1
|
Vallese A, Cordone V, Ferrara F, Guiotto A, Gemmo L, Cervellati F, Hayek J, Pecorelli A, Valacchi G. NLRP3 inflammasome-mitochondrion loop in autism spectrum disorder. Free Radic Biol Med 2024; 225:581-594. [PMID: 39433111 DOI: 10.1016/j.freeradbiomed.2024.10.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and the presence of restricted interests and repetitive behavior. To date, no single cause has been demonstrated but both genetic and environmental factors are believed to be involved in abnormal brain development. In recent years, immunological and mitochondrial dysfunctions acquired particular interest in the study of the molecular mechanisms underlying the pathophysiology of ASD. For this reason, our study focused on evaluating the mitochondrial component and activation of the NLRP3 inflammasome, a critical player of the innate immune system. The assembly of NLRP3 with ASC mediates activation of Caspase-1, which in turn, by proteolytic cleavage, activates Gasdermin D and the proinflammatory cytokines IL-1β/IL-18 with their subsequent secretion. Using primary fibroblasts of autistic and control patients we studied basal and stimulated conditions. Specifically, LPS and ATP were used to activate the NLRP3 inflammasome and MCC950 for its inhibition. In addition, FCCP was used as a mitochondrial stressor and MitoTEMPO as a scavenger of mitochondrial ROS. Our results showed a hyperactivation of NLRP3 inflammasome in ASDs, as evidenced by the co-localization of the two main components, NLRP3 and ASC, by the higher levels of ASC specks, oligomers and dimers and by the increased amounts of active Caspase-1 and IL-1β. In addition, increased mitochondrial superoxide anion and reduced mitochondrial membrane potential were detected in ASD cells. These data are in accordance with the abnormal mitochondrial morphology evidenced by transmission electron microscopy analysis. Interestingly, NLRP3 inflammasome inhibition with MCC950 improved mitochondrial parameters, while the use of MitoTEMPO, in addition to decrease mitochondrial ROS production, was able to prevent NLRP3 inflammasome activation suggesting for the first time an abnormal bidirectional crosstalk between mitochondria and NLRP3 inflammasome in ASD.
Collapse
Affiliation(s)
- Andrea Vallese
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Animal Science Dept., Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Valeria Cordone
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Dept. of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Guiotto
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Animal Science Dept., Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Laura Gemmo
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Alessandra Pecorelli
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Dept. of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA.
| | - Giuseppe Valacchi
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Animal Science Dept., Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA; Dept. of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
2
|
Viñán Garcés AE, Cáceres E, Gómez JO, Martín-Loeches I, Reyes LF. Inflammatory response to SARS-CoV 2 and other respiratory viruses. Expert Rev Anti Infect Ther 2024:1-14. [PMID: 39228288 DOI: 10.1080/14787210.2024.2400548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/09/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Lower respiratory tract infections (LRTI) remain a significant global cause of mortality and disability. Viruses constitute a substantial proportion of LRTI cases, with their pandemic potential posing a latent threat. After the SARS-CoV-2 pandemic, the resurgence of other respiratory viruses, including Influenza and Respiratory Syncytial Virus responsible for LRTI has been observed especially in susceptible populations. AREAS COVERED This review details the inflammatory mechanisms associated with three primary respiratory viruses: SARS-CoV-2, Influenza, and Respiratory Syncytial Virus (RSV). The focus will be on elucidating the activation of inflammatory pathways, understanding cellular contributions to inflammation, exploring the role of interferon and induced cell death in the response to these pathogens and detailing viral evasion mechanisms. Furthermore, the distinctive characteristics of each virus will be explained. EXPERT OPINION The study of viral pneumonia, notably concerning SARS-CoV-2, Influenza, and RSV, offers critical insights into infectious and inflammatory mechanisms with wide-ranging implications. Addressing current limitations, such as diagnostic accuracy and understanding host-virus interactions, requires collaborative efforts and investment in technology. Future research holds promise for uncovering novel therapeutic targets, exploring host microbiome roles, and addressing long-term sequelae. Integrating advances in molecular biology and technology will shape the evolving landscape of viral pneumonia research, potentially enhancing global public health outcomes.
Collapse
Affiliation(s)
- André Emilio Viñán Garcés
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
| | - Eder Cáceres
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
- Engineering School, Universidad de La Sabana, Chía, Colombia
| | - Juan Olivella Gómez
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
| | | | - Luis Felipe Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Pollard KJ, Traina-Dorge V, Medearis SM, Bosak A, Bix GJ, Moore MJ, Piedimonte G. Respiratory Syncytial Virus Infects Peripheral and Spinal Nerves and Induces Chemokine-Mediated Neuropathy. J Infect Dis 2024; 230:467-479. [PMID: 38135285 PMCID: PMC11326824 DOI: 10.1093/infdis/jiad596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023] Open
Abstract
Respiratory syncytial virus (RSV) primarily infects the respiratory epithelium, but growing evidence suggests that it may also be responsible for neurologic sequelae. In 3-dimensional microphysiologic peripheral nerve cultures, RSV infected neurons, macrophages, and dendritic cells along 2 distinct trajectories depending on the initial viral load. Low-level infection was transient, primarily involved macrophages, and induced moderate chemokine release with transient neural hypersensitivity. Infection with higher viral loads was persistent, infected neuronal cells in addition to monocytes, and induced robust chemokine release followed by progressive neurotoxicity. In spinal cord cultures, RSV infected microglia and dendritic cells but not neurons, producing a moderate chemokine expression pattern. The persistence of infection was variable but could be identified in dendritic cells as long as 30 days postinoculation. This study suggests that RSV can disrupt neuronal function directly through infection of peripheral neurons and indirectly through infection of resident monocytes and that inflammatory chemokines likely mediate both mechanisms.
Collapse
Affiliation(s)
| | - Vicki Traina-Dorge
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans
- Division of Microbiology, Tulane National Primate Research Center, Covington
| | - Stephen M Medearis
- Department of Pediatrics
- Department of Biochemistry and Molecular Biology
| | | | - Gregory J Bix
- Clinical Neuroscience Research Center
- Department of Neurosurgery
- Department of Neurology, School of Medicine
- Tulane Brain Institute, Tulane University
| | - Michael J Moore
- Department of Biomedical Engineering
- Tulane Brain Institute, Tulane University
- Axosim, Inc, New Orleans, Louisiana
| | | |
Collapse
|
4
|
Marutani K, Murata K, Mizuno Y, Onoyama S, Hoshina T, Yamamura K, Furuno K, Sakai Y, Kishimoto J, Kusuhura K, Hara T. Respiratory viral infections and Kawasaki disease: A molecular epidemiological analysis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00112-9. [PMID: 39034166 DOI: 10.1016/j.jmii.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/21/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND/PURPOSE Recent large-scale epidemiological studies have revealed significant temporal associations between certain viral infections and the subsequent development of Kawasaki disease (KD). Despite these associations, definitive laboratory evidence linking acute or recent viral infections to KD cases remains elusive. The objective of this study is to employ a molecular epidemiological approach to investigate the temporal association between viral infections and the development of KD. METHODS We analyzed 2460 patients who underwent the FilmArray® Respiratory Panel test between April 2020 and September 2021. RESULTS Following the application of inclusion criteria, 2402 patients were categorized into KD (n = 148), respiratory tract infection (n = 1524), and control groups (n = 730). The KD group exhibited higher positive rates for respiratory syncytial virus (RSV), human rhinovirus/enterovirus (hRV/EV), parainfluenza virus (PIV) 3, and adenovirus (AdV) compared to the control group. Additionally, coinfections involving two or more viruses were significantly more prevalent in the KD group. Notably, RSV-positive, hRV/EV-positive, and PIV3-positive KD patients exhibited a one-month delay in peak occurrence compared to non-KD patients positive for corresponding viruses. In contrast, AdV-positive KD cases did not show a one-month delay in peak occurrence. Moreover, anti-RSV, anti-PIV3, and anti-AdV antibody-positive rates or antibody titers were higher in RSV-, PIV3-, and AdV-positive KD cases, respectively, compared to non-KD cases with the same viral infections. CONCLUSION Recent infection with RSV, PIV3, or AdV, occasionally in conjunction with other viruses, may contribute to the pathogenesis of KD as infrequent complications.
Collapse
Affiliation(s)
- Kentaro Marutani
- Kawasaki Disease Center, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-ku, Fukuoka, 813-0017, Japan
| | - Kenji Murata
- Kawasaki Disease Center, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-ku, Fukuoka, 813-0017, Japan
| | - Yumi Mizuno
- Kawasaki Disease Center, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-ku, Fukuoka, 813-0017, Japan
| | - Sagano Onoyama
- Kawasaki Disease Center, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-ku, Fukuoka, 813-0017, Japan
| | - Takayuki Hoshina
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishi-ku Kitakyushu-shi, Fukuoka, 807-8555, Japan
| | - Kenichiro Yamamura
- Department of Cardiology and Intensive Care, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-ku, Fukuoka, 813-0017, Japan
| | - Kenji Furuno
- Kawasaki Disease Center, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-ku, Fukuoka, 813-0017, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Junji Kishimoto
- Center for Clinical and Translational Research, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koichi Kusuhura
- Office of Clinical Education and Professional Development, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-ku, Fukuoka, 813-0017, Japan
| | - Toshiro Hara
- Kawasaki Disease Center, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-ku, Fukuoka, 813-0017, Japan.
| |
Collapse
|
5
|
Wang J, Wu Z, Zhu M, Zhao Y, Xie J. ROS induced pyroptosis in inflammatory disease and cancer. Front Immunol 2024; 15:1378990. [PMID: 39011036 PMCID: PMC11246884 DOI: 10.3389/fimmu.2024.1378990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Pyroptosis, a form of caspase-1-dependent cell death, also known as inflammation-dependent death, plays a crucial role in diseases such as stroke, heart disease, or tumors. Since its elucidation, pyroptosis has attracted widespread attention from various sectors. Reactive oxygen species (ROS) can regulate numerous cellular signaling pathways. Through further research on ROS and pyroptosis, the level of ROS has been revealed to be pivotal for the occurrence of pyroptosis, establishing a close relationship between the two. This review primarily focuses on the molecular mechanisms of ROS and pyroptosis in tumors and inflammatory diseases, exploring key proteins that may serve as drug targets linking ROS and pyroptosis and emerging fields targeting pyroptosis. Additionally, the potential future development of compounds and proteins that influence ROS-regulated cell pyroptosis is anticipated, aiming to provide insights for the development of anti-tumor and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jingsong Wang
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Ziyong Wu
- Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Min Zhu
- Department of Pharmacy, Xuchang Central Hospital, Xuchang, Henan, China
| | - Yang Zhao
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Jingwen Xie
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, China
- Department of Health, Chongqing Industry & Trade Polytechnic, Chongqing, China
| |
Collapse
|
6
|
Boucher J, Gilbert C, Bose S, Tessier PA. S100A9: The Unusual Suspect Connecting Viral Infection and Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1523-1529. [PMID: 38709994 PMCID: PMC11076006 DOI: 10.4049/jimmunol.2300640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/20/2024] [Indexed: 05/08/2024]
Abstract
The study of S100A9 in viral infections has seen increased interest since the COVID-19 pandemic. S100A8/A9 levels were found to be correlated with the severity of COVID-19 disease, cytokine storm, and changes in myeloid cell subsets. These data led to the hypothesis that S100A8/A9 proteins might play an active role in COVID-19 pathogenesis. This review explores the structures and functions of S100A8/9 and the current knowledge on the involvement of S100A8/A9 and its constituents in viral infections. The potential roles of S100A9 in SARS-CoV-2 infections are also discussed.
Collapse
Affiliation(s)
- Julien Boucher
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Caroline Gilbert
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Philippe A. Tessier
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
7
|
Makuch M, Stepanechko M, Bzowska M. The dance of macrophage death: the interplay between the inevitable and the microenvironment. Front Immunol 2024; 15:1330461. [PMID: 38576612 PMCID: PMC10993711 DOI: 10.3389/fimmu.2024.1330461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Macrophages are highly plastic cells ubiquitous in various tissues, where they perform diverse functions. They participate in the response to pathogen invasion and inflammation resolution following the immune response, as well as the maintenance of homeostasis and proper tissue functions. Macrophages are generally considered long-lived cells with relatively strong resistance to numerous cytotoxic factors. On the other hand, their death seems to be one of the principal mechanisms by which macrophages perform their physiological functions or can contribute to the development of certain diseases. In this review, we scrutinize three distinct pro-inflammatory programmed cell death pathways - pyroptosis, necroptosis, and ferroptosis - occurring in macrophages under specific circumstances, and explain how these cells appear to undergo dynamic yet not always final changes before ultimately dying. We achieve that by examining the interconnectivity of these cell death types, which in macrophages seem to create a coordinated and flexible system responding to the microenvironment. Finally, we discuss the complexity and consequences of pyroptotic, necroptotic, and ferroptotic pathway induction in macrophages under two pathological conditions - atherosclerosis and cancer. We summarize damage-associated molecular patterns (DAMPs) along with other microenvironmental factors, macrophage polarization states, associated mechanisms as well as general outcomes, as such a comprehensive look at these correlations may point out the proper methodologies and potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
8
|
Li W, Wang X, Chen Y, Ding Y, Ling X, Yuan B, Tao J. Luteolin-7-O-glucoside promotes macrophage release of IFN-β by maintaining mitochondrial function and corrects the disorder of glucose metabolism during RSV infection. Eur J Pharmacol 2024; 963:176271. [PMID: 38113965 DOI: 10.1016/j.ejphar.2023.176271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/26/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Respiratory syncytial virus (RSV) pneumonia is the main cause of acute bronchiolitis in infants. Luteolin-7-O-glucoside (LUT-7G) is a natural flavonoid, which exists in a variety of plants and has the potential to treat viral pneumonia. We established RSV pneumonia mouse models and RSV-infected cell models. Clodronate liposomes were used to deplete macrophages. We used HE staining and immunohistochemistry to determine inflammatory damage and virus replication. We detected the expression levels of inflammatory factors and IFN-β through qPCR and ELISA. JC-1 kit was used for detecting the cell mitochondrial Membrane potential (MMP). ROS, SOD, and MDA kits were used for detecting intracellular oxidative stress damage. Metabolites of TCA in lung tissue and serum of mice were detected by GC-MS. Pharmacodynamic studies have shown that intervention with LUT-7G can alleviate lung tissue damage caused by RSV infection, inhibit RSV replication, and downregulate TNF-α, IL-1β, and IL-6 mRNA expression. LUT-7G upregulated the IFN-β content and the expression of IFN-β, ISG15, and OAS1 mRNA. In vitro, LUT-7G inhibited RSV-induced cell death, reversed the RSV-induced decrease of MMP and decreased intracellular oxidative stress. Target metabonomics showed that RSV infection upregulated the levels of glycolysis and TCA metabolites in lung tissue and serum, while LUT-7G could improve the disorder of glucose metabolism. The results indicate that LUT-7G can promote the release of IFN-β in the lung, alleviate inflammatory damage, and inhibit RSV replication during RSV infection. These effects may be achieved by protecting the mitochondrial function of alveolar macrophages and correcting the disorder of glucose metabolism.
Collapse
Affiliation(s)
- Weifeng Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Paediatrics, Nanjing, 210023, China; Jiangsu Key Laboratory of Paediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xuan Wang
- Jiangsu Vocational College of Medicine, Yancheng, 224000, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yanzhen Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Oncology Department, Nanjing, 210023, China.
| | - Yali Ding
- Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Paediatrics, Nanjing, 210023, China; Jiangsu Key Laboratory of Paediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoyin Ling
- Affiliated Hospital of Nantong University, Nantong, 226000, China.
| | - Bin Yuan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Paediatrics, Nanjing, 210023, China.
| | - Jialei Tao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Paediatrics, Nanjing, 210023, China.
| |
Collapse
|
9
|
Guo Y, Zhou J, Wang Y, Wu X, Mou Y, Song X. Cell type-specific molecular mechanisms and implications of necroptosis in inflammatory respiratory diseases. Immunol Rev 2024; 321:52-70. [PMID: 37897080 DOI: 10.1111/imr.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Necroptosis is generally considered as an inflammatory cell death form. The core regulators of necroptotic signaling are receptor-interacting serine-threonine protein kinases 1 (RIPK1) and RIPK3, and the executioner, mixed lineage kinase domain-like pseudokinase (MLKL). Evidence demonstrates that necroptosis contributes profoundly to inflammatory respiratory diseases that are common public health problem. Necroptosis occurs in nearly all pulmonary cell types in the settings of inflammatory respiratory diseases. The influence of necroptosis on cells varies depending upon the type of cells, tissues, organs, etc., which is an important factor to consider. Thus, in this review, we briefly summarize the current state of knowledge regarding the biology of necroptosis, and focus on the key molecular mechanisms that define the necroptosis status of specific cell types in inflammatory respiratory diseases. We also discuss the clinical potential of small molecular inhibitors of necroptosis in treating inflammatory respiratory diseases, and describe the pathological processes that engage cross talk between necroptosis and other cell death pathways in the context of respiratory inflammation. The rapid advancement of single-cell technologies will help understand the key mechanisms underlying cell type-specific necroptosis that are critical to effectively treat pathogenic lung infections and inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Ying Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Jin Zhou
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai, Shandong, China
- Department of Endocrinology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yaqi Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
- Tumor Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai, Shandong, China
| |
Collapse
|
10
|
Zhong C, Yang J, Deng K, Lang X, Zhang J, Li M, Qiu L, Zhong G, Yu J. Tiliroside Attenuates NLRP3 Inflammasome Activation in Macrophages and Protects against Acute Lung Injury in Mice. Molecules 2023; 28:7527. [PMID: 38005247 PMCID: PMC10673355 DOI: 10.3390/molecules28227527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The Nod-like receptor family PYRIN domain containing 3 (NLRP3) inflammasome is a multiprotein signaling complex that plays a pivotal role in innate immunity, and the dysregulated NLRP3 inflammasome activation is implicated in various diseases. Tiliroside is a natural flavonoid in multiple medicinal and dietary plants with known anti-inflammatory activities. However, its role in regulating NLRP3 inflammasome activation and NLRP3-related disease has not been evaluated. Herein, it was demonstrated that tiliroside is inhibitory in activating the NLRP3 inflammasome in macrophages. Mechanistically, tiliroside promotes AMP-activated protein kinase (AMPK) activation, thereby leading to ameliorated mitochondrial damage as evidenced by the reduction of mitochondrial reactive oxygen species (ROS) production and the improvement of mitochondrial membrane potential, which is accompanied by attenuated NLRP3 inflammasome activation in macrophages. Notably, tiliroside potently attenuated lipopolysaccharide (LPS)-induced acute lung injury in mice, which has been known to be NLRP3 inflammasome dependent. For the first time, this study identified that tiliroside is an NLRP3 inflammasome inhibitor and may represent a potential therapeutic agent for managing NLRP3-mediated inflammatory disease.
Collapse
Affiliation(s)
- Chao Zhong
- Center for Translational Medicine, College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Yang
- Center for Translational Medicine, College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Keke Deng
- Center for Translational Medicine, College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoya Lang
- Center for Translational Medicine, College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jiangtao Zhang
- Center for Translational Medicine, College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Min Li
- Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Liang Qiu
- Center for Translational Medicine, College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Guoyue Zhong
- Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jun Yu
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
11
|
Yang X, Liu X, Nie Y, Zhan F, Zhu B. Oxidative stress and ROS-mediated cellular events in RSV infection: potential protective roles of antioxidants. Virol J 2023; 20:224. [PMID: 37798799 PMCID: PMC10557227 DOI: 10.1186/s12985-023-02194-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Respiratory syncytial virus (RSV), a member of the Pneumoviridae family, can cause severe acute lower respiratory tract infection in infants, young children, immunocompromised individuals and elderly people. RSV is associated with an augmented innate immune response, enhanced secretion of inflammatory cytokines, and necrosis of infected cells. Oxidative stress, which is mainly characterized as an imbalance in the production of reactive oxygen species (ROS) and antioxidant responses, interacts with all the pathophysiologic processes above and is receiving increasing attention in RSV infection. A gradual accumulation of evidence indicates that ROS overproduction plays an important role in the pathogenesis of severe RSV infection and serves as a major factor in pulmonary inflammation and tissue damage. Thus, antioxidants seem to be an effective treatment for severe RSV infection. This article mainly reviews the information on oxidative stress and ROS-mediated cellular events during RSV infection for the first time.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Xue Liu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Yujun Nie
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Fei Zhan
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Bin Zhu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China.
| |
Collapse
|
12
|
Si Y, Zhang H, Zhou Z, Zhu X, Yang Y, Liu H, Zhang L, Cheng L, Wang K, Ye W, Lv X, Zhang X, Hou W, Zhao G, Lei Y, Zhang F, Ma H. RIPK3 promotes hantaviral replication by restricting JAK-STAT signaling without triggering necroptosis. Virol Sin 2023; 38:741-754. [PMID: 37633447 PMCID: PMC10590702 DOI: 10.1016/j.virs.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023] Open
Abstract
Hantaan virus (HTNV) is a rodent-borne virus that causes hemorrhagic fever with renal syndrome (HFRS), resulting in a high mortality rate of 15%. Interferons (IFNs) play a critical role in the anti-hantaviral immune response, and IFN pretreatment efficiently restricts HTNV infection by triggering the expression of a series of IFN-stimulated genes (ISGs) through the Janus kinase-signal transducer and activator of transcription 1 (JAK-STAT) pathway. However, the tremendous amount of IFNs produced during late infection could not restrain HTNV replication, and the mechanism remains unclear. Here, we demonstrated that receptor-interacting protein kinase 3 (RIPK3), a crucial molecule that mediates necroptosis, was activated by HTNV and contributed to hantavirus evasion of IFN responses by inhibiting STAT1 phosphorylation. RNA-seq analysis revealed the upregulation of multiple cell death-related genes after HTNV infection, with RIPK3 identified as a key modulator of viral replication. RIPK3 ablation significantly enhanced ISGs expression and restrained HTNV replication, without affecting the expression of pattern recognition receptors (PRRs) or the production of type I IFNs. Conversely, exogenously expressed RIPK3 compromised the host's antiviral response and facilitated HTNV replication. RIPK3-/- mice also maintained a robust ability to clear HTNV with enhanced innate immune responses. Mechanistically, we found that RIPK3 could bind STAT1 and inhibit STAT1 phosphorylation dependent on the protein kinase domain (PKD) of RIPK3 but not its kinase activity. Overall, these observations demonstrated a noncanonical function of RIPK3 during viral infection and have elucidated a novel host innate immunity evasion strategy utilized by HTNV.
Collapse
Affiliation(s)
- Yue Si
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Haijun Zhang
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China; Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, 710032, China
| | - Ziqing Zhou
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xudong Zhu
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Yongheng Yang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - He Liu
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Liang Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Linfeng Cheng
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Kerong Wang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Wei Ye
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xin Lv
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xijing Zhang
- Department of Anesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Wugang Hou
- Department of Anesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China; The College of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yingfeng Lei
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China.
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China.
| | - Hongwei Ma
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China; Department of Anesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
13
|
Hao S, Ning K, Kuz CA, Xiong M, Zou W, Park SY, McFarlin S, Yan Z, Qiu J. SARS-CoV-2 infection of polarized human airway epithelium induces necroptosis that causes airway epithelial barrier dysfunction. J Med Virol 2023; 95:e29076. [PMID: 37671751 PMCID: PMC10754389 DOI: 10.1002/jmv.29076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause the ongoing pandemic of coronavirus disease 2019 (COVID19). One key feature associated with COVID-19 is excessive pro-inflammatory cytokine production that leads to severe acute respiratory distress syndrome. Although the cytokine storm induces inflammatory cell death in the host, which type of programmed cell death mechanism that occurs in various organs and cells remains elusive. Using an in vitro culture model of polarized human airway epithelium (HAE), we observed that necroptosis, but not apoptosis or pyroptosis, plays an essential role in the damage of the epithelial barrier of polarized HAE infected with SARS-CoV-2. Pharmacological inhibitors of necroptosis, necrostatin-2 and necrosulfonamide, efficiently prevented cell death and epithelial barrier dysfunction caused by SARS-CoV-2 infection. Moreover, the silencing of genes that are involved in necroptosis, RIPK1, RIPK3, and MLKL, ameliorated airway epithelial damage of the polarized HAE infected with SARS-CoV-2. This study, for the first time, confirms that SARS-CoV-2 infection triggers necroptosis that disrupts the barrier function of human airway epithelia in vitro.
Collapse
Affiliation(s)
- Siyuan Hao
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Kang Ning
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Cagla Aksu Kuz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Min Xiong
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Wei Zou
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Soo Yeun Park
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Shane McFarlin
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
14
|
Shi W, Jin M, Chen H, Wu Z, Yuan L, Liang S, Wang X, Memon FU, Eldemery F, Si H, Ou C. Inflammasome activation by viral infection: mechanisms of activation and regulation. Front Microbiol 2023; 14:1247377. [PMID: 37608944 PMCID: PMC10440708 DOI: 10.3389/fmicb.2023.1247377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 08/24/2023] Open
Abstract
Viral diseases are the most common problems threatening human health, livestock, and poultry industries worldwide. Viral infection is a complex and competitive dynamic biological process between a virus and a host/target cell. During viral infection, inflammasomes play important roles in the host and confer defense mechanisms against the virus. Inflammasomes are polymeric protein complexes and are considered important components of the innate immune system. These immune factors recognize the signals of cell damage or pathogenic microbial infection after activation by the canonical pathway or non-canonical pathway and transmit signals to the immune system to initiate the inflammatory responses. However, some viruses inhibit the activation of the inflammasomes in order to replicate and proliferate in the host. In recent years, the role of inflammasome activation and/or inhibition during viral infection has been increasingly recognized. Therefore, in this review, we describe the biological properties of the inflammasome associated with viral infection, discuss the potential mechanisms that activate and/or inhibit NLRP1, NLRP3, and AIM2 inflammasomes by different viruses, and summarize the reciprocal regulatory effects of viral infection on the NLRP3 inflammasome in order to explore the relationship between viral infection and inflammasomes. This review will pave the way for future studies on the activation mechanisms of inflammasomes and provide novel insights for the development of antiviral therapies.
Collapse
Affiliation(s)
- Wen Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mengyun Jin
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hao Chen
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | | | - Liuyang Yuan
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Si Liang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaohan Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Fareed Uddin Memon
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Changbo Ou
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| |
Collapse
|
15
|
Pokharel SM, Mohanty I, Mariasoosai C, Miura TA, Maddison LA, Natesan S, Bose S. Human beta defensin-3 mediated activation of β-catenin during human respiratory syncytial virus infection: interaction of HBD3 with LDL receptor-related protein 5. Front Microbiol 2023; 14:1186510. [PMID: 37426017 PMCID: PMC10324619 DOI: 10.3389/fmicb.2023.1186510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is a non-segmented negative-sense RNA virus belonging to the paramyxovirus family. RSV infects the respiratory tract to cause pneumonia and bronchiolitis in infants, elderly, and immunocompromised patients. Effective clinical therapeutic options and vaccines to combat RSV infection are still lacking. Therefore, to develop effective therapeutic interventions, it is imperative to understand virus-host interactions during RSV infection. Cytoplasmic stabilization of β-catenin protein results in activation of canonical Wingless (Wnt)/β-catenin signaling pathway that culminates in transcriptional activation of various genes regulated by T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors. This pathway is involved in various biological and physiological functions. Our study shows RSV infection of human lung epithelial A549 cells triggering β-catenin protein stabilization and induction of β-catenin mediated transcriptional activity. Functionally, the activated β-catenin pathway promoted a pro-inflammatory response during RSV infection of lung epithelial cells. Studies with β-catenin inhibitors and A549 cells lacking optimal β-catenin activity demonstrated a significant loss of pro-inflammatory chemokine interleukin-8 (IL-8) release from RSV-infected cells. Mechanistically, our studies revealed a role of extracellular human beta defensin-3 (HBD3) in interacting with cell surface Wnt receptor LDL receptor-related protein-5 (LRP5) to activate the non-canonical Wnt independent β-catenin pathway during RSV infection. We showed gene expression and release of HBD3 from RSV-infected cells and silencing of HBD3 expression resulted in reduced stabilization of β-catenin protein during RSV infection. Furthermore, we observed the binding of extracellular HBD3 with cell surface localized LRP5 protein, and our in silico and protein-protein interaction studies have highlighted a direct interaction of HBD3 with LRP5. Thus, our studies have identified the β-catenin pathway as a key regulator of pro-inflammatory response during RSV infection of human lung epithelial cells. This pathway was induced during RSV infection via a non-canonical Wnt-independent mechanism involving paracrine/autocrine action of extracellular HBD3 activating cell surface Wnt receptor complex by directly interacting with the LRP5 receptor.
Collapse
Affiliation(s)
- Swechha M. Pokharel
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Indira Mohanty
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Charles Mariasoosai
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Tanya A. Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Lisette A. Maddison
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Senthil Natesan
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
16
|
Zhong WJ, Zhang J, Duan JX, Zhang CY, Ma SC, Li YS, Yang NSY, Yang HH, Xiong JB, Guan CX, Jiang ZX, You ZJ, Zhou Y. TREM-1 triggers necroptosis of macrophages through mTOR-dependent mitochondrial fission during acute lung injury. J Transl Med 2023; 21:179. [PMID: 36879273 PMCID: PMC9990355 DOI: 10.1186/s12967-023-04027-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Necroptosis of macrophages is a necessary element in reinforcing intrapulmonary inflammation during acute lung injury (ALI). However, the molecular mechanism that sparks macrophage necroptosis is still unclear. Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor expressed broadly on monocytes/macrophages. The influence of TREM-1 on the destiny of macrophages in ALI requires further investigation. METHODS TREM-1 decoy receptor LR12 was used to evaluate whether the TREM-1 activation induced necroptosis of macrophages in lipopolysaccharide (LPS)-induced ALI in mice. Then we used an agonist anti-TREM-1 Ab (Mab1187) to activate TREM-1 in vitro. Macrophages were treated with GSK872 (a RIPK3 inhibitor), Mdivi-1 (a DRP1 inhibitor), or Rapamycin (an mTOR inhibitor) to investigate whether TREM-1 could induce necroptosis in macrophages, and the mechanism of this process. RESULTS We first observed that the blockade of TREM-1 attenuated alveolar macrophage (AlvMs) necroptosis in mice with LPS-induced ALI. In vitro, TREM-1 activation induced necroptosis of macrophages. mTOR has been previously linked to macrophage polarization and migration. We discovered that mTOR had a previously unrecognized function in modulating TREM-1-mediated mitochondrial fission, mitophagy, and necroptosis. Moreover, TREM-1 activation promoted DRP1Ser616 phosphorylation through mTOR signaling, which in turn caused surplus mitochondrial fission-mediated necroptosis of macrophages, consequently exacerbating ALI. CONCLUSION In this study, we reported that TREM-1 acted as a necroptotic stimulus of AlvMs, fueling inflammation and aggravating ALI. We also provided compelling evidence suggesting that mTOR-dependent mitochondrial fission is the underpinning of TREM-1-triggered necroptosis and inflammation. Therefore, regulation of necroptosis by targeting TREM-1 may provide a new therapeutic target for ALI in the future.
Collapse
Affiliation(s)
- Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Jun Zhang
- Department of Physiology, Hunan University of Medicine, Huaihua, China
| | - Jia-Xi Duan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Sheng-Chao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China.,The School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Nan-Shi-Yu Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Jian-Bing Xiong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Zhi-Xing Jiang
- Department of Physiology, Hunan University of Medicine, Huaihua, China
| | - Zhi-Jian You
- Department of Anesthesiology, Liuzhou People's Hospital, Liuzhou, China. .,Liuzhou Key Laboratory of Anesthesia and Brain Health, Liuzhou People's Hospital, Liuzhou, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
17
|
Lin J, Sun S, Zhao K, Gao F, Wang R, Li Q, Zhou Y, Zhang J, Li Y, Wang X, Du L, Wang S, Li Z, Lu H, Lan Y, Song D, Guo W, Chen Y, Gao F, Zhao Y, Fan R, Guan J, He W. Oncolytic Parapoxvirus induces Gasdermin E-mediated pyroptosis and activates antitumor immunity. Nat Commun 2023; 14:224. [PMID: 36641456 PMCID: PMC9840172 DOI: 10.1038/s41467-023-35917-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
The advantage of oncolytic viruses (OV) in cancer therapy is their dual effect of directly killing tumours while prompting anti-tumour immune response. Oncolytic parapoxvirus ovis (ORFV) and other OVs are thought to induce apoptosis, but apoptosis, being the immunogenically inert compared to other types of cell death, does not explain the highly inflamed microenvironment in OV-challenged tumors. Here we show that ORFV and its recombinant therapeutic derivatives are able to trigger tumor cell pyroptosis via Gasdermin E (GSDME). This effect is especially prominent in GSDME-low tumor cells, in which ORFV-challenge pre-stabilizes GSDME by decreasing its ubiquitination and subsequently initiates pyroptosis. Consistently, GSDME depletion reduces the proportion of intratumoral cytotoxic T lymphocytes, pyroptotic cell death and the success of tumor ORFV virotherapy. In vivo, the OV preferentially accumulates in the tumour upon systemic delivery and elicits pyroptotic tumor killing. Consequentially, ORFV sensitizes immunologically 'cold' tumors to checkpoint blockade. This study thus highlights the critical role of GSDME-mediated pyroptosis in oncolytic ORFV-based antitumor immunity and identifies combinatorial cancer therapy strategies.
Collapse
Affiliation(s)
- Jing Lin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Shihui Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Fei Gao
- Department of Laboratory Animals, College of Animal Science, Jilin University, 130062, Changchun, China
| | - Renling Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Qi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Yanlong Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Jing Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Yue Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Xinyue Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Le Du
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Shuai Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Zi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Huijun Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Yungang Lan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Deguang Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Wei Guo
- Department of Hematology, The first hospital of Jilin University, 130021, Changchun, China
| | - Yujia Chen
- Department of Gastrointestinal Surgery, The first hospital of Jilin University, 130021, Changchun, China
| | - Feng Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, 130017, Changchun, China
| | - Rongrong Fan
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Jiyu Guan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China.
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China.
| |
Collapse
|
18
|
Astaxanthin Prevents Tuberculosis-Associated Inflammatory Injury by Inhibiting the Caspase 4/11-Gasdermin-Pyroptosis Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4778976. [DOI: 10.1155/2022/4778976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 12/12/2022]
Abstract
Pyroptosis is a programmed cell death caused by inflammation. Multiple studies have suggested that Mycobacterium tuberculosis infection causes tissue pyroptosis. However, there are currently no protective drugs against the inflammatory damage caused by pyroptosis. In this study, anti-pyroptotic effects of the natural compound astaxanthin (ASTA) were explored in a simulated pulmonary tuberculosis-associated inflammatory environment. The results showed that ASTA maintained the stability of MLE-12 lung epithelial cell numbers in the inflammatory environment established by lipopolysaccharide. The reason is not to promote cell proliferation but to inhibit lipopolysaccharide-induced pyroptosis. The results showed that ASTA significantly inhibited the expression of key proteins in the caspase 4/11-gasdermin D pathway and the release of pyroptosis-related inflammatory mediators. Therefore, ASTA inhibits inflammation-induced pyroptosis by inhibiting the caspase 4/11-gasdermin D pathway and has the potential to protect lung tissue from tuberculosis-related inflammatory injury. ASTA, a functional food component, is a promising candidate for protection against tuberculosis-associated inflammatory lung injury.
Collapse
|
19
|
Conciliatory Anti-Allergic Decoction Attenuates Pyroptosis in RSV-Infected Asthmatic Mice and Lipopolysaccharide (LPS)-Induced 16HBE Cells by Inhibiting TLR3/NLRP3/NF-κB/IRF3 Signaling Pathway. J Immunol Res 2022; 2022:1800401. [PMID: 36213326 PMCID: PMC9537000 DOI: 10.1155/2022/1800401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/01/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection can deteriorate asthma by inducing persistent airway inflammation. Increasing evidence elucidated that pyroptosis plays a pivotal role in asthma. Conciliatory anti-allergic decoction (CAD) exhibits an anti-inflammatory effect in ovalbumin (OVA)-induced asthma; however, the effects and mechanisms of CAD in RSV-infected asthmatic mice have not yet been elucidated. The RSV-infected asthmatic mice model and lipopolysaccharide (LPS)-induced 16HBE cell pyroptosis model were established, respectively. Pulmonary function, ELISA, and histopathologic analysis were performed to assess the airway inflammation and remodeling in mice with CAD treatment. Furthermore, ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UPLC-Q-TOF/MS) was conducted to identify the chemical compounds of high-dose CAD (30 g/kg). Cell viability and apoptosis of 16HBE cells were assessed by CCK-8 and flow cytometry assays, respectively. Finally, the expression levels of apoptosis-, pyroptosis-, and TLR3/NLRP3/NF-κB/IRF3 signaling-related genes were measured with qRT-PCR or western blotting, respectively. Pulmonary function tests showed that CAD significantly ameliorated respiratory dysfunction, airway hyperresponsiveness, inflammation cell recruitment in BALF, pulmonary inflammation, collagen deposition, and cell death in lung tissues. CAD significantly decreased the content of TNF-α, IL-13, IL-4, IL-1β and IL-5 in the bronchoalveolar lavage fluid (BALF), IL-17, IL-6, and OVA-specific IgE in serum and increased serum IFN-γ in asthma mice. The results of UPLC-Q-TOF/MS showed that high-dose CAD had 88 kinds of chemical components. In vitro, CAD-contained serum significantly suppressed LPS-induced 16HBE cell apoptosis. Additionally, CAD and CAD-contained serum attenuated the up-regulated expressions of Bax, Cleaved caspase-3, NLRP3, ASC, Cleaved caspase-1, GSDMD-N, IL-18, IL-1β, TLR3, p-P65, p-IκBα, and IRF3 but increased Bcl-1 and GSDMD levels in the asthma mice and LPS-induced 16HBE cells, respectively. These results illustrated that CAD may have a potential role in improving airway inflammation and pyroptosis through inhibition of the TLR3/NLRP3/NF-κB/IRF3 signaling pathway.
Collapse
|
20
|
Lin J, Liu F, Gao F, Chen Y, Wang R, Wang X, Li Y, Li Q, Sun S, Li Z, Lan Y, Lu H, Guo W, Du L, Gao F, Song D, Zhao K, Guan J, He W. Vesicular stomatitis virus sensitizes immunologically cold tumors to checkpoint blockade by inducing pyroptosis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166538. [PMID: 36096276 DOI: 10.1016/j.bbadis.2022.166538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Traditionally, vesicular stomatitis virus (VSV) and other oncolytic viruses (OVs) are thought to kill tumors by inducing apoptosis. However, cell apoptosis leads to immune quiescence, which is incompatible with the ability of OVs to activate the antitumor immune microenvironment. Thus, studying OVs-mediated oncolytic mechanisms is of great importance for the clinical application of OVs. METHODS We examined the pyroptosis in tumor cells and tissues by morphological observation, Lactate Dehydrogenase (LDH) assay, frozen section observation, and western-blotting techniques. The critical role of GSDME in VSV-induced pyroptosis was confirmed by CRISPR/Cas9 technique. VSV virotherapy-recruited cytotoxic lymphocytes in the tumors were examined by flow cytometry assay. VSV-activated antitumor immunity was further enhanced by the co-administration with anti-PD-1 antibody. RESULTS Here, we observed that VSV was able to trigger tumor pyroptosis through Gasdermin E (GSDME) in tumor cells, human tumor samples, and tumor-bearing mouse models. Importantly, the effectiveness of VSV-based virotherapy is highly dependent on GSDME, as depletion of GSDME not only reverses VSV-induced tumor-suppressive effects but also diminishes the ability of VSV to activate antitumor immunity. Notably, VSV treatment makes immunologically 'cold' tumors more sensitive to checkpoint blockade. CONCLUSIONS Oncolytic VSV induces tumor cell pyroptosis by activating GSDME. GSDME is critical in recruiting cytotoxic T lymphocytes in the context of VSV therapy, which can switch immunologically 'cold' tumors into 'hot' and enhance immune checkpoint therapy efficacy.
Collapse
Affiliation(s)
- Jing Lin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Fei Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Fei Gao
- Department of Laboratory Animals, College of Animal Science, Jilin University, 130062 Changchun, China
| | - Yujia Chen
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, 130021 Changchun, China
| | - Renling Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinyue Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yue Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qi Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shihui Sun
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zi Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yungang Lan
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Huijun Lu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wei Guo
- Department of Hematology, The first hospital of Jilin University, 130021 Changchun, China
| | - Li Du
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, 130041 Changchun, Jilin, China
| | - Feng Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Deguang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Kui Zhao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Jiyu Guan
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Wenqi He
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
21
|
Xu K, Khan M, Yu J, Snyder NW, Wu S, Vazquez-Padron RI, Wang H, Yang X. Editorial: Insights in cardiovascular therapeutics: 2021 - cell death, cardiovascular injuries, and novel targets of cardiovascular therapeutics. Front Cardiovasc Med 2022; 9:981544. [PMID: 35958425 PMCID: PMC9361401 DOI: 10.3389/fcvm.2022.981544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Keman Xu
- Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Mohsin Khan
- Departments of Cardiovascular Sciences and Biomendical Education and Data Sciences, Centers for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jun Yu
- Departments of Cardiovascular Sciences and Biomendical Education and Data Sciences, Centers for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Nathaniel W. Snyder
- Departments of Cardiovascular Sciences and Biomendical Education and Data Sciences, Centers for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sheng Wu
- Departments of Cardiovascular Sciences and Biomendical Education and Data Sciences, Centers for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Hong Wang
- Departments of Cardiovascular Sciences and Biomendical Education and Data Sciences, Centers for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Departments of Cardiovascular Sciences and Biomendical Education and Data Sciences, Centers for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
22
|
Activation and Pharmacological Regulation of Inflammasomes. Biomolecules 2022; 12:biom12071005. [PMID: 35883561 PMCID: PMC9313256 DOI: 10.3390/biom12071005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammasomes are intracellular signaling complexes of the innate immune system, which is part of the response to exogenous pathogens or physiological aberration. The multiprotein complexes mainly consist of sensor proteins, adaptors, and pro-caspase-1. The assembly of the inflammasome upon extracellular and intracellular cues drives the activation of caspase-1, which processes pro-inflammatory cytokines IL-1β and IL-18 to maturation and gasdermin-D for pore formation, leading to pyroptosis and cytokine release. Inflammasome signaling functions in numerous infectious or sterile inflammatory diseases, including inherited autoinflammatory diseases, metabolic disorders, cardiovascular diseases, cancers, neurodegenerative disorders, and COVID-19. In this review, we summarized current ideas on the organization and activation of inflammasomes, with details on the molecular mechanisms, regulations, and interventions. The recent developments of pharmacological strategies targeting inflammasomes as disease therapeutics were also covered.
Collapse
|
23
|
Meuren LM, Prestes EB, Papa MP, de Carvalho LRP, Mustafá YM, da Costa LS, Da Poian AT, Bozza MT, Arruda LB. Infection of Endothelial Cells by Dengue Virus Induces ROS Production by Different Sources Affecting Virus Replication, Cellular Activation, Death and Vascular Permeability. Front Immunol 2022; 13:810376. [PMID: 35185902 PMCID: PMC8847576 DOI: 10.3389/fimmu.2022.810376] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/11/2022] [Indexed: 01/20/2023] Open
Abstract
Exacerbated inflammatory response and altered vascular function are hallmarks of dengue disease. Reactive oxygen species (ROS) production has been associated to endothelial barrier disturbance and microvascular alteration in distinct pathological conditions. Increased ROS has been reported in in vitro models of dengue virus (DENV) infection, but its impact for endothelial cell physiology had not been fully investigated. Our group had previously demonstrated that infection of human brain microvascular endothelial cells (HBMEC) with DENV results in the activation of RNA sensors and production of proinflammatory cytokines, which culminate in cell death and endothelial permeability. Here, we evaluated the role of mitochondrial function and NADPH oxidase (NOX) activation for ROS generation in HBMEC infected by DENV and investigated whether altered cellular physiology could be a consequence of virus-induced oxidative stress. DENV-infected HBMECs showed a decrease in the maximal respiratory capacity and altered membrane potential, indicating functional mitochondrial alteration, what might be related to mtROS production. Indeed, mtROS was detected at later time points after infection. Specific inhibition of mtROS diminished virus replication, cell death, and endothelial permeability, but did not affect cytokine production. On the other hand, inhibition of NOX-associated ROS production decreased virus replication and cell death, as well as the secretion of inflammatory cytokines, including IL-6, IL-8, and CCL5. These results demonstrated that DENV replication in endothelial cells induces ROS production by different pathways, which impacts biological functions that might be relevant for dengue pathogenesis. Those data also indicate oxidative stress events as relevant therapeutical targets to avoid vascular permeability, inflammation, and neuroinvasion during DENV infection.
Collapse
Affiliation(s)
- Lana Monteiro Meuren
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elisa Beatriz Prestes
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michelle Premazzi Papa
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States
| | | | - Yasmin Mucunã Mustafá
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Silva da Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea T Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Torres Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Barros Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Hasankhani A, Bahrami A, Sheybani N, Fatehi F, Abadeh R, Ghaem Maghami Farahani H, Bahreini Behzadi MR, Javanmard G, Isapour S, Khadem H, Barkema HW. Integrated Network Analysis to Identify Key Modules and Potential Hub Genes Involved in Bovine Respiratory Disease: A Systems Biology Approach. Front Genet 2021; 12:753839. [PMID: 34733317 PMCID: PMC8559434 DOI: 10.3389/fgene.2021.753839] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Bovine respiratory disease (BRD) is the most common disease in the beef and dairy cattle industry. BRD is a multifactorial disease resulting from the interaction between environmental stressors and infectious agents. However, the molecular mechanisms underlying BRD are not fully understood yet. Therefore, this study aimed to use a systems biology approach to systematically evaluate this disorder to better understand the molecular mechanisms responsible for BRD. Methods: Previously published RNA-seq data from whole blood of 18 healthy and 25 BRD samples were downloaded from the Gene Expression Omnibus (GEO) and then analyzed. Next, two distinct methods of weighted gene coexpression network analysis (WGCNA), i.e., module-trait relationships (MTRs) and module preservation (MP) analysis were used to identify significant highly correlated modules with clinical traits of BRD and non-preserved modules between healthy and BRD samples, respectively. After identifying respective modules by the two mentioned methods of WGCNA, functional enrichment analysis was performed to extract the modules that are biologically related to BRD. Gene coexpression networks based on the hub genes from the candidate modules were then integrated with protein-protein interaction (PPI) networks to identify hub-hub genes and potential transcription factors (TFs). Results: Four significant highly correlated modules with clinical traits of BRD as well as 29 non-preserved modules were identified by MTRs and MP methods, respectively. Among them, two significant highly correlated modules (identified by MTRs) and six nonpreserved modules (identified by MP) were biologically associated with immune response, pulmonary inflammation, and pathogenesis of BRD. After aggregation of gene coexpression networks based on the hub genes with PPI networks, a total of 307 hub-hub genes were identified in the eight candidate modules. Interestingly, most of these hub-hub genes were reported to play an important role in the immune response and BRD pathogenesis. Among the eight candidate modules, the turquoise (identified by MTRs) and purple (identified by MP) modules were highly biologically enriched in BRD. Moreover, STAT1, STAT2, STAT3, IRF7, and IRF9 TFs were suggested to play an important role in the immune system during BRD by regulating the coexpressed genes of these modules. Additionally, a gene set containing several hub-hub genes was identified in the eight candidate modules, such as TLR2, TLR4, IL10, SOCS3, GZMB, ANXA1, ANXA5, PTEN, SGK1, IFI6, ISG15, MX1, MX2, OAS2, IFIH1, DDX58, DHX58, RSAD2, IFI44, IFI44L, EIF2AK2, ISG20, IFIT5, IFITM3, OAS1Y, HERC5, and PRF1, which are potentially critical during infection with agents of bovine respiratory disease complex (BRDC). Conclusion: This study not only helps us to better understand the molecular mechanisms responsible for BRD but also suggested eight candidate modules along with several promising hub-hub genes as diagnosis biomarkers and therapeutic targets for BRD.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Farhang Fatehi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Roxana Abadeh
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Sadegh Isapour
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hosein Khadem
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
25
|
Wang L, Zhou L, Zhou Y, Liu L, Jiang W, Zhang H, Liu H. Necroptosis in Pulmonary Diseases: A New Therapeutic Target. Front Pharmacol 2021; 12:737129. [PMID: 34594225 PMCID: PMC8476758 DOI: 10.3389/fphar.2021.737129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
In the past decades, apoptosis has been the most well-studied regulated cell death (RCD) that has essential functions in tissue homeostasis throughout life. However, a novel form of RCD called necroptosis, which requires receptor-interacting protein kinase-3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL), has recently been receiving increasing scientific attention. The phosphorylation of RIPK3 enables the recruitment and phosphorylation of MLKL, which oligomerizes and translocates to the plasma membranes, ultimately leading to plasma membrane rupture and cell death. Although apoptosis elicits no inflammatory responses, necroptosis triggers inflammation or causes an innate immune response to protect the body through the release of damage-associated molecular patterns (DAMPs). Increasing evidence now suggests that necroptosis is implicated in the pathogenesis of several human diseases such as systemic inflammation, respiratory diseases, cardiovascular diseases, neurodegenerative diseases, neurological diseases, and cancer. This review summarizes the emerging insights of necroptosis and its contribution toward the pathogenesis of lung diseases.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhao Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiling Jiang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huojun Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J 2021; 19:4641-4657. [PMID: 34504660 PMCID: PMC8405902 DOI: 10.1016/j.csbj.2021.07.038] [Citation(s) in RCA: 229] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Pyroptosis, apoptosis and necroptosis are the most genetically well-defined programmed cell death (PCD) pathways, and they are intricately involved in both homeostasis and disease. Although the identification of key initiators, effectors and executioners in each of these three PCD pathways has historically delineated them as distinct, growing evidence has highlighted extensive crosstalk among them. These observations have led to the establishment of the concept of PANoptosis, defined as an inflammatory PCD pathway regulated by the PANoptosome complex with key features of pyroptosis, apoptosis and/or necroptosis that cannot be accounted for by any of these PCD pathways alone. In this review, we provide a brief overview of the research history of pyroptosis, apoptosis and necroptosis. We then examine the intricate crosstalk among these PCD pathways to discuss the current evidence for PANoptosis. We also detail the molecular evidence for the assembly of the PANoptosome complex, a molecular scaffold for contemporaneous engagement of key molecules from pyroptosis, apoptosis, and/or necroptosis. PANoptosis is now known to be critically involved in many diseases, including infection, sterile inflammation and cancer, and future discovery of novel PANoptotic components will continue to broaden our understanding of the fundamental processes of cell death and inform the development of new therapeutics.
Collapse
|
27
|
Santos LD, Antunes KH, Muraro SP, de Souza GF, da Silva AG, Felipe JDS, Zanetti LC, Czepielewski RS, Magnus K, Scotta M, Mattiello R, Maito F, de Souza APD, Weinlich R, Vinolo MAR, Porto BN. TNF-mediated alveolar macrophage necroptosis drives disease pathogenesis during respiratory syncytial virus infection. Eur Respir J 2021; 57:13993003.03764-2020. [PMID: 33303545 PMCID: PMC8209485 DOI: 10.1183/13993003.03764-2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
Respiratory syncytial virus (RSV) is the major cause of acute bronchiolitis in infants under 2 years old. Necroptosis has been implicated in the outcomes of respiratory virus infections. We report that RSV infection triggers necroptosis in primary mouse macrophages and human monocytes in a RIPK1-, RIPK3- and MLKL-dependent manner. Moreover, necroptosis pathways are harmful to RSV clearance from alveolar macrophages. Additionally, Ripk3-/- mice were protected from RSV-induced weight loss and presented with reduced viral loads in the lungs.Alveolar macrophage depletion also protected mice from weight loss and decreased lung RSV virus load. Importantly, alveolar macrophage depletion abolished the upregulation of Ripk3 and Mlkl gene expression induced by RSV infection in the lung tissue.Autocrine tumor necrosis factor (TNF)-mediated RSV-triggered macrophage necroptosis and necroptosis pathways were also involved in TNF secretion even when macrophages were committed to cell death, which can worsen lung injury during RSV infection. In line, Tnfr1-/- mice had a marked decrease in Ripk3 and Mlkl gene expression and a sharp reduction in the numbers of necrotic alveolar macrophages in the lungs. Finally, we provide evidence that elevated nasal levels of TNF are associated with disease severity in infants with RSV bronchiolitis.We propose that targeting TNF and/or the necroptotic machinery may be valuable therapeutic approaches to reduce the respiratory morbidity caused by RSV infection in young children.
Collapse
Affiliation(s)
- Leonardo Duarte Santos
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Krist Helen Antunes
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Stéfanie Primon Muraro
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Emerging Viruses, Dept of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.,These authors contributed equally to this work
| | - Gabriela Fabiano de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Emerging Viruses, Dept of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.,These authors contributed equally to this work
| | - Amanda Gonzalez da Silva
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaqueline de Souza Felipe
- Laboratory of Immunoinflammation, Dept of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Rafael Sanguinetti Czepielewski
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Dept of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Karen Magnus
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Scotta
- Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rita Mattiello
- Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabio Maito
- Laboratory of Oral Pathology, Health Science School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula Duarte de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Dept of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Bárbara Nery Porto
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil .,Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
28
|
Ye C, Huang Q, Jiang J, Li G, Xu D, Zeng Z, Peng L, Peng Y, Fang R. ATP-dependent activation of NLRP3 inflammasome in primary murine macrophages infected by pseudorabies virus. Vet Microbiol 2021; 259:109130. [PMID: 34052623 DOI: 10.1016/j.vetmic.2021.109130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/23/2021] [Indexed: 12/18/2022]
Abstract
Pseudorabies virus (PRV), an alphaherpesvirus, causes respiratory and reproductive diseases in pigs and severe nervous symptom in other susceptible hosts. Previous studies showed that PRV infection induced a systemic inflammatory response in mice, indicating that pro-inflammatory cytokines participated in viral neuropathy in mice. The pro-inflammatory cytokine IL-1β is a key mediator of the inflammatory response and plays an important role in host-response to pathogens. However, the secretion of IL-1β and its relationship with inflammasome activation during PRV infection remains poorly understood. In this study, we found that PRV infection caused significant secretion of several pro-inflammatory cytokines in macrophages and promoted IL-1β secretion in an ATP-dependent manner. Furthermore, the expression of IL-1β can be induced by only PRV infection and depended on NF-κB pathway activation, while the subsequent secretion of IL-1β was mediated by ATP-induced P2 × 7R activation, loss of intracellular K+, and the subsequent NLRP3 inflammasome activation. By using a mouse infection model, we also found that ATP exacerbated clinical signs and death of mice infected by PRV in a NLRP3-dependent manner. These results indicate that ATP facilitates activation of NLRP3 inflammasome and enhances the pathogenicity of PRV in mice during its acute infection.
Collapse
Affiliation(s)
- Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Qingyuan Huang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Jiali Jiang
- Chongqing Animal Disease Prevention and Control Center, Chongqing, 401120, China
| | - Gang Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Dongyi Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Zheng Zeng
- Chongqing Animal Disease Prevention and Control Center, Chongqing, 401120, China
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yuanyi Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
29
|
Lee JT, Basak S. Cytotoxic Effects of N,N-Diethyl- Meta-Toluamide (DEET) on Sinonasal Epithelia. OTO Open 2021; 5:2473974X211009232. [PMID: 34017935 PMCID: PMC8114259 DOI: 10.1177/2473974x211009232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/27/2021] [Indexed: 11/27/2022] Open
Abstract
Although the etiology of chronic rhinosinusitis remains unknown, environmental factors including airborne pollutants and toxicants are postulated to contribute to its pathogenesis. However, the precise pathomechanisms with which environmental toxicants may contribute to chronic rhinosinusitis are not fully understood. The purpose of this pilot study is to examine the cytotoxic effects of N,N-diethyl-meta-toluamide (DEET), a commonly used pesticide, on sinonasal epithelial cells (SNECs). Sinus mucosa was obtained from 3 subjects without a history of chronic rhinosinusitis. Cultured SNECs were exposed to various concentrations of DEET (0-5 mM) for 6 days. Cell viability, proliferation, and morphologic changes were assessed using the MTT colorimetric dye assay and the Incucyte Live Cell Monitoring System. Statistically significant dose-dependent reduction in cell viability and proliferation was observed between exposure and control groups (P < .05) at all concentrations tested. Dose-dependent cellular morphological changes were also seen. These findings indicate that DEET exposure induces dose-dependent cytotoxicity in sinonasal epithelia.
Collapse
Affiliation(s)
- Jivianne T Lee
- Department of Head and Neck Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA.,Greater Los Angeles Veterans Administration Healthcare System, Los Angeles, California, USA
| | - Saroj Basak
- Greater Los Angeles Veterans Administration Healthcare System, Los Angeles, California, USA
| |
Collapse
|
30
|
An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol 2021; 18:1141-1160. [PMID: 33850310 PMCID: PMC8093260 DOI: 10.1038/s41423-021-00670-3] [Citation(s) in RCA: 347] [Impact Index Per Article: 115.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a multiprotein complex involved in the release of mature interleukin-1β and triggering of pyroptosis, which is of paramount importance in a variety of physiological and pathological conditions. Over the past decade, considerable advances have been made in elucidating the molecular mechanisms underlying the priming/licensing (Signal 1) and assembly (Signal 2) involved in NLRP3 inflammasome activation. Recently, a number of studies have indicated that the priming/licensing step is regulated by complicated mechanisms at both the transcriptional and posttranslational levels. In this review, we discuss the current understanding of the mechanistic details of NLRP3 inflammasome activation with a particular emphasis on protein-protein interactions, posttranslational modifications, and spatiotemporal regulation of the NLRP3 inflammasome machinery. We also present a detailed summary of multiple positive and/or negative regulatory pathways providing upstream signals that culminate in NLRP3 inflammasome complex assembly. A better understanding of the molecular mechanisms underlying NLRP3 inflammasome activation will provide opportunities for the development of methods for the prevention and treatment of NLRP3 inflammasome-related diseases.
Collapse
|