1
|
Herdina AN, Bozdogan A, Aspermair P, Dostalek J, Klausberger M, Lingg N, Cserjan-Puschmann M, Aguilar PP, Auer S, Demirtas H, Andersson J, Lötsch F, Holzer B, Steinrigl A, Thalhammer F, Schellnegger J, Breuer M, Knoll W, Strassl R. Bridging basic science and applied diagnostics: Comprehensive viral diagnostics enabled by graphene-based electronic biosensor technology advancements. Biosens Bioelectron 2024; 267:116807. [PMID: 39341071 DOI: 10.1016/j.bios.2024.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
This study presents a graphene field-effect transistor (gFET) biosensor with dual detection capabilities for SARS-CoV-2: one RNA detection assay to confirm viral positivity and the other for nucleocapsid (N-)protein detection as a proxy for infectiousness of the patient. This technology can be rapidly adapted to emerging infectious diseases, making an essential tool to contain future pandemics. To detect viral RNA, the highly conserved E-gene of the virus was targeted, allowing for the determination of SARS-CoV-2 presence or absence using nasopharyngeal swab samples. For N-protein detection, specific antibodies were used. Tested on 213 clinical nasopharyngeal samples, the gFET biosensor showed good correlation with RT-PCR cycle threshold values, proving its high sensitivity in detecting SARS-CoV-2 RNA. Specificity was confirmed using 21 pre-pandemic samples positive for other respiratory viruses. The gFET biosensor had a limit of detection (LOD) for N-protein of 0.9 pM, establishing a foundation for the development of a sensitive tool for monitoring active viral infection. Results of gFET based N-protein detection corresponded to the results of virus culture in all 16 available clinical samples and thus it also proved its capability to serve as a proxy for infectivity. Overall, these findings support the potential of the gFET biosensor as a point-of-care device for rapid diagnosis of SARS-CoV-2 infection and indirect assessment of infectiousness in patients, providing additional information for clinical and public health decision-making.
Collapse
Affiliation(s)
- Anna Nele Herdina
- Department of Laboratory Medicine, Division of Clinical Virology, Medical University of Vienna, Vienna, Austria
| | - Anil Bozdogan
- Department of Laboratory Medicine, Division of Clinical Virology, Medical University of Vienna, Vienna, Austria; BioSensor Technologies, Austrian Institute of Technology, Vienna, Austria
| | - Patrik Aspermair
- BioSensor Technologies, Austrian Institute of Technology, Vienna, Austria; Life Sciences Technology, Danube Privat University, Wiener Neustadt, Austria
| | - Jakub Dostalek
- Life Sciences Technology, Danube Privat University, Wiener Neustadt, Austria; Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Nico Lingg
- ACIB - Austrian Centre of Industrial Biotechnology, Vienna, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, BOKU University, Vienna, Austria
| | - Monika Cserjan-Puschmann
- ACIB - Austrian Centre of Industrial Biotechnology, Vienna, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, BOKU University, Vienna, Austria
| | - Patricia Pereira Aguilar
- ACIB - Austrian Centre of Industrial Biotechnology, Vienna, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, BOKU University, Vienna, Austria
| | - Simone Auer
- BioSensor Technologies, Austrian Institute of Technology, Vienna, Austria
| | - Halil Demirtas
- BioSensor Technologies, Austrian Institute of Technology, Vienna, Austria
| | - Jakob Andersson
- BioSensor Technologies, Austrian Institute of Technology, Vienna, Austria; Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Felix Lötsch
- Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria; Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Barbara Holzer
- Institute Krems Bioanalytics, IMC Krems University of Applied Sciences, Krems, Austria
| | - Adi Steinrigl
- Austrian Agency for Health and Food Safety (AGES), Institute for Veterinary Disease Control Mödling, Mödling, Austria
| | | | - Julia Schellnegger
- Department of Laboratory Medicine, Division of Clinical Virology, Medical University of Vienna, Vienna, Austria
| | - Monika Breuer
- Department of Laboratory Medicine, Division of Clinical Virology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Knoll
- BioSensor Technologies, Austrian Institute of Technology, Vienna, Austria; Life Sciences Technology, Danube Privat University, Wiener Neustadt, Austria
| | - Robert Strassl
- Department of Laboratory Medicine, Division of Clinical Virology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Hashimi M, Sebrell TA, Hedges JF, Snyder D, Lyon KN, Byrum SD, Mackintosh SG, Crowley D, Cherne MD, Skwarchuk D, Robison A, Sidar B, Kunze A, Loveday EK, Taylor MP, Chang CB, Wilking JN, Walk ST, Schountz T, Jutila MA, Bimczok D. Antiviral responses in a Jamaican fruit bat intestinal organoid model of SARS-CoV-2 infection. Nat Commun 2023; 14:6882. [PMID: 37898615 PMCID: PMC10613288 DOI: 10.1038/s41467-023-42610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
Bats are natural reservoirs for several zoonotic viruses, potentially due to an enhanced capacity to control viral infection. However, the mechanisms of antiviral responses in bats are poorly defined. Here we established a Jamaican fruit bat (JFB, Artibeus jamaicensis) intestinal organoid model of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Upon infection with SARS-CoV-2, increased viral RNA and subgenomic RNA was detected, but no infectious virus was released, indicating that JFB organoids support only limited viral replication but not viral reproduction. SARS-CoV-2 replication was associated with significantly increased gene expression of type I interferons and inflammatory cytokines. Interestingly, SARS-CoV-2 also caused enhanced formation and growth of JFB organoids. Proteomics revealed an increase in inflammatory signaling, cell turnover, cell repair, and SARS-CoV-2 infection pathways. Collectively, our findings suggest that primary JFB intestinal epithelial cells mount successful antiviral interferon responses and that SARS-CoV-2 infection in JFB cells induces protective regenerative pathways.
Collapse
Affiliation(s)
- Marziah Hashimi
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - T Andrew Sebrell
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Jodi F Hedges
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Deann Snyder
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Katrina N Lyon
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Stephanie D Byrum
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Samuel G Mackintosh
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, USA
| | - Dan Crowley
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
- Department of Public & Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Michelle D Cherne
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - David Skwarchuk
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Amanda Robison
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Barkan Sidar
- Montana State University, Chemical and Biological Engineering Department, Bozeman, MT, USA
- Center for Biofilm Engineering, Bozeman, MT, USA
| | - Anja Kunze
- Montana State University, Electrical and Computer Engineering Department, Bozeman, MT, USA
| | - Emma K Loveday
- Montana State University, Chemical and Biological Engineering Department, Bozeman, MT, USA
- Center for Biofilm Engineering, Bozeman, MT, USA
| | - Matthew P Taylor
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Connie B Chang
- Montana State University, Chemical and Biological Engineering Department, Bozeman, MT, USA
- Center for Biofilm Engineering, Bozeman, MT, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James N Wilking
- Montana State University, Chemical and Biological Engineering Department, Bozeman, MT, USA
- Center for Biofilm Engineering, Bozeman, MT, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Seth T Walk
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology and Center of Vector-Borne Infectious Diseases, Colorado State University, Fort, Collins, CO, USA
| | - Mark A Jutila
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Diane Bimczok
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA.
- Center for Biofilm Engineering, Bozeman, MT, USA.
| |
Collapse
|
3
|
Richards A, Khalil A, Friesen M, Whitfield TW, Lungjangwa T, Gehrke L, Mooney D, Jaenisch R. SARS-CoV-2 infection of human pluripotent stem cell-derived vascular cells reveals smooth muscle cells as key mediators of vascular pathology during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552160. [PMID: 37609322 PMCID: PMC10441287 DOI: 10.1101/2023.08.06.552160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Although respiratory symptoms are the most prevalent disease manifestation of infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), nearly 20% of hospitalized patients are at risk for thromboembolic events 1 . This prothrombotic state is considered a key factor in the increased risk of stroke, which has been observed clinically during both acute infection and long after symptoms have cleared 2 . Here we developed a model of SARS-CoV-2 infection using human-induced pluripotent stem cell-derived endothelial cells, pericytes, and smooth muscle cells to recapitulate the vascular pathology associated with SARS-CoV-2 exposure. Our results demonstrate that perivascular cells, particularly smooth muscle cells (SMCs), are a specifically susceptible vascular target for SARS-CoV-2 infection. Utilizing RNA sequencing, we characterized the transcriptomic changes accompanying SARS-CoV-2 infection of SMCs, and endothelial cells (ECs). We observed that infected human SMCs shift to a pro-inflammatory state and increase the expression of key mediators of the coagulation cascade. Further, we showed human ECs exposed to the secretome of infected SMCs produce hemostatic factors that can contribute to vascular dysfunction, despite not being susceptible to direct infection. The findings here recapitulate observations from patient sera in human COVID-19 patients and provide mechanistic insight into the unique vascular implications of SARS-CoV-2 infection at a cellular level.
Collapse
|
4
|
Gomes MPDB, Linhares JHR, Dos Santos TP, Pereira RC, Santos RT, da Silva SA, Souza MCDO, da Silva JFA, Trindade GF, Gomes VS, Barreto-Vieira DF, Carvalho MMVF, Ano Bom APD, Gardinali NR, Müller R, Alves NDS, Moura LDC, Neves PCDC, Esteves GS, Schwarcz WD, Missailidis S, Mendes YDS, de Lima SMB. Inactivated and Immunogenic SARS-CoV-2 for Safe Use in Immunoassays and as an Immunization Control for Non-Clinical Trials. Viruses 2023; 15:1486. [PMID: 37515173 PMCID: PMC10386713 DOI: 10.3390/v15071486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Successful SARS-CoV-2 inactivation allows its safe use in Biosafety Level 2 facilities, and the use of the whole viral particle helps in the development of analytical methods and a more reliable immune response, contributing to the development and improvement of in vitro and in vivo assays. In order to obtain a functional product, we evaluated several inactivation protocols and observed that 0.03% beta-propiolactone for 24 h was the best condition tested, as it promoted SARS-CoV-2 inactivation above 99.99% and no cytopathic effect was visualized after five serial passages. Moreover, RT-qPCR and transmission electron microscopy revealed that RNA quantification and viral structure integrity were preserved. The antigenicity of inactivated SARS-CoV-2 was confirmed by ELISA using different Spike-neutralizing monoclonal antibodies. K18-hACE2 mice immunized with inactivated SARS-CoV-2, formulated in AddaS03TM, presented high neutralizing antibody titers, no significant weight loss, and longer survival than controls from a lethal challenge, despite RNA detection in the oropharyngeal swab, lung, and brain. This work emphasizes the importance of using different techniques to confirm viral inactivation and avoid potentially disastrous contamination. We believe that an efficiently inactivated product can be used in several applications, including the development and improvement of molecular diagnostic kits, as an antigen for antibody production as well as a control for non-clinical trials.
Collapse
Affiliation(s)
| | | | | | - Renata Carvalho Pereira
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Renata Tourinho Santos
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | | | | | - Gisela Freitas Trindade
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Viviane Silva Gomes
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | | | - Ana Paula Dinis Ano Bom
- Immunological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Noemi Rovaris Gardinali
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Rodrigo Müller
- Pre-Clinical Trials Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - Luma da Cruz Moura
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - Gabriela Santos Esteves
- Recombinant Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Waleska Dias Schwarcz
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Sotiris Missailidis
- Institute of Technology in Immunobiologicals, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Ygara da Silva Mendes
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | |
Collapse
|
5
|
Gu X, Cao T, Mou J, Liu J. Water bath is more efficient than hot air oven at thermal inactivation of coronavirus. Virol J 2023; 20:84. [PMID: 37131169 PMCID: PMC10153051 DOI: 10.1186/s12985-023-02038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Thermal inactivation is a conventional and effective method of eliminating the infectivity of pathogens from specimens in clinical and biological laboratories, and reducing the risk of occupational exposure and environmental contamination. During the COVID-19 pandemic, specimens from patients and potentially infected individuals were heat treated and processed under BSL-2 conditions in a safe, cost-effective, and timely manner. The temperature and duration of heat treatment are optimized and standardized in the protocol according to the susceptibility of the pathogen and the impact on the integrity of the specimens, but the heating device is often undefined. Devices and medium transferring the thermal energy vary in heating rate, specific heat capacity, and conductivity, resulting in variations in efficiency and inactivation outcome that may compromise biosafety and downstream biological assays. METHODS We evaluated the water bath and hot air oven in terms of pathogen inactivation efficiency, which are the most commonly used inactivation devices in hospitals and biological laboratories. By evaluating the temperature equilibrium and viral titer elimination under various conditions, we studied the devices and their inactivation outcomes under identical treatment protocol, and to analyzed the factors, such as energy conductivity, specific heat capacity, and heating rate, underlying the inactivation efficiencies. RESULTS We compared thermal inactivation of coronavirus using different devices, and have found that the water bath was more efficient at reducing infectivity, with higher heat transfer and thermal equilibration than a forced hot air oven. In addition to the efficiency, the water bath showed relative consistency in temperature equilibration of samples of different volumes, reduced the need for prolonged heating, and eliminated the risk of pathogen spread by forced airflow. CONCLUSIONS Our data support the proposal to define the heating device in the thermal inactivation protocol and in the specimen management policy.
Collapse
Affiliation(s)
- Xinxia Gu
- Laboratory of Infectious Diseases and Vaccine, West China School of Medicine, West China Hospital, Sichuan University, 88 Keyuan S. Rd, Chengdu, 610041, China
| | - Ting Cao
- Laboratory of Infectious Diseases and Vaccine, West China School of Medicine, West China Hospital, Sichuan University, 88 Keyuan S. Rd, Chengdu, 610041, China
| | - Jun Mou
- Laboratory of Infectious Diseases and Vaccine, West China School of Medicine, West China Hospital, Sichuan University, 88 Keyuan S. Rd, Chengdu, 610041, China
| | - Jie Liu
- Laboratory of Infectious Diseases and Vaccine, West China School of Medicine, West China Hospital, Sichuan University, 88 Keyuan S. Rd, Chengdu, 610041, China.
| |
Collapse
|
6
|
de Oliveira SV, Neves FDD, dos Santos DC, Monteiro MBB, Schaufelberger MS, Motta BN, de Oliveira IP, Setúbal Destro Rodrigues MF, Franco ALDS, Cecatto RB. The effectiveness of phototherapy for surface decontamination against SARS-Cov-2. A systematic review. JOURNAL OF BIOPHOTONICS 2023; 16:e202200306. [PMID: 36560919 PMCID: PMC9880673 DOI: 10.1002/jbio.202200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
COVID-19 appeared in December 2019, needing efforts of science. Besides, a range of light therapies (photodynamic therapy, ultraviolet [UV], laser) has shown scientific alternatives to conventional decontamination therapies. Investigating the efficacy of light-based therapies for environment decontamination against SARS-CoV2, a PRISMA systematic review of Phototherapies against SARS-CoV or MERS-CoV species discussing changes in viral RT-PCR was done. After searching MEDLINE/PubMed, EMBASE, and Literatura Latino-Americana e do Caribe em Ciências da Saúde we have found studies about cell cultures irradiation (18), blood components irradiation (10), N95 masks decontamination (03), inanimate surface decontamination (03), aerosols decontamination (03), hospital rooms irradiation (01) with PDT, LED, and UV therapy. The best quality results showed an effective low time and dose UV irradiation for environments and inanimate surfaces without human persons as long as the devices have safety elements dependent on the surfaces, viral charge, humidity, radiant exposure. To interpersonal contamination in humans, PDT or LED therapy seems very promising and are encouraged.
Collapse
Affiliation(s)
- Susyane Vieira de Oliveira
- Post Graduate Program Biophotonics Applied to Health Sciences, Universidade Nove de Julho/UNINOVESao PauloBrazil
| | | | | | | | | | | | | | | | | | - Rebeca Boltes Cecatto
- Post Graduate Program Biophotonics Applied to Health Sciences, Universidade Nove de Julho/UNINOVESao PauloBrazil
- Instituto do Cancer do Estado de Sao Paulo, School of Medicine of the University of Sao PauloSao PauloBrazil
| |
Collapse
|
7
|
Shahjin F, Patel M, Machhi J, Cohen JD, Nayan MU, Yeapuri P, Zhang C, Waight E, Hasan M, Abdelmoaty MM, Dash PK, Zhou Y, Andreu I, Gendelman HE, Kevadiya BD. Multipolymer microsphere delivery of SARS-CoV-2 antigens. Acta Biomater 2023; 158:493-509. [PMID: 36581007 PMCID: PMC9791794 DOI: 10.1016/j.actbio.2022.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Effective antigen delivery facilitates antiviral vaccine success defined by effective immune protective responses against viral exposures. To improve severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigen delivery, a controlled biodegradable, stable, biocompatible, and nontoxic polymeric microsphere system was developed for chemically inactivated viral proteins. SARS-CoV-2 proteins encapsulated in polymeric microspheres induced robust antiviral immunity. The viral antigen-loaded microsphere system can preclude the need for repeat administrations, highlighting its potential as an effective vaccine. STATEMENT OF SIGNIFICANCE: Successful SARS-CoV-2 vaccines were developed and quickly approved by the US Food and Drug Administration (FDA). However, each of the vaccines requires boosting as new variants arise. We posit that injectable biodegradable polymers represent a means for the sustained release of emerging viral antigens. The approach offers a means to reduce immunization frequency by predicting viral genomic variability. This strategy could lead to longer-lasting antiviral protective immunity. The current proof-of-concept multipolymer study for SARS-CoV-2 achieve these metrics.
Collapse
Affiliation(s)
- Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Jacob D Cohen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Chen Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Emiko Waight
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mai Mohamed Abdelmoaty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Prasanta K Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - You Zhou
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Irene Andreu
- RI Consortium of Nanoscience and Nanotechnology and Department of Chemical Engineering University of Rhode Island, RI, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| |
Collapse
|
8
|
Soh TK, Pfefferle S, Wurr S, von Possel R, Oestereich L, Rieger T, Uetrecht C, Rosenthal M, Bosse JB. A validated protocol to UV-inactivate SARS-CoV-2 and herpesvirus-infected cells. PLoS One 2023; 18:e0274065. [PMID: 37163509 PMCID: PMC10171616 DOI: 10.1371/journal.pone.0274065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/19/2022] [Indexed: 05/12/2023] Open
Abstract
Downstream analysis of virus-infected cell samples, such as reverse transcription polymerase chain reaction (RT PCR) or mass spectrometry, often needs to be performed at lower biosafety levels than their actual cultivation, and thus the samples require inactivation before they can be transferred. Common inactivation methods involve chemical crosslinking with formaldehyde or denaturing samples with strong detergents, such as sodium dodecyl sulfate. However, these protocols destroy the protein quaternary structure and prevent the analysis of protein complexes, albeit through different chemical mechanisms. This often leads to studies being performed in over-expression or surrogate model systems. To address this problem, we generated a protocol that achieves the inactivation of infected cells through ultraviolet (UV) irradiation. UV irradiation damages viral genomes and crosslinks nucleic acids to proteins but leaves the overall structure of protein complexes mostly intact. Protein analysis can then be performed from intact cells without biosafety containment. While UV treatment protocols have been established to inactivate viral solutions, a protocol was missing to inactivate crude infected cell lysates, which heavily absorb light. In this work, we develop and validate a UV inactivation protocol for SARS-CoV-2, HSV-1, and HCMV-infected cells. A fluence of 10,000 mJ/cm2 with intermittent mixing was sufficient to completely inactivate infected cells, as demonstrated by the absence of viral replication even after three sequential passages of cells inoculated with the treated material. The herein described protocol should serve as a reference for inactivating cells infected with these or similar viruses and allow for the analysis of protein quaternary structure from bona fide infected cells.
Collapse
Affiliation(s)
- Timothy K Soh
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Susanne Pfefferle
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
- Virology and Hygiene, Institute for Medical Microbiology, University Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Stephanie Wurr
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
- DZIF German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Ronald von Possel
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
- Department of Tropical Medicine and Infectious Diseases, Center for Internal Medicine, University of Rostock, Rostock, Germany
| | - Lisa Oestereich
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
- DZIF German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Toni Rieger
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Charlotte Uetrecht
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Department of Health Sciences and Biomedicine, School of Life Sciences, University of Siegen, Germany
| | - Maria Rosenthal
- Centre for Structural Systems Biology, Hamburg, Germany
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Discovery Research ScreeningPort, Hamburg, Germany
| | - Jens B Bosse
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
9
|
Materón EM, Gómez FR, Almeida MB, Shimizu FM, Wong A, Teodoro KBR, Silva FSR, Lima MJA, Angelim MKSC, Melendez ME, Porras N, Vieira PM, Correa DS, Carrilho E, Oliveira O, Azevedo RB, Goncalves D. Colorimetric Detection of SARS-CoV-2 Using Plasmonic Biosensors and Smartphones. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54527-54538. [PMID: 36454041 PMCID: PMC9728479 DOI: 10.1021/acsami.2c15407] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/08/2022] [Indexed: 05/27/2023]
Abstract
Low-cost, instrument-free colorimetric tests were developed to detect SARS-CoV-2 using plasmonic biosensors with Au nanoparticles functionalized with polyclonal antibodies (f-AuNPs). Intense color changes were noted with the naked eye owing to plasmon coupling when f-AuNPs form clusters on the virus, with high sensitivity and a detection limit of 0.28 PFU mL-1 (PFU stands for plaque-forming units) in human saliva. Plasmon coupling was corroborated with computer simulations using the finite-difference time-domain (FDTD) method. The strategies based on preparing plasmonic biosensors with f-AuNPs are robust to permit SARS-CoV-2 detection via dynamic light scattering and UV-vis spectroscopy without interference from other viruses, such as influenza and dengue viruses. The diagnosis was made with a smartphone app after processing the images collected from the smartphone camera, measuring the concentration of SARS-CoV-2. Both image processing and machine learning algorithms were found to provide COVID-19 diagnosis with 100% accuracy for saliva samples. In subsidiary experiments, we observed that the biosensor could be used to detect the virus in river waters without pretreatment. With fast responses and requiring small sample amounts (only 20 μL), these colorimetric tests can be deployed in any location within the point-of-care diagnosis paradigm for epidemiological control.
Collapse
Affiliation(s)
- Elsa M. Materón
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
| | - Faustino R. Gómez
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
| | - Mariana B. Almeida
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
- National Institute of Science and
Technology in Bioanalytics - INCTBio, 13083-970Campinas, SP,
Brazil
| | - Flavio M. Shimizu
- Department of Applied Physics, “Gleb
Wataghin” Institute of Physics (IFGW), University of Campinas
(UNICAMP), 13083-859Campinas, SP, Brazil
| | - Ademar Wong
- Department of Chemistry, Federal
University of São Carlos (UFSCar), 13560-970São Carlos,
São Paulo, Brazil
| | - Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture,
Embrapa Instrumentation, 13560-970São Carlos, SP,
Brazil
| | - Filipe S. R. Silva
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
| | - Manoel J. A. Lima
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
| | - Monara Kaelle S. C. Angelim
- Department of Genetics Evolution, Microbiology, and
Immunology, Institute of Biology, University of Campinas,
13083-970Campinas, SP, Brazil
| | - Matias E. Melendez
- Molecular Carcinogenesis Program,
National Cancer Institute, 20231-050Rio de Janeiro, RJ,
Brazil
| | - Nelson Porras
- Physics Department, del Valle
University, AA 25360Cali, Colombia
| | - Pedro M. Vieira
- Department of Genetics Evolution, Microbiology, and
Immunology, Institute of Biology, University of Campinas,
13083-970Campinas, SP, Brazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture,
Embrapa Instrumentation, 13560-970São Carlos, SP,
Brazil
| | - Emanuel Carrilho
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
- National Institute of Science and
Technology in Bioanalytics - INCTBio, 13083-970Campinas, SP,
Brazil
| | - Osvaldo
N. Oliveira
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
| | - Ricardo B. Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics
and Morphology, Institute of Biological Sciences, University of
Brasilia, 70910-900Brasilia, DF, Brazil
| | - Débora Goncalves
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
| |
Collapse
|
10
|
Hashimi M, Sebrell T, Hedges J, Snyder D, Lyon K, Byrum S, Mackintosh SG, Cherne M, Skwarchuk D, Crowley D, Robison A, Sidar B, Kunze A, Loveday E, Taylor M, Chang C, Wilking J, Walk S, Schountz T, Jutila M, Bimczok D. Antiviral response mechanisms in a Jamaican Fruit Bat intestinal organoid model of SARS-CoV-2 infection. RESEARCH SQUARE 2022:rs.3.rs-2340919. [PMID: 36561186 PMCID: PMC9774215 DOI: 10.21203/rs.3.rs-2340919/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bats are natural reservoirs for several zoonotic viruses, potentially due to an enhanced capacity to control viral infection. However, the mechanisms of antiviral responses in bats are poorly defined. Here we established a Jamaican fruit bat (JFB) intestinal organoid model of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. JFB organoids were susceptible to SARS-CoV-2 infection, with increased viral RNA and subgenomic RNA detected in cell lysates and supernatants. Gene expression of type I interferons and inflammatory cytokines was induced in response to SARS-CoV-2 but not in response to TLR agonists. Interestingly, SARS-CoV-2 did not lead to cytopathic effects in JFB organoids but caused enhanced organoid growth. Proteomic analyses revealed an increase in inflammatory signaling, cell turnover, cell repair, and SARS-CoV-2 infection pathways. Collectively, our findings suggest that primary JFB intestinal epithelial cells can mount a successful antiviral interferon response and that SARS-CoV-2 infection in JFB cells induces protective regenerative pathways.
Collapse
|
11
|
Wang Z, Liang Z, Wei R, Wang H, Cheng F, Liu Y, Meng S. Quantitative determination of the electron beam radiation dose for SARS-CoV-2 inactivation to decontaminate frozen food packaging. Virol Sin 2022; 37:823-830. [PMID: 36309306 PMCID: PMC9605788 DOI: 10.1016/j.virs.2022.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from cold-chain foods to frontline workers poses a serious public health threat during the current global pandemic. There is an urgent need to design concise approaches for effective virus inactivation under different physicochemical conditions to reduce the risk of contagion through viral contaminated surfaces of cold-chain foods. By employing a time course of electron beam exposure to a high titer of SARS-CoV-2 at cold-chain temperatures, a radiation dose of 2 kGy was demonstrated to reduce the viral titer from 104.5 to 0 median tissue culture infectious dose (TCID50)/mL. Next, using human coronavirus OC43 (HCoV-OC43) as a suitable SARS-CoV-2 surrogate, 3 kGy of high-energy electron radiation was defined as the inactivation dose for a titer reduction of more than 4 log units on tested packaging materials. Furthermore, quantitative reverse transcription PCR (RT-qPCR) was used to test three viral genes, namely, E, N, and ORF1ab. There was a strong correlation between TCID50 and RT-qPCR for SARS-CoV-2 detection. However, RT-qPCR could not differentiate between the infectivity of the radiation-inactivated and nonirradiated control viruses. As the defined radiation dose for effective viral inactivation fell far below the upper safe dose limit for food processing, our results provide a basis for designing radiation-based approaches for the decontamination of SARS-CoV-2 in frozen food products. We further demonstrate that cell-based virus assays are essential to evaluate the SARS-CoV-2 inactivation efficiency for the decontaminating strategies.
Collapse
Affiliation(s)
- Zihao Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhentao Liang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongguo Wei
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,University of Chinese Academy of Sciences, Beijing, 100049, China,Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Hongwei Wang
- China Isotope and Radiaton Corporation, Beijing, 100089, China
| | - Fang Cheng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- Changchun CNNC CIRC Radiation Technology Co., LTD, Changchun, 130022, China
| | - Songdong Meng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,Corresponding author
| |
Collapse
|
12
|
Kongsomros S, Pongsakul N, Panachan J, Khowawisetsut L, Somkird J, Sangma C, Kanjanapruthipong T, Wongtrakoongate P, Chairoungdua A, Pattanapanyasat K, Newburg DS, Morrow AL, Hongeng S, Thitithanyanont A, Chutipongtanate S. Comparison of viral inactivation methods on the characteristics of extracellular vesicles from SARS-CoV-2 infected human lung epithelial cells. J Extracell Vesicles 2022; 11:e12291. [PMID: 36468940 PMCID: PMC9721205 DOI: 10.1002/jev2.12291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
The interaction of SARS-CoV-2 infection with extracellular vesicles (EVs) is of particular interest at the moment. Studying SARS-CoV-2 contaminated-EV isolates in instruments located outside of the biosafety level-3 (BSL-3) environment requires knowing how viral inactivation methods affect the structure and function of extracellular vesicles (EVs). Therefore, three common viral inactivation methods, ultraviolet-C (UVC; 1350 mJ/cm2 ), β-propiolactone (BPL; 0.005%), heat (56°C, 45 min) were performed on defined EV particles and their proteins, RNAs, and function. Small EVs were isolated from the supernatant of SARS-CoV-2-infected human lung epithelial Calu-3 cells by stepwise centrifugation, ultrafiltration and qEV size-exclusion chromatography. The EV isolates contained SARS-CoV-2. UVC, BPL and heat completely abolished SARS-CoV-2 infectivity of the contaminated EVs. Particle detection by electron microscopy and nanoparticle tracking was less affected by UVC and BPL than heat treatment. Western blot analysis of EV markers was not affected by any of these three methods. UVC reduced SARS-CoV-2 spike detectability by quantitative RT-PCR and slightly altered EV-derived β-actin detection. Fibroblast migration-wound healing activity of the SARS-CoV-2 contaminated-EV isolate was only retained after UVC treatment. In conclusion, specific viral inactivation methods are compatible with specific measures in SARS-CoV-2 contaminated-EV isolates. UVC treatment seems preferable for studying functions of EVs released from SARS-CoV-2 infected cells.
Collapse
Affiliation(s)
- Supasek Kongsomros
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi HospitalMahidol UniversitySamut PrakanThailand
- Pediatric Translational Research Unit, Department of PediatricsFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
- Department of Microbiology, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Nutkridta Pongsakul
- Pediatric Translational Research Unit, Department of PediatricsFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
| | - Jirawan Panachan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Jinjuta Somkird
- Department of Parasitology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Chak Sangma
- Department of Chemistry, Faculty of ScienceKasetsart UniversityBangkokThailand
| | | | | | - Arthit Chairoungdua
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Kovit Pattanapanyasat
- Center of Excellence for Microparticle and Exosome in Diseases, Research DepartmentFaculty of Medicine Siriraj Hospital, Mahidol UniversityBangkokThailand
| | - David S. Newburg
- Division of Epidemiology, Department of Environmental and Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Ardythe L. Morrow
- Division of Epidemiology, Department of Environmental and Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Division of Infectious Diseases, Department of PediatricsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | | | - Somchai Chutipongtanate
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi HospitalMahidol UniversitySamut PrakanThailand
- Pediatric Translational Research Unit, Department of PediatricsFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
- Division of Epidemiology, Department of Environmental and Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| |
Collapse
|
13
|
Lu Y, Zhu Q, Fox DM, Gao C, Stanley SA, Luo K. SARS-CoV-2 down-regulates ACE2 through lysosomal degradation. Mol Biol Cell 2022; 33:ar147. [PMID: 36287912 PMCID: PMC9727799 DOI: 10.1091/mbc.e22-02-0045] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes its Spike (S) glycoprotein to bind to the angiotensin-converting enzyme 2 (ACE2) receptor for cellular entry. ACE2 is a critical negative regulator of the renin-angiotensin system and plays a protective role in preventing tissue injury. Expression of ACE2 has been shown to decrease upon infection by SARS-CoV. However, whether SARS-CoV-2 down-regulates ACE2 and the underlying mechanism and biological impact of this down-regulation have not been well defined. Here we show that the SARS-CoV-2 infection down-regulates ACE2 in vivo in an animal model, and in cultured cells in vitro, by inducing clathrin- and AP2-dependent endocytosis, leading to its degradation in the lysosome. SARS-CoV-2 S-treated cells and ACE2 knockdown cells exhibit similar alterations in downstream gene expression, with a pattern indicative of activated cytokine signaling that is associated with respiratory distress and inflammatory diseases often observed in COVID-19 patients. Finally, we have identified a soluble ACE2 fragment with a stronger binding to SARS-CoV-2 S that can efficiently block ACE2 down-regulation and viral infection. Thus, our study suggests that ACE2 down-regulation represents an important mechanism underlying SARS-CoV-2-associated pathology, and blocking this process could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yi Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Qingwei Zhu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Douglas M. Fox
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720,Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | - Carol Gao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Sarah A. Stanley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720,Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | - Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720,*Address correspondence to: Kunxin Luo ()
| |
Collapse
|
14
|
Cimolai N. Disinfection and decontamination in the context of SARS-CoV-2-specific data. J Med Virol 2022; 94:4654-4668. [PMID: 35758523 PMCID: PMC9350315 DOI: 10.1002/jmv.27959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
Given the high transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as witnessed early in the coronavirus disease 2019 (COVID-19) pandemic, concerns arose with the existing methods for virus disinfection and decontamination. The need for SARS-CoV-2-specific data stimulated considerable research in this regard. Overall, SARS-CoV-2 is practically and equally susceptible to approaches for disinfection and decontamination that have been previously found for other human or animal coronaviruses. The latter have included techniques utilizing temperature modulation, pH extremes, irradiation, and chemical treatments. These physicochemical methods are a necessary adjunct to other prevention strategies, given the environmental and patient surface ubiquity of the virus. Classic studies of disinfection have also allowed for extrapolation to the eradication of the virus on human mucosal surfaces by some chemical means. Despite considerable laboratory study, practical field assessments are generally lacking and need to be encouraged to confirm the correlation of interventions with viral eradication and infection prevention. Transparency in the constitution and use of any method or chemical is also essential to furthering practical applications.
Collapse
Affiliation(s)
- Nevio Cimolai
- Department of Pathology and Laboratory Medicine, Faculty of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Pathology and Laboratory MedicineChildren's and Women's Health Centre of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
15
|
He D, Fu C, Ning M, Hu X, Li S, Chen Y. Biofilms possibly harbor occult SARS-CoV-2 may explain lung cavity, re-positive and long-term positive results. Front Cell Infect Microbiol 2022; 12:971933. [PMID: 36250053 PMCID: PMC9554432 DOI: 10.3389/fcimb.2022.971933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/14/2022] [Indexed: 01/08/2023] Open
Abstract
During the COVID-19 pandemic, there have been an increasing number of COVID-19 patients with cavitary or cystic lung lesions, re-positive or long-term positive nucleic acid tests, but the mechanism is still unclear. Lung cavities may appear at long time interval from initial onset of coronavirus infection, generally during the absorption phase of the disease. The main histopathological characteristic is diffuse alveolar damage and may have more severe symptoms after initial recovery from COVID-19 and an increased mortality rate. There are many possible etiologies of pulmonary cavities in COVID-19 patients and we hypothesize that occult SARS-CoV-2, in the form of biofilm, is harbored in the airway lacuna with other pathogenic microorganisms, which may be the cause of pulmonary cavities and repeated and long-term positive nucleic acid tests.
Collapse
Affiliation(s)
- Daqian He
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Chaojiang Fu
- Emergency Department (Outpatient Chemotherapy Center), The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Mingjie Ning
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Xianglin Hu
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Shanshan Li
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
- *Correspondence: Ying Chen, ; Shanshan Li,
| | - Ying Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
- *Correspondence: Ying Chen, ; Shanshan Li,
| |
Collapse
|
16
|
Nyaruaba R, Mwaliko C, Dobnik D, Neužil P, Amoth P, Mwau M, Yu J, Yang H, Wei H. Digital PCR Applications in the SARS-CoV-2/COVID-19 Era: a Roadmap for Future Outbreaks. Clin Microbiol Rev 2022; 35:e0016821. [PMID: 35258315 PMCID: PMC9491181 DOI: 10.1128/cmr.00168-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global public health disaster. The current gold standard for the diagnosis of infected patients is real-time reverse transcription-quantitative PCR (RT-qPCR). As effective as this method may be, it is subject to false-negative and -positive results, affecting its precision, especially for the detection of low viral loads in samples. In contrast, digital PCR (dPCR), the third generation of PCR, has been shown to be more effective than the gold standard, RT-qPCR, in detecting low viral loads in samples. In this review article, we selected publications to show the broad-spectrum applications of dPCR, including the development of assays and reference standards, environmental monitoring, mutation detection, and clinical diagnosis of SARS-CoV-2, while comparing it analytically to the gold standard, RT-qPCR. In summary, it is evident that the specificity, sensitivity, reproducibility, and detection limits of RT-dPCR are generally unaffected by common factors that may affect RT-qPCR. As this is the first time that dPCR is being tested in an outbreak of such a magnitude, knowledge of its applications will help chart a course for future diagnosis and monitoring of infectious disease outbreaks.
Collapse
Affiliation(s)
- Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Caroline Mwaliko
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Pavel Neužil
- Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Patrick Amoth
- Ministry of Health, Government of Kenya, Nairobi, Kenya
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Junping Yu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hang Yang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
17
|
Yu S, Wei Y, Liang H, Ji W, Chang Z, Xie S, Wang Y, Li W, Liu Y, Wu H, Li J, Wang H, Yang X. Comparison of Physical and Biochemical Characterizations of SARS-CoV-2 Inactivated by Different Treatments. Viruses 2022; 14:v14091938. [PMID: 36146745 PMCID: PMC9503440 DOI: 10.3390/v14091938] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 12/02/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused huge social and economic distress. Given its rapid spread and the lack of specific treatment options, SARS-CoV-2 needs to be inactivated according to strict biosafety measures during laboratory diagnostics and vaccine development. The inactivation method for SARS-CoV-2 affects research related to the natural virus and its immune activity as an antigen in vaccines. In this study, we used size exclusion chromatography, western blotting, ELISA, an electron microscope, dynamic light scattering, circular dichroism, and surface plasmon resonance to evaluate the effects of four different chemical inactivation methods on the physical and biochemical characterization of SARS-CoV-2. Formaldehyde and β-propiolactone (BPL) treatment can completely inactivate the virus and have no significant effects on the morphology of the virus. None of the four tested inactivation methods affected the secondary structure of the virus, including the α-helix, antiparallel β-sheet, parallel β-sheet, β-turn, and random coil. However, formaldehyde and long-term BPL treatment (48 h) resulted in decreased viral S protein content and increased viral particle aggregation, respectively. The BPL treatment for 24 h can completely inactivate SARS-CoV-2 with the maximum retention of the morphology, physical properties, and the biochemical properties of the potential antigens of the virus. In summary, we have established a characterization system for the comprehensive evaluation of virus inactivation technology, which has important guiding significance for the development of vaccines against SARS-CoV-2 variants and research on natural SARS-CoV-2.
Collapse
Affiliation(s)
- Shouzhi Yu
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Yangyang Wei
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Hongyang Liang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Wenheng Ji
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Zhen Chang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Siman Xie
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Yichuan Wang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Wanli Li
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Yingwei Liu
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Hao Wu
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Jie Li
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Hui Wang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
- Correspondence: (H.W.); (X.Y.)
| | - Xiaoming Yang
- China National Biotec Group Company Limited, Beijing 100024, China
- Correspondence: (H.W.); (X.Y.)
| |
Collapse
|
18
|
Prout A, Rustandi RR, Tubbs C, Winters MA, McKenna P, Vlasak J. Functional profiling of Covid 19 vaccine candidate by flow virometry. Vaccine 2022; 40:5529-5536. [PMID: 35985887 PMCID: PMC9359933 DOI: 10.1016/j.vaccine.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Vaccine development is a complex process, starting with selection of a promising immunogen in the discovery phase, followed by process development in the preclinical phase, and later by clinical trials in tandem with process improvements and scale up. A large suite of analytical techniques is required to gain understanding of the vaccine candidate so that a relevant immunogen is selected and subsequently manufactured consistently throughout the lifespan of the product. For viral vaccines, successful immunogen production is contingent on its maintained antigenicity and/or infectivity, as well as the ability to characterize these qualities within the context of the process, formulation, and clinical performance. In this report we show the utility of flow virometry during preclinical development of a Covid 19 vaccine candidate based on SARS-CoV-2 spike (S) protein expressed on vesicular stomatitis virus (VSV). Using a panel of monoclonal antibodies, we were able to detect the S protein on the surface of the recombinant VSV virus, monitor the expression levels, detect differences in the antigen based on S protein sequence and after virus inactivation, and monitor S protein stability. Collectively, flow virometry provided important data that helped to guide preclinical development of this vaccine candidate.
Collapse
Affiliation(s)
- Ashley Prout
- Vaccine Analytical Research and Development, Merck & Co., Inc., West Point, PA, USA
| | - Richard R Rustandi
- Vaccine Analytical Research and Development, Merck & Co., Inc., West Point, PA, USA
| | - Christopher Tubbs
- Vaccine Analytical Research and Development, Merck & Co., Inc., West Point, PA, USA
| | - Michael A Winters
- Vaccine Process Research and Development, Merck & Co., Inc., West Point, PA, USA
| | - Philip McKenna
- Infectious Diseases-Vaccines, Merck & Co., Inc., West Point, PA, USA
| | - Josef Vlasak
- Vaccine Analytical Research and Development, Merck & Co., Inc., West Point, PA, USA.
| |
Collapse
|
19
|
Weyersberg L, Klemens E, Buehler J, Vatter P, Hessling M. UVC, UVB and UVA susceptibility of Phi6 and its suitability as a SARS-CoV-2 surrogate. AIMS Microbiol 2022; 8:278-291. [PMID: 36317004 PMCID: PMC9576498 DOI: 10.3934/microbiol.2022020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/07/2022] [Accepted: 07/03/2022] [Indexed: 11/19/2022] Open
Abstract
For SARS-CoV-2 disinfection systems or applications that are based on UVC, UVB or UVA irradiation, it would be desirable to have a SARS-CoV-2 surrogate for tests and development, which does not require a laboratory with a high biosafety level. The bacteriophage Phi 6, an enveloped RNA virus like coronaviruses, is an obvious candidate for such a surrogate. In this study, UVC, UVB and UVA log-reduction doses for Phi6 are determined by plaque assay. Log-reduction doses for SARS-CoV-2 are retrieved from a literature research. Because of a high variability of the published results, median log-reduction doses are determined for defined spectral ranges and compared to Phi6 data in the same intervals. The measured Phi6 log-reduction doses for UVC (254 nm), UVB (311 nm) and UVA (365 nm) are 31.7, 980 and 14 684 mJ/cm2, respectively. The determined median log-reduction doses for SARS-CoV-2 are much lower, only about 1.7 mJ/cm2 within the spectral interval 251-270 nm. Therefore, Phi6 can be photoinactivated by all UV wavelengths but it is much less UV sensitive compared to SARS-CoV-2 in all UV spectral ranges. Thus, Phi6 is no convincing SARS-CoV-2 surrogate in UV applications.
Collapse
Affiliation(s)
| | | | | | | | - Martin Hessling
- Ulm University of Applied Sciences, Department of Medical Engineering and Mechatronics, Albert Einstein-Allee 55, D-89081 Ulm, Germany
| |
Collapse
|
20
|
Abstract
The COVID-19 pandemic has highlighted the critical role that animal models play in elucidating the pathogenesis of emerging diseases and rapidly analyzing potential medical countermeasures. Relevant pathologic outcomes are paramount in evaluating preclinical models and therapeutic outcomes and require careful advance planning. While there are numerous guidelines for attaining high-quality pathology specimens in routine animal studies, preclinical studies using coronaviruses are often conducted under biosafety level-3 (BSL3) conditions, which pose unique challenges and technical limitations. In such settings, rather than foregoing pathologic outcomes because of the inherent constraints of high-containment laboratory protocols, modifications can be made to conventional best practices of specimen collection. Particularly for those unfamiliar with working in a high-containment laboratory, the authors describe the logistics of conducting such work, focusing on animal experiments in BSL3 conditions. To promote scientific rigor and reproducibility and maximize the value of animal use, the authors provide specific points to be considered before, during, and following a high-containment animal study. The authors provide procedural modifications for attaining good quality pathologic assessment of the mouse lung, central nervous system, and blood specimens under high-containment conditions while being conscientious to maximize animal use for other concurrent assays.
Collapse
|
21
|
Pontelli MC, Castro IA, Martins RB, La Serra L, Veras FP, Nascimento DC, Silva CM, Cardoso RS, Rosales R, Gomes R, Lima TM, Souza JP, Vitti BC, Caetité DB, de Lima MHF, Stumpf SD, Thompson CE, Bloyet LM, Kawahisa JTE, Giannini MC, Bonjorno LP, Lopes MIF, Batah SS, Li S, Assad RL, Almeida SCL, Oliveira FR, Benatti MN, Pontes LLF, Santana RC, Vilar FC, Martins MA, Shi PY, Cunha TM, Calado RT, Alves-Filho JC, Zamboni DS, Fabro A, Louzada-Junior P, Oliveira RDR, Whelan SPJ, Cunha FQ, Arruda E. SARS-CoV-2 productively infects primary human immune system cells in vitro and in COVID-19 patients. J Mol Cell Biol 2022; 14:6572370. [PMID: 35451490 PMCID: PMC9384834 DOI: 10.1093/jmcb/mjac021] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/30/2021] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host.
Collapse
Affiliation(s)
- Marjorie C Pontelli
- Virology Research Center, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Italo A Castro
- Virology Research Center, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Ronaldo B Martins
- Virology Research Center, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Leonardo La Serra
- Virology Research Center, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Flávio P Veras
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Daniele C Nascimento
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Camila M Silva
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Ricardo S Cardoso
- Virology Research Center, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Roberta Rosales
- Department of Cell and Molecular Biology, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Rogério Gomes
- Blood Center of Ribeirao Preto, 14049-900, Ribeirao Preto, São Paulo, Brazil
| | - Thais M Lima
- Virology Research Center, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Juliano P Souza
- Virology Research Center, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Brenda C Vitti
- Virology Research Center, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Diego B Caetité
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Mikhael H F de Lima
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Spencer D Stumpf
- Department of Biochemistry & Molecular Biology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Cassandra E Thompson
- Department of Biochemistry & Molecular Biology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Louis-Marie Bloyet
- Department of Biochemistry & Molecular Biology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Juliana T E Kawahisa
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Marcela C Giannini
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil.,Divisions of Clinical Immunology, Infectious Diseases and Intensive Care Unit, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Letícia P Bonjorno
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil.,Divisions of Clinical Immunology, Infectious Diseases and Intensive Care Unit, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Maria I F Lopes
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil.,Divisions of Clinical Immunology, Infectious Diseases and Intensive Care Unit, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Sabrina S Batah
- Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Siyuan Li
- Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Rodrigo L Assad
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil.,Divisions of Clinical Immunology, Infectious Diseases and Intensive Care Unit, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Sergio C L Almeida
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil.,Divisions of Clinical Immunology, Infectious Diseases and Intensive Care Unit, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Fabiola R Oliveira
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil.,Divisions of Clinical Immunology, Infectious Diseases and Intensive Care Unit, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Maíra N Benatti
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil.,Divisions of Clinical Immunology, Infectious Diseases and Intensive Care Unit, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Lorena L F Pontes
- Blood Center of Ribeirao Preto, 14049-900, Ribeirao Preto, São Paulo, Brazil
| | - Rodrigo C Santana
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil.,Divisions of Clinical Immunology, Infectious Diseases and Intensive Care Unit, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Fernando C Vilar
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil.,Divisions of Clinical Immunology, Infectious Diseases and Intensive Care Unit, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Maria A Martins
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil.,Divisions of Clinical Immunology, Infectious Diseases and Intensive Care Unit, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thiago M Cunha
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Rodrigo T Calado
- Blood Center of Ribeirao Preto, 14049-900, Ribeirao Preto, São Paulo, Brazil
| | - José C Alves-Filho
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Dario S Zamboni
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil.,Department of Cell and Molecular Biology, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Alexandre Fabro
- Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Paulo Louzada-Junior
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil.,Divisions of Clinical Immunology, Infectious Diseases and Intensive Care Unit, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Rene D R Oliveira
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil.,Divisions of Clinical Immunology, Infectious Diseases and Intensive Care Unit, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Fernando Q Cunha
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| | - Eurico Arruda
- Virology Research Center, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil.,Department of Cell and Molecular Biology, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
22
|
Vindeirinho JM, Pinho E, Azevedo NF, Almeida C. SARS-CoV-2 Diagnostics Based on Nucleic Acids Amplification: From Fundamental Concepts to Applications and Beyond. Front Cell Infect Microbiol 2022; 12:799678. [PMID: 35402302 PMCID: PMC8984495 DOI: 10.3389/fcimb.2022.799678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 pandemic ignited the development of countless molecular methods for the diagnosis of SARS-CoV-2 based either on nucleic acid, or protein analysis, with the first establishing as the most used for routine diagnosis. The methods trusted for day to day analysis of nucleic acids rely on amplification, in order to enable specific SARS-CoV-2 RNA detection. This review aims to compile the state-of-the-art in the field of nucleic acid amplification tests (NAATs) used for SARS-CoV-2 detection, either at the clinic level, or at the Point-Of-Care (POC), thus focusing on isothermal and non-isothermal amplification-based diagnostics, while looking carefully at the concerning virology aspects, steps and instruments a test can involve. Following a theme contextualization in introduction, topics about fundamental knowledge on underlying virology aspects, collection and processing of clinical samples pave the way for a detailed assessment of the amplification and detection technologies. In order to address such themes, nucleic acid amplification methods, the different types of molecular reactions used for DNA detection, as well as the instruments requested for executing such routes of analysis are discussed in the subsequent sections. The benchmark of paradigmatic commercial tests further contributes toward discussion, building on technical aspects addressed in the previous sections and other additional information supplied in that part. The last lines are reserved for looking ahead to the future of NAATs and its importance in tackling this pandemic and other identical upcoming challenges.
Collapse
Affiliation(s)
- João M. Vindeirinho
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Eva Pinho
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno F. Azevedo
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Carina Almeida
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| |
Collapse
|
23
|
Do T, Guran R, Adam V, Zitka O. Use of MALDI-TOF mass spectrometry for virus identification: a review. Analyst 2022; 147:3131-3154. [DOI: 10.1039/d2an00431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possibilities of virus identification, including SARS-CoV-2, by MALDI-TOF mass spectrometry are discussed in this review.
Collapse
Affiliation(s)
- Tomas Do
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
24
|
Luu R, Valdebenito S, Scemes E, Cibelli A, Spray DC, Rovegno M, Tichauer J, Cottignies-Calamarte A, Rosenberg A, Capron C, Belouzard S, Dubuisson J, Annane D, de la Grandmaison GL, Cramer-Bordé E, Bomsel M, Eugenin E. Pannexin-1 channel opening is critical for COVID-19 pathogenesis. iScience 2021; 24:103478. [PMID: 34841222 PMCID: PMC8603863 DOI: 10.1016/j.isci.2021.103478] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly rampaged worldwide, causing a pandemic of coronavirus disease (COVID -19), but the biology of SARS-CoV-2 remains under investigation. We demonstrate that both SARS-CoV-2 spike protein and human coronavirus 229E (hCoV-229E) or its purified S protein, one of the main viruses responsible for the common cold, induce the transient opening of Pannexin-1 (Panx-1) channels in human lung epithelial cells. However, the Panx-1 channel opening induced by SARS-CoV-2 is greater and more prolonged than hCoV-229E/S protein, resulting in an enhanced ATP, PGE2, and IL-1β release. Analysis of lung lavages and tissues indicate that Panx-1 mRNA expression is associated with increased ATP, PGE2, and IL-1β levels. Panx-1 channel opening induced by SARS-CoV-2 spike protein is angiotensin-converting enzyme 2 (ACE-2), endocytosis, and furin dependent. Overall, we demonstrated that Panx-1 channel is a critical contributor to SARS-CoV-2 infection and should be considered as an alternative therapy.
Collapse
Affiliation(s)
- Ross Luu
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX 77555, USA
| | - Silvana Valdebenito
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX 77555, USA
| | - Eliana Scemes
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Antonio Cibelli
- Dominick P. Purpura Department of Neuroscience & Department of Medicine (Cardiology), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - David C Spray
- Dominick P. Purpura Department of Neuroscience & Department of Medicine (Cardiology), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Tichauer
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Cottignies-Calamarte
- Hôpital Cochin, Service de Virologie, Hôpital Cochin (AP-HP), Paris, France.,Service d'Hématologie Hôpital Ambroise Paré (AP-HP), Boulogne-Billancourt, France
| | - Arielle Rosenberg
- Hôpital Cochin, Service de Virologie, Hôpital Cochin (AP-HP), Paris, France.,Service d'Hématologie Hôpital Ambroise Paré (AP-HP), Boulogne-Billancourt, France.,Virologie Moléculaire et Cellulaire des Coronavirus, Centre d'infection et d'immunité de Lille, Institut Pasteur de Lille, Université de Lille, CNRS, Inserm, CHRU, 59000 Lille, France
| | - Calude Capron
- Service des Maladies Infectieuses, Centre Hospitalier Universitaire Raymond Poincaré, AP-HP, Garches, France
| | | | - Jean Dubuisson
- Intensive Care Unit, Raymond Poincaré Hospital (AP-HP), Paris, France
| | - Djillali Annane
- Simone Veil School of Medicine, Université of Versailles, Versailles, France.,University Paris Saclay, Garches, France
| | - Geoffroy Lorin de la Grandmaison
- Department of Forensic Medicine and Pathology, Versailles Saint-Quentin Université, AP-HP, Raymond Poincaré Hospital, Garches, France
| | | | - Morgane Bomsel
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France.,INSERM U1016, Paris, France
| | - Eliseo Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX 77555, USA
| |
Collapse
|
25
|
Kyosei Y, Namba M, Makioka D, Kokubun A, Watabe S, Yoshimura T, Sasaki T, Shioda T, Ito E. Ultrasensitive Detection of SARS-CoV-2 Spike Proteins Using the Thio-NAD Cycling Reaction: A Preliminary Study before Clinical Trials. Microorganisms 2021; 9:microorganisms9112214. [PMID: 34835340 PMCID: PMC8619787 DOI: 10.3390/microorganisms9112214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/03/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
To help control the global pandemic of coronavirus disease 2019 (COVID-19), we developed a diagnostic method targeting the spike protein of the virus that causes the infection, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We applied an ultrasensitive method by combining a sandwich enzyme-linked immunosorbent assay (ELISA) and the thio-nicotinamide adenine dinucleotide (thio-NAD) cycling reaction to quantify spike S1 proteins. The limit of detection (LOD) was 2.62 × 10−19 moles/assay for recombinant S1 proteins and 2.6 × 106 RNA copies/assay for ultraviolet B-inactivated viruses. We have already shown that the ultrasensitive ELISA for nucleocapsid proteins can detect ultraviolet B-inactivated viruses at the 104 RNA copies/assay level, whereas the nucleocapsid proteins of SARS-CoV-2 are difficult to distinguish from those in conventional coronaviruses and SARS-CoV. Thus, an antigen test for only the nucleocapsid proteins is insufficient for virus specificity. Therefore, the use of a combination of tests against both spike and nucleocapsid proteins is recommended to increase both the detection sensitivity and testing accuracy of the COVID-19 antigen test. Taken together, our present study, in which we incorporate S1 detection by combining the ultrasensitive ELISA for nucleocapsid proteins, offers an ultrasensitive, antigen-specific test for COVID-19.
Collapse
Affiliation(s)
- Yuta Kyosei
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (Y.K.); (M.N.); (D.M.); (A.K.)
| | - Mayuri Namba
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (Y.K.); (M.N.); (D.M.); (A.K.)
| | - Daiki Makioka
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (Y.K.); (M.N.); (D.M.); (A.K.)
| | - Ayumi Kokubun
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (Y.K.); (M.N.); (D.M.); (A.K.)
| | - Satoshi Watabe
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
| | - Teruki Yoshimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan;
| | - Tadahiro Sasaki
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (T.S.); (T.S.)
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (T.S.); (T.S.)
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (Y.K.); (M.N.); (D.M.); (A.K.)
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Correspondence:
| |
Collapse
|
26
|
Moore KJM, Cahill J, Aidelberg G, Aronoff R, Bektaş A, Bezdan D, Butler DJ, Chittur SV, Codyre M, Federici F, Tanner NA, Tighe SW, True R, Ware SB, Wyllie AL, Afshin EE, Bendesky A, Chang CB, Dela Rosa R, Elhaik E, Erickson D, Goldsborough AS, Grills G, Hadasch K, Hayden A, Her SY, Karl JA, Kim CH, Kriegel AJ, Kunstman T, Landau Z, Land K, Langhorst BW, Lindner AB, Mayer BE, McLaughlin LA, McLaughlin MT, Molloy J, Mozsary C, Nadler JL, D'Silva M, Ng D, O'Connor DH, Ongerth JE, Osuolale O, Pinharanda A, Plenker D, Ranjan R, Rosbash M, Rotem A, Segarra J, Schürer S, Sherrill-Mix S, Solo-Gabriele H, To S, Vogt MC, Yu AD, Mason CE. Loop-Mediated Isothermal Amplification Detection of SARS-CoV-2 and Myriad Other Applications. J Biomol Tech 2021; 32:228-275. [PMID: 35136384 PMCID: PMC8802757 DOI: 10.7171/jbt.21-3203-017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer.
Collapse
Affiliation(s)
- Keith J M Moore
- School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| | | | - Guy Aidelberg
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
- Just One Giant Lab, Centre de Recherches Interdisciplinaires (CRI), 75004 Paris, France
| | - Rachel Aronoff
- Just One Giant Lab, Centre de Recherches Interdisciplinaires (CRI), 75004 Paris, France
- Action for Genomic Integrity Through Research! (AGiR!), Lausanne, Switzerland
- Association Hackuarium, Lausanne, Switzerland
| | - Ali Bektaş
- Oakland Genomics Center, Oakland, CA 94609, USA
| | - Daniela Bezdan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, 72076 Tübingen, Germany
- Poppy Health, Inc, San Francisco, CA 94158, USA
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital, 72076 Tübingen, Germany
| | - Daniel J Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sridar V Chittur
- Center for Functional Genomics, Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, 12222, USA
| | - Martin Codyre
- GiantLeap Biotechnology Ltd, Wicklow A63 Kv91, Ireland
| | - Fernan Federici
- ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | | | | | - Randy True
- FloodLAMP Biotechnologies, San Carlos, CA 94070, USA
| | - Sarah B Ware
- Just One Giant Lab, Centre de Recherches Interdisciplinaires (CRI), 75004 Paris, France
- BioBlaze Community Bio Lab, 1800 W Hawthorne Ln, Ste J-1, West Chicago, IL 60185, USA
- Blossom Bio Lab, 1800 W Hawthorne Ln, Ste K-2, West Chicago, IL 60185, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andres Bendesky
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Connie B Chang
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, 59717, USA
| | - Richard Dela Rosa
- School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| | - Eran Elhaik
- Department of Biology, Lund University, Sölvegatan 35, Lund, Sweden
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA
| | | | - George Grills
- Department of Microbiology, University of Pennsylvania, Philadelphia, 19104, USA
| | - Kathrin Hadasch
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Lab3 eV, Labspace Darmstadt, 64295 Darmstadt, Germany
- IANUS Verein für Friedensorientierte Technikgestaltung eV, 64289 Darmstadt, Germany
| | - Andrew Hayden
- Center for Functional Genomics, Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, 12222, USA
| | | | - Julie A Karl
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Madison 53705, USA
| | | | | | | | - Zeph Landau
- Department of Computer Science, University of California, Berkeley, Berkeley, 94720, USA
| | - Kevin Land
- Mologic, Centre for Advanced Rapid Diagnostics, (CARD), Bedford Technology Park, Thurleigh MK44 2YA, England
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, 0028 Pretoria, South Africa
| | | | - Ariel B Lindner
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Benjamin E Mayer
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Lab3 eV, Labspace Darmstadt, 64295 Darmstadt, Germany
| | | | - Matthew T McLaughlin
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Madison 53705, USA
| | - Jenny Molloy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, England
| | - Christopher Mozsary
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jerry L Nadler
- Department of Pharmacology, New York Medical College, Valhalla, 10595, USA
| | - Melinee D'Silva
- Department of Pharmacology, New York Medical College, Valhalla, 10595, USA
| | - David Ng
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Madison 53705, USA
| | - Jerry E Ongerth
- University of Wollongong, Environmental Engineering, Wollongong NSW 2522, Australia
| | - Olayinka Osuolale
- Applied Environmental Metagenomics and Infectious Diseases Research (AEMIDR), Department of Biological Sciences, Elizade University, Ilara Mokin, Nigeria
| | - Ana Pinharanda
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Dennis Plenker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute for Applied Life Sciences, University of Massachusetts, Amherst, 01003, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | | | | | | | - Scott Sherrill-Mix
- Department of Microbiology, University of Pennsylvania, Philadelphia, 19104, USA
| | | | - Shaina To
- School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| | - Merly C Vogt
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Albert D Yu
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
27
|
Nemudryi A, Nemudraia A, Wiegand T, Nichols J, Snyder DT, Hedges JF, Cicha C, Lee H, Vanderwood KK, Bimczok D, Jutila MA, Wiedenheft B. SARS-CoV-2 genomic surveillance identifies naturally occurring truncation of ORF7a that limits immune suppression. Cell Rep 2021; 35:109197. [PMID: 34043946 PMCID: PMC8118641 DOI: 10.1016/j.celrep.2021.109197] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Over 950,000 whole-genome sequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been determined for viruses isolated from around the world. These sequences are critical for understanding the spread and evolution of SARS-CoV-2. Using global phylogenomics, we show that mutations frequently occur in the C-terminal end of ORF7a. We isolate one of these mutant viruses from a patient sample and use viral challenge experiments to link this isolate (ORF7aΔ115) to a growth defect. ORF7a is implicated in immune modulation, and we show that the C-terminal truncation negates anti-immune activities of the protein, which results in elevated type I interferon response to the viral infection. Collectively, this work indicates that ORF7a mutations occur frequently, and that these changes affect viral mechanisms responsible for suppressing the immune response.
Collapse
Affiliation(s)
- Artem Nemudryi
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Anna Nemudraia
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Tanner Wiegand
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Joseph Nichols
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Deann T Snyder
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Jodi F Hedges
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Calvin Cicha
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Helen Lee
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | | | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Mark A Jutila
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|