1
|
Rodríguez-Largo A, Gómez Á, Pérez E, de Miguel R, Moncayola I, Biagini L, Rossi G, de Blas I, Fernández A, Pérez M, Glaria I, Reina R, Luján L. Morphometry, cellular characterization and temporal evolution of granulomas induced by aluminium oxyhydroxide in sheep. J Comp Pathol 2024; 216:1-9. [PMID: 39647191 DOI: 10.1016/j.jcpa.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/14/2024] [Accepted: 11/08/2024] [Indexed: 12/10/2024]
Abstract
Persistent subcutaneous granulomas form at the injection site following administration of aluminium oxyhydroxide (AlOOH), a widely used vaccine adjuvant. Small ruminant lentiviruses (SRLVs) can infect macrophages within granulomas induced by commercial AlOOH-based vaccines in sheep. The entry of SRLVs into target cells involves the mannose receptor (MR), while catalytic polypeptide-like 3 protein containing Z1 domain (A3Z1) is considered a restriction factor for lentiviral replication. The objective of this study was to investigate the temporal evolution of AlOOH-induced post-vaccination granulomas in sheep experimentally infected with SRLVs. Twenty-four male lambs underwent two identical vaccination protocols and were challenged with SRLVs. Granulomas were detected in vaccinated groups only and progressively decreased in size. At post-mortem examination, 91.3% of the granulomas were recovered. Fistulas were present in granulomas following the second vaccination protocol. Central necrosis was present in 58.0% of granulomas and was associated with the vaccine used. Orthokeratotic keratin was seen within granulomas in 47.1% of the lambs. Considering all granulomas studied, significantly higher expression of MR was found compared with A3Z1. Differences in MR expression were related to the type of vaccine and the time since vaccination. A3Z1 expression was upregulated in granulomas from the infected groups. Macrophage polarization may influence SRLV infection of granulomas. While SRLV infection does not influence the architecture of post-vaccination granulomas, it may modulate their immune microenvironment. Further studies are needed to elucidate the complex interactions between AlOOH-induced granulomas and SRLV infection in sheep.
Collapse
Affiliation(s)
- Ana Rodríguez-Largo
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Álex Gómez
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Estela Pérez
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Ricardo de Miguel
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Irati Moncayola
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, 31192 Mutilva, Spain
| | - Lucia Biagini
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, 62024 Matelica, Italy
| | - Giacomo Rossi
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, 62024 Matelica, Italy
| | - Ignacio de Blas
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Antonio Fernández
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Marta Pérez
- Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain; Departamento de Anatomía, Embriología y Genética, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Idoia Glaria
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, 31192 Mutilva, Spain
| | - Ramsés Reina
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, 31192 Mutilva, Spain
| | - Lluís Luján
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain.
| |
Collapse
|
2
|
Souza SCR, Pinheiro RR, Peixoto RM, de Sousa ALM, Andrioli A, Lima AMC, Mendes BKM, Magalhães NMDA, Amaral GP, Teixeira MFDS. In vivo evaluation of the antiretroviral activity of Melia azedarach against small ruminant lentiviruses in goat colostrum and milk. Braz J Microbiol 2024; 55:875-887. [PMID: 38010582 PMCID: PMC10920544 DOI: 10.1007/s42770-023-01174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
This study aimed to evaluate in vivo the use of the extract from the leaves of Melia azedarach in the ethyl acetate fraction at a concentration of 150 µg/mL as an antiretroviral treatment against small ruminant lentiviruses (SRLV) in goat colostrum, and milk with a 90-min action. Two groups of six kids were treated with the extract. One group received three supplies of colostrum from does naturally positive for SRLV, treated with the ethyl acetate fraction of M. azedarach (EAF-MA) for three days, while the other group consumed milk from does also carrying the virus with the respective extract twice a day for five days. After undergoing treatment, all animals began to receive thermized milk until weaning (60 days) and were monitored for six months using nested polymerase chain reaction (nPCR) and western blot (WB) tests. The study revealed cumulative percentages of positive animals in WB or nPCR in the milk group of 66.66% on the seventh day, 83.33% in the following week, and 100% at 120 days, while the colostrum group showed values of 66.66% at 14 days, 83.33% at 90 days, and 100% at 120 days. Variation and intermittency were observed in viral detection, but all animals tested positive in WB or nPCR at some point. A potential delay in infection was observed, which was more significant in the colostrum group. The need for the combination of serological and molecular tests for a more efficient detection of the disease is also emphasized.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana Milena César Lima
- Regional Scientific Development Fellowship of the National Council for Scientific and Technological Development (DCR-CNPq/FUNCAP), Level C, Embrapa Goats & Sheep, Sobral, Ceará, Brazil
| | | | | | - Gabriel Paula Amaral
- Graduate Program in Animal Science, Vale Do Acaraú State University, Sobral, Ceará, Brazil
| | | |
Collapse
|
3
|
de Sousa ALM, Rizaldo Pinheiro R, Furtado Araujo J, Mesquita Peixoto R, de Azevedo DAA, Cesar Lima AM, Marques Canuto K, Vasconcelos Ribeiro PR, de Queiroz Souza AS, Rocha Souza SC, de Amorim SL, Paula Amaral G, de Souza V, de Morais SM, Andrioli A, da Silva Teixeira MF. In vitro antiviral effect of ethanolic extracts from Azadirachta indica and Melia azedarach against goat lentivirus in colostrum and milk. Sci Rep 2023; 13:4677. [PMID: 36949145 PMCID: PMC10031174 DOI: 10.1038/s41598-023-31455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
This study aimed to evaluate, in vitro, the use of leaf extracts of Azadirachta indica (A. indica) and Melia azedarach (M. azedarach) as antivirals against caprine lentivirus (CLV) in colostrum and milk of goat nannies. These were collected from eight individuals and infected with the standard strain of CLV. Samples were then subdivided into aliquots and treated with 150 µg/mL of crude extract, and with ethyl acetate and methanol fractions for 30, 60, and 90 min. Next, somatic cells from colostrum and milk were co-cultured with cells from the ovine third eyelid. After this step, viral titers of the supernatants collected from treatments with greater efficacy in co-culture were assessed. The organic ethyl acetate fractions of both plants at 90 min possibly inhibited the viral activity of CLV by up to a thousandfold in colostrum. In milk, this inhibition was up to 800 times for the respective Meliaceae. In conclusion, the ethanolic fraction of ethyl acetate from both plants demonstrated efficacy against CLV in samples from colostrum and milk when subjected to treatment, which was more effective in colostrum.
Collapse
Affiliation(s)
- Ana Lidia Madeira de Sousa
- Laboratory of Virology (LABOVIR), State University of Ceará (UECE), Fortaleza, CE, Brazil.
- Faculdade Educar da Ibiapaba, Ípu, CE, Brazil.
| | | | | | - Renato Mesquita Peixoto
- Vale do Salgado University Center (UNIVS), Icó, CE, Brazil
- Terra Nordeste College (FATENE), Caucaia, CE, Brazil
| | | | - Ana Milena Cesar Lima
- Scholarship for Regional Scientific Development of the National Council for Scientific and Technological Development (DCR-CNPq/FUNCAP), Level C, Embrapa Goats and Sheep, Sobral, CE, Brazil
| | - Kirley Marques Canuto
- Multiuser Laboratory of Natural Products Chemistry, Embrapa Tropical Agroindustry, Fortaleza, CE, Brazil
| | | | | | | | - Sara Lucena de Amorim
- Department of Veterinary Medicine, Federal University of Rondônia, Rolim de Moura, RO, Brazil
| | | | - Viviane de Souza
- Laboratory of Microbiology, Embrapa Goats and Sheep, Sobral, CE, Brazil
| | - Selene Maia de Morais
- Laboratory of Chemistry and Natural Products (LQPN), Ceará State University, Fortaleza, CE, Brazil
| | - Alice Andrioli
- Laboratory of Virology, Embrapa Goats and Sheep, Sobral, CE, Brazil
| | | |
Collapse
|
4
|
Species-Specific Humoral Immune Responses in Sheep and Goats upon Small Ruminant Lentivirus Infections Inversely Correlate with Protection against Virus Replication and Pathological Lesions. Int J Mol Sci 2021; 22:ijms22189824. [PMID: 34575988 PMCID: PMC8467527 DOI: 10.3390/ijms22189824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Maedi-Visna-like genotype A strains and Caprine arthritis encephaltis-like genotype B strains are small ruminant lentiviruses (SRLV) which, for incompletely understood reasons, appear to be more virulent in sheep and goats, respectively. A 9-month in vivo infection experiment using Belgian genotype A and B SRLV strains showed that almost all homologous (genotype A in sheep; genotype B in goats) and heterologous (genotype A in goats; genotype B in sheep) intratracheal inoculations resulted in productive infection. No differences in viremia and time to seroconversion were observed between homologous and heterologous infections. Higher viral loads and more severe lesions in the mammary gland and lung were however detected at 9 months post homologous compared to heterologous infection which coincided with strongly increased IFN-γ mRNA expression levels upon homologous infection. Pepscan analysis revealed a strong antibody response against immune-dominant regions of the capsid and surface proteins upon homologous infection, which was absent after heterologous infection. These results inversely correlated with protection against virus replication in target organs and observed histopathological lesions, and thus require an in-depth evaluation of a potential role of antibody dependent enhancement in SRLV infection. Finally, no horizontal intra- and cross-species SRLV transmission to contact animals was detected.
Collapse
|
5
|
de Pablo-Maiso L, Echeverría I, Rius-Rocabert S, Luján L, Garcin D, de Andrés D, Nistal-Villán E, Reina R. Sendai Virus, a Strong Inducer of Anti-Lentiviral State in Ovine Cells. Vaccines (Basel) 2020; 8:vaccines8020206. [PMID: 32365702 PMCID: PMC7349755 DOI: 10.3390/vaccines8020206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 11/16/2022] Open
Abstract
Small ruminant lentiviruses (SRLVs) are widely spread in the ovine and caprine populations, causing an incurable disease affecting animal health and production. Vaccine development is hindered owing to the high genetic heterogeneity of lentiviruses and the selection of T-cell and antibody escape mutants, requiring antigen delivery optimization. Sendai virus (SeV) is a respiratory paramyxovirus in mice that has been recognized as a potent inducer of innate immune responses in several species, including mouse and human. The aim of this study was to stimulate an innate antiviral response in ovine cells and evaluate the potential inhibitory effect upon small ruminant lentivirus (SRLV) infections. Ovine alveolar macrophages (AMs), blood-derived macrophages (BDMs), and skin fibroblasts (OSFs) were stimulated through infection with SeV encoding green fluorescent protein (GFP). SeV efficiently infected ovine cells, inducing an antiviral state in AM from SRLV naturally-infected animals, as well as in in vitro SRLV-infected BDM and OSF from non-infected animals. Supernatants from SeV-infected AM induced an antiviral state when transferred to fresh cells challenged with SRLV. Similar to SRLV, infectivity of an HIV-1-GFP lentiviral vector was also restricted in ovine cells infected with SeV. In myeloid cells, an M1-like proinflammatory polarization was observed together with an APOBEC3Z1 induction, among other lentiviral restriction factors. Our observations may boost new approximations in ameliorating the SRLV burden by stimulation of the innate immune response using SeV-based vaccine vectors.
Collapse
Affiliation(s)
- Lorena de Pablo-Maiso
- Department of Animal Health, Institute of Agrobiotechnology (CSIC-Government of Navarra), 31192 Mutilva, Navarra, Spain; (L.d.P.-M.); (I.E.); (D.d.A.)
| | - Irache Echeverría
- Department of Animal Health, Institute of Agrobiotechnology (CSIC-Government of Navarra), 31192 Mutilva, Navarra, Spain; (L.d.P.-M.); (I.E.); (D.d.A.)
| | - Sergio Rius-Rocabert
- Microbiology Section, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, CEU Universities, Boadilla del Monte, 28668 Madrid, Spain; (S.R.-R.); (E.N.-V.)
- CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, CEU Universities, Boadilla del Monte, 28668 Madrid, Spain
| | - Lluís Luján
- Department of Animal Pathology, University of Zaragoza, 50013 Zaragoza, Spain;
| | - Dominique Garcin
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Damián de Andrés
- Department of Animal Health, Institute of Agrobiotechnology (CSIC-Government of Navarra), 31192 Mutilva, Navarra, Spain; (L.d.P.-M.); (I.E.); (D.d.A.)
| | - Estanislao Nistal-Villán
- Microbiology Section, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, CEU Universities, Boadilla del Monte, 28668 Madrid, Spain; (S.R.-R.); (E.N.-V.)
- Instituto de Medicina Molecular Aplicada (IMMA), Universidad CEU San Pablo, Pablo-CEU, CEU Universities, Boadilla del Monte, 28003 Madrid, Spain
| | - Ramsés Reina
- Department of Animal Health, Institute of Agrobiotechnology (CSIC-Government of Navarra), 31192 Mutilva, Navarra, Spain; (L.d.P.-M.); (I.E.); (D.d.A.)
- Correspondence:
| |
Collapse
|
6
|
Kalogianni AI, Bossis I, Ekateriniadou LV, Gelasakis AI. Etiology, Epizootiology and Control of Maedi-Visna in Dairy Sheep: A Review. Animals (Basel) 2020; 10:E616. [PMID: 32260101 PMCID: PMC7222820 DOI: 10.3390/ani10040616] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023] Open
Abstract
Maedi-visna (MV) in sheep is caused by maedi-visna virus (MVV), a small ruminant lentivirus (SRLV) that causes chronic infection and inflammatory lesions in infected animals. Pneumonia and mastitis are its predominant clinical manifestations, and the tissues infected by MVV are mainly the lungs, the mammary gland, the nervous system and the joints. MV has a worldwide distribution with distinct MVV transmission patterns depending on circulating strains and regionally applied control/eradication schemes. Nevertheless, the prevalence rate of MV universally increases. Currently, gaps in understanding the epizootiology of MV, the continuous mutation of existing and the emergence of new small ruminant lentiviruses (SRLVs) strains, lack of an effective detection protocol and the inefficiency of currently applied preventive measures render elimination of MV an unrealistic target. Therefore, modifications on the existing MV surveillance and control schemes on an evidentiary basis are necessary. Updated control schemes require the development of diagnostic protocols for the early and definitive diagnosis of MVV infections. The objectives of this review are to summarize the current knowledge in the epizootiology and control of MV in dairy sheep, to describe the research framework and to cover existing gaps in understanding future challenges regarding MV.
Collapse
Affiliation(s)
- Aphrodite I Kalogianni
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 str., 11855 Athens, Greece
| | - Ioannis Bossis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 str., 11855 Athens, Greece
| | | | - Athanasios I Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 str., 11855 Athens, Greece
| |
Collapse
|
7
|
Milk production losses in Latxa dairy sheep associated with small ruminant lentivirus infection. Prev Vet Med 2020; 176:104886. [PMID: 31986356 DOI: 10.1016/j.prevetmed.2020.104886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/21/2019] [Accepted: 01/06/2020] [Indexed: 11/22/2022]
Abstract
Visna/Maedi is a disease of sheep caused by small ruminant lentivirus (SRLV) infection that is widespread throughout the world and that has been recognized to be present in the Basque Country (Spain) since the early 1980's. Nearly seven decades of studies have improved the knowledge on its clinical signs and epidemiology. However, its slow progressive nature, subclinical most of the time, makes difficult to assess its real impact on productive traits, a question of critical importance to balance out the economic costs it causes and the benefits of designing and deploying an eradication program. Development of a dairy breeding program since the 90 s in the local Latxa sheep population has provided data on milk productivity in several flocks where SRLV infection prevalence has been continuously monitored. This study analyses retrospectively the association between SRLV prevalence and production variables during ten yearly lactations in three Latxa dairy flocks with medium-high SRLV seroprevalence. Our results indicate that average standard lactation of seropositive sheep was 6.7 % lower than controls. The largest differences (p < 0.001) were observed at the ewe lifetime peak of production between second and fourth lactations. Lifelong milk and lamb production data indicated even a higher impact, with costs rising up to nearly 50 €/ewe/year. This substantial production decrease associated with subclinical SRLV infection in Latxa dairy sheep supports the benefit of establishing a SRLV control program. A rough cost-benefit analysis indicated that even in a medium-yielding breed, testing expenses would be largely covered by milk production improvement.
Collapse
|
8
|
Ameen PM, Karapınar Z. Seroprevalence of Visna-Maedi Virus (VMV) and Border Disease Virus (BDV) in Van province and around. ARQ BRAS MED VET ZOO 2018. [DOI: 10.1590/1678-4162-10005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT The present study investigated the seroprevalance of Visna Maedi Virus (VMV) and Border Disease Virus (BDV) infections in sheeps in regions in and around Van province, Turkey. Sample materials were taken from 360 sheep sent to slaughterhouses around Van. All serum samples were examined using ELISA for antibodies for Visna Maedi (VMV) and Border Disease (BDV) viruses. Of these, 38 (10.5%) tested positive for Visna Maedi virus antibodies and 163 (45.2%) for Border Disease virus antibodies. Varying numbers of samples were positive for both virus antibodies across the towns of Erciş, Çaldıran, Erçek and Başkale in Van, Ağrı and Hakkari provinces. Both infections should be eliminated by informing veterinarians and animal owners, identifying and eliminating persistently infected animals from flocks, and conducting appropriate eradication measures. Economic support should be provided for this.
Collapse
|
9
|
Minguijón E, Reina R, Pérez M, Polledo L, Villoria M, Ramírez H, Leginagoikoa I, Badiola JJ, García-Marín JF, de Andrés D, Luján L, Amorena B, Juste RA. Small ruminant lentivirus infections and diseases. Vet Microbiol 2015; 181:75-89. [PMID: 26371852 DOI: 10.1016/j.vetmic.2015.08.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small ruminant lentiviruses include viruses with diverse genotypes that frequently cross the species barrier between sheep and goats and that display a great genetic variability. These characteristics stress the need to consider the whole host range and to perform local surveillance of the viruses to opt for optimum diagnostic tests, in order to establish control programmes. In the absence of effective vaccines, a comprehensive knowledge of the epidemiology of these infections is of major importance to limit their spread. This article intends to cover these aspects and to summarise information related to characteristics of the viruses, pathogenesis of the infection and description of the various syndromes produced, as well as the diagnostic tools available, the mechanisms involved in transmission of the pathogens and, finally, the control strategies that have been designed until now, with remarks on the drawbacks and the advantages of each one. We conclude that there are many variables influencing the expected cost and benefits of control programs that must be evaluated, in order to put into practice measures that might lead to control of these infections.
Collapse
Affiliation(s)
- E Minguijón
- Department of Animal Health, NEIKER-Tecnalia, Berreaga 1, 48160 Derio, Vizcaya, Spain
| | - R Reina
- Institute of Agrobiotechnology (CSIC-UPNA-Government of Navarra), Avenida de Pamplona 123, 31192 Mutilva, Spain
| | - M Pérez
- Department of Anatomy, Embryology and Genetics. University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - L Polledo
- Pathological Anatomy Section, Animal Health Department, Veterinary School, University of León, 24007 León, Spain
| | - M Villoria
- Department of Animal Health, NEIKER-Tecnalia, Berreaga 1, 48160 Derio, Vizcaya, Spain
| | - H Ramírez
- Facultad de Estudios Superiores Cuautitlán. UNAM. Laboratorio de Virología, Genética y Biología Molecular, Campo 4. Veterinaria.Carretera Cuautitlán-Teoloyucan, Km 2.5. San Sebastián Xhala, Cuautitlán Izcalli, CP.54714 Mexico
| | - I Leginagoikoa
- Department of Animal Health, NEIKER-Tecnalia, Berreaga 1, 48160 Derio, Vizcaya, Spain
| | - J J Badiola
- Department of Animal Pathology, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - J F García-Marín
- Pathological Anatomy Section, Animal Health Department, Veterinary School, University of León, 24007 León, Spain
| | - D de Andrés
- Institute of Agrobiotechnology (CSIC-UPNA-Government of Navarra), Avenida de Pamplona 123, 31192 Mutilva, Spain
| | - L Luján
- Department of Animal Pathology, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - B Amorena
- Institute of Agrobiotechnology (CSIC-UPNA-Government of Navarra), Avenida de Pamplona 123, 31192 Mutilva, Spain
| | - R A Juste
- Department of Animal Health, NEIKER-Tecnalia, Berreaga 1, 48160 Derio, Vizcaya, Spain.
| |
Collapse
|
10
|
Abstract
Inactivated and attenuated vaccines have contributed to the control or even the eradication of significant animal pathogens. However, these traditional vaccine technologies have limitations and disadvantages. Inactivated vaccines lack efficacy against certain pathogens, while attenuated vaccines are not always as safe. New technology vaccines, namely DNA and recombinant viral vector vaccines, are being developed and tested against pathogens of small ruminants. These vaccines induce both humoral and cellular immune responses, are safe to manufacture and use and can be utilized in strategies for differentiation of infected from vaccinated animals. Although there are more strict regulatory requirements for the safety standards of these vaccines, once a vaccine platform is evaluated and established, effective vaccines can be rapidly produced and deployed in the field to prevent spread of emerging pathogens. The present article offers an introduction to these next generation technologies and examples of vaccines that have been tested against important diseases of sheep and goats.
Collapse
Affiliation(s)
- C S Kyriakis
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|