-coronavirus
- sars-cov, severe acute respiratory syndrome-coronavirus
- sars-cov-2, severe acute respiratory syndrome–coronavirus–2
- tcov, turkey coronavirus
- tgev, transmissible gastroenteritis virus
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;,
| | - Tannia S Clark
- Office of Laboratory Animal Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David M Kurtz
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina
| |
Collapse
|
19
|
Shoaib S, Ansari MA, Kandasamy G, Vasudevan R, Hani U, Chauhan W, Alhumaidi MS, Altammar KA, Azmi S, Ahmad W, Wahab S, Islam N. An Attention towards the Prophylactic and Therapeutic Options of Phytochemicals for SARS-CoV-2: A Molecular Insight. Molecules 2023; 28:795. [PMID: 36677853 PMCID: PMC9864057 DOI: 10.3390/molecules28020795] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
The novel pathogenic virus was discovered in Wuhan, China (December 2019), and quickly spread throughout the world. Further analysis revealed that the pathogenic strain of virus was corona but it was distinct from other coronavirus strains, and thus it was renamed 2019-nCoV or SARS-CoV-2. This coronavirus shares many characteristics with other coronaviruses, including SARS-CoV and MERS-CoV. The clinical manifestations raised in the form of a cytokine storm trigger a complicated spectrum of pathophysiological changes that include cardiovascular, kidney, and liver problems. The lack of an effective treatment strategy has imposed a health and socio-economic burden. Even though the mortality rate of patients with this disease is lower, since it is judged to be the most contagious, it is considered more lethal. Globally, the researchers are continuously engaged to develop and identify possible preventive and therapeutic regimens for the management of disease. Notably, to combat SARS-CoV-2, various vaccine types have been developed and are currently being tested in clinical trials; these have also been used as a health emergency during a pandemic. Despite this, many old antiviral and other drugs (such as chloroquine/hydroxychloroquine, corticosteroids, and so on) are still used in various countries as emergency medicine. Plant-based products have been reported to be safe as alternative options for several infectious and non-infectious diseases, as many of them showed chemopreventive and chemotherapeutic effects in the case of tuberculosis, cancer, malaria, diabetes, cardiac problems, and others. Therefore, plant-derived products may play crucial roles in improving health for a variety of ailments by providing a variety of effective cures. Due to current therapeutic repurposing efforts against this newly discovered virus, we attempted to outline many plant-based compounds in this review to aid in the fight against SARS-CoV-2.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Waseem Chauhan
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Maryam S. Alhumaidi
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Khadijah A. Altammar
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Sarfuddin Azmi
- Molecular Microbiology Biology Division, Scientific Research Centre (SRC), Prince Sultan Military Medical City (PSMMC), Riyadh 11159, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Shadma Wahab
- Deparment of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Najmul Islam
- Department Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
20
|
Zehr JD, Pond SLK, Millet JK, Olarte-Castillo XA, Lucaci AG, Shank SD, Ceres KM, Choi A, Whittaker GR, Goodman LB, Stanhope MJ. Natural selection differences detected in key protein domains between non-pathogenic and pathogenic Feline Coronavirus phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523607. [PMID: 36712007 PMCID: PMC9882035 DOI: 10.1101/2023.01.11.523607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Feline Coronaviruses (FCoVs) commonly cause mild enteric infections in felines worldwide (termed Feline Enteric Coronavirus [FECV]), with around 12% developing into deadly Feline Infectious Peritonitis (FIP; Feline Infectious Peritonitis Virus [FIPV]). Genomic differences between FECV and FIPV have been reported, yet the putative genotypic basis of the highly pathogenic phenotype remains unclear. Here, we used state-of-the-art molecular evolutionary genetic statistical techniques to identify and compare differences in natural selection pressure between FECV and FIPV sequences, as well as to identify FIPV and FECV specific signals of positive selection. We analyzed full length FCoV protein coding genes thought to contain mutations associated with FIPV (Spike, ORF3abc, and ORF7ab). We identified two sites exhibiting differences in natural selection pressure between FECV and FIPV: one within the S1/S2 furin cleavage site, and the other within the fusion domain of Spike. We also found 15 sites subject to positive selection associated with FIPV within Spike, 11 of which have not previously been suggested as possibly relevant to FIP development. These sites fall within Spike protein subdomains that participate in host cell receptor interaction, immune evasion, tropism shifts, host cellular entry, and viral escape. There were 14 sites (12 novel) within Spike under positive selection associated with the FECV phenotype, almost exclusively within the S1/S2 furin cleavage site and adjacent C domain, along with a signal of relaxed selection in FIPV relative to FECV, suggesting that furin cleavage functionality may not be needed for FIPV. Positive selection inferred in ORF7b was associated with the FECV phenotype, and included 24 positively selected sites, while ORF7b had signals of relaxed selection in FIPV. We found evidence of positive selection in ORF3c in FCoV wide analyses, but no specific association with the FIPV or FECV phenotype. We hypothesize that some combination of mutations in FECV may contribute to FIP development, and that is unlikely to be one singular "switch" mutational event. This work expands our understanding of the complexities of FIP development and provides insights into how evolutionary forces may alter pathogenesis in coronavirus genomes.
Collapse
Affiliation(s)
- Jordan D. Zehr
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Sergei L. Kosakovsky Pond
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Jean K. Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78352 Jouyen-Josas, France
| | - Ximena A. Olarte-Castillo
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Alexander G. Lucaci
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Stephen D. Shank
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Kristina M. Ceres
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Annette Choi
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gary R. Whittaker
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Laura B. Goodman
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Michael J. Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
21
|
Aksono EB, Iradatya KR, Sucipto TH, Fajar NS, Yuniarti WM. Phylogenetic analysis of feline infectious peritonitis virus, feline enteric coronavirus, and severe acute respiratory syndrome coronavirus 2 of cats in Surabaya, Indonesia. Vet World 2023; 16:76-81. [PMID: 36855370 PMCID: PMC9967723 DOI: 10.14202/vetworld.2023.76-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/23/2022] [Indexed: 01/12/2023] Open
Abstract
Background and Aim Questions about the origin of coronavirus and its introduction to human beings have persisted. The detection of a variety of coronavirus related to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in bats and pangolins led to the widespread belief that SARS-CoV-2 originated from wild ani-mals and was introduced to humans through an inter-mediate animal. Thus, coronaviruses from animals, especially those in close contact with humans, have attracted particular attention. This study aimed to phylogenetically analyze feline enteric coronavirus (FECV), feline infectious peritonitis virus (FIPV), and SARS-CoV-2 found in cats in Surabaya amid the COVID-19 pandemic. The results will provide a basis for developing basic preventive and pet healthcare strategies. Materials and Methods Samples were collected on physical examinations of domestic and Persian cats (males and females) from March 2020 to March 2022. Samples were collected if there were clinical signs of FECV and FIP based on a veterinarian's diagnosis in several clinics in Surabaya. Laboratory examinations in this study were performed by reverse-transcription-polymerase chain reaction (RT-PCR) with primers for conserved regions of FIP and FECV, DNA sequencing was performed with Applied Biosystem Genetic Analyzer protocol, homology analysis was performed using Basic Local Alignment Search Tool NCBI, phylogenetic analysis was carried out with BioEdit 7.2 software, and sequences were compared with references from GenBank. Results Samples were collected from ten cats showing clinical signs of FECV and FIP, based on a veterinarian's diagnosis. On RT-PCR examinations performed with specifically designed primers for detecting FIPV in blood, peritoneal fluid, and feces, only one sample showed positivity for FIPV (1/10), namely, a peritoneal sample from a domestic cat in Surabaya. Homology analysis of the FIPV Surabaya isolate showed 98% similarity with FECV and FIPV reported in GenBank (MT444152 and DQ010921, respectively). In phylogenetic analysis, the FIPV Surabaya isolate was clustered together with SARS-CoV-2 of Clade A (MT198653) from Spain, SARS-CoV-2 Clade A (MT192765) from the USA, SARS-CoV-2 Clade D (039888) from the USA, and SARS-CoV-2 Clade F (MT020781) from Finland. Conclusion This study revealed a relationship between the SARS-CoV-2 viruses that infect humans and cats (FECV), which is an important finding for those keeping cats at home. However, this finding requires further comprehensive support from laboratory studies.
Collapse
Affiliation(s)
- Eduardus Bimo Aksono
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia,Natural Science and Engineering Institute, Universitas Airlangga, Surabaya 60115, Indonesia,Corresponding author: Eduardus Bimo Aksono, e-mail: Co-authors: KRI: , THS: , NSF: , WMY:
| | - Kania Rifa Iradatya
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Teguh Hari Sucipto
- Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Wiwik Misaco Yuniarti
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
22
|
Nandi S, Nayak BS, Khede MK, Saxena AK. Repurposing of Chemotherapeutics to Combat COVID-19. Curr Top Med Chem 2022; 22:2660-2694. [PMID: 36453483 DOI: 10.2174/1568026623666221130142517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022]
Abstract
Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is a novel strain of SARS coronavirus. The COVID-19 disease caused by this virus was declared a pandemic by the World Health Organization (WHO). SARS-CoV-2 mainly spreads through droplets sprayed by coughs or sneezes of the infected to a healthy person within the vicinity of 6 feet. It also spreads through asymptomatic carriers and has negative impact on the global economy, security and lives of people since 2019. Numerous lives have been lost to this viral infection; hence there is an emergency to build up a potent measure to combat SARS-CoV-2. In view of the non-availability of any drugs or vaccines at the time of its eruption, the existing antivirals, antibacterials, antimalarials, mucolytic agents and antipyretic paracetamol were used to treat the COVID-19 patients. Still there are no specific small molecule chemotherapeutics available to combat COVID-19 except for a few vaccines approved for emergency use only. Thus, the repurposing of chemotherapeutics with the potential to treat COVID-19 infected people is being used. The antiviral activity for COVID-19 and biochemical mechanisms of the repurposed drugs are being explored by the biological assay screening and structure-based in silico docking simulations. The present study describes the various US-FDA approved chemotherapeutics repositioned to combat COVID-19 along with their screening for biological activity, pharmacokinetic and pharmacodynamic evaluation.
Collapse
Affiliation(s)
- Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| | - Bhabani Shankar Nayak
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Affiliated to Biju Patnaik University of Technology, Odisha, 754202, India
| | - Mayank Kumar Khede
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Affiliated to Biju Patnaik University of Technology, Odisha, 754202, India
| | - Anil Kumar Saxena
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| |
Collapse
|
23
|
Cook S, Wittenburg L, Yan VC, Theil JH, Castillo D, Reagan KL, Williams S, Pham CD, Li C, Muller FL, Murphy BG. An Optimized Bioassay for Screening Combined Anticoronaviral Compounds for Efficacy against Feline Infectious Peritonitis Virus with Pharmacokinetic Analyses of GS-441524, Remdesivir, and Molnupiravir in Cats. Viruses 2022; 14:v14112429. [PMID: 36366527 PMCID: PMC9697187 DOI: 10.3390/v14112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal disease of cats that currently lacks licensed and affordable vaccines or antiviral therapeutics. The disease has a spectrum of clinical presentations including an effusive ("wet") form and non-effusive ("dry") form, both of which may be complicated by neurologic or ocular involvement. The feline coronavirus (FCoV) biotype, termed feline infectious peritonitis virus (FIPV), is the etiologic agent of FIP. The objective of this study was to determine and compare the in vitro antiviral efficacies of the viral protease inhibitors GC376 and nirmatrelvir and the nucleoside analogs remdesivir (RDV), GS-441524, molnupiravir (MPV; EIDD-2801), and β-D-N4-hydroxycytidine (NHC; EIDD-1931). These antiviral agents were functionally evaluated using an optimized in vitro bioassay system. Antivirals were assessed as monotherapies against FIPV serotypes I and II and as combined anticoronaviral therapies (CACT) against FIPV serotype II, which provided evidence for synergy for selected combinations. We also determined the pharmacokinetic properties of MPV, GS-441524, and RDV after oral administration to cats in vivo as well as after intravenous administration of RDV. We established that orally administered MPV at 10 mg/kg, GS-441524 and RDV at 25 mg/kg, and intravenously administered RDV at 7 mg/kg achieves plasma levels greater than the established corresponding EC50 values, which are sustained over 24 h for GS-441514 and RDV.
Collapse
Affiliation(s)
- Sarah Cook
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
- Correspondence:
| | - Luke Wittenburg
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Victoria C. Yan
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jacob H. Theil
- Office of Research, Campus Veterinary Services, University of California-Davis, Davis, CA 95616, USA
| | - Diego Castillo
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Krystle L. Reagan
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Sonyia Williams
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Cong-Dat Pham
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chun Li
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Florian L. Muller
- Sporos Bioventures, @JLABS Suite 201, 2450 Holcombe Blvd, Houston, TX 77021, USA
| | - Brian G. Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
24
|
Cook SE, Vogel H, Castillo D, Olsen M, Pedersen N, Murphy BG. Investigation of monotherapy and combined anticoronaviral therapies against feline coronavirus serotype II in vitro. J Feline Med Surg 2022; 24:943-953. [PMID: 34676775 PMCID: PMC10812298 DOI: 10.1177/1098612x211048647] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Feline infectious peritonitis (FIP), caused by genetic mutants of feline enteric coronavirus known as FIPV, is a highly fatal disease of cats with no currently available vaccine or US Food and Drug Administration-approved cure. Dissemination of FIPV in affected cats results in a range of clinical signs, including cavitary effusions, anorexia, fever and lesions of pyogranulomatous vasculitis and perivasculitis, with or without central nervous system or ocular involvement. The objectives of this study were to screen an array of antiviral compounds for anti-FIPV (serotype II) activity, determine cytotoxicity safety profiles of identified compounds with anti-FIPV activity and strategically combine identified monotherapies to assess compound synergy against FIPV in vitro. Based upon clinically successful combination treatment strategies for human patients with HIV and hepatitis C virus infections, we hypothesized that a combined anticoronaviral therapy approach featuring concurrent multiple mechanisms of drug action would result in an additive or synergistic antiviral effect. METHODS This study screened 90 putative antiviral compounds for efficacy and cytotoxicity using a multimodal in vitro strategy, including plaque bioassays, real-time RT-PCR viral inhibition and cytotoxicity assays. RESULTS Through this process, we identified 26 compounds with effective antiviral activity against FIPV, representing a variety of drug classes and mechanisms of antiviral action. The most effective compounds include GC376, GS-441524, EIDD2081 and EIDD2931. We documented antiviral efficacy for combinations of antiviral agents, with a few examined drug combinations demonstrating evidence of limited synergistic antiviral activity. CONCLUSIONS AND RELEVANCE Although evidence of compound synergy was identified for several combinations of antiviral agents, monotherapies were ultimately determined to be the most effective in the inhibition of viral transcription.
Collapse
Affiliation(s)
- Sarah E Cook
- Graduate Group Integrative Pathobiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Helena Vogel
- School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Diego Castillo
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Glendale, AZ, USA
| | - Niels Pedersen
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Brian G Murphy
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
25
|
Cimolai N. Immunophenotyping of SARS-CoV-2 and vaccine design. Vaccine 2022; 40:3985-3986. [PMID: 35717108 PMCID: PMC9212314 DOI: 10.1016/j.vaccine.2022.04.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/25/2022] [Indexed: 12/26/2022]
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Canada; Children's and Women's Health Centre of British Columbia, 4480 Oak Street, Vancouver V6H3V4, B.C., Canada.
| |
Collapse
|
26
|
Cook S, Castillo D, Williams S, Haake C, Murphy B. Serotype I and II Feline Coronavirus Replication and Gene Expression Patterns of Feline Cells-Building a Better Understanding of Serotype I FIPV Biology. Viruses 2022; 14:1356. [PMID: 35891338 PMCID: PMC9320447 DOI: 10.3390/v14071356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Feline infectious peritonitis (FIP) is a disease of domestic cats caused by the genetic variant of the feline coronavirus (FCoV) and feline infectious peritonitis virus (FIPV), currently grouped into two serotypes, I and II. Although serotype I FIPV is more prevalent in cats with FIP, serotype II has been more extensively studied in vitro due to the relative ease in propagating this viral serotype in culture systems. As a result, more is known about serotype II FIPV than the more biologically prevalent serotype I. The primary cell receptor for serotype II has been determined, while it remains unknown for serotype I. The recent development of a culture-adapted feline cell line that more effectively propagates serotype I FIPV, FCWF-4 CU, derived from FCWF-4 cells available through the ATCC, offers the potential for an improved understanding of serotype I FIPV biology. To learn more about FIPV receptor biology, we determined targeted gene expression patterns in feline cells variably permissive to replication of serotype I or II FIPV. We utilized normal feline tissues to determine the immunohistochemical expression patterns of two known coronavirus receptors, ACE2 and DC-SIGN. Lastly, we compared the global transcriptomes of the two closely related FCWF-4 cell lines and identified viral transcripts with potential importance for the differential replication kinetics of serotype I FIPV.
Collapse
Affiliation(s)
- Sarah Cook
- Graduate Group Integrative Pathobiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Diego Castillo
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (D.C.); (S.W.); (B.M.)
| | - Sonyia Williams
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (D.C.); (S.W.); (B.M.)
| | - Christine Haake
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Brian Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (D.C.); (S.W.); (B.M.)
| |
Collapse
|
27
|
Yang H, Peng Q, Lang Y, Du S, Cao S, Wu R, Zhao Q, Huang X, Wen Y, Lin J, Zhao S, Yan Q. Phylogeny, Evolution, and Transmission Dynamics of Canine and Feline Coronaviruses: A Retro-Prospective Study. Front Microbiol 2022; 13:850516. [PMID: 35558134 PMCID: PMC9087556 DOI: 10.3389/fmicb.2022.850516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Canine coronavirus (CCoV) and feline coronavirus (FCoV) are endemic in companion animals. Due to their high mutation rates and tendencies of genome recombination, they pose potential threats to public health. The molecular characteristics and genetic variation of both CCoV and FCoV have been thoroughly studied, but their origin and evolutionary dynamics still require further assessment. In the present study, we applied a comprehensive approach and analyzed the S, M, and N genes of different CCoV/FCoV isolates. Discriminant analysis of principal components (DAPC) and phylogenetic analysis showed that the FCoV sequences from Chinese isolates were closely related to the FCoV clusters in Netherlands, while recombination analysis indicated that of S N-terminal domain (NTD) was the most susceptible region of mutation, and recombination of this region is an important cause of the emergence of new lineages. Natural selection showed that CCoV and FCoV subgenotypes were in selection constraints, and CCoV-IIb was in strong positive selection. Phylodynamics showed that the mean evolution rate of S1 genes of CCoV and FCoV was 1.281 × 10–3 and 1.244 × 10–3 subs/site/year, respectively, and the tMRCA of CCoV and FCoV was about 1901 and 1822, respectively. Taken together, our study centered on tracing the origin of CCoV/FCoV and provided ample insights into the phylogeny and evolution of canine and feline coronaviruses.
Collapse
Affiliation(s)
- Hu Yang
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qianling Peng
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yifei Lang
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - SenYan Du
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - SanJie Cao
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juchun Lin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Department of Basic Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shan Zhao
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
28
|
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic demonstrates the threat posed by novel coronaviruses to human health. Coronaviruses share a highly conserved cell entry mechanism mediated by the spike protein, the sole product of the S gene. The structural dynamics by which the spike protein orchestrates infection illuminate how antibodies neutralize virions and how S mutations contribute to viral fitness. Here, we review the process by which spike engages its proteinaceous receptor, angiotensin converting enzyme 2 (ACE2), and how host proteases prime and subsequently enable efficient membrane fusion between virions and target cells. We highlight mutations common among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern and discuss implications for cell entry. Ultimately, we provide a model by which sarbecoviruses are activated for fusion competency and offer a framework for understanding the interplay between humoral immunity and the molecular evolution of the SARS-CoV-2 Spike. In particular, we emphasize the relevance of the Canyon Hypothesis (M. G. Rossmann, J Biol Chem 264:14587-14590, 1989) for understanding evolutionary trajectories of viral entry proteins during sustained intraspecies transmission of a novel viral pathogen.
Collapse
Affiliation(s)
- Kyle A. Wolf
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Interdiscipinary Ph.D. Program in Structural and Computational Biology and Quantitative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason C. Kwan
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeremy P. Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
- Center for Excellence in Emerging Viral Threats, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
29
|
Exosomal mediated signal transduction through artificial microRNA (amiRNA): A potential target for inhibition of SARS-CoV-2. Cell Signal 2022; 95:110334. [PMID: 35461900 PMCID: PMC9022400 DOI: 10.1016/j.cellsig.2022.110334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/27/2022]
Abstract
Exosome trans-membrane signals provide cellular communication between the cells through transport and/or receiving the signal by molecule, change the functional metabolism, and stimulate and/or inhibit receptor signal complexes. COVID19 genetic transformations are varied in different geographic positions, and single nucleotide polymorphic lineages were reported in the second waves due to the fast mutational rate and adaptation. Several vaccines were developed and in treatment practice, but effective control has yet to reach in cent presence. It was initially a narrow immune-modulating protein target. Controlling these diverse viral strains may inhibit their transuding mechanisms primarily to target RNA genes responsible for COVID19 transcription. Exosomal miRNAs are the main sources of transmembrane signals, and trans-located miRNAs can directly target COVID19 mRNA transcription. This review discussed targeted viral transcription by delivering the artificial miRNA (amiRNA) mediated exosomes in the infected cells and significant resources of exosome and their efficacy.
Collapse
|
30
|
Sha X, Li Y, Huang J, Zhou Q, Song X, Zhang B. Detection and molecular characteristics of canine coronavirus in Chengdu city, Southwest China from 2020 to 2021. Microb Pathog 2022; 166:105548. [DOI: 10.1016/j.micpath.2022.105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/27/2022] [Accepted: 04/17/2022] [Indexed: 11/26/2022]
|
31
|
Fang M, Tang X, Zhang J, Liao Z, Wang G, Cheng R, Zhang Z, Zhao H, Wang J, Tan Z, Kamau PM, Lu Q, Liu Q, Deng G, Lai R. An inhibitor of leukotriene-A 4 hydrolase from bat salivary glands facilitates virus infection. Proc Natl Acad Sci U S A 2022; 119:e2110647119. [PMID: 35238649 PMCID: PMC8915838 DOI: 10.1073/pnas.2110647119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
SignificanceAn immunosuppressant protein (MTX), which facilitates virus infection by inhibiting leukotriene A4 hydrolase (LTA4H) to produce the lipid chemoattractant leukotriene B4 (LTB4), was identified and characterized from the submandibular salivary glands of the bat Myotis pilosus. To the best of our knowledge, this is a report of an endogenous LTA4H inhibitor in animals. MTX was highly concentrated in the bat salivary glands, suggesting a mechanism for the generation of immunological privilege and immune tolerance and providing evidence of viral shedding through oral secretions. Moreover, given that the immunosuppressant MTX selectively inhibited the proinflammatory activity of LTA4H, without affecting its antiinflammatory activity, MTX might be a potential candidate for the development of antiinflammatory drugs by targeting the LTA4-LTA4H-LTB4 inflammatory axis.
Collapse
Affiliation(s)
- Mingqian Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
| | - Xiaopeng Tang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
| | - Juan Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhiyi Liao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Ruomei Cheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiye Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Hongwen Zhao
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jing Wang
- Department of Laboratory Diagnosis, Chongqing Public Health Medical Center, Public Health Hospital of Southwest University, Shapingba District, Chongqing 400038, China
| | - Zhaoxia Tan
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Qiumin Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Qi Liu
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guohong Deng
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| |
Collapse
|
32
|
Sweet AN, André NM, Stout AE, Licitra BN, Whittaker GR. Clinical and Molecular Relationships between COVID-19 and Feline Infectious Peritonitis (FIP). Viruses 2022; 14:481. [PMID: 35336888 PMCID: PMC8954060 DOI: 10.3390/v14030481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 01/08/2023] Open
Abstract
The emergence of severe acute respiratory syndrome 2 (SARS-CoV-2) has led the medical and scientific community to address questions surrounding the pathogenesis and clinical presentation of COVID-19; however, relevant clinical models outside of humans are still lacking. In felines, a ubiquitous coronavirus, described as feline coronavirus (FCoV), can present as feline infectious peritonitis (FIP)-a leading cause of mortality in young cats that is characterized as a severe, systemic inflammation. The diverse extrapulmonary signs of FIP and rapidly progressive disease course, coupled with a closely related etiologic agent, present a degree of overlap with COVID-19. This paper will explore the molecular and clinical relationships between FIP and COVID-19. While key differences between the two syndromes exist, these similarities support further examination of feline coronaviruses as a naturally occurring clinical model for coronavirus disease in humans.
Collapse
Affiliation(s)
- Arjun N. Sweet
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Nicole M. André
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| | - Alison E. Stout
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| | - Beth N. Licitra
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| | - Gary R. Whittaker
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| |
Collapse
|
33
|
Pathogenesis and mutagenesis of SARS-CoV-2. CORONAVIRUS DRUG DISCOVERY 2022. [PMCID: PMC9217739 DOI: 10.1016/b978-0-323-85156-5.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious disease characterized by higher leukocyte numbers, acute respiratory distress, and elevated levels of plasma proinflammatory cytokines. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, begins its pathogenesis by the binding of the virus to the host's angiotensin-converting enzyme 2 (ACE-2) receptor and then replication. The various replicated viruses then reinfect other cells and organs with ACE-2 receptor and further wreak havoc and could later result in multisystem organ failure. Presently, efforts are on the way to develop vaccines and drugs for this virus. But the current spike in COVID-19 cases linked to mutation in the virus genome and those of its enzymes is a cause of concern. Studies conducted by some authors have identified 6 major clads (basal, D614G, L84S, L3606F, D448del, and G392D), out of which D614G (a G-to-A base change at position 23403 in the Wuhan reference strain) was found to be the most reoccurring clad. This chapter examines all of these.
Collapse
|
34
|
Zhou H, Yang J, Zhou C, Chen B, Fang H, Chen S, Zhang X, Wang L, Zhang L. A Review of SARS-CoV2: Compared With SARS-CoV and MERS-CoV. Front Med (Lausanne) 2021; 8:628370. [PMID: 34950674 PMCID: PMC8688360 DOI: 10.3389/fmed.2021.628370] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has been spreading rapidly in China and the Chinese government took a series of policies to control the epidemic. Studies found that severe COVID-19 is characterized by pneumonia, lymphopenia, exhausted lymphocytes and a cytokine storm. Studies have showen that SARS-CoV2 has significant genomic similarity to the severe acute respiratory syndrome (SARS-CoV), which was a pandemic in 2002. More importantly, some diligent measures were used to limit its spread according to the evidence of hospital spread. Therefore, the Public Health Emergency of International Concern (PHEIC) has been established by the World Health Organization (WHO) with strategic objectives for public health to curtail its impact on global health and economy. The purpose of this paper is to review the transmission patterns of the three pneumonia: SARS-CoV2, SARS-CoV, and MERS-CoV. We compare the new characteristics of COVID-19 with those of SARS-CoV and MERS-CoV.
Collapse
Affiliation(s)
- Huan Zhou
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,School of Pharmacy, Bengbu Medical College, Bengbu, China.,School of Public Foundation, Bengbu Medical University, Bengbu, China
| | - Junfa Yang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Chang Zhou
- Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Fang
- Department of Pharmacology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Shuo Chen
- Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xianzheng Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Linding Wang
- Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
35
|
Karthika C, Swathy Krishna R, Rahman MH, Akter R, Kaushik D. COVID-19, the firestone in 21st century: a review on coronavirus disease and its clinical perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64951-64966. [PMID: 34599450 PMCID: PMC8486628 DOI: 10.1007/s11356-021-16654-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/17/2021] [Indexed: 04/16/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak began in late 2019 in Wuhan, China, and have since spread globally. Deep sequencing analysis identified the disease within a few weeks, and on February 11, the World Health Organization (WHO) named it "COVID-19 caused by SARS-CoV-2." SARS-CoV-2 was declared a global pandemic by the WHO in March 2020. Coronavirus disease has become a global challenge for researchers and health care workers, affecting over 174 million people and causing over 3 million deaths. Because of the widespread nature, extensive measures are being taken to reduce person-to-person contact, and special precautions are being taken to prevent the transmission of this infection to vulnerable populations such as geriatrics, pediatrics, and health care professionals. We summarized the genesis of COVID-19 spread, its pathology, clinical perspectives, and the use of natural ingredients as a possible cure for COVID-19 in this review. This article has highlighted information about current vaccines approved for emergency use as well as those in various stages of clinical trials. Vaccine availability around the world is a promising development in the fight against the SARS-CoV-2 virus. We conducted a narrative review to present the current state and research on this situation, specific diagnosis, clinical manifestation, emergency approaches, herbal-based remedies, and COVID vaccines.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - R Swathy Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka, 1100, Bangladesh
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
36
|
Zhou Q, Li Y, Huang J, Fu N, Song X, Sha X, Zhang B. Prevalence and molecular characteristics of feline coronavirus in southwest China from 2017 to 2020. J Gen Virol 2021; 102. [PMID: 34524074 DOI: 10.1099/jgv.0.001654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Feline coronavirus (FCoV) is the causative agent of feline infectious peritonitis and diarrhoea in kittens worldwide. In this study, a total of 173 feline diarrhoeal faecal and ascetic samples were collected from 15 catteries and six veterinary hospitals in southwest China from 2017 to 2020. FCoV was detected in 80.35 % (139/173) of the samples using the RT-nPCR method; these included infections with 122 type I FCoV and 57 type II FCoV. Interestingly, 51 cases had co-infection with types I and II, the first such report in mainland China. To further analyse the genetic diversity of FCoV, we amplified 23 full-length spike (S) genes, including 18 type I and five type II FCoV. The type I FCoV and type II FCoV strains shared 85.5-98.7% and 97.4-98.9% nucleotide (nt) sequence identities between one another, respectively. The N-terminal domain (NTD) of 23 FCoV strains showed a high degree of variation (73.6-80.3 %). There was six type I FCoV strains with two amino acid insertions (159HL160) in the NTD. In addition, 18 strains of type I FCoV belonged to the Ie cluster, and five strains of type II FCoV were in the IIb cluster based on phylogenetic analysis. Notably, it was first time that two type I FCoV strains had recombination in the NTD, and the recombination regions was located 140-857 nt of the S gene. This study constitutes a systematic investigation of the current infection status and molecular characteristics of FCoV in southwest China.
Collapse
Affiliation(s)
- Qun Zhou
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
| | - Yan Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
- Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, PR China
| | - Jian Huang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
- Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, PR China
| | - Nengsheng Fu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
| | - Xin Song
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
| | - Xue Sha
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
| | - Bin Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
- Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, PR China
| |
Collapse
|
37
|
Gunathilake TMSU, Ching YC, Uyama H, Chuah CH. Nanotherapeutics for treating coronavirus diseases. J Drug Deliv Sci Technol 2021; 64:102634. [PMID: 34127930 PMCID: PMC8190278 DOI: 10.1016/j.jddst.2021.102634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Viral diseases have recently become a threat to human health and rapidly become a significant cause of mortality with a continually exacerbated unfavorable socio-economic impact. Coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), have threatened human life, with immense accompanying morbidity rates; the COVID-19 (caused by SARS-CoV-2) epidemic has become a severe threat to global public health. In addition, the design process of antiviral medications usually takes years before the treatments can be made readily available. Hence, it is necessary to invest scientifically and financially in a technology platform that can then be quickly repurposed on demand to be adequately positioned for this kind of pandemic situation through lessons learned from the previous pandemics. Nanomaterials/nanoformulations provide such platform technologies, and a proper investigation into their basic science and biological interactions would be of great benefit for potential vaccine and therapeutic development. In this respect, intelligent and advanced nano-based technologies provide specific physico-chemical properties, which can help fix the key issues related to the treatments of viral infections. This review aims to provide an overview of the latest research on the effective use of nanomaterials in the treatment of coronaviruses. Also raised are the problems, perspectives of antiviral nanoformulations, and the possibility of using nanomaterials effectively against current pandemic situations.
Collapse
Affiliation(s)
- Thennakoon M Sampath U Gunathilake
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yern Chee Ching
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Cheng Hock Chuah
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Mba IE, Sharndama HC, Osondu-chuka GO, Okeke OP. Immunobiology and nanotherapeutics of severe acute respiratory syndrome 2 (SARS-CoV-2): a current update. Infect Dis (Lond) 2021; 53:559-580. [PMID: 33905282 PMCID: PMC8095391 DOI: 10.1080/23744235.2021.1916071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constitutes the most significant global public health challenge in a century. It has reignited research interest in coronavirus. While little information is available, research is currently in progress to comprehensively understand the general biology and immune response mechanism against SARS-CoV-2. The spike proteins (S protein) of SARS-CoV-2 perform a crucial function in viral infection establishment. ACE2 and TMPRSS2 play a pivotal role in viral entry. Upon viral entry, the released pro-inflammatory proteins (cytokines and chemokines) cause the migration of the T cells, monocytes, and macrophages to the infection site. IFNϒ released by T cells initiates a loop of pro-inflammatory feedback. The inflammatory state may further enhance with an increase in immune dysfunction responsible for the infection's progression. A treatment approach that prevents ACE2-mediated viral entry and reduces inflammatory response is a crucial therapeutic intervention strategy, and nanomaterials and their conjugates are promising candidates. Nanoparticles can inhibit viral entry and replication. Nanomaterials have also found application in targeted drug delivery and also in developing a vaccine against SARS-CoV-2. Here, we briefly summarize the origin, transmission, and clinical features of SARS-CoV-2. We then discussed the immune response mechanisms of SARS-CoV-2. Finally, we further discussed nanotechnology's potentials as an intervention strategy against SARS-CoV-2 infection. All these understandings will be crucial in developing therapeutic strategies against SARS-CoV-2.
Collapse
|
39
|
Guo YY, Wang PH, Pan YQ, Shi RZ, Li YQ, Guo F, Xing L. The Characteristics of Spike Glycoprotein Gene of Swine Acute Diarrhea Syndrome Coronavirus Strain CH/FJWT/2018 Isolated in China. Front Vet Sci 2021; 8:687079. [PMID: 34368275 PMCID: PMC8339410 DOI: 10.3389/fvets.2021.687079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Swine acute diarrhea syndrome (SADS) is a highly contagious infectious disease characterized by acute vomiting and watery diarrhea in neonatal piglets. The causative agent for SADS is the swine acute diarrhea syndrome coronavirus (SADS-CoV), an alphacoronavirus in the family Coronaviridae. Currently, SADS-CoV was identified only in Guangdong and Fujian provinces of China, not in any other regions or countries in the world. To explore the genetic diversity of SADS-CoV isolates, herein we comparatively analyzed 44 full-length genomes of viruses isolated in Guangdong and Fujian provinces during 2017-2019. The spike glycoprotein gene of SADS-CoV strain CH/FJWT/2018 isolated in Fujian province is distinct from that of other viral isolates in either spike glycoprotein gene-based phylogenetic analysis or whole genome-based gene similarity analysis. Moreover, at least 7 predicted linear B cell epitopes in the spike glycoprotein of CH/FJWT/2018 would be affected by amino acid variations when compared with a representative virus isolated in Guangdong province. The spike glycoprotein of coronaviruses determines viral host range and tissue tropism during virus infection via specific interactions with the cellular receptor and also plays critical roles in eliciting the production of neutralizing antibodies. Since SADS-CoVs have a broad cell tropism, the results in this report further emphasize that the spike glycoprotein gene is a pivotal target in the surveillance of SADS-CoV.
Collapse
Affiliation(s)
- Yan-Yan Guo
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yuan-Qing Pan
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Rui-Zhu Shi
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Ya-Qian Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Fan Guo
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.,Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China.,Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan, China
| |
Collapse
|
40
|
Kumavath R, Barh D, Andrade BS, Imchen M, Aburjaile FF, Ch A, Rodrigues DLN, Tiwari S, Alzahrani KJ, Góes-Neto A, Weener ME, Ghosh P, Azevedo V. The Spike of SARS-CoV-2: Uniqueness and Applications. Front Immunol 2021; 12:663912. [PMID: 34305894 PMCID: PMC8297464 DOI: 10.3389/fimmu.2021.663912] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
The Spike (S) protein of the SARS-CoV-2 virus is critical for its ability to attach and fuse into the host cells, leading to infection, and transmission. In this review, we have initially performed a meta-analysis of keywords associated with the S protein to frame the outline of important research findings and directions related to it. Based on this outline, we have reviewed the structure, uniqueness, and origin of the S protein of SARS-CoV-2. Furthermore, the interactions of the Spike protein with host and its implications in COVID-19 pathogenesis, as well as drug and vaccine development, are discussed. We have also summarized the recent advances in detection methods using S protein-based RT-PCR, ELISA, point-of-care lateral flow immunoassay, and graphene-based field-effect transistor (FET) biosensors. Finally, we have also discussed the emerging Spike mutants and the efficacy of the Spike-based vaccines against those strains. Overall, we have covered most of the recent advances on the SARS-CoV-2 Spike protein and its possible implications in countering this virus.
Collapse
Affiliation(s)
- Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Silva Andrade
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Brazil
| | - Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Flavia Figueira Aburjaile
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Athira Ch
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Diego Lucas Neres Rodrigues
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Aristóteles Góes-Neto
- Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
41
|
The Population Diversity of Candidate Genes for Resistance/Susceptibility to Coronavirus Infection in Domestic Cats: An Inter-Breed Comparison. Pathogens 2021; 10:pathogens10060778. [PMID: 34205589 PMCID: PMC8234589 DOI: 10.3390/pathogens10060778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
Feline coronavirus (FCoV) is a complex pathogen causing feline infectious peritonitis (FIP). Host genetics represents a factor contributing to the pathogenesis of the disease. Differential susceptibility of various breeds to FIP was reported with controversial results. The objective of this study was to compare the genetic diversity of different breeds on a panel of candidate genes potentially affecting FCoV infection. One hundred thirteen cats of six breeds were genotyped on a panel of sixteen candidate genes. SNP allelic/haplotype frequencies were calculated; pairwise FST and molecular variance analyses were performed. Principal coordinate (PCoA) and STRUCTURE analyses were used to infer population structure. Interbreed differences in allele frequencies were observed. PCoA analysis performed for all genes of the panel indicated no population substructure. In contrast to the full marker set, PCoA of SNP markers associated with FCoV shedding (NCR1 and SLX4IP) showed three clusters containing only alleles associated with susceptibility to FCoV shedding, homozygotes and heterozygotes for the susceptibility alleles, and all three genotypes, respectively. Each cluster contained cats of multiple breeds. Three clusters of haplotypes were identified by PCoA, two clusters by STRUCTURE. Haplotypes of a single gene (SNX5) differed significantly between the PCoA clusters.
Collapse
|
42
|
Beatty JA, Hartmann K. Advances in Feline Viruses and Viral Diseases. Viruses 2021; 13:v13050923. [PMID: 34067533 PMCID: PMC8156448 DOI: 10.3390/v13050923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Affiliation(s)
- Julia A. Beatty
- Department of Veterinary Clinical Sciences and Centre for Companion Animal Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Hong Kong, China
- Correspondence:
| | - Katrin Hartmann
- Medizinische Kleintierklinik, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| |
Collapse
|
43
|
Mubarik S, Liu X, Eshak ES, Liu K, Liu Q, Wang F, Shi F, Wen H, Bai J, Yu C, Cao J. The Association of Hypertension With the Severity of and Mortality From the COVID-19 in the Early Stage of the Epidemic in Wuhan, China: A Multicenter Retrospective Cohort Study. Front Med (Lausanne) 2021; 8:623608. [PMID: 34055822 PMCID: PMC8149896 DOI: 10.3389/fmed.2021.623608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/12/2021] [Indexed: 01/15/2023] Open
Abstract
Background: Hypertension may affect the prognosis of COVID-19 illness. We analyzed the epidemiological and clinical characteristics associated with the disease severity and mortality in hypertensive vs. non-hypertensive deceased COVID-19 patients. Methods: We included all the deceased patients with laboratory-confirmed COVID-19 admitted to >200 health facilities in Wuhan between December 1 and February 24, 2020. The median survival time in COVID-19 patients with and without hypertension, the association of hypertension with the disease severity, and the risk factors associated with the COVID-19 mortality stratified by the hypertension status were assessed using the Kaplan-Meier survival analysis, logistic regression, and Cox proportional regression, respectively before and after the propensity score-matching (PS) for age and sex. Results: The prevalence of hypertension in the studied 1,833 COVID-19 patients was 40.5%. Patients with hypertension were more likely to have severe COVID-19 illness than patients without hypertension; the PS-matched multivariable-adjusted odds ratio (95% CI) was 2.44 (1.77-3.08). Moreover, the median survival time in the hypertension group was 3-5 days shorter than the non-hypertension group. There was a 2-fold increased risk of COVID-19 mortality in the hypertension group compared with the non-hypertension group; the PS-matched multivariable-adjusted hazard ratio (HR) = 2.04 (1.61-2.72), and the significant increased risk of COVID-19 mortality in the moderate vs. mild COVID-19 illness was confined to patients with hypertension. Additionally, the history and the number of underlying chronic diseases, occupation, and residential location showed stronger associations with the COVID-19 mortality among patients with hypertension than patients without hypertension. Conclusion: Hypertension was associated with the severity and mortality of COVID-19 illness.
Collapse
Affiliation(s)
- Sumaira Mubarik
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| | - Xiaoxue Liu
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| | - Ehab S. Eshak
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita-shi, Osaka, Japan
- Public Health and Community Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | - Keyang Liu
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita-shi, Osaka, Japan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Qing Liu
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| | - Fang Wang
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| | - Fang Shi
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| | - Haoyu Wen
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| | - Jianjun Bai
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| | - Chuanhua Yu
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
- Global Health Institute, Wuhan University, Wuhan, China
| | - Jinhong Cao
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
44
|
Millet JK, Jaimes JA, Whittaker GR. Molecular diversity of coronavirus host cell entry receptors. FEMS Microbiol Rev 2021; 45:fuaa057. [PMID: 33118022 PMCID: PMC7665467 DOI: 10.1093/femsre/fuaa057] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
Coronaviruses are a group of viruses causing disease in a wide range of animals, and humans. Since 2002, the successive emergence of bat-borne severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), swine acute diarrhea syndrome coronavirus (SADS-CoV) and SARS-CoV-2 has reinforced efforts in uncovering the molecular and evolutionary mechanisms governing coronavirus cell tropism and interspecies transmission. Decades of studies have led to the discovery of a broad set of carbohydrate and protein receptors for many animal and human coronaviruses. As the main determinant of coronavirus entry, the spike protein binds to these receptors and mediates membrane fusion. Prone to mutations and recombination, spike evolution has been studied extensively. The interactions between spike proteins and their receptors are often complex and despite many advances in the field, there remains many unresolved questions concerning coronavirus tropism modification and cross-species transmission, potentially leading to delays in outbreak responses. The emergence of SARS-CoV-2 underscores the need to address these outstanding issues in order to better anticipate new outbreaks. In this review, we discuss the latest advances in the field of coronavirus receptors emphasizing on the molecular and evolutionary processes that underlie coronavirus receptor usage and host range expansion.
Collapse
Affiliation(s)
- Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas, France
| | - Javier A Jaimes
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
- Master of Public Health Program, Cornell University, Ithaca, NY 14853, USA
- Cornell Feline Health Center, Ithaca, NY 14853, USA
| |
Collapse
|
45
|
Genome-wide comparison of coronaviruses derived from veterinary animals: A canine and feline perspective. Comp Immunol Microbiol Infect Dis 2021; 76:101654. [PMID: 33957463 DOI: 10.1016/j.cimid.2021.101654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022]
Abstract
Feline- and canine-derived coronaviruses (FCoVs and CCoVs) are widespread among dog and cat populations. This study was to understand the route of disease origin and viral transmission in veterinary animals and in human through comparative pan-genomic analysis of coronavirus sequences, especially retrieved from genomes of FCoV and CCoV. Average nucleotide identity based on complete genomes might clustered CoV strains according to their infected host, with an exception of type II of CCoV (accession number KC175339) that was clustered closely to virulent FCoVs. In contrast, the hierarchical clustering based on gene repertories retrieved from pan-genome analysis might divided the examined coronaviruses into host-independent clusters, and formed obviously the cluster of Alphacoronaviruses into sub-clusters of feline-canine, only feline, feline-canine-human coronavirus. Also, functional analysis of genomic subsets might help to divide FCoV and CCoV pan-genomes into (i) clusters of core genes encoding spike, membrane, nucleocapsid proteins, and ORF1ab polyprotein; (ii) clusters of core-like genes encoding nonstructural proteins; (iii) clusters of accessory genes encoding the ORF1A; and (iv) two singleton genes encoding nonstructural protein and polyprotein 1ab. Seven clusters of gene repertories were categorized as common to the FCoV and/or CCoV genomes including pantropic and high virulent strains, illustrating that distinct core-like genes/accessory genes concerning to their pathogenicity should be exploited in further biotype analysis of new isolate. In conclusion, the phylogenomic analyses have allowed the identification of trends in the viral genomic data, especially in developing a specific control measures against coronavirus disease, such as the selection of good markers for differentiating new species from common and/or pantropic isolates.
Collapse
|
46
|
FELINE CORONAVIRUS AND FELINE INFECTIOUS PERITONITIS IN NONDOMESTIC FELID SPECIES. J Zoo Wildl Med 2021; 52:14-27. [PMID: 33827157 DOI: 10.1638/2020-0134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 11/21/2022] Open
Abstract
Feline coronavirus (FCoV) is reported worldwide and known to cause disease in domestic and nondomestic felid species. Although FCoV often results in mild to inapparent disease, a small subset of cats succumb to the fatal, systemic disease feline infectious peritonitis (FIP). An outbreak of FIP in Cheetahs (Acinonyx jubatus) in a zoological collection demonstrated the devastating effect of FCoV introduction into a naïve group of animals. In addition to cheetahs, FIP has been described in European wildcats (Felis silvestris), a tiger (Panthera tigris), a mountain lion (Puma concolor), and lion (Panthera leo). This paper reviews the reported cases of FIP in nondomestic felid species and highlights the surveys of FCoV in populations of nondomestic felids.
Collapse
|
47
|
Pal N, Mavi AK, Kumar S, Kumar U, Joshi MD, Saluja R. Current updates on adaptive immune response by B cell and T cell stimulation and therapeutic strategies for novel coronavirus disease 2019 (COVID-19) treatment. Heliyon 2021; 7:e06894. [PMID: 33937545 PMCID: PMC8076978 DOI: 10.1016/j.heliyon.2021.e06894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/09/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
The prevalence of COVID-19 continues to rise with more than 114,315,846 million confirmed cases and 2,539,427 deaths worldwide by 3 March 2021 and this number kept on increasing day by day. There is no clear therapeutic treatment or vaccine available for COVID-19 till date and by seeing such a high rise in the cases of COVID-19 on daily basis, it would have been necessary to implement precautions and hygienic measures to monitor and reduce human-to-human transmission of SARS-CoV-2 before there is any successful intervention/treatment available. Currently, several studies demonstrated the important improvements in both the innate and adaptive immune systems of COVID-19 patients. In particular, pre-existing research, on immune response to B cell and T cells are highlighting that pre-existing immunity exists in about 90% of the general population because of previous exposure to CoVs and having immunity against these CoVs. Although it is not clear from, the current studies on COVID-19 but it assumed that, it might have implication to COVID-19 severity and could play an important role in treatment or vaccine development against COVID-19. This review summarizes the information from occurrence of SARS-CoV-2 to its pathogenesis, transmission, adaptive immune response with respect to T cell and B cell stimulation and therapeutic interventions/treatment against COVID-19.
Collapse
Affiliation(s)
- Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, GB Pant University of Agriculture and Technology, Pantnagar, 263145, India
| | - Anil Kumar Mavi
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, 110007, India
| | - Sundip Kumar
- Department of Molecular Biology and Genetic Engineering, GB Pant University of Agriculture and Technology, Pantnagar, 263145, India
| | - Umesh Kumar
- School of Biosciences, IMS Ghaziabad University Courses Campus, Uttar Pradesh, 201015, India
| | - Maya Datt Joshi
- Department of Biotechnology, Shobhit Institute of Engineering & Technology (Deemed to be University), Meerut, 250110, India
| | - Rohit Saluja
- Department of Biochemistry, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, 508126, India
| |
Collapse
|
48
|
Colina SE, Serena MS, Echeverría MG, Metz GE. Clinical and molecular aspects of veterinary coronaviruses. Virus Res 2021; 297:198382. [PMID: 33705799 PMCID: PMC7938195 DOI: 10.1016/j.virusres.2021.198382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/20/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
Coronaviruses are a large group of RNA viruses that infect a wide range of animal species. The replication strategy of coronaviruses involves recombination and mutation events that lead to the possibility of cross-species transmission. The high plasticity of the viral receptor due to a continuous modification of the host species habitat may be the cause of cross-species transmission that can turn into a threat to other species including the human population. The successive emergence of highly pathogenic coronaviruses such as the Severe Acute Respiratory Syndrome (SARS) in 2003, the Middle East Respiratory Syndrome Coronavirus in 2012, and the recent SARS-CoV-2 has incentivized a number of studies on the molecular basis of the coronavirus and its pathogenesis. The high degree of interrelatedness between humans and wild and domestic animals and the modification of animal habitats by human urbanization, has favored new viral spreads. Hence, knowledge on the main clinical signs of coronavirus infection in the different hosts and the distinctive molecular characteristics of each coronavirus is essential to prevent the emergence of new coronavirus diseases. The coronavirus infections routinely studied in veterinary medicine must be properly recognized and diagnosed not only to prevent animal disease but also to promote public health.
Collapse
Affiliation(s)
- Santiago Emanuel Colina
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - María Soledad Serena
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - María Gabriela Echeverría
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - Germán Ernesto Metz
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina.
| |
Collapse
|
49
|
Rahimi G, Rahimi B, Panahi M, Abkhiz S, Saraygord-Afshari N, Milani M, Alizadeh E. An overview of Betacoronaviruses-associated severe respiratory syndromes, focusing on sex-type-specific immune responses. Int Immunopharmacol 2021; 92:107365. [PMID: 33440306 PMCID: PMC7797024 DOI: 10.1016/j.intimp.2021.107365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 01/25/2023]
Abstract
Emerging beta-coronaviruses (β-CoVs), including Severe Acute Respiratory Syndrome CoV-1 (SARS-CoV-1), Middle East Respiratory Syndrome-CoV (MERS-CoV), and Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2, the cause of COVID19) are responsible for acute respiratory illnesses in human. The epidemiological features of the SARS, MERS, and new COVID-19 have revealed sex-dependent variations in the infection, frequency, treatment, and fatality rates of these syndromes. Females are likely less susceptible to viral infections, perhaps due to their steroid hormone levels, the impact of X-linked genes, and the sex-based immune responses. Although mostly inactive, the X chromosome makes the female's immune system more robust. The extra immune-regulatory genes of the X chromosome are associated with lower levels of viral load and decreased infection rate. Moreover, a higher titer of the antibodies and their longer blood circulation half-life are involved in a more durable immune protection in females. The activation rate of the immune cells and the production of TLR7 and IFN are more prominent in females. Although the bi-allelic expression of the immune regulatory genes can sometimes lead to autoimmune reactions, the higher titer of TLR7 in females is further associated with a stronger anti-viral immune response. Considering these sex-related differences and the similarities between the SARS, MERS, and COVID-19, we will discuss them in immune responses against the β-CoVs-associated syndromes. We aim to provide information on sex-based disease susceptibility and response. A better understanding of the evasion strategies of pathogens and the host immune responses can provide worthful insights into immunotherapy, and vaccine development approaches.
Collapse
Affiliation(s)
- Golbarg Rahimi
- Department of Cellular and Molecular Biology, University of Esfahan, Esfahan, Iran
| | - Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Panahi
- Student Research Committee, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Abkhiz
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Milani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences and Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
50
|
Na W, Moon H, Song D. A comprehensive review of SARS-CoV-2 genetic mutations and lessons from animal coronavirus recombination in one health perspective. J Microbiol 2021; 59:332-340. [PMID: 33624270 PMCID: PMC7901680 DOI: 10.1007/s12275-021-0660-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022]
Abstract
SARS-CoV-2 was originated from zoonotic coronaviruses and confirmed as a novel beta-coronavirus, which causes serious respiratory illness such as pneumonia and lung failure, COVID-19. In this review, we describe the genetic characteristics of SARS-CoV-2, including types of mutation, and molecular epidemiology, highlighting its key difference from animal coronaviruses. We further summarized the current knowledge on clinical, genetic, and pathological features of several animal coronaviruses and compared them with SARS-CoV-2, as well as recent evidences of interspecies transmission and recombination of animal coronaviruses to provide a better understanding of SARS-CoV-2 infection in One Health perspectives. We also discuss the potential wildlife hosts and zoonotic origin of this emerging virus in detail, that may help mitigate the spread and damages caused by the disease.
Collapse
Affiliation(s)
- Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyoungjoon Moon
- College of Healthcare & Biotechnology, Semyung University, Jecheon, 27136, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|