1
|
Liu Z, Tang G, Peng Y, Lan J, Xian Y, Tian X, Chen D. The short fiber knobs of human adenovirus in species F elicit cross-neutralizing antibody responses. Heliyon 2024; 10:e35783. [PMID: 39170224 PMCID: PMC11337035 DOI: 10.1016/j.heliyon.2024.e35783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Human adenovirus (HAdV) type 40 in species F (HAdV-F40) and HAdV-F41 represent the third most prevalent causative agents of non-bacterial acute gastroenteritis in infants and young children, following norovirus and rotavirus. Despite their significant contribution to global child morbidity, vaccines to preemptively combat these viruses remain elusive. In this study, we investigate the potential for cross-neutralization between HAdV-F40 and HAdV-F41 using immune sera with the short fiber knob (SFK). We implemented a series of assays to evaluate the responses, including enzyme-linked immunosorbent, micro-neutralization, immunofluorescence, and quantitative polymerase chain reaction. Our results demonstrate that immune sera with HAdV-F40 SFK or HAdV-F41 SFK could effectively neutralize both HAdV-F40 and HAdV-F41, indicating a mutual cross-neutralizing effect. Notably, the immune sera with HAdV-F40 SFK demonstrated a stronger neutralization effect, suggesting the potential to develop a subunit vaccine that can simultaneously counteract both viruses. These findings underscore the potential of SFK immunization in evoking a cross-neutralizing antibody response between HAdV-F40 and HAdV-F41. This suggests a promising avenue for developing subunit vaccines against HAdV-F40 and HAdV-F41 and provides a novel perspective on the potential of neutralizing antibodies to protect against these two types of HAdV.
Collapse
Affiliation(s)
- Zhenwei Liu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Guolu Tang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou Medical University, Guangzhou, China
| | - Yinghui Peng
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou Medical University, Guangzhou, China
| | - Jixian Lan
- Guangdong Sanmai Biotechnology Co., Ltd, Guangzhou, China
| | - Yuting Xian
- Guangdong Sanmai Biotechnology Co., Ltd, Guangzhou, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Dehui Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Athukorala A, Helbig KJ, McSharry BP, Forwood JK, Sarker S. An optimised protocol for the expression and purification of adenovirus core protein VII. J Virol Methods 2024; 326:114907. [PMID: 38432358 DOI: 10.1016/j.jviromet.2024.114907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Adenovirus protein VII (pVII) is a highly basic core protein, bearing resemblance to mammalian histones. Despite its diverse functions, a comprehensive understanding of its structural intricacies and the mechanisms underlying its functions remain elusive, primarily due to the complexity of producing a good amount of soluble pVII. This study aimed to optimise the expression and purification of recombinant pVII from four different adenoviruses with a simple vector construct. This study successfully determined the optimal conditions for efficiently purifying pVII across four adenovirus species, revealing the differential preference for bacterial expression systems. The One Shot BL21 Star (DE3) proved favourable over Rosetta 2 (DE3) pLysS with consistent levels of expression between IPTG-induced and auto-induction. We demonstrated that combining chemical and mechanical cell lysis is possible and highly effective. Other noteworthy benefits were observed in using RNase during sample processing. The addition of RNase has significantly improved the quality and quantity of the purified protein as confirmed by chromatographic and western blot analyses. These findings established a solid groundwork for pVII purification methodologies and carry the significant potential to assist in unveiling the core structure of pVII, its arrangement within the core, DNA condensation intricacies, and potential pathways for nuclear transport.
Collapse
Affiliation(s)
- Ajani Athukorala
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Karla J Helbig
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Brian P McSharry
- School of Dentistry and Medical Sciences Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Jade K Forwood
- School of Dentistry and Medical Sciences Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Subir Sarker
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
3
|
Li Y, Zhou H, Li B, Li J, Shen Y, Jiang Y, Cui W, Tang L. Immunoprotection of FliBc chimeric fiber2 fusion proteins targeting dendritic cells against Fowl adenovirus serotype 4 infection. Poult Sci 2024; 103:103474. [PMID: 38387285 PMCID: PMC10899072 DOI: 10.1016/j.psj.2024.103474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 02/24/2024] Open
Abstract
Hepatitis-hydropericardium syndrome (HHS) is a highly fatal disease in chickens caused by the highly pathogenic fowl adenovirus serotype 4 (FAdV-4), which has severe economic consequences. The fiber2 protein exhibits excellent potential as a candidate for a subunit vaccination against FAdV-4. Despite having a high safety profile, subunit vaccines have low immunogenicity due to their lack of infectivity, which leads to low levels of immune response. As a vaccine adjuvant, Salmonella flagellin possesses the potential to augment the immunological response to vaccinations. Additionally, a crucial strategy for enhancing vaccine efficacy is efficient presentation of immune antigens to dendritic cells (DC) for targeted vaccination. In this study, we designed FAdV-4-fiber2 protein, and a recombinant protein called FliBc-fiber2-SP which based on FAdV-4-fiber2 protein, was generated using the gene sequence FliBc, which retains only the conserved sequence at the amino and carboxyl termini of the flagellin B subunit, and a short peptide SPHLHTSSPWER (SP), which targets chicken bone marrow-derived DC. They were separately administered via intramuscular injection to 14-day-old specific pathogen-free (SPF) chickens, and their immunogenicity was compared. At 21 d postvaccination (dpv), it was found that the FliBc-fiber2-SP recombinant protein elicited significantly higher levels of IgG antibodies and conferred a vaccine protection rate of up to 100% compared to its counterpart fiber2 protein. These results suggest that the DC-targeted peptide fusion strategy for flagellin chimeric antigen construction can effectively enhance the immune protective efficacy of antigen proteins.
Collapse
Affiliation(s)
- Yue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Bolong Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Yuanmeng Shen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China.
| |
Collapse
|
4
|
Cavallazzi R, Ramirez JA. Influenza and Viral Pneumonia. Infect Dis Clin North Am 2024; 38:183-212. [PMID: 38280763 DOI: 10.1016/j.idc.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Influenza and other respiratory viruses are commonly identified in patients with community-acquired pneumonia, hospital-acquired pneumonia, and in immunocompromised patients with pneumonia. Clinically, it is difficult to differentiate viral from bacterial pneumonia. Similarly, the radiological findings of viral infection are in general nonspecific. The advent of polymerase chain reaction testing has enormously facilitated the identification of respiratory viruses, which has important implications for infection control measures and treatment. Currently, treatment options for patients with viral infection are limited but there is ongoing research on the development and clinical testing of new treatment regimens and strategies.
Collapse
Affiliation(s)
- Rodrigo Cavallazzi
- Division of Pulmonary, Critical Care, and Sleep Disorders, University of Louisville, Louisville, KY, USA.
| | - Julio A Ramirez
- Norton Infectious Diseases Institute, Norton Healthcare, Louisville, KY, USA
| |
Collapse
|
5
|
Uribe FR, González VPI, Kalergis AM, Soto JA, Bohmwald K. Understanding the Neurotrophic Virus Mechanisms and Their Potential Effect on Systemic Lupus Erythematosus Development. Brain Sci 2024; 14:59. [PMID: 38248274 PMCID: PMC10813552 DOI: 10.3390/brainsci14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Central nervous system (CNS) pathologies are a public health concern, with viral infections one of their principal causes. These viruses are known as neurotropic pathogens, characterized by their ability to infiltrate the CNS and thus interact with various cell populations, inducing several diseases. The immune response elicited by neurotropic viruses in the CNS is commanded mainly by microglia, which, together with other local cells, can secrete inflammatory cytokines to fight the infection. The most relevant neurotropic viruses are adenovirus (AdV), cytomegalovirus (CMV), enterovirus (EV), Epstein-Barr Virus (EBV), herpes simplex virus type 1 (HSV-1), and herpes simplex virus type 2 (HSV-2), lymphocytic choriomeningitis virus (LCMV), and the newly discovered SARS-CoV-2. Several studies have associated a viral infection with systemic lupus erythematosus (SLE) and neuropsychiatric lupus (NPSLE) manifestations. This article will review the knowledge about viral infections, CNS pathologies, and the immune response against them. Also, it allows us to understand the relevance of the different viral proteins in developing neuronal pathologies, SLE and NPSLE.
Collapse
Affiliation(s)
- Felipe R. Uribe
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Valentina P. I. González
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma, Santiago 8910060, Chile
| |
Collapse
|
6
|
de Pablo PJ, Mateu MG. Mechanical Properties of Viruses. Subcell Biochem 2024; 105:629-691. [PMID: 39738960 DOI: 10.1007/978-3-031-65187-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Structural biology techniques have greatly contributed to unveiling the interplay between molecular structure, physico-chemical properties, and biological function of viruses. In recent years, classic structural approaches are being complemented by single-molecule techniques such as atomic force microscopy and optical tweezers to study physical features of viral particles that are not accessible to classic structural techniques. Among these features are mechanical properties such as stiffness, intrinsic elasticity, tensile strength, and material fatigue. The field of virus mechanics is contributing to materials science by investigating some physical parameters of "soft" biological matter and biological nano-objects. Virus mechanics studies are also starting to unveil the biological implications of some physical properties of viruses and their contribution to virus function. Virus particles are subjected to internal and external forces and they may have adapted to withstand, and even use those forces. This chapter focuses on the mechanical properties of virus particles, their structural determinants, their use to study virus function, and some possible biological implications, of which several examples are provided.
Collapse
Affiliation(s)
- Pedro J de Pablo
- Department of Physics of the Condensed Matter, C03, and IFIMAC (Instituto de Física de la Materia Condensada), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
7
|
San Martín C. Architecture and Assembly of Structurally Complex Viruses. Subcell Biochem 2024; 105:431-467. [PMID: 39738954 DOI: 10.1007/978-3-031-65187-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Viral particles consist essentially of a proteinaceous capsid that protects the genome and is also involved in many functions during the virus life cycle. In structurally simple viruses, the capsid consists of a number of copies of the same, or a few different proteins organized into a symmetric oligomer. Structurally complex viruses present a larger variety of components in their capsids than simple viruses. They may contain accessory proteins with specific architectural or functional roles, or incorporate non-proteic elements such as lipids. They present a range of geometrical variability, from slight deviations from the icosahedral symmetry to complete asymmetry or even pleomorphism. Putting together the many different elements in the virion requires an extra effort to achieve correct assembly, and thus complex viruses require sophisticated mechanisms to regulate morphogenesis. This chapter provides a general view of the structure and assembly of complex viruses.
Collapse
Affiliation(s)
- Carmen San Martín
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
8
|
Grams N, Charman M, Halko E, Lauman R, Garcia BA, Weitzman MD. Phosphorylation regulates viral biomolecular condensates to promote infectious progeny production. EMBO J 2024; 43:277-303. [PMID: 38177504 PMCID: PMC10897327 DOI: 10.1038/s44318-023-00021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Biomolecular condensates (BMCs) play important roles in diverse biological processes. Many viruses form BMCs which have been implicated in various functions critical for the productive infection of host cells. The adenovirus L1-52/55 kilodalton protein (52K) was recently shown to form viral BMCs that coordinate viral genome packaging and capsid assembly. Although critical for packaging, we do not know how viral condensates are regulated during adenovirus infection. Here we show that phosphorylation of serine residues 28 and 75 within the N-terminal intrinsically disordered region of 52K modulates viral condensates in vitro and in cells, promoting liquid-like properties. Furthermore, we demonstrate that phosphorylation of 52K promotes viral genome packaging and the production of infectious progeny particles. Collectively, our findings provide insights into how viral condensate properties are regulated and maintained in a state conducive to their function in viral progeny production. In addition, our findings have implications for antiviral strategies aimed at targeting the regulation of viral BMCs to limit viral multiplication.
Collapse
Affiliation(s)
- Nicholas Grams
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell & Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Matthew Charman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Edwin Halko
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Richard Lauman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew D Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Li Z, Lei Z, Cai Y, Cheng DB, Sun T. MicroRNA therapeutics and nucleic acid nano-delivery systems in bacterial infection: a review. J Mater Chem B 2023; 11:7804-7833. [PMID: 37539650 DOI: 10.1039/d3tb00694h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bacteria that have worked with humans for thousands of years pose a major threat to human health even today, as drug resistance has become a prominent problem. Compared to conventional drug therapy, nucleic acid-based therapies are a promising and potential therapeutic strategy for diseases in which nucleic acids are delivered through a nucleic acid delivery system to regulate gene expression in specific cells, offering the possibility of curing intractable diseases that are difficult to treat at this stage. Among the many nucleic acid therapeutic ideas, microRNA, a class of small nucleic acids with special properties, has made great strides in biology and medicine in just over two decades, showing promise in preclinical drug development. In this review, we introduce recent advances in nucleic acid delivery systems and their clinical applications, highlighting the potential of nucleic acid therapies, especially miRNAs extracted from traditional herbs, in combination with the existing set of nucleic acid therapeutic systems, to potentially open up a new line of thought in the treatment of cancer, viruses, and especially bacterial infectious diseases.
Collapse
Affiliation(s)
- Ze Li
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yilun Cai
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
10
|
Lana MVG, Antunes F, Tessarollo NG, Strauss BE. Stable expression of shRNA for the control of recombinant adenovirus replication. Braz J Med Biol Res 2023; 56:e12682. [PMID: 37493770 PMCID: PMC10361640 DOI: 10.1590/1414-431x2023e12682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 07/27/2023] Open
Abstract
Preventing the replication of adenovirus could have practical uses, such as controlling infection with wild-type virus or in applications involving recombinant vectors. Mainly transient methods have been used to inhibit adenovirus replication, including siRNA or drugs. Here, we tested whether stable expression of shRNA designed to target hexon, Iva2, or pol can inhibit the replication of a recombinant adenoviral vector, Ad-LacZ (serotype 5, E1/E3 deleted), in 293T cells. Significant knockdown correlating with reduced Ad-LacZ replication was achieved only when hexon was targeted. Cell sorting and isolation of cellular clones further accentuated knockdown of the hexon transcript, reduced protein levels by more than 90%, and diminished adenovirus production. As visualized by transmission electron microscopy, the cellular clone expressing the hexon-specific shRNA yielded 89.2% fewer particles compared to the parental 293T cells. Full scale production followed by purification revealed a 90.2% reduction in Ad-LacZ biological titer. These results support the notion that stable expression of shRNA can be used as a means to control adenovirus replication.
Collapse
Affiliation(s)
- M V G Lana
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia/CTO/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - F Antunes
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia/CTO/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - N G Tessarollo
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia/CTO/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Laboratório de Bioinformática e Biologia Computacional, Instituto Nacional do Câncer, Ministério da Saúde, Rio de Janeiro, RJ, Brasil
| | - B E Strauss
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia/CTO/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
11
|
Li R, Gao S, Chen H, Zhang X, Yang X, Zhao J, Wang Z. Virus usurps alternative splicing to clear the decks for infection. Virol J 2023; 20:131. [PMID: 37340420 DOI: 10.1186/s12985-023-02098-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Since invasion, there will be a tug-of-war between host and virus to scramble cellular resources, for either restraining or facilitating infection. Alternative splicing (AS) is a conserved and critical mechanism of processing pre-mRNA into mRNAs to increase protein diversity in eukaryotes. Notably, this kind of post-transcriptional regulatory mechanism has gained appreciation since it is widely involved in virus infection. Here, we highlight the important roles of AS in regulating viral protein expression and how virus in turn hijacks AS to antagonize host immune response. This review will widen the understandings of host-virus interactions, be meaningful to innovatively elucidate viral pathogenesis, and provide novel targets for developing antiviral drugs in the future.
Collapse
Affiliation(s)
- Ruixue Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Shenyan Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Huayuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, People's Republic of China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Jun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Zeng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China.
| |
Collapse
|
12
|
Kosoltanapiwat N, van der Hoek L, Kinsella CM, Tongshoob J, Prasittichai L, Klein M, Jebbink MF, Deijs M, Reamtong O, Boonnak K, Khongsiri W, Phadungsombat J, Tongthainan D, Tulayakul P, Yindee M. A Novel Simian Adenovirus Associating with Human Adeno-virus Species G Isolated from Long-Tailed Macaque Feces. Viruses 2023; 15:1371. [PMID: 37376670 PMCID: PMC10303043 DOI: 10.3390/v15061371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Metagenomics has demonstrated its capability in outbreak investigations and pathogen surveillance and discovery. With high-throughput and effective bioinformatics, many disease-causing agents, as well as novel viruses of humans and animals, have been identified using metagenomic analysis. In this study, a VIDISCA metagenomics workflow was used to identify potential unknown viruses in 33 fecal samples from asymptomatic long-tailed macaques (Macaca fascicularis) in Ratchaburi Province, Thailand. Putatively novel astroviruses, enteroviruses, and adenoviruses were detected and confirmed by PCR analysis of long-tailed macaque fecal samples collected from areas in four provinces, Ratchaburi, Kanchanaburi, Lopburi, and Prachuap Khiri Khan, where humans and monkeys live in proximity (total n = 187). Astroviruses, enteroviruses, and adenoviruses were present in 3.2%, 7.5%, and 4.8% of macaque fecal samples, respectively. One adenovirus, named AdV-RBR-6-3, was successfully isolated in human cell culture. Whole-genome analysis suggested that it is a new member of the species Human adenovirus G, closely related to Rhesus adenovirus 53, with evidence of genetic recombination and variation in the hexon, fiber, and CR1 genes. Sero-surveillance showed neutralizing antibodies against AdV-RBR-6-3 in 2.9% and 11.2% of monkeys and humans, respectively, suggesting cross-species infection of monkeys and humans. Overall, we reported the use of metagenomics to screen for possible new viruses, as well as the isolation and molecular and serological characterization of the new adenovirus with cross-species transmission potential. The findings emphasize that zoonotic surveillance is important and should be continued, especially in areas where humans and animals interact, to predict and prevent the threat of emerging zoonotic pathogens.
Collapse
Affiliation(s)
- Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.T.); (W.K.)
| | - Lia van der Hoek
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.v.d.H.); (C.M.K.); (M.K.); (M.F.J.); (M.D.)
| | - Cormac M. Kinsella
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.v.d.H.); (C.M.K.); (M.K.); (M.F.J.); (M.D.)
| | - Jarinee Tongshoob
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.T.); (W.K.)
| | - Luxsana Prasittichai
- Wildlife Conservation Division, Protected Areas Regional Office 3 (Ban Pong), Department of National Parks, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Ratchaburi 70110, Thailand;
| | - Michelle Klein
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.v.d.H.); (C.M.K.); (M.K.); (M.F.J.); (M.D.)
| | - Maarten F. Jebbink
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.v.d.H.); (C.M.K.); (M.K.); (M.F.J.); (M.D.)
| | - Martin Deijs
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.v.d.H.); (C.M.K.); (M.K.); (M.F.J.); (M.D.)
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Kobporn Boonnak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Wathusiri Khongsiri
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.T.); (W.K.)
| | - Juthamas Phadungsombat
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - Daraka Tongthainan
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-ok, Chonburi 20110, Thailand;
| | - Phitsanu Tulayakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom 73140, Thailand;
| | - Marnoch Yindee
- Akkhraratchakumari Veterinary College, Walailak University, Nakhonsithammarat 80161, Thailand;
| |
Collapse
|
13
|
Surface characterization of alkane viral anchoring films prepared by titanate-assisted organosilanization. Colloids Surf B Biointerfaces 2023; 222:113136. [PMID: 36641873 DOI: 10.1016/j.colsurfb.2023.113136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Studies of virus adsorption on surfaces with optimized properties have attracted a lot of interest, mainly due to the influence of the surface in the retention, orientation and stability of the viral capsids. Besides, viruses in whole or in parts can be used as cages or vectors in different areas, such as biomedicine and materials science. A key requirement for virus nanocage application is their physical properties, i.e. their mechanical response and the distribution of surface charge, which determine virus-substrate interactions and stability. In the present work we show two examples of viruses exhibiting strong surface interactions on homogeneous hydrophobic surfaces. The surfaces were prepared by titanate assisted organosilanization, a sol-gel spin coating process, followed by a mild annealing step. We show by surface and interface spectroscopies that the process allows trapping triethoxy-octylsilane (OCTS) molecules, exhibiting a hydrophobic alkane rich surface finishing. Furthermore, the surfaces remain flat and behave as more efficient sorptive surfaces for virus particles than mica or graphite (HOPG). Also, we determine by atomic force microscopy (AFM) the mechanical properties of two types of viruses (human adenovirus and reovirus) and compare the results obtained on the OCTS functionalized surfaces with those obtained on mica and HOPG. Finally, the TIPT+OCTS surfaces were validated as platforms for the morphological and mechanical characterization of virus particles by using adenovirus as initial model and using HOPG and mica as standard control surfaces. Then, the same characteristics were determined on reovirus using TIPT+OCTS and HOPG, as an original contribution to the catalogue of physical properties of viral particles.
Collapse
|
14
|
Adenoviruses in Avian Hosts: Recent Discoveries Shed New Light on Adenovirus Diversity and Evolution. Viruses 2022; 14:v14081767. [PMID: 36016389 PMCID: PMC9416666 DOI: 10.3390/v14081767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
While adenoviruses cause infections in a wide range of vertebrates, members of the genus Atadenovirus, Siadenovirus, and Aviadenovirus predominantly infect avian hosts. Several recent studies on avian adenoviruses have encouraged us to re-visit previously proposed adenovirus evolutionary concepts. Complete genomes and partial DNA polymerase sequences of avian adenoviruses were extracted from NCBI and analysed using various software. Genomic analyses and constructed phylogenetic trees identified the atadenovirus origin from an Australian native passerine bird in contrast to the previously established reptilian origin. In addition, we demonstrated that the theories on higher AT content in atadenoviruses are no longer accurate and cannot be considered as a species demarcation criterion for the genus Atadenovirus. Phylogenetic reconstruction further emphasised the need to reconsider siadenovirus origin, and we recommend extended studies on avian adenoviruses in wild birds to provide finer evolutionary resolution.
Collapse
|
15
|
Kayesh MEH, Hashem MA, Kohara M, Tsukiyama-Kohara K. In vivo Delivery Tools for Clustered Regularly Interspaced Short Palindromic Repeat/Associated Protein 9-Mediated Inhibition of Hepatitis B Virus Infection: An Update. Front Microbiol 2022; 13:953218. [PMID: 35847068 PMCID: PMC9284033 DOI: 10.3389/fmicb.2022.953218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 12/05/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major global health problem despite the availability of an effective prophylactic HBV vaccine. Current antiviral therapies are unable to fully cure chronic hepatitis B (CHB) because of the persistent nature of covalently closed circular DNA (cccDNA), a replicative template for HBV, which necessitates the development of alternative therapeutic approaches. The CRISPR/Cas system, a newly emerging genome editing tool, holds great promise for genome editing and gene therapy. Several in vitro and/or in vivo studies have demonstrated the effectiveness of HBV-specific clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (CRISPR/Cas9) systems in cleaving HBV DNA and cccDNA. Although recent advances in CRISPR/Cas technology enhance its prospects for clinical application against HBV infection, in vivo delivery of the CRISPR/Cas9 system at targets sites remains a major challenge that needs to be resolved before its clinical application in gene therapy for CHB. In the present review, we discuss CRISPR/Cas9 delivery tools for targeting HBV infection, with a focus on the development of adeno-associated virus vectors and lipid nanoparticle (LNP)-based CRISPR/Cas ribonucleoprotein (RNP) delivery to treat CHB. In addition, we discuss the importance of delivery tools in the enhancement of the antiviral efficacy of CRISPR/Cas9 against HBV infection.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Centre, Kagoshima University, Kagoshima, Japan
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
- *Correspondence: Mohammad Enamul Hoque Kayesh,
| | - Md Abul Hashem
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Centre, Kagoshima University, Kagoshima, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Centre, Kagoshima University, Kagoshima, Japan
- Kyoko Tsukiyama-Kohara,
| |
Collapse
|
16
|
Ismail AM, Saha A, Lee JS, Painter DF, Chen Y, Singh G, Condezo GN, Chodosh J, San Martín C, Rajaiya J. RANBP2 and USP9x regulate nuclear import of adenovirus minor coat protein IIIa. PLoS Pathog 2022; 18:e1010588. [PMID: 35709296 PMCID: PMC9242475 DOI: 10.1371/journal.ppat.1010588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/29/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
As intracellular parasites, viruses exploit cellular proteins at every stage of infection. Adenovirus outbreaks are associated with severe acute respiratory illnesses and conjunctivitis, with no specific antiviral therapy available. An adenoviral vaccine based on human adenovirus species D (HAdV-D) is currently in use for COVID-19. Herein, we investigate host interactions of HAdV-D type 37 (HAdV-D37) protein IIIa (pIIIa), identified by affinity purification and mass spectrometry (AP-MS) screens. We demonstrate that viral pIIIa interacts with ubiquitin-specific protease 9x (USP9x) and Ran-binding protein 2 (RANBP2). USP9x binding did not invoke its signature deubiquitination function but rather deregulated pIIIa-RANBP2 interactions. In USP9x-knockout cells, viral genome replication and viral protein expression increased compared to wild type cells, supporting a host-favored mechanism for USP9x. Conversely, RANBP2-knock down reduced pIIIa transport to the nucleus, viral genome replication, and viral protein expression. Also, RANBP2-siRNA pretreated cells appeared to contain fewer mature viral particles. Transmission electron microscopy of USP9x-siRNA pretreated, virus-infected cells revealed larger than typical paracrystalline viral arrays. RANBP2-siRNA pretreatment led to the accumulation of defective assembly products at an early maturation stage. CRM1 nuclear export blockade by leptomycin B led to the retention of pIIIa within cell nuclei and hindered pIIIa-RANBP2 interactions. In-vitro binding analyses indicated that USP9x and RANBP2 bind to C-terminus of pIIIa amino acids 386–563 and 386–510, respectively. Surface plasmon resonance testing showed direct pIIIa interaction with recombinant USP9x and RANBP2 proteins, without competition. Using an alternative and genetically disparate adenovirus type (HAdV-C5), we show that the demonstrated pIIIa interaction is also important for a severe respiratory pathogen. Together, our results suggest that pIIIa hijacks RANBP2 for nuclear import and subsequent virion assembly. USP9x counteracts this interaction and negatively regulates virion synthesis. This analysis extends the scope of known adenovirus-host interactions and has potential implications in designing new antiviral therapeutics. The compact genomes of viruses must code for proteins with multiple functions, including those that assist with cell entry, replication, and escape from the host immune defenses. Viruses succeed in every stage of this process by hijacking critical cellular proteins for their propagation. Hence, identifying virus-host protein interactions may permit identifying therapeutic applications that restrict viral processes. Human adenovirus structural proteins link together to produce infectious virions. Protein IIIa is required to assemble fully packaged virions, but its interactions with host factors are unknown. Here, we identify novel host protein interactions of pIIIa with cellular RANBP2 and USP9x. We demonstrate that by interacting with cellular RANBP2, viral pIIIa gains entry to the nucleus for subsequent virion assembly and replication. Reduced RANBP2 expression inhibited pIIIa entry into the nucleus, minimized viral replication and viral protein expression, and led to accumulation of defective assembly products in the infected cells. As a defense against viral infection, USP9x reduces the interaction between pIIIa and RANBP2, resulting in decreased viral propagation. We also show that the identified pIIIa-host interactions are crucial in two disparate HAdV types with diverse disease implications.
Collapse
Affiliation(s)
- Ashrafali M. Ismail
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amrita Saha
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ji S. Lee
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David F. Painter
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yinghua Chen
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Gurdeep Singh
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gabriela N. Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Madrid, Spain
| | - James Chodosh
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Madrid, Spain
| | - Jaya Rajaiya
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Roque J, Santos P, Margaça FMA, Caeiro MF, Cabo Verde S. Inactivation mechanisms of human adenovirus by e-beam irradiation in water environments. Appl Microbiol Biotechnol 2022; 106:3799-3809. [PMID: 35575914 DOI: 10.1007/s00253-022-11958-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022]
Abstract
This study aims to study the kinetics and mechanisms of human adenovirus inactivation by electron beam. Human adenovirus type 5 (HAdV-5) was inoculated in two types of aqueous substrates (phosphate-buffered saline - PBS, domestic wastewater - WW) treated by electron beam at a dose range between 3 and 21 kGy. Samples were evaluated for virus infectivity, PCR amplification of fragments of HAdV-5 genome and abundance and antigenicity of the virion structural proteins. The maximum reduction in viral titre, in plaque-forming units (PFU) per millilitre, was about 7 and 5 log PFU/mL for e-beam irradiation at 20 kGy in PBS and 19 kGy in wastewater, respectively. Among the virion structural proteins detected, the hexon protein showed the higher radioresistance. Long (10.1 kbp) genomic DNA fragments were differently PCR amplified, denoting a substrate effect on HAdV-5 genome degradation by e-beam. The differences observed between the two substrates can be explained by the protective effect that the organic matter present in the substrate may have on viral irradiation. According to the obtained results, the decrease in viral viability/infectivity may be due to DNA damage and to protein alterations. In summary, electron beam irradiation at a dose of 13 kGy is capable of reducing HAdV-5 viral titres by more than 99.99% (4 log PFU/mL) in both substrates assayed, indicating that this type of technology is effective for viral wastewater disinfection and may be used as a tertiary treatment in water treatment plants. KEY POINTS: • The substrate in which the virus is suspended has an impact on its sensitivity to e-beam treatment. • E-beam irradiation at 13 kGy is capable of reducing by 4 Log PFU/mL the HAdV-5 viral titre. • The decrease in viral viability/infectivity may be due to DNA damage and to protein alterations.
Collapse
Affiliation(s)
- Joana Roque
- Centro de Ciências E Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066, Bobadela LRS, Portugal.,Centro de Estudos Do Ambiente E Do Mar (CESAM), Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Edifício C2-Piso 4, Campo Grande, 1749-016, Lisbon, Portugal
| | - Pedro Santos
- Centro de Ciências E Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066, Bobadela LRS, Portugal
| | - Fernanda M A Margaça
- Centro de Ciências E Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066, Bobadela LRS, Portugal
| | - Maria Filomena Caeiro
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Edifício C2-Piso 4, Campo Grande, 1749-016, Lisbon, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências E Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066, Bobadela LRS, Portugal.
| |
Collapse
|
18
|
Li Z, Zhang L, Jiang K, Zhang Y, Liu Y, Hu G, Song J. Biosafety assessment of delivery systems for clinical nucleic acid therapeutics. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
19
|
Benkő M, Aoki K, Arnberg N, Davison AJ, Echavarría M, Hess M, Jones MS, Kaján GL, Kajon AE, Mittal SK, Podgorski II, San Martín C, Wadell G, Watanabe H, Harrach B. ICTV Virus Taxonomy Profile: Adenoviridae 2022. J Gen Virol 2022; 103:001721. [PMID: 35262477 PMCID: PMC9176265 DOI: 10.1099/jgv.0.001721] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
The family Adenoviridae includes non-enveloped viruses with linear dsDNA genomes of 25-48 kb and medium-sized icosahedral capsids. Adenoviruses have been discovered in vertebrates from fish to humans. The family is divided into six genera, each of which is more common in certain animal groups. The outcome of infection may vary from subclinical to lethal disease. This is a summary of the ICTV Report on the family Adenoviridae, which is available at ictv.global/report/adenoviridae.
Collapse
Affiliation(s)
- Mária Benkő
- Veterinary Medical Research Institute, Budapest, Hungary
| | | | | | | | | | - Michael Hess
- University of Veterinary Medicine, Vienna, Austria
| | | | - Győző L. Kaján
- Veterinary Medical Research Institute, Budapest, Hungary
| | | | | | | | | | | | | | - Balázs Harrach
- Veterinary Medical Research Institute, Budapest, Hungary
| | - ICTV Report Consortium
- Veterinary Medical Research Institute, Budapest, Hungary
- Hokkaido University, Sapporo, Japan
- Umeå University, Umeå, Sweden
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- CEMIC University Hospital, CONICET, Buenos Aires, Argentina
- University of Veterinary Medicine, Vienna, Austria
- Naval Medical Center, San Diego, CA, USA
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
- Purdue University, West Lafayette, IN, USA
- Ruđer Bošković Institute, Zagreb, Croatia
- Centro Nacional de Biotecnología, Madrid, Spain
| |
Collapse
|
20
|
Barnes LF, Draper BE, Jarrold MF. Analysis of Recombinant Adenovirus Vectors by Ion Trap Charge Detection Mass Spectrometry: Accurate Molecular Weight Measurements beyond 150 MDa. Anal Chem 2022; 94:1543-1551. [PMID: 35023731 DOI: 10.1021/acs.analchem.1c02439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenovirus is one of the largest nonenveloped, double-stranded DNA viruses. It is widely used as a gene therapy vector and has recently received a lot of attention as a novel vaccine platform for SARS-CoV-2. Human adenovirus 5 (HAdV5) contains over 2500 protein molecules and has a 36 kbp genome. Adenovirus is well beyond the range of conventional mass spectrometry, and it was unclear how well such a large complex could be desolvated. Here, we report molecular weight (MW) distributions measured for HAdV5 and for 11 recombinant AdV vectors with genomes of varying lengths. The MW distributions were recorded using ion trap charge detection mass spectrometry (CDMS), a single-particle technique where m/z and charge are measured for individual ions. The results show that ions as large as 150 MDa can be effectively desolvated and accurate MW distributions obtained. The MW distribution for HAdV5 contains a narrow peak at 156.1 MDa, assigned to the infectious virus. A smaller peak at 129.6 MDa is attributed to incomplete particles that have not packaged a genome. The ions in the 129.6 MDa peak have a much lower average charge than those in the peak at 156.1 MDa. This is attributed to the empty particles missing some or all of the fibers that decorate the surface of the virion. The MW measured for the mature virus (156.1 MDa) is much larger than that predicted from sequence masses and copy numbers of the constituents (142.5 MDa). Measurements performed for recombinant AdV as a function of genome length show that for every 1 MDa increase in the genome MW, the MW of the mature virus increases by around 2.3 MDa. The additional 1.3 MDa is attributed to core proteins that are copackaged with the DNA. This observation suggests that the discrepancy between the measured and expected MWs for mature HAdV5 is due to an underestimate in the copy numbers of the core proteins.
Collapse
Affiliation(s)
- Lauren F Barnes
- Chemistry Department, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Benjamin E Draper
- Megadalton Solutions, Inc., 3750 E Bluebird Lane, Bloomington, Indiana 47401, United States
| | - Martin F Jarrold
- Chemistry Department, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
21
|
Luescher AM, Koch J, Stark WJ, Grass RN. Silica-encapsulated DNA tracers for measuring aerosol distribution dynamics in real-world settings. INDOOR AIR 2022; 32:e12945. [PMID: 34676590 PMCID: PMC9298268 DOI: 10.1111/ina.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Aerosolized particles play a significant role in human health and environmental risk management. The global importance of aerosol-related hazards, such as the circulation of pathogens and high levels of air pollutants, have led to a surging demand for suitable surrogate tracers to investigate the complex dynamics of airborne particles in real-world scenarios. In this study, we propose a novel approach using silica particles with encapsulated DNA (SPED) as a tracing agent for measuring aerosol distribution indoors. In a series of experiments with a portable setup, SPED were successfully aerosolized, recaptured, and quantified using quantitative polymerase chain reaction (qPCR). Position dependency and ventilation effects within a confined space could be shown in a quantitative fashion achieving detection limits below 0.1 ng particles per m3 of sampled air. In conclusion, SPED show promise for a flexible, cost-effective, and low-impact characterization of aerosol dynamics in a wide range of settings.
Collapse
Affiliation(s)
- Anne M. Luescher
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
| | - Julian Koch
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
| | - Wendelin J. Stark
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
| | - Robert N. Grass
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
| |
Collapse
|
22
|
de Pablo PJ, San Martín C. Seeing and touching adenovirus: complementary approaches for understanding assembly and disassembly of a complex virion. Curr Opin Virol 2021; 52:112-122. [PMID: 34906758 DOI: 10.1016/j.coviro.2021.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022]
Abstract
Understanding adenovirus assembly and disassembly poses many challenges due to the virion complexity. A distinctive feature of adenoviruses is the large amount of virus-encoded proteins packed together with the dsDNA genome. Cryo-electron microscopy (cryo-EM) structures are broadening our understanding of capsid variability along evolution, but little is known about the organization of the non-icosahedral nucleoproteic core and its influence in adenovirus function. Atomic force microscopy (AFM) probes the biomechanics of virus particles, while simultaneously inducing and monitoring their disassembly in real time. Synergistic combination of AFM with EM shows that core proteins play unexpected key roles in maturation and entry, and uncoating dynamics are finely tuned to ensure genome release at the appropriate time and place for successful infection.
Collapse
Affiliation(s)
- Pedro J de Pablo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid and IFIMAC, 28049 Madrid, Spain.
| | - Carmen San Martín
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
23
|
Ratan ZA, Mashrur FR, Chhoan AP, Shahriar SM, Haidere MF, Runa NJ, Kim S, Kweon DH, Hosseinzadeh H, Cho JY. Silver Nanoparticles as Potential Antiviral Agents. Pharmaceutics 2021; 13:2034. [PMID: 34959320 PMCID: PMC8705988 DOI: 10.3390/pharmaceutics13122034] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Since the early 1990s, nanotechnology has led to new horizons in nanomedicine, which encompasses all spheres of science including chemistry, material science, biology, and biotechnology. Emerging viral infections are creating severe hazards to public health worldwide, recently, COVID-19 has caused mass human casualties with significant economic impacts. Interestingly, silver nanoparticles (AgNPs) exhibited the potential to destroy viruses, bacteria, and fungi using various methods. However, developing safe and effective antiviral drugs is challenging, as viruses use host cells for replication. Designing drugs that do not harm host cells while targeting viruses is complicated. In recent years, the impact of AgNPs on viruses has been evaluated. Here, we discuss the potential role of silver nanoparticles as antiviral agents. In this review, we focus on the properties of AgNPs such as their characterization methods, antiviral activity, mechanisms, applications, and toxicity.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
- School of Health and Society, University of Wollongong, Wollongong, NSW 2500, Australia;
| | - Fazla Rabbi Mashrur
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
| | - Anisha Parsub Chhoan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
| | - Sadi Md. Shahriar
- Department of Materials Science and Engineering, University of California-Davis, Davis, California, CA 95616, USA;
- Department of Materials Science and Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| | | | | | - Sunggyu Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Suwon 16419, Korea
| | - Hassan Hosseinzadeh
- School of Health and Society, University of Wollongong, Wollongong, NSW 2500, Australia;
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Suwon 16419, Korea
| |
Collapse
|
24
|
Acidification induces condensation of the adenovirus core. Acta Biomater 2021; 135:534-542. [PMID: 34407472 DOI: 10.1016/j.actbio.2021.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022]
Abstract
The adenovirus (AdV) icosahedral capsid encloses a nucleoprotein core formed by the dsDNA genome bound to numerous copies of virus-encoded, positively charged proteins. For an efficient delivery of its genome, AdV must undergo a cascade of dismantling events from the plasma membrane to the nuclear pore. Throughout this uncoating process, the virion moves across potentially disruptive environments whose influence in particle stability is poorly understood. In this work we analyze the effect of acidic conditions on AdV particles by exploring their mechanical properties, genome accessibility and capsid disruption. Our results show that under short term acidification the AdV virion becomes softer and its genome less accessible to an intercalating dye, even in the presence of capsid openings. The AFM tip penetrates deeper in virions at neutral pH, and mechanical properties of genome-less particles are not altered upon acidification. Altogether, these results indicate that the main effect of acidification is the compaction of the nucleoproteic core, revealing a previously unknown role for chemical cues in AdV uncoating. STATEMENT OF SIGNIFICANCE: Studying the behavior of virus particles under changing environmental conditions is key to understand cell entry and propagation. One such change is the acidification undergone in certain cell compartments, which is thought to play a role in the programmed uncoating of virus genomes. Mild acidification in the early endosome has been proposed as a trigger signal for human AdV uncoating. However, the actual effect of low pH in AdV stability and entry is not well defined. Understanding the consequences of acidification in AdV structure and stability is also relevant to define storage conditions for therapeutic vectors, or design AdV variants resistant to intestinal conditions for oral administration of vaccines.
Collapse
|
25
|
Elkashif A, Alhashimi M, Sayedahmed EE, Sambhara S, Mittal SK. Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin Transl Immunology 2021; 10:e1345. [PMID: 34667600 PMCID: PMC8510854 DOI: 10.1002/cti2.1345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Since the development of the first vaccine against smallpox over two centuries ago, vaccination strategies have been at the forefront of significantly impacting the incidences of infectious diseases globally. However, the increase in the human population, deforestation and climate change, and the rise in worldwide travel have favored the emergence of new viruses with the potential to cause pandemics. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a cruel reminder of the impact of novel pathogens and the suboptimal capabilities of conventional vaccines. Therefore, there is an urgent need to develop new vaccine strategies that allow the production of billions of doses in a short duration and are broadly protective against emerging and re-emerging infectious diseases. Extensive knowledge of the molecular biology and immunology of adenoviruses (Ad) has favored Ad vectors as platforms for vaccine design. The Ad-based vaccine platform represents an attractive strategy as it induces robust humoral and cell-mediated immune responses and can meet the global demand in a pandemic situation. This review describes the status of Ad vector-based vaccines in preclinical and clinical studies for current and emerging respiratory viruses, particularly coronaviruses, influenza viruses and respiratory syncytial viruses.
Collapse
Affiliation(s)
- Ahmed Elkashif
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Marwa Alhashimi
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Ekramy E Sayedahmed
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | | | - Suresh K Mittal
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| |
Collapse
|
26
|
The fowl adenovirus serotype 4 (FAdV-4) induce cellular pathway in chickens to produce interferon and antigen-presented molecules (MHCI/II). Poult Sci 2021; 100:101406. [PMID: 34428643 PMCID: PMC8385439 DOI: 10.1016/j.psj.2021.101406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022] Open
Abstract
FAdV-4 is the major strain of adenovirus that responsible for hydro-pericardial syndrome (HPS) in poultry. In this study, the virus's specific gene fragments were isolated from clinically suspected cases and amplified by PCR. Finally, after a viral infection to investigate the immune response of the host, the gene expression of MHC (major histo-compatible) molecules (MHCIα, MHCIIβ), Ii (Invariant Chain) gene, inflammatory cytokines (IFN-β, IFN-γ, and IL-1β), and transcription factors (MDA5, STING, IRF7, and NF-kB) were detected by real-time PCR (fluorescence technology). The results of sequence comparison showed that the clinically isolated virus was 100% homologous to a virulent strain of avian adenovirus group C serotype 4 (FAdV-4), which were named AH-FAdV-4. The TCID50 and pathogenicity of the virus were determined that was 106.52/0.1 mL with a mortality rate of 100% in chickens and 0% in ducks. Furthermore, results showed that the expression level of MHCIα, MHCIIβ, and Ii genes in chicken embryo kidney cells significantly (P < 0.01) upregulated (increased) after infection, which was 43, 5.2, and 2.5 times higher than the control group. With the addition of PDTC, an inhibitor of NF-kB, then the expression level of MHCIα, MHCIIβ, and Ii was decreased significantly (P < 0.01) than the control group. The transcription levels of these genes were decreased 0.64, 0.27, and 0.26 respectively. Simultaneously, the expression levels of IFN-β, IFN-γ, and IL-1β were also significantly (P < 0.01) up-regulated (increased) 7.8, 22.7, and 5 times higher than the control group. It was found that up-regulation of STING and NF-κB pathways are directly involved in the regulation of inflammatory cytokines (IFN-β, IFN-γ, and IL-1β), MHC molecules (MHCIα, MHCIIβ), and Ii gene. The results also showed that the gene regulation pathways consecutively increased the expression levels of MDA5, STING, IRF7, and NF-kB. It is conducted that the expression levels of cytokines, MHC molecules, and li gene were increased by STING and NF-kB pathways.
Collapse
|
27
|
Sikdar A, Gupta R, Boura E. Reviewing Antiviral Research Against Viruses Causing Human Diseases - A Structure Guided Approach. Curr Mol Pharmacol 2021; 15:306-337. [PMID: 34348638 DOI: 10.2174/1874467214666210804152836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/22/2022]
Abstract
The littlest of all the pathogens, viruses have continuously been the foremost strange microorganisms to consider. Viral Infections can cause extreme sicknesses as archived by the HIV/AIDS widespread or the later Ebola or Zika episodes. Apprehensive framework distortions are too regularly watched results of numerous viral contaminations. Besides, numerous infections are oncoviruses, which can trigger different sorts of cancer. Nearly every year a modern infection species rises debilitating the world populace with an annihilating episode. Subsequently, the need of creating antivirals to combat such rising infections. In any case, from the innovation of to begin with antiviral medicate Idoxuridine in 1962 to the revelation of Baloxavir marboxil (Xofluza) that was FDA-approved in 2018, the hone of creating antivirals has changed significantly. In this article, different auxiliary science strategies have been described that can be referral for therapeutics innovation.
Collapse
Affiliation(s)
- Arunima Sikdar
- Department of Hematology and Oncology, School of Medicine, The University of Tennessee Health Science Center, 920 Madison Ave, P.O.Box-38103, Memphis, Tennessee. United States
| | - Rupali Gupta
- Department of Neurology, Duke University Medical Center, Durham, North Carolina. United States
| | - Evzen Boura
- Department of Molecular Biology and Biochemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, P.O. Box:16000, Prague. Czech Republic
| |
Collapse
|
28
|
Daussy CF, Pied N, Wodrich H. Understanding Post Entry Sorting of Adenovirus Capsids; A Chance to Change Vaccine Vector Properties. Viruses 2021; 13:1221. [PMID: 34202573 PMCID: PMC8310329 DOI: 10.3390/v13071221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022] Open
Abstract
Adenovirus vector-based genetic vaccines have emerged as a powerful strategy against the SARS-CoV-2 health crisis. This success is not unexpected because adenoviruses combine many desirable features of a genetic vaccine. They are highly immunogenic and have a low and well characterized pathogenic profile paired with technological approachability. Ongoing efforts to improve adenovirus-vaccine vectors include the use of rare serotypes and non-human adenoviruses. In this review, we focus on the viral capsid and how the choice of genotypes influences the uptake and subsequent subcellular sorting. We describe how understanding capsid properties, such as stability during the entry process, can change the fate of the entering particles and how this translates into differences in immunity outcomes. We discuss in detail how mutating the membrane lytic capsid protein VI affects species C viruses' post-entry sorting and briefly discuss if such approaches could have a wider implication in vaccine and/or vector development.
Collapse
Affiliation(s)
| | | | - Harald Wodrich
- Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, University of Bordeaux, 146 rue Leo Saignat, CEDEX, 33076 Bordeaux, France; (C.F.D.); (N.P.)
| |
Collapse
|
29
|
Mazzotta S, Berastegui-Cabrera J, Vega-Holm M, García-Lozano MDR, Carretero-Ledesma M, Aiello F, Vega-Pérez JM, Pachón J, Iglesias-Guerra F, Sánchez-Céspedes J. Design, synthesis and in vitro biological evaluation of a novel class of anti-adenovirus agents based on 3-amino-1,2-propanediol. Bioorg Chem 2021; 114:105095. [PMID: 34175724 DOI: 10.1016/j.bioorg.2021.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/09/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Nowadays there is not an effective drug for the treatment of infections caused by human adenovirus (HAdV) which supposes a clinical challenge, especially for paediatric and immunosuppressed patients. Here, we describe the design, synthesis and biological evaluation as anti-adenovirus agents of a new library (57 compounds) of diester, monoester and triazole derivatives based on 3-amino-1,2-propanediol skeleton. Seven compounds (17, 20, 26, 34, 44, 60 and 66) were selected based on their high anti-HAdV activity at low micromolar concentration (IC50 from 2.47 to 5.75 µM) and low cytotoxicity (CC50 from 28.70 to >200 µM). In addition, our mechanistic assays revealed that compounds 20 and 44 might be targeting specifically the HAdV DNA replication process, and compound 66 would be targeting HAdV E1A mRNA transcription. For compounds 17, 20, 34 and 60, the mechanism of action seems to be associated with later steps after HAdV DNA replication.
Collapse
Affiliation(s)
- Sarah Mazzotta
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain; Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Judith Berastegui-Cabrera
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain.
| | - María Del Rosario García-Lozano
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain; Institute of Biomedicine of Seville (IBiS), SeLiver Group, University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Marta Carretero-Ledesma
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - José Manuel Vega-Pérez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain
| | - Jerónimo Pachón
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain; Department of Medicine, University of Seville, E-41009 Seville, Spain
| | - Fernando Iglesias-Guerra
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain.
| | - Javier Sánchez-Céspedes
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain.
| |
Collapse
|
30
|
Mazzotta S, Berastegui-Cabrera J, Carullo G, Vega-Holm M, Carretero-Ledesma M, Mendolia L, Aiello F, Iglesias-Guerra F, Pachón J, Vega-Pérez JM, Sánchez-Céspedes J. Serinol-Based Benzoic Acid Esters as New Scaffolds for the Development of Adenovirus Infection Inhibitors: Design, Synthesis, and In Vitro Biological Evaluation. ACS Infect Dis 2021; 7:1433-1444. [PMID: 33073569 DOI: 10.1021/acsinfecdis.0c00515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the years, human adenovirus (HAdV) has progressively been recognized as a significant viral pathogen. Traditionally associated with self-limited respiratory, gastrointestinal, and conjunctival infections, mainly in immunocompromised patients, HAdV is currently considered to be a pathogen presenting significant morbidity and mortality in both immunosuppressed and otherwise healthy individuals. Currently available therapeutic options are limited because of their lack of effectivity and related side effects. In this context, there is an urgent need to develop effective anti-HAdV drugs with suitable therapeutic indexes. In this work, we identified new serinol-derived benzoic acid esters as novel scaffolds for the inhibition of HAdV infections. A set of 38 compounds were designed and synthesized, and their antiviral activity and cytotoxicity were evaluated. Four compounds (13, 14, 27, and 32) inhibited HAdV infection at low micromolar concentrations (2.82-5.35 μM). Their half maximal inhibitory concentration (IC50) values were lower compared to that of cidofovir, the current drug of choice. All compounds significantly reduced the HAdV DNA replication process, while they did not block any step of the viral entry. Our results showed that compounds 13, 14, and 32 seem to be targeting the expression of the E1A early gene. Moreover, all four derivatives demonstrated a significant inhibition of human cytomegalovirus (HCMV) DNA replication. This new scaffold may represent a potential tool useful for the development of effective anti-HAdV drugs.
Collapse
Affiliation(s)
- Sarah Mazzotta
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, E-41071 Seville, Spain
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Judith Berastegui-Cabrera
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Gabriele Carullo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, E-41071 Seville, Spain
| | - Marta Carretero-Ledesma
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Lara Mendolia
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, E-41071 Seville, Spain
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Fernando Iglesias-Guerra
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, E-41071 Seville, Spain
| | - Jerónimo Pachón
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
- Department of Medicine, University of Seville, E-41009 Seville, Spain
| | - José Manuel Vega-Pérez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, E-41071 Seville, Spain
| | - Javier Sánchez-Céspedes
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| |
Collapse
|
31
|
Adenovirus Structure: What Is New? Int J Mol Sci 2021; 22:ijms22105240. [PMID: 34063479 PMCID: PMC8156859 DOI: 10.3390/ijms22105240] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Adenoviruses are large (~950 Å) and complex non-enveloped, dsDNA icosahedral viruses. They have a pseudo-T = 25 triangulation number with at least 12 different proteins composing the virion. These include the major and minor capsid proteins, core proteins, maturation protease, terminal protein, and packaging machinery. Although adenoviruses have been studied for more than 60 years, deciphering their architecture has presented a challenge for structural biology techniques. An outstanding event was the first near-atomic resolution structure of human adenovirus type 5 (HAdV-C5), solved by cryo-electron microscopy (cryo-EM) in 2010. Discovery of new adenovirus types, together with methodological advances in structural biology techniques, in particular cryo-EM, has lately produced a considerable amount of new, high-resolution data on the organization of adenoviruses belonging to different species. In spite of these advances, the organization of the non-icosahedral core is still a great unknown. Nevertheless, alternative techniques such as atomic force microscopy (AFM) are providing interesting glimpses on the role of the core proteins in genome condensation and virion stability. Here we summarize the current knowledge on adenovirus structure, with an emphasis on high-resolution structures obtained since 2010.
Collapse
|
32
|
Adenovirus - a blueprint for gene delivery. Curr Opin Virol 2021; 48:49-56. [PMID: 33892224 DOI: 10.1016/j.coviro.2021.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 11/23/2022]
Abstract
A central quest in gene therapy and vaccination is to achieve effective and long-lasting gene expression at minimal dosage. Adenovirus vectors are widely used therapeutics and safely deliver genes into many cell types. Adenoviruses evolved to use elaborate trafficking and particle deconstruction processes, and efficient gene expression and progeny formation. Here, we discuss recent insights into how human adenoviruses deliver their double-stranded DNA genome into cell nuclei, and effect lytic cell killing, non-lytic persistent infection or vector gene expression. The mechanisms underlying adenovirus entry, uncoating, nuclear transport and gene expression provide a blueprint for the emerging field of synthetic virology, where artificial virus-like particles are evolved to deliver therapeutic payload into human cells without viral proteins and genomes.
Collapse
|
33
|
Tessarollo NG, Domingues ACM, Antunes F, da Luz JCDS, Rodrigues OA, Cerqueira OLD, Strauss BE. Nonreplicating Adenoviral Vectors: Improving Tropism and Delivery of Cancer Gene Therapy. Cancers (Basel) 2021; 13:1863. [PMID: 33919679 PMCID: PMC8069790 DOI: 10.3390/cancers13081863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent preclinical and clinical studies have used viral vectors in gene therapy research, especially nonreplicating adenovirus encoding strategic therapeutic genes for cancer treatment. Adenoviruses were the first DNA viruses to go into therapeutic development, mainly due to well-known biological features: stability in vivo, ease of manufacture, and efficient gene delivery to dividing and nondividing cells. However, there are some limitations for gene therapy using adenoviral vectors, such as nonspecific transduction of normal cells and liver sequestration and neutralization by antibodies, especially when administered systemically. On the other hand, adenoviral vectors are amenable to strategies for the modification of their biological structures, including genetic manipulation of viral proteins, pseudotyping, and conjugation with polymers or biological membranes. Such modifications provide greater specificity to the target cell and better safety in systemic administration; thus, a reduction of antiviral host responses would favor the use of adenoviral vectors in cancer immunotherapy. In this review, we describe the structural and molecular features of nonreplicating adenoviral vectors, the current limitations to their use, and strategies to modify adenoviral tropism, highlighting the approaches that may allow for the systemic administration of gene therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bryan E. Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM24, University of São Paulo School of Medicine, São Paulo 01246-000, Brazil; (N.G.T.); (A.C.M.D.); (F.A.); (J.C.d.S.d.L.); (O.A.R.); (O.L.D.C.)
| |
Collapse
|
34
|
Marabini R, Condezo GN, Krupovic M, Menéndez-Conejero R, Gómez-Blanco J, San Martín C. Near-atomic structure of an atadenovirus reveals a conserved capsid-binding motif and intergenera variations in cementing proteins. SCIENCE ADVANCES 2021; 7:eabe6008. [PMID: 33789897 PMCID: PMC8011978 DOI: 10.1126/sciadv.abe6008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Of five known adenovirus genera, high-resolution structures are available only for mammalian-infecting mastadenoviruses. We present the first high-resolution structure of an adenovirus with nonmammalian host: lizard atadenovirus LAdV-2. We find a large conformational difference in the internal vertex protein IIIa between mast- and atadenoviruses, induced by the presence of an extended polypeptide. This polypeptide, and α-helical clusters beneath the facet, likely correspond to genus-specific proteins LH2 and p32k. Another genus-specific protein, LH3, with a fold typical of bacteriophage tailspikes, contacts the capsid surface via a triskelion structure identical to that used by mastadenovirus protein IX, revealing a conserved capsid-binding motif and an ancient gene duplication event. Our data also suggest that mastadenovirus E1B-55 K was exapted from the atadenovirus-like LH3 protein. This work provides new information on the evolution of adenoviruses, emphasizing the importance of minor coat proteins for determining specific physicochemical properties of virions and most likely their tropism.
Collapse
Affiliation(s)
- Roberto Marabini
- Escuela Politécnica Superior, Universidad Autónoma de Madrid, Francisco Tomás y Valiente 11, 28049 Madrid, Spain
| | - Gabriela N Condezo
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Rosa Menéndez-Conejero
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Josué Gómez-Blanco
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carmen San Martín
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
35
|
Zou X, Rong Y, Guo X, Hou W, Yan B, Hung T, Lu Z. Fiber1, but not fiber2, is the essential fiber gene for fowl adenovirus 4 (FAdV-4). J Gen Virol 2021; 102. [PMID: 33625352 DOI: 10.1099/jgv.0.001559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fibre is the viral protein that mediates the attachment and infection of adenovirus to the host cell. Fowl adenovirus 4 (FAdV-4) possesses two different fibre trimers on each penton capsomere, and roles of the separate fibres remain elusive. Here, we attempted to investigate the function of FAdV-4 fibres by using reverse genetics approaches. Adenoviral plasmids carrying fiber1 or fiber2 mutant genes were constructed and used to transfect chicken LMH cells. Fiber1-mutated recombinant virus could not be rescued. Such defective phenotype was complemented when a fiber1-bearing helper plasmid was included for co-transfection. The infection of fiber-intact FAdV-4 (FAdV4-GFP) to LMH cells could be blocked with purified fiber1 knob protein in a dose-dependent manner, while purifed fiber2 knob had no such function. On the contrary, fiber2-mutated FAdV-4, FAdV4XF2-GFP, was successfully rescued. The results of one-step growth curves showed that proliferative capacity of FAdV4XF2-GFP was 10 times lower than that of the control FAdV4-GFP. FAdV4XF2-GFP also caused fewer deaths of infected chicken embryos than FAdV4-GFP did, which resulted from poorer virus replication in vivo. These data illustrated that fiber1 mediated virus adsorption and was essential for FAdV-4, while fiber2 was dispensable although it significantly contributed to the virulence.
Collapse
Affiliation(s)
- Xiaohui Zou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, PR China
| | - Yejing Rong
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, PR China.,NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, PR China
| | - Xiaojuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, PR China
| | - Wenzhe Hou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, PR China
| | - Bingyu Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.,NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, PR China
| | - Tao Hung
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, PR China
| | - Zhuozhuang Lu
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China.,Chinese Center for Disease Control and Prevention-Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Wuhan 430071, PR China.,NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, PR China
| |
Collapse
|
36
|
Pérez-Illana M, Martínez M, Condezo GN, Hernando-Pérez M, Mangroo C, Brown M, Marabini R, San Martín C. Cryo-EM structure of enteric adenovirus HAdV-F41 highlights structural variations among human adenoviruses. SCIENCE ADVANCES 2021; 7:eabd9421. [PMID: 33627423 PMCID: PMC11425762 DOI: 10.1126/sciadv.abd9421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 05/24/2023]
Abstract
Enteric adenoviruses, one of the main causes of viral gastroenteritis in the world, must withstand the harsh conditions found in the gut. This requirement suggests that capsid stability must be different from that of other adenoviruses. We report the 4-Å-resolution structure of a human enteric adenovirus, HAdV-F41, and compare it with that of other adenoviruses with respiratory (HAdV-C5) and ocular (HAdV-D26) tropisms. While the overall structures of hexon, penton base, and internal minor coat proteins IIIa and VIII are conserved, we observe partially ordered elements reinforcing the vertex region, which suggests their role in enhancing the physicochemical capsid stability of HAdV-F41. Unexpectedly, we find an organization of the external minor coat protein IX different from all previously characterized human and nonhuman mastadenoviruses. Knowledge of the structure of enteric adenoviruses provides a starting point for the design of vectors suitable for oral delivery or intestinal targeting.
Collapse
Affiliation(s)
- Marta Pérez-Illana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Marta Martínez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gabriela N Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Mercedes Hernando-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Casandra Mangroo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Martha Brown
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Roberto Marabini
- Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
37
|
Reddy VS, Barry MA. Structural Organization and Protein-Protein Interactions in Human Adenovirus Capsid. Subcell Biochem 2021; 96:503-518. [PMID: 33252742 DOI: 10.1007/978-3-030-58971-4_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human adenoviruses (HAdVs) are large (150 MDa), complex, nonenveloped dsDNA viruses that cause self-limiting respiratory, ocular and enteric infections. They are significant health hazard in young, elderly and immuno-compromised populations. Moreover, various adenoviruses (AdVs) of mammalian origin are being used as vectors in gene, vaccine and cancer therapies. Multiple copies of at least 13 different proteins, all in all ~2800 protein molecules, come together to form an adenovirus virion packaging the ~36 Kbp geome. The details of structural organization of the adenovirus capsid and underlying network of protein-protein interactions provide clues into designing the modified and novel adenovirus vectors with desired functionalities and/or targeting specificities. The advancements in 3D structure determination by cryo-electron microscopy (cryo-EM) in the past decade have enabled unveiling of the complex organization of adenovirus architecture at near atomic resolution. Specifically, these studies revealed the structures and the network of interactions involving cement/minor proteins in stabilizing the AdV icosahedral architecture, which appear to be mostly conserved among human adenoviruses. In this chapter, we describe the current state of knowledge on the structure and organization of human adenoviruses.
Collapse
Affiliation(s)
- Vijay S Reddy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Michael A Barry
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN, 55902, USA
| |
Collapse
|
38
|
Rafie K, Lenman A, Fuchs J, Rajan A, Arnberg N, Carlson LA. The structure of enteric human adenovirus 41-A leading cause of diarrhea in children. SCIENCE ADVANCES 2021; 7:7/2/eabe0974. [PMID: 33523995 PMCID: PMC7793593 DOI: 10.1126/sciadv.abe0974] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/17/2020] [Indexed: 05/05/2023]
Abstract
Human adenovirus (HAdV) types F40 and F41 are a prominent cause of diarrhea and diarrhea-associated mortality in young children worldwide. These enteric HAdVs differ notably in tissue tropism and pathogenicity from respiratory and ocular adenoviruses, but the structural basis for this divergence has been unknown. Here, we present the first structure of an enteric HAdV-HAdV-F41-determined by cryo-electron microscopy to a resolution of 3.8 Å. The structure reveals extensive alterations to the virion exterior as compared to nonenteric HAdVs, including a unique arrangement of capsid protein IX. The structure also provides new insights into conserved aspects of HAdV architecture such as a proposed location of core protein V, which links the viral DNA to the capsid, and assembly-induced conformational changes in the penton base protein. Our findings provide the structural basis for adaptation of enteric HAdVs to a fundamentally different tissue tropism.
Collapse
Affiliation(s)
- K Rafie
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - A Lenman
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - J Fuchs
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A Rajan
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - N Arnberg
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden.
| | - L-A Carlson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
39
|
Martín-González N, Vieira Gonçalves L, Condezo GN, San Martín C, Rubiano M, Fallis I, Rubino JR, Ijaz MK, Maillard JY, De Pablo PJ. Virucidal Action Mechanism of Alcohol and Divalent Cations Against Human Adenovirus. Front Mol Biosci 2020; 7:570914. [PMID: 33392252 PMCID: PMC7773831 DOI: 10.3389/fmolb.2020.570914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/25/2020] [Indexed: 01/02/2023] Open
Abstract
Hygiene and disinfection practices play an important role at preventing spread of viral infections in household, industrial and clinical settings. Although formulations based on >70% ethanol are virucidal, there is a currently a need to reformulate products with much lower alcohol concentrations. It has been reported that zinc can increase the virucidal activity of alcohols, although the reasons for such potentiation is unclear. One approach in developing virucidal formulations is to understand the mechanisms of action of active ingredients and formulation excipients. Here, we investigated the virucidal activity of alcohol (40% w/v) and zinc sulfate (0.1% w/v) combinations and their impact on a human adenovirus (HAdV) using, nucleic acid integrity assays, atomic force microscopy (AFM) and transmission electron microscopy (TEM). We observed no difference in virucidal activity (5 log10 reduction in 60 min) against between an ethanol only based formulation and a formulation combining ethanol and zinc salt. Furthermore, TEM imaging showed that the ethanol only formulation produced gross capsid damage, whilst zinc-based formulation or formulation combining both ethanol and zinc did not affect HAdV DNA. Unexpectedly, the addition of nickel salt (5 mM NiCl2) to the ethanol-zinc formulation contributed to a weakening of the capsid and alteration of the capsid mechanics exemplified by AFM imaging, together with structural capsid damage. The addition of zinc sulfate to the ethanol formulation did not add the formulation efficacy, but the unexpected mechanistic synergy between NiCl2 and the ethanol formulation opens an interesting perspective for the possible potentiation of an alcohol-based formulation. Furthermore, we show that AFM can be an important tool for understanding the mechanistic impact of virucidal formulation.
Collapse
Affiliation(s)
| | - Leonam Vieira Gonçalves
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Gabriela N Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María Rubiano
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ian Fallis
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Joseph R Rubino
- Center of Innovation, Reckitt Benckiser Inc., Montvale, NJ, United States
| | - M Khalid Ijaz
- Center of Innovation, Reckitt Benckiser Inc., Montvale, NJ, United States
| | - Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Pedro J De Pablo
- Department of Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
40
|
Michelini FM, Bueno CA, Areco YB, Alché LE. A synthetic stigmastane displays antiadenoviral activity and reduces the inflammatory response to viral infection. Antiviral Res 2020; 183:104879. [PMID: 32918925 DOI: 10.1016/j.antiviral.2020.104879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
Although human adenovirus (ADV) infections are mild and self-limited in immunocompetent individuals, they can be severe and life-threatening in immunocompromised patients. Despite their significant clinical impact, there are not currently approved antiviral therapies for ADV infections. On the other hand, in some cases, the immune response induced by ADV infection can cause tissue damage. Even more, in the case of adenovirus vectors used in gene therapy, host immunity generally antagonize viral efficacy. Therefore, the need for searching an effective and safe therapy is increasing. In this work, we describe the antiadenoviral activity of the synthetic stigmastane (22S, 23S)-22,23-dihydroxystigmast-4-en-3-one (Compound 1) with already reported antiviral and antiinflammatory activities against other viruses of clinical importance. Compound 1 displayed no virucidal activity and did not affect ADV entry to the cells. The compound inhibited viral replication and it also reduced cytokine secretion in epithelial and inflammatory infected cells. Thus, Compound 1 would be a promissory drug potentially useful against adenoviral infections as well as an adjuvant of adenoviral vectors in gene therapy.
Collapse
Affiliation(s)
- Flavia M Michelini
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.
| | - Carlos A Bueno
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Yanina B Areco
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Laura E Alché
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| |
Collapse
|
41
|
Daussy CF, Wodrich H. "Repair Me if You Can": Membrane Damage, Response, and Control from the Viral Perspective. Cells 2020; 9:cells9092042. [PMID: 32906744 PMCID: PMC7564661 DOI: 10.3390/cells9092042] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cells are constantly challenged by pathogens (bacteria, virus, and fungi), and protein aggregates or chemicals, which can provoke membrane damage at the plasma membrane or within the endo-lysosomal compartments. Detection of endo-lysosomal rupture depends on a family of sugar-binding lectins, known as galectins, which sense the abnormal exposure of glycans to the cytoplasm upon membrane damage. Galectins in conjunction with other factors orchestrate specific membrane damage responses such as the recruitment of the endosomal sorting complex required for transport (ESCRT) machinery to either repair damaged membranes or the activation of autophagy to remove membrane remnants. If not controlled, membrane damage causes the release of harmful components including protons, reactive oxygen species, or cathepsins that will elicit inflammation. In this review, we provide an overview of current knowledge on membrane damage and cellular responses. In particular, we focus on the endo-lysosomal damage triggered by non-enveloped viruses (such as adenovirus) and discuss viral strategies to control the cellular membrane damage response. Finally, we debate the link between autophagy and inflammation in this context and discuss the possibility that virus induced autophagy upon entry limits inflammation.
Collapse
|
42
|
Saha B, Parks RJ. Recent Advances in Novel Antiviral Therapies against Human Adenovirus. Microorganisms 2020; 8:E1284. [PMID: 32842697 PMCID: PMC7563841 DOI: 10.3390/microorganisms8091284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022] Open
Abstract
Human adenovirus (HAdV) is a very common pathogen that typically causes minor disease in most patients. However, the virus can cause significant morbidity and mortality in certain populations, including young children, the elderly, and those with compromised immune systems. Currently, there are no approved therapeutics to treat HAdV infections, and the standard treatment relies on drugs approved to combat other viral infections. Such treatments often show inconsistent efficacy, and therefore, more effective antiviral therapies are necessary. In this review, we discuss recent developments in the search for new chemical and biological anti-HAdV therapeutics, including drugs that are currently undergoing preclinical/clinical testing, and small molecule screens for the identification of novel compounds that abrogate HAdV replication and disease.
Collapse
Affiliation(s)
- Bratati Saha
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
43
|
Gast M, Sobek H, Mizaikoff B. Nanoparticle Tracking of Adenovirus by Light Scattering and Fluorescence Detection. Hum Gene Ther Methods 2020; 30:235-244. [PMID: 31760805 DOI: 10.1089/hgtb.2019.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The detailed characterization of biological nanoparticles is of paramount importance for various industrial sectors, as for production of viral therapeutics. More recently, technologies that allow real-time quantification with simultaneous sizing and determination of surface potentials of virus particles in solution have been developed. In this study, nanoparticle tracking analysis (NTA) was applied to determine the size and the zeta potential of human adenovirus type 5 (AdV5), one the most frequently used therapeutic/oncolytic agents and viral vectors. Virus aggregation was detected, and the kinetics of the dissolution of virus aggregates were studied in real time. In addition, advanced fluorescence detection of AdV5 was performed enabling the measurements in matrices and discrimination of viral subpopulations. It was shown that NTA is an efficient approach for investigating infectious viruses in a live viewing mode. Consequently, NTA provides a promising methodology for virus particle detection and analysis in real time beyond assays requiring nucleic acids or infectivity.
Collapse
Affiliation(s)
- Manuela Gast
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Harald Sobek
- Labor Dr. Merk & Kollegen GmbH, Ochsenhausen, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| |
Collapse
|
44
|
Ricobaraza A, Gonzalez-Aparicio M, Mora-Jimenez L, Lumbreras S, Hernandez-Alcoceba R. High-Capacity Adenoviral Vectors: Expanding the Scope of Gene Therapy. Int J Mol Sci 2020; 21:E3643. [PMID: 32455640 PMCID: PMC7279171 DOI: 10.3390/ijms21103643] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
The adaptation of adenoviruses as gene delivery tools has resulted in the development of high-capacity adenoviral vectors (HC-AdVs), also known, helper-dependent or "gutless". Compared with earlier generations (E1/E3-deleted vectors), HC-AdVs retain relevant features such as genetic stability, remarkable efficacy of in vivo transduction, and production at high titers. More importantly, the lack of viral coding sequences in the genomes of HC-AdVs extends the cloning capacity up to 37 Kb, and allows long-term episomal persistence of transgenes in non-dividing cells. These properties open a wide repertoire of therapeutic opportunities in the fields of gene supplementation and gene correction, which have been explored at the preclinical level over the past two decades. During this time, production methods have been optimized to obtain the yield, purity, and reliability required for clinical implementation. Better understanding of inflammatory responses and the implementation of methods to control them have increased the safety of these vectors. We will review the most significant achievements that are turning an interesting research tool into a sound vector platform, which could contribute to overcome current limitations in the gene therapy field.
Collapse
Affiliation(s)
| | | | | | | | - Ruben Hernandez-Alcoceba
- Gene Therapy Program. University of Navarra-CIMA. Navarra Institute of Health Research, 31008 Pamplona, Spain; (A.R.); (M.G.-A.); (L.M.-J.); (S.L.)
| |
Collapse
|
45
|
Saari H, Turunen T, Lõhmus A, Turunen M, Jalasvuori M, Butcher SJ, Ylä-Herttuala S, Viitala T, Cerullo V, Siljander PRM, Yliperttula M. Extracellular vesicles provide a capsid-free vector for oncolytic adenoviral DNA delivery. J Extracell Vesicles 2020; 9:1747206. [PMID: 32363012 PMCID: PMC7178890 DOI: 10.1080/20013078.2020.1747206] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) have been showcased as auspicious candidates for delivering therapeutic cargo, including oncolytic viruses for cancer treatment. Delivery of oncolytic viruses in EVs could provide considerable advantages, hiding the viruses from the immune system and providing alternative entry pathways into cancer cells. Here we describe the formation and viral cargo of EVs secreted by cancer cells infected with an oncolytic adenovirus (IEVs, infected cell-derived EVs) as a function of time after infection. IEVs were secreted already before the lytic release of virions and their structure resembled normally secreted EVs, suggesting that they were not just apoptotic fragments of infected cells. IEVs were able to carry the viral genome and induce infection in other cancer cells. As such, the role of EVs in the life cycle of adenoviruses may be an important part of a successful infection and may also be harnessed for cancer- and gene therapy.
Collapse
Affiliation(s)
- Heikki Saari
- Division of Pharmaceutical Biosciences and Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tiia Turunen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Andres Lõhmus
- Division of Pharmaceutical Biosciences and Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mikko Turunen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Matti Jalasvuori
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyvaskyla, Finland
| | - Sarah J. Butcher
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences and Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tapani Viitala
- Division of Pharmaceutical Biosciences and Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Division of Pharmaceutical Biosciences and Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Pia R. M. Siljander
- Division of Pharmaceutical Biosciences and Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- EV-group, EV-core Unit, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences and Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
46
|
Hofmann S, Mai J, Masser S, Groitl P, Herrmann A, Sternsdorf T, Brack‐Werner R, Schreiner S. ATO (Arsenic Trioxide) Effects on Promyelocytic Leukemia Nuclear Bodies Reveals Antiviral Intervention Capacity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902130. [PMID: 32328411 PMCID: PMC7175289 DOI: 10.1002/advs.201902130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/12/2019] [Indexed: 05/04/2023]
Abstract
Human adenoviruses (HAdV) are associated with clinical symptoms such as gastroenteritis, keratoconjunctivitis, pneumonia, hepatitis, and encephalitis. In the absence of protective immunity, as in allogeneic bone marrow transplant patients, HAdV infections can become lethal. Alarmingly, various outbreaks of highly pathogenic, pneumotropic HAdV types have been recently reported, causing severe and lethal respiratory diseases. Effective drugs for treatment of HAdV infections are still lacking. The repurposing of drugs approved for other indications is a valuable alternative for the development of new antiviral therapies and is less risky and costly than de novo development. Arsenic trioxide (ATO) is approved for treatment of acute promyelocytic leukemia. Here, it is shown that ATO is a potent inhibitor of HAdV. ATO treatment blocks virus expression and replication by reducing the number and integrity of promyelocytic leukemia (PML) nuclear bodies, important subnuclear structures for HAdV replication. Modification of HAdV proteins with small ubiquitin-like modifiers (SUMO) is also key to HAdV replication. ATO reduces levels of viral SUMO-E2A protein, while increasing SUMO-PML, suggesting that ATO interferes with SUMOylation of proteins crucial for HAdV replication. It is concluded that ATO targets cellular processes key to HAdV replication and is relevant for the development of antiviral intervention strategies.
Collapse
Affiliation(s)
- Samuel Hofmann
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
| | - Julia Mai
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
| | - Sawinee Masser
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
| | - Peter Groitl
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
| | | | - Thomas Sternsdorf
- Research Institute Children's Cancer Center Hamburg20251HamburgGermany
| | | | - Sabrina Schreiner
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
- Institute of Virology Helmholtz Zentrum München85764MunichGermany
| |
Collapse
|
47
|
Zhao M, Duan X, Wang Y, Gao L, Cao H, Li X, Zheng SJ. A Novel Role for PX, a Structural Protein of Fowl Adenovirus Serotype 4 (FAdV4), as an Apoptosis-Inducer in Leghorn Male Hepatocellular Cell. Viruses 2020; 12:E228. [PMID: 32085479 PMCID: PMC7077197 DOI: 10.3390/v12020228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hydropericardium-Hepatitis Syndrome (HHS) caused by Fowl Adenovirus Serotype 4 (FAdV4) infection is a severe threat to the poultry industry worldwide, especially in China since 2015. Recent studies show that FAdV4 induces liver injury through apoptosis. However, the underlying molecular mechanism is still unclear. We report here that FAdV4 infection caused apoptosis in Leghorn male hepatocellular (LMH) cells and that PX, a structural protein of FAdV4, acted as a major viral factor inducing apoptosis. Furthermore, the nuclear localization of PX is determined by the R/K regions of PX and required for PX-induced apoptosis. Moreover, alanines 11 and 129 of PX are crucial to PX-induced apoptosis. Inhibition of FAdV4-induced apoptosis by caspase inhibitors retarded viral replication, suggesting that PX serves as a virulence factor for FAdV4 infection, which may further our understandings of the pathogenesis of FAdV4 infection.
Collapse
Affiliation(s)
- Mingliang Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xueyan Duan
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
48
|
Ni R, Chau Y. Nanoassembly of Oligopeptides and DNA Mimics the Sequential Disassembly of a Spherical Virus. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Rong Ni
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and Technology Clearwater Bay Kowloon, Hong Kong China
| | - Ying Chau
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and Technology Clearwater Bay Kowloon, Hong Kong China
| |
Collapse
|
49
|
Ni R, Chau Y. Nanoassembly of Oligopeptides and DNA Mimics the Sequential Disassembly of a Spherical Virus. Angew Chem Int Ed Engl 2019; 59:3578-3584. [DOI: 10.1002/anie.201913611] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Rong Ni
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and Technology Clearwater Bay Kowloon, Hong Kong China
| | - Ying Chau
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and Technology Clearwater Bay Kowloon, Hong Kong China
| |
Collapse
|
50
|
Pied N, Wodrich H. Imaging the adenovirus infection cycle. FEBS Lett 2019; 593:3419-3448. [PMID: 31758703 DOI: 10.1002/1873-3468.13690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
Incoming adenoviruses seize control of cytosolic transport mechanisms to relocate their genome from the cell periphery to specialized sites in the nucleoplasm. The nucleus is the site for viral gene expression, genome replication, and the production of progeny for the next round of infection. By taking control of the cell, adenoviruses also suppress cell-autonomous immunity responses. To succeed in their production cycle, adenoviruses rely on well-coordinated steps, facilitated by interactions between viral proteins and cellular factors. Interactions between virus and host can impose remarkable morphological changes in the infected cell. Imaging adenoviruses has tremendously influenced how we delineate individual steps in the viral life cycle, because it allowed the development of specific optical markers to label these morphological changes in space and time. As technology advances, innovative imaging techniques and novel tools for specimen labeling keep uncovering previously unseen facets of adenovirus biology emphasizing why imaging adenoviruses is as attractive today as it was in the past. This review will summarize past achievements and present developments in adenovirus imaging centered on fluorescence microscopy approaches.
Collapse
Affiliation(s)
- Noémie Pied
- CNRS UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, France
| | - Harald Wodrich
- CNRS UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, France
| |
Collapse
|