1
|
Tang J, Zou SM, Zhou JF, Gao RB, Xin L, Zeng XX, Huang WJ, Li XY, Cheng YH, Liu LQ, Xiao N, Wang DY. R229I substitution from oseltamivir induction in HA1 region significantly increased the fitness of a H7N9 virus bearing NA 292K. Emerg Microbes Infect 2024; 13:2373314. [PMID: 38922326 PMCID: PMC467099 DOI: 10.1080/22221751.2024.2373314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
The proportion of human isolates with reduced neuraminidase inhibitors (NAIs) susceptibility in highly pathogenic avian influenza (HPAI) H7N9 virus was high. These drug-resistant strains showed good replication capacity without serious loss of fitness. In the presence of oseltamivir, R229I substitution were found in HA1 region of the HPAI H7N9 virus before NA R292K appeared. HPAI H7N9 or H7N9/PR8 recombinant viruses were developed to study whether HA R229I could increase the fitness of the H7N9 virus bearing NA 292K. Replication efficiency was assessed in MDCK or A549 cells. Neuraminidase enzyme activity and receptor-binding ability were analyzed. Pathogenicity in C57 mice was evaluated. Antigenicity analysis was conducted through a two-way HI test, in which the antiserum was obtained from immunized ferrets. Transcriptomic analysis of MDCK infected with HPAI H7N9 24hpi was done. It turned out that HA R229I substitution from oseltamivir induction in HA1 region increased (1) replication ability in MDCK(P < 0.05) and A549(P < 0.05), (2) neuraminidase enzyme activity, (3) binding ability to both α2,3 and α2,6 receptor, (4) pathogenicity to mice(more weight loss; shorter mean survival day; viral titer in respiratory tract, P < 0.05; Pathological changes in pneumonia), (5) transcriptome response of MDCK, of the H7N9 virus bearing NA 292K. Besides, HA R229I substitution changed the antigenicity of H7N9/PR8 virus (>4-fold difference of HI titre). It indicated that through the fine-tuning of HA-NA balance, R229I increased the fitness and changed the antigenicity of H7N9 virus bearing NA 292K. Public health attention to this mechanism needs to be drawn.
Collapse
MESH Headings
- Animals
- Oseltamivir/pharmacology
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/drug effects
- Influenza A Virus, H7N9 Subtype/pathogenicity
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/physiology
- Neuraminidase/genetics
- Neuraminidase/metabolism
- Dogs
- Virus Replication/drug effects
- Antiviral Agents/pharmacology
- Humans
- Mice
- Orthomyxoviridae Infections/virology
- Madin Darby Canine Kidney Cells
- A549 Cells
- Mice, Inbred C57BL
- Drug Resistance, Viral/genetics
- Amino Acid Substitution
- Influenza, Human/virology
- Ferrets
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Female
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Jing Tang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Shu-Mei Zou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Jian-Fang Zhou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Rong-Bao Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Li Xin
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Xiao-Xu Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Wei-Juan Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Xi-Yan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Yan-Hui Cheng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Li-Qi Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Ning Xiao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Da-Yan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Jin XY, Yang HY, Zhao GY, Dai CX, Zhang ZQ, Zhou DS, Yin Q, Dai EH. Comparative pathogenicity of influenza virus-induced pneumonia mouse model following intranasal and aerosolized intratracheal inoculation. Virol J 2024; 21:240. [PMID: 39354538 PMCID: PMC11446018 DOI: 10.1186/s12985-024-02516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Infection of mice with mouse-adapted strains of influenza virus has been widely used to establish mouse pneumonia models. Intranasal inoculation is the traditional route for constructing an influenza virus-induced pneumonia mouse model, while intratracheal inoculation has been gradually applied in recent years. In this article, the pathogenicity of influenza virus-induced pneumonia mouse models following intranasal and aerosolized intratracheal inoculation were compared. METHODS By comparing the two ways of influenza inoculation, intranasal and intratracheal, a variety of indices such as survival rate, body weight change, viral titer and load, pathological change, lung wet/dry ratio, and inflammatory factors were investigated. Meanwhile, the transcriptome was applied for the initial exploration of the mechanism underlying the variations in the results between the two inoculation methods. RESULTS The findings suggest that aerosolized intratracheal infection leads to more severe lung injury and higher viral loads in the lungs compared to intranasal infection, which may be influenced by the initial site of infection, sialic acid receptor distribution, and host innate immunity. CONCLUSION Intratracheal inoculation is a better method for modelling severe pneumonia in mice than intranasal infection.
Collapse
Affiliation(s)
- Xiu-Yu Jin
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, People's Republic of China
| | - Hui-Ying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Guang-Yu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Chen-Xi Dai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zai-Qing Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Dong-Sheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Qi Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Er-Hei Dai
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, People's Republic of China.
| |
Collapse
|
3
|
Li Z, Zhou L, Zhang Q, Fan Z, Xiao C. Different effects of air pollutant concentrations on influenza A and B in Sichuan, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116923. [PMID: 39213756 DOI: 10.1016/j.ecoenv.2024.116923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The detrimental effects of air pollution on the respiratory system are well documented. Previous research has established a correlation between air pollutant concentration and the frequency of outpatient visits for influenza-like illness. However, studies investigating the variations in infection among different influenza subtypes remain sparse. We aimed to determine the correlation between air pollutant levels and different influenza subtypes in Sichuan Province, China. METHODS A generalized additive model and distributed lag nonlinear model were employed to assess the association between air pollutants and influenza subtypes, utilizing daily influenza data obtained from 30 hospitals across 21 cities in Sichuan Province. The analysis considered the temporal effects and meteorological factors. The study spanned from January 1, 2017, to December 31, 2019. To provide a more precise evaluation of the actual impact of air pollution on different subtypes of influenza, we also performed subgroup analyses based on factors such as gender, age, and geography within the population. RESULTS During the investigation, 17,462 specimens from Sichuan Province tested positive for influenza. Among these, 12,607 and 4855 were diagnosed with Flu A and B, respectively. The related risk of influenza A infection significantly increased following exposure to PM2.5 on Lag2 days (RR=1.008, 95 % confidence interval [CI]: 1.000-1.016), SO2 and CO on Lag1 days (RR=1.121, 95 % CI: 1.032-1.219; RR=1.151, 95 % CI: 1.030-1.289), and NO2 on Lag0 day (RR=1.089, 95 % CI: 1.035-1.145). PM10 and SO2 levels on Lag0 day, PM2.5 levels on Lag1 day, and CO levels on Lag6 day, with a reduced risk of influenza B (RR=0.987, 95 % CI: 0.976-0.997; RR=0.817, 95 % CI: 0.676-0.987; RR=0.979, 95 % CI: 0.970-0.989; RR=0.814, 95 % CI: 0.561-0.921). CONCLUSION The findings from the overall population and subgroup analyses indicated that the impact of air pollutant concentrations on influenza A and B is inconsistent, with influenza A demonstrating greater susceptibility to these pollutants. Minimizing the levels of SO2, CO, NO2, and PM2.5 can significantly decrease the likelihood of contracting influenza A. Analyzing the influence of environmental contaminants on different influenza subtypes can provide insights into seasonal influenza trends and guide the development of preventive and control strategies.
Collapse
Affiliation(s)
- Zhirui Li
- Department of Disease Control and Prevention, Sichuan provincial Center for Disease Control and Prevention, Chengdu, Sichuan 610000, PR China
| | - Lijun Zhou
- Department of Disease Control and Prevention, Sichuan provincial Center for Disease Control and Prevention, Chengdu, Sichuan 610000, PR China
| | - Qian Zhang
- Department of Oncology, Xiamen Fifth Hospital, Min'an Road, Maxiang Street, Xiang 'an District, Xiamen, Fujian 361000, PR China
| | - Zixuan Fan
- School of Health Policy and Management, Peking Union Medical College, Beijing 100730, PR China
| | - Chongkun Xiao
- Department of Disease Control and Prevention, Sichuan provincial Center for Disease Control and Prevention, Chengdu, Sichuan 610000, PR China.
| |
Collapse
|
4
|
Kim M, Park CS, Moon C, Kim J, Yang S, Jang L, Jang JY, Jeong CM, Lee HS, Kim K, Byeon H, Kim HH. Structural and quantitative comparison of viral infection-associated N-glycans in plasma from humans, pigs, and chickens: Greater similarity between humans and chickens than pigs. Antiviral Res 2024; 231:106009. [PMID: 39326504 DOI: 10.1016/j.antiviral.2024.106009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Host N-glycans play an essential role in the attachment, invasion, and infection processes of viruses, including zoonotic infectious diseases. The similarity of N-glycans in the trachea and lungs of humans and pigs facilitates the cross-species transmission of influenza viruses through respiratory tracts. In this study, the structure and quantity of N-glycans in the plasma of humans, pigs, and chickens were analyzed using liquid chromatography-quadrupole-Orbitrap-tandem mass spectrometry. N-glycans in humans (35), pigs (28), and chickens (53) were identified, including the most abundant, species-common, and species-specific N-glycans. Among the N-glycans (relative quantity >0.5%), the sialic acid derivative of N-acetylneuraminic acid was identified in humans (the sum of the relative quantities of each; 64.3%), pigs (45.5%), and chickens (64.4%), whereas N-glycolylneuraminic acid was only identified in pigs (18.1%). Sialylated N-glycan linkage isomers are the influenza virus receptors (α2-6 in humans, α2-3 and α2-6 in pigs, and α2-3 in chickens). Only α2-6 linkages (human, 58.2%; pig, 44.8%; and chicken, 60.6%) were more abundant than α2-3/α2-6 linkages (human, 4.6%; pig, 0.6%; and chicken, 3.4%) and only α2-3 linkages (human, 1.5%; pig, 0.1%; and chicken, 0.4%). Fucosylation, which can promote viral infection through immune modulation, was more abundant in pigs (76.1%) than in humans (36.4%) and chickens (16.7%). Bisecting N-acetylglucosamine, which can suppress viral infection by inhibiting sialylation, was identified in humans (10.3%) and chickens (16.9%), but not in pigs. These results indicate that plasma N-glycans are similar in humans and chickens. This is the first study to compare plasma N-glycans in humans, pigs, and chickens.
Collapse
Affiliation(s)
- Mirae Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chi Soo Park
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chulmin Moon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jieun Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Subin Yang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Leeseul Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ji Yeon Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chang Myeong Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Han Seul Lee
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Kyuran Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Haeun Byeon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ha Hyung Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
5
|
Kristensen C, Jensen HE, Trebbien R, Webby RJ, Larsen LE. Avian and Human Influenza A Virus Receptors in Bovine Mammary Gland. Emerg Infect Dis 2024; 30:1907-1911. [PMID: 39127127 PMCID: PMC11347012 DOI: 10.3201/eid3009.240696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024] Open
Abstract
An outbreak of influenza A (H5N1) virus was detected in dairy cows in the United States. We detected influenza A virus sialic acid -α2,3/α2,6-galactose host receptors in bovine mammary glands by lectin histochemistry. Our results provide a rationale for the high levels of H5N1 virus in milk from infected cows.
Collapse
|
6
|
Yang Y, Wang Y, Campbell DE, Lee HW, Wang L, Baldridge M, López CB. SLC35A2 modulates paramyxovirus fusion events during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609835. [PMID: 39253522 PMCID: PMC11382999 DOI: 10.1101/2024.08.27.609835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Paramyxoviruses are significant human and animal pathogens that include mumps virus (MuV), Newcastle disease virus (NDV) and the murine parainfluenza virus Sendai (SeV). Despite their importance, few host factors implicated in paramyxovirus infection are known. Using a recombinant SeV expressing destabilized GFP (rSeVCdseGFP) in a loss-of-function CRISPR screen, we identified the CMP-sialic acid transporter (CST) gene SLC35A1 and the UDP-galactose transporter (UGT) gene SLC35A2 as essential for paramyxovirus infection. SLC35A1 knockout (KO) cells showed significantly reduced binding and infection of SeV, NDV and MuV due to the lack of cell surface sialic acids, which act as their receptors. However, SLC35A2 KO cells revealed unknown critical roles for this factor in virus-cell and cell-to-cell fusion events during infection with different paramyxoviruses. While the UGT was essential for virus-cell fusion during SeV entry to the cell, it was not required for NDV or MuV entry. Importantly, the UGT promoted the formation of larger syncytia during MuV infection, suggesting a role in cell-to-cell virus spread. Our findings demonstrate that paramyxoviruses can bind to or enter A549 cells in the absence of canonical galactose-bound sialic-acid decorations and show that the UGT facilitates paramyxovirus fusion processes involved in entry and spread.
Collapse
Affiliation(s)
- Yanling Yang
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuchen Wang
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle E. Campbell
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Heng-Wei Lee
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Carolina B. López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Page CK, Tompkins SM. Influenza B Virus Receptor Specificity: Closing the Gap between Binding and Tropism. Viruses 2024; 16:1356. [PMID: 39339833 PMCID: PMC11435980 DOI: 10.3390/v16091356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Influenza A and influenza B viruses (FLUAV and FLUBV, respectively) cause significant respiratory disease, hospitalization, and mortality each year. Despite causing at least 25% of the annual disease burden, FLUBV is historically understudied. Unlike FLUAVs, which possess pandemic potential due to their many subtypes and broad host range, FLUBVs are thought to be restricted to only humans and are limited to two lineages. The hemagglutinins (HA) of both influenza types bind glycans terminating in α2,6- or α2,3-sialic acids. For FLUAV, the tropism of human- and avian-origin viruses is well-defined and determined by the terminal sialic acid configuration the HA can accommodate, with avian-origin viruses binding α2,3-linked sialic acids and human-origin viruses binding α2,6-linked sialic acids. In contrast, less is known about FLUBV receptor binding and its impact on host tropism. This review discusses the current literature on FLUBV receptor specificity, HA glycosylation, and their roles in virus tropism, evolution, and infection. While the focus is on findings in the past dozen years, it should be noted that the most current approaches for measuring virus-glycan interactions have not yet been applied to FLUBV and knowledge gaps remain.
Collapse
Affiliation(s)
- Caroline K Page
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30605, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30605, USA
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30605, USA
| | - Stephen Mark Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30605, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30605, USA
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30605, USA
| |
Collapse
|
8
|
Nugroho CMH, Silaen OSM, Kurnia RS, Krisnamurti DGB, Putra MA, Indrawati A, Poetri ON, Wibawan IWT, Widyaningtyas ST, Soebandrio A. In vitro antiviral activity of NanB bacterial sialidase against avian influenza H9N2 virus in MDCK cells. Avian Pathol 2024:1-12. [PMID: 39069790 DOI: 10.1080/03079457.2024.2386315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The avian influenza virus is an infectious agent that may cause global health problems in poultry and is potentially zoonotic. In the recent decades, bacterial-derived sialidases have been extensively studied for their ability to inhibit avian influenza virus infections. In this study, the antiviral activity of NanB sialidase from Pasteurella multocida was investigated through in vitro analysis using Madin-Darby canine kidney (MDCK) cells. NanB sialidase was purified from P. multocida to test its toxicity and its ability to hydrolyse its sialic acid receptors on MDCK cells. The H9N2 challenge virus was propagated in MDCK cells until cytopathic effects appeared. Antiviral activity of NanB sialidase was tested using MDCK cells, and then observed based on cell morphology, viral copy number, and expression of apoptosis-mediating genes. NanB sialidase effectively hydrolysed Neu5Acα(2,6)-Gal sialic acid at a dose of 129 mU/ml, while at 258 mU/ml, it caused toxicity to MDCK cells. Antiviral activity of sialidase was evident based on the significant decrease in viral copy number at all doses administered. The increase of p53 and caspase-3 expression was observed in infected cells without sialidase. Our study demonstrates the ability of NanB sialidase to inhibit H9N2 virus replication based on observations of sialic acid hydrolysis, reduction in viral copy number, and expression of apoptosis-related genes. The future application of sialidase may be considered as an antiviral strategy against avian influenza H9N2 virus infections. RESEARCH HIGHLIGHTSNanB sialidase effectively hydrolyses Neu5Acα(2,6)-Gal at a dose of 129 mU/ml.NanB sialidase from Pasteurella multocida can inhibit the entry of H9N2 virus into cells.NanB sialidase of Pasteurella multocida prevents infection-induced cell apoptosis.NanB sialidase reduces the H9N2 viral copy number in MDCK cells.
Collapse
Affiliation(s)
- Christian Marco Hadi Nugroho
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, University of Indonesia, DKI Jakarta, Indonesia
- Animal Health Research and Diagnostic Unit, PT Medika Satwa Laboratoris, Bogor, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, University of Indonesia, DKI Jakarta, Indonesia
| | - Ryan Septa Kurnia
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, University of Indonesia, DKI Jakarta, Indonesia
- Animal Health Research and Diagnostic Unit, PT Medika Satwa Laboratoris, Bogor, Indonesia
| | | | - Muhammad Ade Putra
- Department of Animal Disease and Veterinary Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Agustin Indrawati
- Department of Animal Disease and Veterinary Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Okti Nadia Poetri
- Department of Animal Disease and Veterinary Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - I Wayan Teguh Wibawan
- Department of Animal Disease and Veterinary Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Silvia Tri Widyaningtyas
- Virology and Cancer Pathobiology Research Centre, Faculty of Medicine, University of Indonesia, DKI Jakarta, Indonesia
| | - Amin Soebandrio
- Department of Microbiology, Faculty of Medicine, University of Indonesia, DKI Jakarta, Indonesia
| |
Collapse
|
9
|
Lee CY. Exploring Potential Intermediates in the Cross-Species Transmission of Influenza A Virus to Humans. Viruses 2024; 16:1129. [PMID: 39066291 PMCID: PMC11281536 DOI: 10.3390/v16071129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The influenza A virus (IAV) has been a major cause of several pandemics, underscoring the importance of elucidating its transmission dynamics. This review investigates potential intermediate hosts in the cross-species transmission of IAV to humans, focusing on the factors that facilitate zoonotic events. We evaluate the roles of various animal hosts, including pigs, galliformes, companion animals, minks, marine mammals, and other animals, in the spread of IAV to humans.
Collapse
Affiliation(s)
- Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
10
|
E Silva YC, Rezende PA, Lopes CEB, Lopes MC, Oliveira ES, de Carvalho MPN, Costa EA, Ecco R. Identification of sialic acid receptors for influenza A virus in snakes. J Comp Pathol 2024; 212:27-31. [PMID: 38968671 DOI: 10.1016/j.jcpa.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/28/2024] [Accepted: 06/02/2024] [Indexed: 07/07/2024]
Abstract
The tissue tropism and the wide host range of influenza A viruses are determined by the presence of sialic acid (SA) α2,3-Gal and SA α2,6-Gal receptors. Recent studies have shown that animals possessing both receptors allow for the rearrangement and emergence of new viral strains of public health importance. This study aimed to evaluate the expression and distribution of human and avian influenza A receptors in nine Neotropical snake species using lectin immunohistochemistry. We selected 17 snakes that were examined post mortem at the Veterinary Pathology Sector of the Universidade Federal de Minas Gerais between 2019 and 2023. Sections of nasal turbinate, trachea, lung, oral mucosa, stomach and intestine were subjected to immunohistochemical analysis using the lectins Maackia amurensis and Sambucus nigra. This research detected, for the first time, co-expression of SA α2,3-Gal and SA α2,6-Gal receptors in the respiratory and digestive tracts of snakes, indicating the possible susceptibility of these species to influenza A virus of avian and human origin. Consequently, snakes can be considered important species for monitoring influenza A in wild, urban and peri-urban environments. More studies should be conducted to investigate the role of snakes in influenza A epidemiology.
Collapse
Affiliation(s)
- Yasmin C E Silva
- Pathology Sector and MULTILAB, Department of Veterinary Clinic and Surgery, Universidade Federal de Minas Gerais, Presidente Carlos Luz Ave, 5162, Belo Horizonte, MG, 31310-250, Brazil
| | - Pedro A Rezende
- Pathology Sector and MULTILAB, Department of Veterinary Clinic and Surgery, Universidade Federal de Minas Gerais, Presidente Carlos Luz Ave, 5162, Belo Horizonte, MG, 31310-250, Brazil
| | - Carlos E B Lopes
- Pathology Sector and MULTILAB, Department of Veterinary Clinic and Surgery, Universidade Federal de Minas Gerais, Presidente Carlos Luz Ave, 5162, Belo Horizonte, MG, 31310-250, Brazil
| | - Marcelo C Lopes
- Pathology Sector and MULTILAB, Department of Veterinary Clinic and Surgery, Universidade Federal de Minas Gerais, Presidente Carlos Luz Ave, 5162, Belo Horizonte, MG, 31310-250, Brazil
| | - Eric S Oliveira
- Pathology Sector and MULTILAB, Department of Veterinary Clinic and Surgery, Universidade Federal de Minas Gerais, Presidente Carlos Luz Ave, 5162, Belo Horizonte, MG, 31310-250, Brazil
| | - Marcelo P N de Carvalho
- Medical Clinic Sector, Department of Veterinary Clinic and Surgery, Universidade Federal de Minas Gerais, Presidente Carlos Luz Ave, 5162, Belo Horizonte, MG, 31310-250, Brazil
| | - Erica A Costa
- Department of Veterinary and Preventive Medicine, Universidade Federal de Minas Gerais, Presidente Carlos Luz Ave, 5162, Belo Horizonte, MG, 31310-250, Brazil
| | - Roselene Ecco
- Pathology Sector and MULTILAB, Department of Veterinary Clinic and Surgery, Universidade Federal de Minas Gerais, Presidente Carlos Luz Ave, 5162, Belo Horizonte, MG, 31310-250, Brazil.
| |
Collapse
|
11
|
Urban J, Jin C, Thomsson KA, Karlsson NG, Ives CM, Fadda E, Bojar D. Predicting glycan structure from tandem mass spectrometry via deep learning. Nat Methods 2024; 21:1206-1215. [PMID: 38951670 PMCID: PMC11239490 DOI: 10.1038/s41592-024-02314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 05/17/2024] [Indexed: 07/03/2024]
Abstract
Glycans constitute the most complicated post-translational modification, modulating protein activity in health and disease. However, structural annotation from tandem mass spectrometry (MS/MS) data is a bottleneck in glycomics, preventing high-throughput endeavors and relegating glycomics to a few experts. Trained on a newly curated set of 500,000 annotated MS/MS spectra, here we present CandyCrunch, a dilated residual neural network predicting glycan structure from raw liquid chromatography-MS/MS data in seconds (top-1 accuracy: 90.3%). We developed an open-access Python-based workflow of raw data conversion and prediction, followed by automated curation and fragment annotation, with predictions recapitulating and extending expert annotation. We demonstrate that this can be used for de novo annotation, diagnostic fragment identification and high-throughput glycomics. For maximum impact, this entire pipeline is tightly interlaced with our glycowork platform and can be easily tested at https://colab.research.google.com/github/BojarLab/CandyCrunch/blob/main/CandyCrunch.ipynb . We envision CandyCrunch to democratize structural glycomics and the elucidation of biological roles of glycans.
Collapse
Affiliation(s)
- James Urban
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Chunsheng Jin
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina A Thomsson
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Section of Pharmacy, Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Callum M Ives
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Elisa Fadda
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
12
|
Yang Q, Ji J, Yang J, Zhang Y, Yin H, Dai H, Wang W, Li S. Diversity of genotypes and pathogenicity of H9N2 avian influenza virus derived from wild bird and domestic poultry. Front Microbiol 2024; 15:1402235. [PMID: 38974026 PMCID: PMC11225357 DOI: 10.3389/fmicb.2024.1402235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction The H9N2 subtype is a predominant avian influenza virus (AIV) circulating in Chinese poultry, forming various genotypes (A-W) based on gene segment origins. This study aims to investigate the genotypic distribution and pathogenic characteristics of H9N2 isolates from wild birds and domestic poultry in Yunnan Province, China. Methods Eleven H9N2 strains were isolated from fecal samples of overwintering wild birds and proximate domestic poultry in Yunnan, including four from common cranes (Grus grus), two from bar-headed geese (Anser indicus), and five from domestic poultry (Gallus gallus). Phylogenetic analysis was conducted to determine the genotypes, and representative strains were inoculated into Yunnan mallard ducks to assess pathogenicity. Results Phylogenetic analysis revealed that five isolates from domestic birds and one from a bar-headed goose belong to genotype S, while the remaining five isolates from wild birds belong to genotype A. These bird-derived strains possess deletions in the stalk domain of NA protein and the N166D mutation of HA protein, typical of poultry strains. Genotype S H9N2 demonstrated oropharyngeal shedding, while genotype A H9N2 exhibited cloacal shedding and high viral loads in the duodenum. Both strains caused significant pathological injuries, with genotype S inducing more severe damage to the thymus and spleen, while genotype A caused duodenal muscle layer rupture. Discussion These findings suggest that at least two genotypes of H9N2 are currently circulating in Yunnan, and Yunnan mallard ducks potentially act as intermediaries in interspecies transmission. These insights highlight the importance of analyzing the current epidemiological transmission characteristics of H9N2 among wild and domestic birds in China.
Collapse
Affiliation(s)
- Qinhong Yang
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Jia Ji
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Jia Yang
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Yongxian Zhang
- Animal Disease Inspection and Supervision Institution of Yunnan Province, Kunming, China
| | - Hongbin Yin
- Animal Disease Inspection and Supervision Institution of Yunnan Province, Kunming, China
| | - Hongyang Dai
- The Management Bureau of Huize Black Necked Crane National Nature Reserve, Qujing, China
| | - Wei Wang
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Suhua Li
- College of Life Sciences, Southwest Forestry University, Kunming, China
| |
Collapse
|
13
|
Li T, Spruit CM, Wei N, Liu L, Wolfert MA, de Vries RP, Boons GJ. Chemoenzymatic Synthesis of Tri-antennary N-Glycans Terminating in Sialyl-Lewis x Reveals the Importance of Glycan Complexity for Influenza A Virus Receptor Binding. Chemistry 2024; 30:e202401108. [PMID: 38567703 PMCID: PMC11156558 DOI: 10.1002/chem.202401108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 05/09/2024]
Abstract
Sialyl-Lewisx (SLex) is involved in immune regulation, human fertilization, cancer, and bacterial and viral diseases. The influence of the complex glycan structures, which can present SLex epitopes, on binding is largely unknown. We report here a chemoenzymatic strategy for the preparation of a panel of twenty-two isomeric asymmetrical tri-antennary N-glycans presenting SLex-Lex epitopes on either the MGAT4 or MGAT5 arm that include putative high-affinity ligands for E-selectin. The N-glycans were prepared starting from a sialoglycopeptide isolated from egg yolk powder and took advantage of inherent substrate preferences of glycosyltransferases and the use of 5'-diphospho-N-trifluoracetylglucosamine (UDP-GlcNHTFA) that can be transferred by branching N-acetylglucosaminyltransferases to give, after base treatment, GlcNH2-containing glycans that temporarily disable an antenna from enzymatic modification. Glycan microarray binding studies showed that E-selectin bound equally well to linear glycans and tri-antennary N-glycans presenting SLex-Lex. On the other hand, it was found that hemagglutinins (HA) of H5 influenza A viruses (IAV) preferentially bound the tri-antennary N-glycans. Furthermore, several H5 HAs preferentially bound to N-glycan presenting SLex on the MGAT4 arm. SLex is displayed in the respiratory tract of several avian species, demonstrating the relevance of investigating the binding of, among others IAVs, to complex N-glycans presenting SLex.
Collapse
Affiliation(s)
- Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Present address: Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Cindy M Spruit
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Na Wei
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Margreet A Wolfert
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Chemistry Department, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
14
|
Ly H. Recent history and biology of H5N1 influenza A virus infections of farm animals (poultry, goat, alpacas, dairy cattle, barn cats) and humans in the United States of America. J Med Virol 2024; 96:e29766. [PMID: 38923549 DOI: 10.1002/jmv.29766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| |
Collapse
|
15
|
Khanna M, Sharma K, Saxena SK, Sharma JG, Rajput R, Kumar B. Unravelling the interaction between Influenza virus and the nuclear pore complex: insights into viral replication and host immune response. Virusdisease 2024; 35:231-242. [PMID: 39071870 PMCID: PMC11269558 DOI: 10.1007/s13337-024-00879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Influenza viruses are known to cause severe respiratory infections in humans, often associated with significant morbidity and mortality rates. Virus replication relies on various host factors and pathways, which also determine the virus's infectious potential. Nonetheless, achieving a comprehensive understanding of how the virus interacts with host cellular components is essential for developing effective therapeutic strategies. One of the key components among host factors, the nuclear pore complex (NPC), profoundly affects both the Influenza virus life cycle and the host's antiviral defenses. Serving as the sole gateway connecting the cytoplasm and nucleoplasm, the NPC plays a vital role as a mediator in nucleocytoplasmic trafficking. Upon infection, the virus hijacks and alters the nuclear pore complex and the nuclear receptors. This enables the virus to infiltrate the nucleus and promotes the movement of viral components between the nucleus and cytoplasm. While the nucleus and cytoplasm play pivotal roles in cellular functions, the nuclear pore complex serves as a crucial component in the host's innate immune system, acting as a defense mechanism against virus infection. This review provides a comprehensive overview of the intricate relationship between the Influenza virus and the nuclear pore complex. Furthermore, we emphasize their mutual influence on viral replication and the host's immune responses.
Collapse
Affiliation(s)
- Madhu Khanna
- Department of Virology, V.P Chest Institute, University of Delhi, Delhi, India
| | - Kajal Sharma
- Department of Virology, V.P Chest Institute, University of Delhi, Delhi, India
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shailendra K. Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow, India
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Roopali Rajput
- Department of Virology, V.P Chest Institute, University of Delhi, Delhi, India
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala India
| |
Collapse
|
16
|
Wang Y, Li X, Lv X, Li Y, An Q, Xiu Y, Lv X, Song H, Zhou C, Xu Q, Qiao D, Yang S, Chai H, Zeng X. H6N2 reassortant avian influenza virus isolate in wild birds in Jiangxi Province, China. Virus Genes 2024; 60:320-324. [PMID: 38722491 DOI: 10.1007/s11262-024-02068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/16/2024] [Indexed: 05/31/2024]
Abstract
H6 avian influenza virus is widely prevalent in wild birds and poultry and has caused human infection in 2013 in Taiwan, China. During our active influenza surveillance program in wild waterfowl at Poyang Lake, Jiangxi Province, an H6N2 AIV was isolated and named A/bean goose/JiangXi/452-4/2013(H6N2). The isolate was characterized as a typical low pathogenic avian influenza virus (LPAIV) due to the presence of the amino acid sequence PQIETR↓GLFGAI at the cleavage site of the hemagglutinin (HA) protein. The genetic evolution analysis revealed that the NA gene of the isolate originated from North America and exhibited the highest nucleotide identity (99.29%) with a virus recovered from wild bird samples in North America, specifically A/bufflehead/California/4935/2012(H11N2). Additionally, while the HA and PB1 genes belonged to the Eurasian lineage, they displayed frequent genetic interactions with the North American lineage. The remaining genes showed close genetic relationships with Eurasian viruses. The H6N2 isolate possessed a complex genome, indicating it is a multi-gene recombinant virus with genetic material from both Eurasian and North American lineages.
Collapse
Affiliation(s)
- Yingjie Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Xiang Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Xinru Lv
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Yi Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Qing An
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Yang Xiu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Xiangtong Lv
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Haozhuo Song
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Changyu Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Qiushi Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
- Harbin Institute of Technology, Harbin, 150001, China
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dan Qiao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Siyuan Yang
- Heilongjiang Vocational College for Nationalities, Harbin, 150066, China.
| | - Hongliang Chai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China.
| | - Xiangwei Zeng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
17
|
Guo X, Zhou Y, Yan H, An Q, Liang C, Liu L, Qian J. Molecular Markers and Mechanisms of Influenza A Virus Cross-Species Transmission and New Host Adaptation. Viruses 2024; 16:883. [PMID: 38932174 PMCID: PMC11209369 DOI: 10.3390/v16060883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza A viruses continue to be a serious health risk to people and result in a large-scale socio-economic loss. Avian influenza viruses typically do not replicate efficiently in mammals, but through the accumulation of mutations or genetic reassortment, they can overcome interspecies barriers, adapt to new hosts, and spread among them. Zoonotic influenza A viruses sporadically infect humans and exhibit limited human-to-human transmission. However, further adaptation of these viruses to humans may result in airborne transmissible viruses with pandemic potential. Therefore, we are beginning to understand genetic changes and mechanisms that may influence interspecific adaptation, cross-species transmission, and the pandemic potential of influenza A viruses. We also discuss the genetic and phenotypic traits associated with the airborne transmission of influenza A viruses in order to provide theoretical guidance for the surveillance of new strains with pandemic potential and the prevention of pandemics.
Collapse
Affiliation(s)
- Xinyi Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Yang Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
| | - Qing An
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
| | - Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
| | - Linna Liu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Jun Qian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
18
|
Focosi D, Franchini M, Senefeld JW, Joyner MJ, Sullivan DJ, Pekosz A, Maggi F, Casadevall A. Passive immunotherapies for the next influenza pandemic. Rev Med Virol 2024; 34:e2533. [PMID: 38635404 DOI: 10.1002/rmv.2533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Influenzavirus is among the most relevant candidates for a next pandemic. We review here the phylogeny of former influenza pandemics, and discuss candidate lineages. After briefly reviewing the other existing antiviral options, we discuss in detail the evidences supporting the efficacy of passive immunotherapies against influenzavirus, with a focus on convalescent plasma.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Mantua Hospital, Mantua, Italy
| | - Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Fabrizio Maggi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Montalban B, Hinou H. Glycoblotting-Based Ovo-Sulphoglycomics Reveals Phosphorylated N-Glycans as a Possible Host Factor of AIV Prevalence in Waterfowls. ACS Infect Dis 2024; 10:650-661. [PMID: 38173147 PMCID: PMC10863614 DOI: 10.1021/acsinfecdis.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/27/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Sulfated N-glycans play a crucial role in the interaction between influenza A virus (IAV) and its host. These glycans have been found to enhance viral replication, highlighting their significance in IAV propagation. This study investigated the expression of acidic N-glycans, specifically sulfated and phosphorylated glycans, in the egg whites of 72 avian species belonging to the Order Anseriformes (waterfowls). We used the glycoblotting-based sulphoglycomics approach to elucidate the diversity of acidic N-glycans and infer their potential role in protecting embryos from infections. Family-specific variations in sulfated and phosphorylated N-glycan profiles were identified in waterfowl egg whites. Different waterfowl species exhibited distinct expressions of sulfated trans-Gal(+) and trans-Gal(-) N-glycan structures. Additionally, species-specific expression of phosphorylated N-glycans was observed. Furthermore, it was found that waterfowl species with high avian influenza virus (AIV) prevalence displayed a higher abundance of phosphorylated hybrid and high-mannose N-glycans on their egg whites. These findings shed light on the importance of phosphorylated and sulfated N-glycans in understanding the role of acidic glycans in IAV propagation.
Collapse
Affiliation(s)
- Bryan
M. Montalban
- Laboratory
of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Hiroshi Hinou
- Laboratory
of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Frontier
Research Center for Advanced Material and Life Science, Faculty of
Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
20
|
Kristensen C, Larsen LE, Trebbien R, Jensen HE. The avian influenza A virus receptor SA-α2,3-Gal is expressed in the porcine nasal mucosa sustaining the pig as a mixing vessel for new influenza viruses. Virus Res 2024; 340:199304. [PMID: 38142890 PMCID: PMC10793167 DOI: 10.1016/j.virusres.2023.199304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Influenza A viruses (IAVs) originate from wild birds but have on several occasions jumped host barriers and are now also circulating in humans and mammals. The IAV host receptors (glycans with galactose linked to a sialic acid (SA) in an α2,3 or α2,6 linkage) are crucial host factors restricting inter-species transmission. In general, avian-origin IAVs show a preference for SA-α2,3 (avian receptor), whereas IAVs isolated from humans and pigs prefer SA-α2,6 (human receptor). N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) are the two major SAs. Neu5Ac is expressed in all species, whereas Neu5Gc is only expressed in a limited number of domestic species such as pigs and horses, but not in humans. Despite that previous studies have shown that the IAV host receptor distribution appears to be similar in pigs and humans, none of these studies have investigated the expression of Neu5Gc-α2,6 in situ in porcine tissues. Thus, the aim of this study was to elucidate the distribution of IAV host receptors expressed in the porcine respiratory tract and relate the expression to the viral tropism of diverse host-adapted IAVs. The IAV receptor (SA-α2,3 and SA-α2,6) distribution and the presence of specifically Neu5Gc-α2,6 in the porcine nasal, tracheal, and lung tissues was investigated by lectin histochemistry. Furthermore, IAV immunohistochemistry was performed on tissues from pigs experimentally infected with IAVs, either adapted to pigs or humans, to investigate the significance of the IAV host receptors and the tropism of the diverse host-adapted IAVs. We document for the first time the expression of the avian receptor on the surface of the porcine nasal mucosa and an equal expression of Neu5Ac-α2,6 and Neu5Gc-α2,6 on the surface of the tracheal epithelium and alveoli. In all IAV-infected pigs, we found a low amount of IAV-positive cells in the trachea despite a high expression of the human receptor. Cumulatively, these findings suggest that optimal IAV replication involves a complex interplay between the viruses and their host receptors and that there might be other less clearly defined host factors that determine the site of replication.
Collapse
Affiliation(s)
- Charlotte Kristensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Lars E Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ramona Trebbien
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Henrik E Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
21
|
Newby ML, Allen JD, Crispin M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens. Biotechnol Adv 2024; 70:108283. [PMID: 37972669 PMCID: PMC10867814 DOI: 10.1016/j.biotechadv.2023.108283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
A key aspect of successful viral vaccine design is the elicitation of neutralizing antibodies targeting viral attachment and fusion glycoproteins that embellish viral particles. This observation has catalyzed the development of numerous viral glycoprotein mimetics as vaccines. Glycans can dominate the surface of viral glycoproteins and as such, the viral glycome can influence the antigenicity and immunogenicity of a candidate vaccine. In one extreme, glycans can form an integral part of epitopes targeted by neutralizing antibodies and are therefore considered to be an important feature of key immunogens within an immunization regimen. In the other extreme, the existence of peptide and bacterially expressed protein vaccines shows that viral glycosylation can be dispensable in some cases. However, native-like glycosylation can indicate native-like protein folding and the presence of conformational epitopes. Furthermore, going beyond native glycan mimicry, in either occupancy of glycosylation sites or the glycan processing state, may offer opportunities for enhancing the immunogenicity and associated protection elicited by an immunogen. Here, we review key determinants of viral glycosylation and how recombinant immunogens can recapitulate these signatures across a range of enveloped viruses, including HIV-1, Ebola virus, SARS-CoV-2, Influenza and Lassa virus. The emerging understanding of immunogen glycosylation and its control will help guide the development of future vaccines in both recombinant protein- and nucleic acid-based vaccine technologies.
Collapse
Affiliation(s)
- Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
22
|
Kirk NM, Liang Y, Ly H. Comparative Pathology of Animal Models for Influenza A Virus Infection. Pathogens 2023; 13:35. [PMID: 38251342 PMCID: PMC10820042 DOI: 10.3390/pathogens13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Animal models are essential for studying disease pathogenesis and to test the efficacy and safety of new vaccines and therapeutics. For most diseases, there is no single model that can recapitulate all features of the human condition, so it is vital to understand the advantages and disadvantages of each. The purpose of this review is to describe popular comparative animal models, including mice, ferrets, hamsters, and non-human primates (NHPs), that are being used to study clinical and pathological changes caused by influenza A virus infection with the aim to aid in appropriate model selection for disease modeling.
Collapse
Affiliation(s)
| | | | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA; (N.M.K.); (Y.L.)
| |
Collapse
|
23
|
Elli S, Raffaini G, Guerrini M, Kosakovsky Pond S, Matrosovich M. Molecular modeling and phylogenetic analyses highlight the role of amino acid 347 of the N1 subtype neuraminidase in influenza virus host range and interspecies adaptation. Front Microbiol 2023; 14:1309156. [PMID: 38169695 PMCID: PMC10758481 DOI: 10.3389/fmicb.2023.1309156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
The N1 neuraminidases (NAs) of avian and pandemic human influenza viruses contain tyrosine and asparagine, respectively, at position 347 on the rim of the catalytic site; the biological significance of this difference is not clear. Here, we used molecular dynamics simulation to model the effects of amino acid 347 on N1 NA interactions with sialyllacto-N-tetraoses 6'SLN-LC and 3'SLN-LC, which represent NA substrates in humans and birds, respectively. Our analysis predicted that Y347 plays an important role in the NA preference for the avian-type substrates. The Y347N substitution facilitates hydrolysis of human-type substrates by resolving steric conflicts of the Neu5Ac2-6Gal moiety with the bulky side chain of Y347, decreasing the free energy of substrate binding, and increasing the solvation of the Neu5Ac2-6Gal bond. Y347 was conserved in all N1 NA sequences of avian influenza viruses in the GISAID EpiFlu database with two exceptions. First, the Y347F substitution was present in the NA of a specific H6N1 poultry virus lineage and was associated with the substitutions G228S and/or E190V/L in the receptor-binding site (RBS) of the hemagglutinin (HA). Second, the highly pathogenic avian H5N1 viruses of the Gs/Gd lineage contained sporadic variants with the NA substitutions Y347H/D, which were frequently associated with substitutions in the HA RBS. The Y347N substitution occurred following the introductions of avian precursors into humans and pigs with N/D347 conserved during virus circulation in these hosts. Comparative evolutionary analysis of site 347 revealed episodic positive selection across the entire tree and negative selection within most host-specific groups of viruses, suggesting that substitutions at NA position 347 occurred during host switches and remained under pervasive purifying selection thereafter. Our results elucidate the role of amino acid 347 in NA recognition of sialoglycan substrates and emphasize the significance of substitutions at position 347 as a marker of host range and adaptive evolution of influenza viruses.
Collapse
Affiliation(s)
- Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche ‘G. Ronzoni’, Milan, Italy
| | - Giuseppina Raffaini
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche ‘G. Ronzoni’, Milan, Italy
| | - Sergei Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
| | | |
Collapse
|
24
|
Pekarek MJ, Weaver EA. Existing Evidence for Influenza B Virus Adaptations to Drive Replication in Humans as the Primary Host. Viruses 2023; 15:2032. [PMID: 37896807 PMCID: PMC10612074 DOI: 10.3390/v15102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza B virus (IBV) is one of the two major types of influenza viruses that circulate each year. Unlike influenza A viruses, IBV does not harbor pandemic potential due to its lack of historical circulation in non-human hosts. Many studies and reviews have highlighted important factors for host determination of influenza A viruses. However, much less is known about the factors driving IBV replication in humans. We hypothesize that similar factors influence the host restriction of IBV. Here, we compile and review the current understanding of host factors crucial for the various stages of the IBV viral replication cycle. While we discovered the research in this area of IBV is limited, we review known host factors that may indicate possible host restriction of IBV to humans. These factors include the IBV hemagglutinin (HA) protein, host nuclear factors, and viral immune evasion proteins. Our review frames the current understanding of IBV adaptations to replication in humans. However, this review is limited by the amount of research previously completed on IBV host determinants and would benefit from additional future research in this area.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
25
|
Piepenbrink M, Oladunni F, Nogales A, Khalil AM, Fitzgerald T, Basu M, Fucile C, Topham DJ, Rosenberg AF, Martinez-Sobrido L, Kobie JJ. Highly Cross-Reactive and Protective Influenza A Virus H3N2 Hemagglutinin- and Neuraminidase-Specific Human Monoclonal Antibodies. Microbiol Spectr 2023; 11:e0472822. [PMID: 37318331 PMCID: PMC10433997 DOI: 10.1128/spectrum.04728-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/29/2023] [Indexed: 06/16/2023] Open
Abstract
Due to antigenic drift and shift of influenza A viruses (IAV) and the tendency to elicit predominantly strain-specific antibodies, humanity remains susceptible to new strains of seasonal IAV and is at risk from viruses with pandemic potential for which limited or no immunity may exist. The genetic drift of H3N2 IAV is specifically pronounced, resulting in two distinct clades since 2014. Here, we demonstrate that immunization with a seasonal inactivated influenza vaccine (IIV) results in increased levels of H3N2 IAV-specific serum antibodies against hemagglutinin (HA) and neuraminidase (NA). Detailed analysis of the H3N2 B cell response indicated expansion of H3N2-specific peripheral blood plasmablasts 7 days after IIV immunization which expressed monoclonal antibodies (MAbs) with broad and potent antiviral activity against many H3N2 IAV strains as well as prophylactic and therapeutic activity in mice. These H3N2-specific B cell clonal lineages persisted in CD138+ long-lived bone marrow plasma cells. These results demonstrate that IIV-induced H3N2 human MAbs can protect and treat influenza virus infection in vivo and suggest that IIV can induce a subset of IAV H3N2-specific B cells with broad protective potential, a feature that warrants further study for universal influenza vaccine development. IMPORTANCE Influenza A virus (IAV) infections continue to cause substantial morbidity and mortality despite the availability of seasonal vaccines. The extensive genetic variability in seasonal and potentially pandemic influenza strains necessitates new vaccine strategies that can induce universal protection by focusing the immune response on generating protective antibodies against conserved targets within the influenza virus hemagglutinin and neuraminidase proteins. We have demonstrated that seasonal immunization with inactivated influenza vaccine (IIV) stimulates H3N2-specific monoclonal antibodies in humans that are broad and potent in their neutralization of virus in vitro. These antibodies also provide protection from H3N2 IAV in a mouse model of infection. Furthermore, they persist in the bone marrow, where they are expressed by long-lived antibody-producing plasma cells. This significantly demonstrates that seasonal IIV can induce a subset of H3N2-specific B cells with broad protective potential, a process that if further studied and enhanced could aid in the development of a universal influenza vaccine.
Collapse
Affiliation(s)
- Michael Piepenbrink
- Heersink School of Medicine, Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Infectious Diseases Division, University of Rochester, Rochester, New York, USA
| | - Fatai Oladunni
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| | - Ahmed M. Khalil
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Theresa Fitzgerald
- Department of Microbiology and Immunology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| | - Madhubanti Basu
- Heersink School of Medicine, Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christopher Fucile
- Heersink School of Medicine, Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David J. Topham
- Department of Microbiology and Immunology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| | - Alexander F. Rosenberg
- Heersink School of Medicine, Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Luis Martinez-Sobrido
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| | - James J. Kobie
- Heersink School of Medicine, Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Infectious Diseases Division, University of Rochester, Rochester, New York, USA
| |
Collapse
|
26
|
Xie E, Ahmad S, Smyth RP, Sieben C. Advanced fluorescence microscopy in respiratory virus cell biology. Adv Virus Res 2023; 116:123-172. [PMID: 37524480 DOI: 10.1016/bs.aivir.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory viruses are a major public health burden across all age groups around the globe, and are associated with high morbidity and mortality rates. They can be transmitted by multiple routes, including physical contact or droplets and aerosols, resulting in efficient spreading within the human population. Investigations of the cell biology of virus replication are thus of utmost importance to gain a better understanding of virus-induced pathogenicity and the development of antiviral countermeasures. Light and fluorescence microscopy techniques have revolutionized investigations of the cell biology of virus infection by allowing the study of the localization and dynamics of viral or cellular components directly in infected cells. Advanced microscopy including high- and super-resolution microscopy techniques available today can visualize biological processes at the single-virus and even single-molecule level, thus opening a unique view on virus infection. We will highlight how fluorescence microscopy has supported investigations on virus cell biology by focusing on three major respiratory viruses: respiratory syncytial virus (RSV), Influenza A virus (IAV) and SARS-CoV-2. We will review our current knowledge of virus replication and highlight how fluorescence microscopy has helped to improve our state of understanding. We will start by introducing major imaging and labeling modalities and conclude the chapter with a perspective discussion on remaining challenges and potential opportunities.
Collapse
Affiliation(s)
- Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shazeb Ahmad
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany; Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
27
|
Liu M, van Kuppeveld FJM, de Haan CAM, de Vries E. Gradual adaptation of animal influenza A viruses to human-type sialic acid receptors. Curr Opin Virol 2023; 60:101314. [DOI: 10.1016/j.coviro.2023.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 04/01/2023]
|
28
|
Matsuzaka Y, Yashiro R. Extracellular Vesicle-Based SARS-CoV-2 Vaccine. Vaccines (Basel) 2023; 11:vaccines11030539. [PMID: 36992123 DOI: 10.3390/vaccines11030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Messenger ribonucleic acid (RNA) vaccines are mainly used as SARS-CoV-2 vaccines. Despite several issues concerning storage, stability, effective period, and side effects, viral vector vaccines are widely used for the prevention and treatment of various diseases. Recently, viral vector-encapsulated extracellular vesicles (EVs) have been suggested as useful tools, owing to their safety and ability to escape from neutral antibodies. Herein, we summarize the possible cellular mechanisms underlying EV-based SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, The Institute of Medical Science, Center for Gene and Cell Therapy, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| |
Collapse
|
29
|
Comparative Surface Electrostatics and Normal Mode Analysis of High and Low Pathogenic H7N7 Avian Influenza Viruses. Viruses 2023; 15:v15020305. [PMID: 36851517 PMCID: PMC9960890 DOI: 10.3390/v15020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Influenza A viruses are rarely symptomatic in wild birds, while representing a higher threat to poultry and mammals, where they can cause a variety of symptoms, including death. H5 and H7 subtypes of influenza viruses are of particular interest because of their pathogenic potential and reported capacity to spread from poultry to mammals, including humans. The identification of molecular fingerprints for pathogenicity can help surveillance and early warning systems, which are crucial to prevention and protection from such potentially pandemic agents. In the past decade, comparative analysis of the surface features of hemagglutinin, the main protein antigen in influenza viruses, identified electrostatic fingerprints in the evolution and spreading of H5 and H9 subtypes. Electrostatic variation among viruses from avian or mammalian hosts was also associated with host jump. Recent findings of fingerprints associated with low and highly pathogenic H5N1 viruses, obtained by means of comparative electrostatics and normal modes analysis, prompted us to check whether such fingerprints can also be found in the H7 subtype. Indeed, evidence presented in this work showed that also in H7N7, hemagglutinin proteins from low and highly pathogenic strains present differences in surface electrostatics, while no meaningful variation was found in normal modes.
Collapse
|