1
|
Maziz-Bettahar S, Sahraoui L, Lahouassa H, Ainbaziz H, Cavadini P, Lavazza A, Capucci L. Serological data indicate a widespread presence of rabbit haemorrhagic disease in rabbit farms in Algeria. Sci Rep 2025; 15:11644. [PMID: 40185862 PMCID: PMC11971301 DOI: 10.1038/s41598-025-95945-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
The Algerian government has recently supported plans to develop and increase commercial rabbit farming. A necessary condition for their success is to ensure rabbits' health and protect farms from infectious diseases. Among these, Rabbit Haemorrhagic Disease (RHD) is one of the worst, causing high mortality and, thus, severe economic losses. Considering RHD's high diffusibility, accurate surveillance systems and the proper and extensive use of vaccinal prevention are paramount in protecting rabbit populations. A sero-epidemiological survey on RHD was conducted in 19 herds located in different regions of Algeria to obtain a first overview of the monitoring system's ability to detect RHD and estimate its presence and distribution in the country. The results showed that RHD is widespread in Algeria, far more than assumed based on the number of reported and diagnosed disease outbreaks. As in the rest of the world, RHDV2 was by far the prevalent, if not the only, agent of RHD in Algeria. By verifying the outcomes and results of using RHD vaccine in farms, it was shown the need to improve vaccination plans, likely through the strict application of the guidelines for RHD direct prophylaxis provided by the EU Lagmed project.
Collapse
Affiliation(s)
- Samia Maziz-Bettahar
- Institute of Veterinary Sciences, University of Blida1, Blida, Algeria
- Laboratory of Animal Health and Production, Higher National Veterinary School of Algiers, Algiers, Algeria
| | - Lynda Sahraoui
- Laboratory of Animal Health and Production, Higher National Veterinary School of Algiers, Algiers, Algeria
| | - Hichem Lahouassa
- Laboratory of Animal Health and Production, Higher National Veterinary School of Algiers, Algiers, Algeria
| | - Hacina Ainbaziz
- Laboratory of Animal Health and Production, Higher National Veterinary School of Algiers, Algiers, Algeria
| | - Patrizia Cavadini
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, via Bianchi 9, Brescia, 25124, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, via Bianchi 9, Brescia, 25124, Italy
| | - Lorenzo Capucci
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, via Bianchi 9, Brescia, 25124, Italy.
| |
Collapse
|
2
|
Podadera A, Leuthold M, Martín-Alonso JM, Casais R, Álvarez AL, Lobo-Castañón MJ, Parra F, Dalton KP. Epitope mapping of a neutralizing antibody against rabbit hemorrhagic disease virus GI.2. Vet Res 2025; 56:74. [PMID: 40176146 PMCID: PMC11963670 DOI: 10.1186/s13567-025-01505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/05/2025] [Indexed: 04/04/2025] Open
Abstract
In 2010, rabbit hemorrhagic disease virus (RHDV) GI.2 emerged, and unlike RHDV GI.1, it caused mortality in young rabbits, while existing vaccines were not fully protective. The GI.2-specific monoclonal antibody (mAb) 2D9 has been used as a tool to discriminate between these viruses in diagnostic tests. In this study, we mapped the binding epitope for 2D9 on the GI.2 The VP60 capsid protein demonstrated the neutralizing capacity of this mAb, which was able to prevent GI.2 infections in an experimental challenge. Our results suggest that external loops (1, 4 and 5) in the P2 subdomain of VP60 contribute to the discontinuous neutralizing epitope recognized by mAb 2D9. Moreover, analysis of naturally occurring RHDV GI.2 isolates revealed key residues involved in mAb 2D9 binding that are under selective pressure. The findings described in this work provide valuable information regarding our understanding of virus neutralization and immune escape, which may help in the development of novel antiviral compounds.
Collapse
Affiliation(s)
- Ana Podadera
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain
- Chemistry and Biochemistry Department, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Mila Leuthold
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany
| | - José Manuel Martín-Alonso
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain
| | - Rosa Casais
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Centro de Biotecnología Animal, 33394, Gijón, Asturias, Spain
| | - Angel Luis Álvarez
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain
| | - M J Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain
| | - Francisco Parra
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain
| | - Kevin Paul Dalton
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain.
| |
Collapse
|
3
|
Estruch J, Cavadini P, Lavazza A, Capucci L, Abrantes J, Lopes AM, Almeida T, Neimanis A, Lavín S, Rouco C, Serrano E, Velarde R. Pathological and serological insights into Lagovirus diseases dynamics in the European brown hare (Lepus europaeus): A nine-year longitudinal study. Vet Microbiol 2025; 304:110478. [PMID: 40158484 DOI: 10.1016/j.vetmic.2025.110478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
The European brown hare syndrome virus (EBHSV; GII.1) and rabbit haemorrhagic disease virus 2 (RHDV2; GI.2) are pathogenic lagoviruses affecting the European brown hare (Lepus europaeus). EBHSV/GII.1 causes periodic epidemics, while RHDV2/GI.2 infections emerge from spillover events in areas where hares are sympatric with European rabbits (Oryctolagus cuniculus). In the northeast of the Iberian Peninsula, the overlap of these species provides a unique opportunity to investigate how the epidemiology of these viruses correlates with disease course. We analysed the presence of lagoviruses in 113 European brown hare carcasses recovered in Catalonia (NE Spain) between 2015 and 2024. Animals were necropsied, and tissue and serum samples were collected for histopathology, virological investigation, and serology. Sera from hunted hares apparently healthy (n = 89, 2015-2023) were also included in the study. PCR on liver samples (n = 58) and virological ELISA on positive sera (n = 52) confirmed 28 EBHSV/GII.1 and 24 RHDV2/GI.2 cases. After the first EBHSV/GII.1 detection in 2016, antibody titres decreased progressively until 2020-2021, coinciding with an outbreak. No conclusive seropositivity for RHDV2/GI.2 was observed during the study. Pathology revealed more acute lesions in RHDV2/GI.2-infected hares compared to EBHSV/GII.1. These lesions, resulting in sudden death due to a deficient immune response, may explain this distinct epidemiological scenario. Despite a decade of circulation, RHDV2/GI.2 has not fully adapted to hares. However, ongoing monitoring is essential, as mutations or recombination events could increase its epizootic potential. The co-circulation of both lagoviruses, combined with other co-factors, might jeopardise the viability of European brown hare populations at the southern limit of their range.
Collapse
Affiliation(s)
- Josep Estruch
- Wildlife Ecology & Health group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS). Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain.
| | - Patrizia Cavadini
- Virology Unit, WOAH Reference Laboratory for Rabbit Haemorrhagic Disease (RHD), Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Brescia 25124, Italy.
| | - Antonio Lavazza
- Virology Unit, WOAH Reference Laboratory for Rabbit Haemorrhagic Disease (RHD), Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Brescia 25124, Italy.
| | - Lorenzo Capucci
- Virology Unit, WOAH Reference Laboratory for Rabbit Haemorrhagic Disease (RHD), Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Brescia 25124, Italy.
| | - Joana Abrantes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto 4099-002, Portugal.
| | - Ana M Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal; UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; ITR, Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.
| | - Tereza Almeida
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal.
| | - Aleksija Neimanis
- Department of Pathology and Wildlife Diseases, Swedish Veterinary Agency, Uppsala SE-751 89, Sweden; Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala SE-751 89, Sweden.
| | - Santiago Lavín
- Wildlife Ecology & Health group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS). Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain.
| | - Carlos Rouco
- Departamento Biología Vegetal y Ecología, Área de Ecología, Universidad de Sevilla, Sevilla 41012, Spain.
| | - Emmanuel Serrano
- Wildlife Ecology & Health group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS). Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain.
| | - Roser Velarde
- Wildlife Ecology & Health group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS). Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain.
| |
Collapse
|
4
|
Ruan Z, Shao Q, Song Y, Hu B, Fan Z, Wei H, Liu Y, Wang F, Fang Q. Near-atomic structures of RHDV reveal insights into capsid assembly and different conformations between mature virion and VLP. J Virol 2024; 98:e0127524. [PMID: 39436094 PMCID: PMC11575418 DOI: 10.1128/jvi.01275-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Rabbit hemorrhagic disease virus (RHDV) poses a significant threat to rabbits, causing substantial economic losses in rabbit farming. The virus also endangers wild populations of rabbit species and the predatory animals that rely on rabbits as a food source, thereby disturbing the ecological balance. However, the structural understanding of RHDV has been limited due to the lack of high-resolution structures. Here, we present the first high-resolution cryo-EM structures of the mature virion and virus-like particles (VLPs) derived from both full-length and N-terminal arm (NTA)-truncated VP60. These structures reveal intricate structural details of the icosahedral capsid and crucial NTA-mediated interactions essential for capsid assembly. In addition, dramatic conformational differences are unexpectedly observed between the mature virion and VLP. The protruding spikes of the A-B dimers adopt a "raised" state in the mature virion and a "resting" state in the VLP. These findings enhance our understanding of the structure, assembly, and conformational dynamics of the RHDV capsid, laying the essential groundwork for further virological research and therapeutic advancements.IMPORTANCERHDV is a pathogen with significant economic and ecological impact. By presenting the first high-resolution cryo-EM structures of RHDV, we have uncovered detailed interactions among neighboring VP60 subunits of the icosahedral capsid. The NTA of VP60 is uniquely clustered around the threefold axis of the capsid, probably play a critical role in dragging the six VP60 dimers around the threefold axis during capsid assembly. Additionally, we observed dramatic conformational differences between the mature virion and VLPs. VLPs are commonly used for vaccine development, under the assumption that their structure closely resembles that of the mature virion. Our findings significantly advance the understanding of the RHDV capsid structure, which may be used for developing potential therapeutic strategies against RHDV.
Collapse
Affiliation(s)
- Zhiyang Ruan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qianqian Shao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanhua Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Bo Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Zhiyu Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Houjun Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Yunshu Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Fang Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Qianglin Fang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Peacock DE, Iannella A, Sinclair RG, Kovaliski J. Surveillance of Wildlife Viruses: Insights from South Australia's Monitoring of Rabbit Haemorrhagic Disease Virus (RHDV GI.1 and GI.2). Viruses 2024; 16:1553. [PMID: 39459889 PMCID: PMC11512407 DOI: 10.3390/v16101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Surveillance of wildlife virus impacts can be passive or active. Both approaches have their strengths and weaknesses, especially regarding cost and knowledge that can be gained. Monitoring of rabbit haemorrhagic disease virus (GI.1 and GI.2) in South Australia has utilised both strategies and their methods and gained insights are discussed. Active strategies to monitor the continuing impact of rabbit haemorrhagic disease virus 2 (GI.2) on susceptible lagomorphs in countries such as the USA, Mexico, South Africa, Spain, France and Portugal are encouraged to gain critical insights into the evolution, spread and impact of this virus. Furthermore, there are lessons here for the international monitoring of diseases in wildlife, particularly where there is a risk of them becoming zoonotic.
Collapse
Affiliation(s)
- David E. Peacock
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Amy Iannella
- Foundation for Rabbit Free Australia, P.O. Box 145, Collinswood, Adelaide, SA 5081, Australia
| | - Ron G. Sinclair
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - John Kovaliski
- Independent Researcher, 6/43B Bridge Street Kensington, Kensington, SA 5068, Australia
| |
Collapse
|
6
|
Asin J, Calvete C, Uzal FA, Crossley BM, Duarte MD, Henderson EE, Abade dos Santos F. Rabbit hemorrhagic disease virus 2, 2010-2023: a review of global detections and affected species. J Vet Diagn Invest 2024; 36:617-637. [PMID: 39344909 PMCID: PMC11457751 DOI: 10.1177/10406387241260281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Rabbit hemorrhagic disease virus 2/genotype GI.2 (RHDV2/GI.2; Caliciviridae, Lagovirus) causes a highly contagious disease with hepatic necrosis and disseminated intravascular coagulation in several Leporidae species. RHDV2 was first detected in European rabbits (Oryctolagus cuniculus) in France in 2010 and has since spread widely. We gather here data on viral detections reported in various countries and affected species, and discuss pathology, genetic differences, and novel diagnostic aspects. RHDV2 has been detected almost globally, with cases reported in Europe, Africa, Oceania, Asia, and North America as of 2023. Since 2020, large scale outbreaks have occurred in the United States and Mexico and, at the same time, cases have been reported for the first time in previously unaffected countries, such as China, Japan, Singapore, and South Africa, among others. Detections have been notified in domestic and wild European rabbits, hares and jackrabbits (Lepus spp.), several species of cottontail and brush rabbits (Sylvilagus spp.), pygmy rabbits (Brachylagus idahoensis), and red rock rabbits (Pronolagus spp.). RHDV2 has also been detected in a few non-lagomorph species. Detection of RHDV2 causing RHD in Sylvilagus spp. and Leporidae species other than those in the genera Oryctolagus and Lepus is very novel. The global spread of this fast-evolving RNA virus into previously unexploited geographic areas increases the likelihood of host range expansion as new species are exposed; animals may also be infected by nonpathogenic caliciviruses that are disseminated by almost all species, and with which genetic recombination may occur.
Collapse
Affiliation(s)
- Javier Asin
- California Animal Health and Food Safety Laboratory, University of California–Davis, San Bernardino, CA, USA
| | - Carlos Calvete
- Animal Science Department, Agri-Food Research and Technology Centre of Aragon (CITA), Agri-Food Institute of Aragón (IA2), Zaragoza, Spain
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory, University of California–Davis, San Bernardino, CA, USA
| | | | | | - Eileen E. Henderson
- California Animal Health and Food Safety Laboratory, University of California–Davis, San Bernardino, CA, USA
| | - Fábio Abade dos Santos
- National Institute for Agrarian and Veterinary Research (INIAV), Oeiras, Portugal
- Faculty of Veterinary Medicine, Lusofona University, Lisboa, Portugal
| |
Collapse
|
7
|
Tokarz-Deptuła B, Kulus J, Baraniecki Ł, Stosik M, Deptuła W. Characterisation of Lagovirus europaeus GI-RHDVs (Rabbit Haemorrhagic Disease Viruses) in Terms of Their Pathogenicity and Immunogenicity. Int J Mol Sci 2024; 25:5342. [PMID: 38791380 PMCID: PMC11120834 DOI: 10.3390/ijms25105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Rabbit haemorrhagic disease viruses (RHDV) belong to the family Caliciviridae, genus Lagovirus europaeus, genogroup GI, comprising four genotypes GI.1-GI.4, of which the genotypes GI.1 and GI.2 are pathogenic RHD viruses, while the genotypes GI.3 and GI.4 are non-pathogenic RCV (Rabbit calicivirus) viruses. Among the pathogenic genotypes GI.1 and GI.2 of RHD viruses, an antigenic variant of RHDV, named RHDVa-now GI.1a-RHDVa, was distinguished in 1996; and in 2010, a variant of RHDV-named RHDVb, later RHDV2 and now GI.2-RHDV2/b-was described; and recombinants of these viruses were registered. Pathogenic viruses of the genotype GI.1 were the cause of a disease described in 1984 in China in domestic (Oryctolagus (O.) cuniculus domesticus) and wild (O. cuniculus) rabbits, characterised by a very rapid course and a mortality rate of 90-100%, which spread in countries all over the world and which has been defined since 1989 as rabbit haemorrhagic disease. It is now accepted that GI.1-RHDV, including GI.1a-RHDVa, cause the predetermined primary haemorrhagic disease in domestic and wild rabbits, while GI.2-RHDV2/b cause it not only in rabbits, including domestic rabbits' young up to 4 weeks and rabbits immunised with rabbit haemorrhagic disease vaccine, but also in five various species of wild rabbits and seven different species of hares, as well as wild ruminants: mountain muskoxen and European badger. Among these viruses, haemagglutination-positive, doubtful and harmful viruses have been recorded and described and have been shown to form phylogenogroups, immunotypes, haematotypes and pathotypes, which, together with traits that alter and expand their infectious spectrum (rabbit, hare, wild ruminant, badger and various rabbit and hare species), are the determinants of their pathogenicity (infectivity) and immunogenicity and thus shape their virulence. These relationships are the aim of our consideration in this article.
Collapse
Affiliation(s)
| | - Jakub Kulus
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (W.D.)
| | - Łukasz Baraniecki
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | - Michał Stosik
- Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Gora, 65-516 Zielona Gora, Poland;
| | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (W.D.)
| |
Collapse
|
8
|
Hall RN, Trought K, Strive T, Duckworth JA, Jenckel M. First Detection and Circulation of RHDV2 in New Zealand. Viruses 2024; 16:519. [PMID: 38675862 PMCID: PMC11053765 DOI: 10.3390/v16040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Rabbit haemorrhage disease virus 2 (RHDV2) is a highly pathogenic lagovirus that causes lethal disease in rabbits and hares (lagomorphs). Since its first detection in Europe in 2010, RHDV2 has spread worldwide and has been detected in over 35 countries so far. Here, we provide the first detailed report of the detection and subsequent circulation of RHDV2 in New Zealand. RHDV2 was first detected in New Zealand in 2018, with positive samples retrospectively identified in December 2017. Subsequent time-resolved phylogenetic analysis suggested a single introduction into the North Island between March and November 2016. Genetic analysis identified a GI.3P-GI.2 variant supporting a non-Australian origin for the incursion; however, more accurate identification of the source of the incursion remains challenging due to the wide global distribution of the GI.3P-GI.2 variant. Furthermore, our analysis suggests the spread of the virus between the North and South Islands of New Zealand at least twice, dated to mid-2017 and around 2018. Further phylogenetic analysis also revealed a strong phylogeographic pattern. So far, no recombination events with endemic benign New Zealand rabbit caliciviruses have been identified. This study highlights the need for further research and surveillance to monitor the distribution and diversity of lagoviruses in New Zealand and to detect incursions of novel variants.
Collapse
Affiliation(s)
- Robyn N. Hall
- CSIRO Health & Biosecurity, Acton, ACT 2601, Australia
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia
- Ausvet Pty Ltd., Fremantle, WA 6160, Australia;
| | - Katherine Trought
- Manaaki Whenua-Landcare Research, Lincoln 7608, New Zealand; (K.T.); (J.A.D.)
| | - Tanja Strive
- CSIRO Health & Biosecurity, Acton, ACT 2601, Australia
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia
| | - Janine A. Duckworth
- Manaaki Whenua-Landcare Research, Lincoln 7608, New Zealand; (K.T.); (J.A.D.)
| | - Maria Jenckel
- CSIRO Health & Biosecurity, Acton, ACT 2601, Australia
| |
Collapse
|
9
|
Lopes AM, Almeida T, Diz S, Côrte-Real JV, Osório HC, Ramilo DW, Rebelo MT, da Fonseca IP, Esteves PJ, Alves PC, Santos N, Abrantes J. The potential role of scavenging flies as mechanical vectors of Lagovirus europaeus/GI.2. Virol J 2023; 20:103. [PMID: 37237382 DOI: 10.1186/s12985-023-02065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The European rabbit (Oryctolagus cuniculus) populations of the Iberian Peninsula have been severely affected by the emergence of the rabbit haemorrhagic disease virus (RHDV) Lagovirus europaeus/GI.2 (RHDV2/b). Bushflies and blowflies (Muscidae and Calliphoridae families, respectively) are important RHDV vectors in Oceania, but their epidemiological role is unknown in the native range of the European rabbit. In this study, scavenging flies were collected between June 2018 and February 2019 in baited traps at one site in southern Portugal, alongside a longitudinal capture-mark-recapture study of a wild European rabbit population, aiming to provide evidence of mechanical transmission of GI.2 by flies. Fly abundance, particularly from Calliphoridae and Muscidae families, peaked in October 2018 and in February 2019. By employing molecular tools, we were able to detect the presence of GI.2 in flies belonging to the families Calliphoridae, Muscidae, Fanniidae and Drosophilidae. The positive samples were detected during an RHD outbreak and absent in samples collected when no evidence of viral circulation in the local rabbit population was found. We were able to sequence a short viral genomic fragment, confirming its identity as RHDV GI.2. The results suggest that scavenging flies may act as mechanical vectors of GI.2 in the native range of the southwestern Iberian subspecies O. cuniculus algirus. Future studies should better assess their potential in the epidemiology of RHD and as a tool for monitoring viral circulation in the field.
Collapse
Affiliation(s)
- Ana M Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Unidade Multidisciplinar de Investigação Biomédica (UMIB), Universidade do Porto, Porto, 4050-313, Portugal
| | - Tereza Almeida
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Sílvia Diz
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - João V Côrte-Real
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig Maximilian University of Munich (LMU) München, Munich, Germany
| | - Hugo C Osório
- Centro de Estudos de Vectores e Doenças Infecciosas, Instituto Nacional de Saúde Doutor Ricardo Jorge, Marateca, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - David W Ramilo
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-s-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Faculdade de Medicina Veterinária, Universidade Lusófona, Lisbon, Portugal
| | - Maria Teresa Rebelo
- CESAM - Centre for Environmental and Marine Studies, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-s-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Pedro J Esteves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal
- CITS - Center of Investigation in Health Technologies, CESPU, 4585-116, Gandra, Portugal
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal
| | - Nuno Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| | - Joana Abrantes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal.
| |
Collapse
|
10
|
Ramsey DS, Patel KK, Campbell S, Hall RN, Taggart PL, Strive T. Sustained Impact of RHDV2 on Wild Rabbit Populations across Australia Eight Years after Its Initial Detection. Viruses 2023; 15:v15051159. [PMID: 37243245 DOI: 10.3390/v15051159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Following the arrival of rabbit haemorrhagic disease virus 2 (RHDV2) in Australia, average rabbit population abundances were reduced by 60% between 2014 and 2018 based on monitoring data acquired from 18 sites across Australia. During this period, as the seropositivity to RHDV2 increased, concurrent decreases were observed in the seroprevalence of both the previously circulating RHDV1 and RCVA, a benign endemic rabbit calicivirus. However, the detection of substantial RHDV1 seropositivity in juvenile rabbits suggested that infections were continuing to occur, ruling out the rapid extinction of this variant. Here we investigate whether the co-circulation of two pathogenic RHDV variants was sustained after 2018 and whether the initially observed impact on rabbit abundance was still maintained. We monitored rabbit abundance and seropositivity to RHDV2, RHDV1 and RCVA at six of the initial eighteen sites until the summer of 2022. We observed sustained suppression of rabbit abundance at five of the six sites, with the average population reduction across all six sites being 64%. Across all sites, average RHDV2 seroprevalence remained high, reaching 60-70% in adult rabbits and 30-40% in juvenile rabbits. In contrast, average RHDV1 seroprevalence declined to <3% in adult rabbits and 5-6% in juvenile rabbits. Although seropositivity continued to be detected in a low number of juvenile rabbits, it is unlikely that RHDV1 strains now play a major role in the regulation of rabbit abundance. In contrast, RCVA seropositivity appears to be reaching an equilibrium with that of RHDV2, with RCVA seroprevalence in the preceding quarter having a strong negative effect on RHDV2 seroprevalence and vice versa, suggesting ongoing co-circulation of these variants. These findings highlight the complex interactions between different calicivirus variants in free-living rabbit populations and demonstrate the changes in interactions over the course of the RHDV2 epizootic as it has moved towards endemicity. While it is encouraging from an Australian perspective to see sustained suppression of rabbit populations in the eight years following the arrival of RHDV2, it is likely that rabbit populations will eventually recover, as has been observed with previous rabbit pathogens.
Collapse
Affiliation(s)
- David S Ramsey
- Arthur Rylah Institute, Department of Energy, Environment and Climate Action, Heidelberg, VIC 3083, Australia
| | - Kandarp K Patel
- Biosecurity, Department of Primary Industries and Regions (PIRSA), Urrbrae, SA 5064, Australia
- Centre for Invasive Species Solutions, The University of Canberra, Bruce, ACT 2617, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Susan Campbell
- Invasive Species and Environment Biosecurity, Department of Primary Industries and Regional Development, Albany, WA 6330, Australia
| | - Robyn N Hall
- Centre for Invasive Species Solutions, The University of Canberra, Bruce, ACT 2617, Australia
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Canberra, ACT 2601, Australia
| | - Patrick L Taggart
- Centre for Invasive Species Solutions, The University of Canberra, Bruce, ACT 2617, Australia
- Vertebrate Pest Research Unit, Department of Primary Industries NSW, Queanbeyan, NSW 2800, Australia
| | - Tanja Strive
- Centre for Invasive Species Solutions, The University of Canberra, Bruce, ACT 2617, Australia
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Canberra, ACT 2601, Australia
| |
Collapse
|
11
|
Shah PT, Bahoussi AN, Yang C, Yao G, Dong L, Wu C, Xing L. Genetic Characteristics and Phylogeographic Dynamics of Lagoviruses, 1988-2021. Viruses 2023; 15:v15040815. [PMID: 37112796 PMCID: PMC10143477 DOI: 10.3390/v15040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Rabbit haemorrhagic disease virus (RHDV), European brown hare syndrome virus (EBHSV), rabbit calicivirus (RCV), and hare calicivirus (HaCV) belong to the genus Lagovirus of the Caliciviridae family that causes severe diseases in rabbits and several hare (Lepus) species. Previously, Lagoviruses were classified into two genogroups, e.g., GI (RHDVs and RCVs) and GII (EBHSV and HaCV) based on partial genomes, e.g., VP60 coding sequences. Herein, we provide a robust phylogenetic classification of all the Lagovirus strains based on full-length genomes, grouping all the available 240 strains identified between 1988 and 2021 into four distinct clades, e.g., GI.1 (classical RHDV), GI.2 (RHDV2), HaCV/EBHSV, and RCV, where the GI.1 clade is further classified into four (GI.1a-d) and GI.2 into six sub-clades (GI.2a-f). Moreover, the phylogeographic analysis revealed that the EBHSV and HaCV strains share their ancestor with the GI.1, while the RCV shares with the GI.2. In addition, all 2020-2021 RHDV2 outbreak strains in the USA are connected to the strains from Canada and Germany, while RHDV strains isolated in Australia are connected with the USA-Germany haplotype RHDV strain. Furthermore, we identified six recombination events in the VP60, VP10, and RNA-dependent RNA polymerase (RdRp) coding regions using the full-length genomes. The amino acid variability analysis showed that the variability index exceeded the threshold of 1.00 in the ORF1-encoded polyprotein and ORF2-encoded VP10 protein, respectively, indicating significant amino acid drift with the emergence of new strains. The current study is an update of the phylogenetic and phylogeographic information of Lagoviruses that may be used to map the evolutionary history and provide hints for the genetic basis of their emergence and re-emergence.
Collapse
Affiliation(s)
- Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Amina Nawal Bahoussi
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Caiting Yang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Guanhan Yao
- Department of Molecular Genetics and Development, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Li Dong
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
12
|
Bębnowska D, Hrynkiewicz R, Korona-Głowniak I, Niedźwiedzka-Rystwej P. Immune response in the recombinant strain of Lagovirus europaeus GI.1a. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 110:105427. [PMID: 36958414 DOI: 10.1016/j.meegid.2023.105427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Lagovirus europaeus/GI.1 is the virus that causes severe and dangerous rabbit haemorrhagic disease (RHD) in rabbits. Recombination formation in RHD viruses is common. Recombination is thought to play a key role in the evolution of lagoviruses and therefore most likely influences the pathogenicity of L. europaeus/GI strains. Immunological events also play a key role in the control of RHD, and an in-depth knowledge of these phenomena provides insights into the characteristics of the infection, which can help implement appropriate infection control measures. To obtain a more complete picture of RHD caused by different GI.1 strains, it is necessary to correlate the genetic diversity within L. europaeus/GI.1 strains and the immune picture in response to infection. We performed a phylogenetic analysis of the L. europaeus/GI strains and compared the recombinant L. europaeus/GI.1 strain with the GI.1a strain on the basis of a thorough statistical analysis of immunological traits performed previously. Our phylogenetic analysis based on the sequence of the gene encoding the VP60 capsid protein of 34 strains of Lagovirus europaeus showed that the Hartmannsdorf strain forms a separate clade from the other GI.1a strains and is separate from the GI.1b-d strains. Next, we showed significant differences in the levels of individual parameters for non-specific cellular and humoral immunity in infection with the GI.1a strain and the Hartmannsdorf recombinant strain. Against the background of this study, our results indicate that the characteristics of each recombinant should be considered individually.
Collapse
Affiliation(s)
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin,1 Chodźki Str., 20-093 Lublin, Poland
| | | |
Collapse
|
13
|
Detection of a new emerging strain of rabbit haemorrhagic disease virus 2 (GI.2) in China. J Vet Res 2022; 66:289-295. [PMID: 36349130 PMCID: PMC9597937 DOI: 10.2478/jvetres-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction In May 2020, an outbreak of rabbit haemorrhagic disease 2 (RHD2) caused by the rabbit haemorrhagic disease virus 2 (RHDV2, GI.2) occurred in Sichuan, China. The acute onset and short disease course resulted in rabbit mortality as high as 42.86%. Currently, basic research on the aetiology and genetic characteristics of GI.2 is lacking in China. Material and Methods Pathological changes in various tissues from infected rabbits were investigated and the viral genome was characterised. This study used RT-PCR, histopathology and scanning electron microscopy to identify the pathogen in samples from infected rabbits that had died. Phylogenetic trees were constructed based on whole genome sequence analysis, and recombination events were analysed. Results RT-PCR identified the presence of GI.2. Histopathology revealed liver cell necrosis and haemorrhaging into lung alveoli. Electron microscopy demonstrated spherical GI.2 particles that were 40 nm in size. The gene sequence length of the isolate was 7,445 bp (GenBank accession number MW178244). A phylogenetic analysis based on the genome of the isolated strain and 60 reference strains showed that the isolate was grouped together with GI.2 strain MT586027.1 in a relatively independent sub-branch. The results of the recombination analysis showed that the strain was recombined from the MT586027.1 (major parent) and MN90145.1 (minor parent) strains, and recombination breakpoints were at locations in the 2858–5137 nt range. Conclusion The results of this study extend our understanding of the molecular epidemiology of GI.2.
Collapse
|
14
|
Pacheco H, Lopes AM, Bárcena J, Blanco E, Abrantes J, Esteves P, Choquet R, Alves PC, Santos N. Multi‐event capture‐recapture models estimate the diagnostic performance of serological tests for myxoma and rabbit haemorrhagic disease viruses in the absence of reference samples. Transbound Emerg Dis 2022; 69:e3024-e3035. [DOI: 10.1111/tbed.14657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Henrique Pacheco
- CIISA – Centro de Investigação Interdisciplinar em Sanidade Animal Faculty of Veterinary Medicine University of Lisbon Lisbon Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos InBIO Laboratório Associado Universidade do Porto Vairão Portugal
- BIOPOLIS Program in Genomics Biodiversity and Land Planning CIBIO Vairão Portugal
| | - Ana M. Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos InBIO Laboratório Associado Universidade do Porto Vairão Portugal
- BIOPOLIS Program in Genomics Biodiversity and Land Planning CIBIO Vairão Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS)/Unidade Multidisciplinar de Investigação Biomédica (UMIB) University of Porto Porto Portugal
| | - Juan Bárcena
- Centro de Investigación en Sanidad Animal (CISA‐INIA/CSIC) Valdeolmos Madrid Spain
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA‐INIA/CSIC) Valdeolmos Madrid Spain
| | - Joana Abrantes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos InBIO Laboratório Associado Universidade do Porto Vairão Portugal
- BIOPOLIS Program in Genomics Biodiversity and Land Planning CIBIO Vairão Portugal
- Department of Biology Faculty of Sciences University of Porto Porto Portugal
| | - Pedro Esteves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos InBIO Laboratório Associado Universidade do Porto Vairão Portugal
- BIOPOLIS Program in Genomics Biodiversity and Land Planning CIBIO Vairão Portugal
- Department of Biology Faculty of Sciences University of Porto Porto Portugal
| | - Rémi Choquet
- CEFE – Centre d’Écologie Fonctionnelle et Évolutive Univ Montpellier CNRS EPHE, IRD Montpellier France
| | - Paulo Célio Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos InBIO Laboratório Associado Universidade do Porto Vairão Portugal
- BIOPOLIS Program in Genomics Biodiversity and Land Planning CIBIO Vairão Portugal
- Department of Biology Faculty of Sciences University of Porto Porto Portugal
- Estação Biológica de Mértola (EBM) CIBIO Mértola Portugal
| | - Nuno Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos InBIO Laboratório Associado Universidade do Porto Vairão Portugal
- BIOPOLIS Program in Genomics Biodiversity and Land Planning CIBIO Vairão Portugal
- Estação Biológica de Mértola (EBM) CIBIO Mértola Portugal
| |
Collapse
|
15
|
Development and Evaluation of a Duplex Lateral Flow Assay for the Detection and Differentiation between Rabbit Haemorrhagic Disease Virus Lagovirus europaeus/GI.1 and /GI.2. BIOLOGY 2022; 11:biology11030401. [PMID: 35336775 PMCID: PMC8945490 DOI: 10.3390/biology11030401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Rabbit Haemorrhagic Disease is caused by a virus that affects the liver, the spleen and the lungs of rabbits, causing hepatitis, splenomegaly and haemorrhages. A new genotype of the virus was first reported in France in 2010 and has spread globally since then, replacing most of the circulating former viruses in many countries. The detection of the virus and the differentiation of both genotypes is of crucial importance for disease surveillance. In this article, a rapid test for antigen detection is described and evaluated, providing the first description of a quick and easy-to-use test that allows for the simultaneous detection and differentiation of the genotypes. A total of 136 samples, rabbit liver samples and liver exudates (liquid collected after freeze–thawing) classified as infected and non-infected, were analysed, with good results. These data confirm that the developed rapid test can be used as a reliable diagnostic test for disease surveillance, especially in farms and the field. Abstract Rabbit Haemorrhagic Disease Virus 2 (RHDV2, recently named Lagovirus europaeus/GI.2) was first reported in France in 2010 and has spread globally since then, replacing most of the circulating former RHDV (genotype GI.1) in many countries. The detection and differentiation of both genotypes is of crucial importance for the surveillance of the disease. In this article, a duplex lateral flow assay (LFA) for antigen detection is described and evaluated, providing the first description of a quick and easy-to-use test that allows for the simultaneous detection and differentiation of RHDV genotypes GI.1 and GI.2. A panel of GI.1- or GI.2-infected and non-infected rabbit liver samples and liver exudates (136 samples) was analysed, obtaining a total sensitivity of 94.4% and specificity of 100%. These data confirm that the developed duplex LFA can be used as a reliable diagnostic test for RHD surveillance, especially in farms and the field.
Collapse
|
16
|
Calvete C, Delacour S, Oropeza-Velasquez RV, Estrada R, Sarto MP, Iguacel L, Lucientes J, Calvo JH. Experimental Study of the Mechanical Transmission of Rabbit Hemorrhagic Disease Virus (RHDV2/b) by Aedes albopictus (Diptera: Culicidae) and Phlebotomus papatasi (Diptera: Psychodidae). JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:350-354. [PMID: 34447999 DOI: 10.1093/jme/tjab148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Rabbit hemorrhagic disease (RHD) is caused by a lagovirus mainly affecting European rabbits (Oryctolagus cuniculus), although other European and North American lagomorph species are also susceptible to fatal infection by the new viral variant RHDV2/b. In the present work, direct mechanical transmission of the rabbit hemorrhagic disease virus (RHDV2/b variant) by the hematophagous Diptera Aedes albopictus (Skuse) (Diptera: Culicidae) and the sand fly Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae) was tested. For each species, six and three laboratory rabbits were exposed to bites of dipterous females partially fed on RHDV2/b viral suspension 2 h and 24 h prior to exposure, respectively. The rabbits were then monitored for clinical changes and mortality for 35 d, and seroconversion was assessed by indirect ELISA. No rabbit died or showed clinical signs of disease, and seroconversion was recorded in two rabbits challenged with P. papatasi females fed the viral suspension 2 h prior to exposure. The number of RHDV2/b RNA copies/female was higher in Ae. albopictus than in P. papatasi but the decrease over time of RNA load in Ae. albopictus was greater than that in P. papatasi. The results of this study suggest the inability of Ae. albopictus to serve as a direct mechanical vector of RHDV2/b, but sand flies could play a role in the local transmission of RHD.
Collapse
Affiliation(s)
- C Calvete
- Animal Production and Health Unit, Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
- Agrifood Institute of Aragon - IA2 (CITA-University of Zaragoza), Zaragoza, Spain
| | - S Delacour
- Agrifood Institute of Aragon - IA2 (CITA-University of Zaragoza), Zaragoza, Spain
- Animal Pathology Department, University of Zaragoza, Zaragoza, Spain
| | | | - R Estrada
- Agrifood Institute of Aragon - IA2 (CITA-University of Zaragoza), Zaragoza, Spain
- Animal Pathology Department, University of Zaragoza, Zaragoza, Spain
| | - M P Sarto
- Animal Production and Health Unit, Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
| | - L Iguacel
- Animal Production and Health Unit, Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
| | - J Lucientes
- Agrifood Institute of Aragon - IA2 (CITA-University of Zaragoza), Zaragoza, Spain
- Animal Pathology Department, University of Zaragoza, Zaragoza, Spain
| | - J H Calvo
- Animal Production and Health Unit, Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
- Agrifood Institute of Aragon - IA2 (CITA-University of Zaragoza), Zaragoza, Spain
- ARAID, Zaragoza, Spain
| |
Collapse
|
17
|
Aguayo-Adán JA, Rouco C, Delibes-Mateos M, Santoro S. Lack of evidence for differences in the spread of classic (Lagovirus europaeus/GI.1) and novel (Lagovirus europaeus/GI.2) rabbit haemorrhagic disease viruses in Europe and North Africa. Vet Rec 2021; 190:e1067. [PMID: 34713453 DOI: 10.1002/vetr.1067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/15/2021] [Accepted: 10/03/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Fast-spreading diseases affecting wildlife populations threaten biodiversity. Two caliciviruses, Lagovirus europaeus/GI.1 and Lagovirus europaeus/GI.2, caused rabbit haemorrhagic disease virus (RHDV) in wild rabbits. Despite having different characteristics, these variants spread quickly, posing a threat to wild rabbit populations. METHODS In this study, we conducted a thorough review of the scientific literature and reports of international organisations of first detections of both variants of RHDV in the Euro-Mediterranean region. We concentrated on this area to avoid bias due to intentional human introductions. RESULTS The estimated mean spread rate of GI.2 was higher than that of GI.1 (GI.2: 479 km/year, range: 47-7346; GI.1: 330 km/year, 37-6248). These differences were not statistically significant. This lack of difference may be due to the interactions between each variant's virulence characteristics. Humans may have a dominant effect on their spread. Potential limitations associated with the observational process could have hindered our ability to identify statistical differences. CONCLUSIONS The lack of difference in the spread patterns of the two variants could be due to a biological cause, human facilitation or a lack of statistical power. Adapting protocols to detect diseases in wildlife using homogeneous criteria will be indispensable in the coming years.
Collapse
Affiliation(s)
- Juan Antonio Aguayo-Adán
- Departamento de Botánica, Ecología y Fisiología Vegetal, Área de Ecología, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Rouco
- Departamento de Botánica, Ecología y Fisiología Vegetal, Área de Ecología, Universidad de Córdoba, Córdoba, Spain.,Sociedad, Ecología y Gestión del Medio Ambiente, UCO-IESA, Unidad Asociada al CSIC, Universidad de Córdoba, Córdoba, Spain
| | - Miguel Delibes-Mateos
- Sociedad, Ecología y Gestión del Medio Ambiente, UCO-IESA, Unidad Asociada al CSIC, Universidad de Córdoba, Córdoba, Spain.,IESA-CSIC, Instituto de Estudios Sociales Avanzados, Córdoba, Spain
| | - Simone Santoro
- Departamento de Ciencias Integradas, Facultad de Ciencias Experimentales, Universidad de Huelva, Huelva, Spain
| |
Collapse
|
18
|
Velarde R, Abrantes J, Lopes AM, Estruch J, Côrte-Real JV, Esteves PJ, García-Bocanegra I, Ruiz-Olmo J, Rouco C. Spillover event of recombinant Lagovirus europaeus/GI.2 into the Iberian hare (Lepus granatensis) in Spain. Transbound Emerg Dis 2021; 68:3187-3193. [PMID: 34324796 DOI: 10.1111/tbed.14264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Viruses that affect lagomorphs have decades of reported history of spillover events. One of these viruses is the causative agent of the so-called rabbit or 'lagomorph' haemorrhagic disease (e.g. Lagovirus europaeus/GI.1 and L. europaeus/GI.2). In particular, L. europaeus/GI.2 has shown a great capacity to recombine with existing lagoviruses. In fact, it has replaced the former GI.1 genotype in the wild, and recently, an increase on spillover events has been detected among several lagomorph species including European and North American species of hares. In this study, we report for the first time the infection of a wild Iberian hare with GI.2 (RHDV2/b), potential shedding and associated histopathological alterations. We identify the recombinant GI.4P-GI.2 as causative of the infection and discuss plausible causes regarding the origin of the spillover event and its potential consequences for the Iberian hare wild populations, which is an endemic species of the Iberian Peninsula as well as an important game and prey species for many predators, including endangered species.
Collapse
Affiliation(s)
- Roser Velarde
- Wildlife Ecology & Health group (WEH) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joana Abrantes
- Research Centre in Biodiversity and Genetic Resources (CIBIO), Research Network in Biodiversity and Evolutionary Biology (InBIO), University of Porto, Vairao, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ana M Lopes
- Research Centre in Biodiversity and Genetic Resources (CIBIO), Research Network in Biodiversity and Evolutionary Biology (InBIO), University of Porto, Vairao, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS)/Unidade Multidisciplinar de Investigação Biomédica (UMIB), Universidade do Porto, Porto, Portugal
| | - Josep Estruch
- Wildlife Ecology & Health group (WEH) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - João V Côrte-Real
- Research Centre in Biodiversity and Genetic Resources (CIBIO), Research Network in Biodiversity and Evolutionary Biology (InBIO), University of Porto, Vairao, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Pedro J Esteves
- Research Centre in Biodiversity and Genetic Resources (CIBIO), Research Network in Biodiversity and Evolutionary Biology (InBIO), University of Porto, Vairao, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ignacio García-Bocanegra
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba, Córdoba, Spain
| | - Jordi Ruiz-Olmo
- Departament d'Agricultura, Ramaderia, Pesca i Alimentació de la Generalitat de Catalunya, Barcelona, Spain
| | - Carlos Rouco
- Departmento de Botánica, Ecología y Fisiología Vegetal, Universdad de Córdoba, Cordoba, Spain.,Sociedad, Ecología y Gestión del Medio Ambiente, UCO-IESA, Unidad Asociada al CSIC, Córdoba, Spain
| |
Collapse
|
19
|
Happi AN, Ogunsanya OA, Oguzie JU, Oluniyi PE, Olono AS, Heeney JL, Happi CT. Microbial metagenomic approach uncovers the first rabbit haemorrhagic disease virus genome in Sub-Saharan Africa. Sci Rep 2021; 11:13689. [PMID: 34210997 PMCID: PMC8249450 DOI: 10.1038/s41598-021-91961-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 05/07/2021] [Indexed: 01/22/2023] Open
Abstract
Rabbit Haemorrhagic Disease (RHD) causes high morbidity and mortality in rabbits and hares. Here, we report the first genomic characterization of lagovirus GI.2 virus in domestic rabbits from sub-Saharan Africa. We used an unbiased microbial metagenomic Next Generation Sequencing (mNGS) approach to diagnose the pathogen causing the suspected outbreak of RHD in Ibadan, Nigeria. The liver, spleen, and lung samples of five rabbits from an outbreak in 2 farms were analyzed. The mNGS revealed one full and two partial RHDV2 genomes on both farms. Phylogenetic analysis showed close clustering with RHDV2 lineages from Europe (98.6% similarity with RHDV2 in the Netherlands, and 99.1 to 100% identity with RHDV2 in Germany), suggesting potential importation. Subsequently, all the samples were confirmed by RHDV virus-specific RT-PCR targeting the VP60 gene with the expected band size of 398 bp for the five rabbits sampled. Our findings highlight the need for increased genomic surveillance of RHDV2 to track its origin, understand its diversity and to inform public health policy in Nigeria, and Sub-Saharan Africa.
Collapse
Affiliation(s)
- Anise N Happi
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria. .,African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria.
| | - Olusola A Ogunsanya
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.,African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Judith U Oguzie
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria.,African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Paul E Oluniyi
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria.,African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Alhaji S Olono
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria.,African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Jonathan L Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Christian T Happi
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria. .,African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria.
| |
Collapse
|
20
|
Williams LBA, Edmonds SE, Kerr SR, Broughton-Neiswanger LE, Snekvik KR. Clinical and pathologic findings in an outbreak in rabbits of natural infection by rabbit hemorrhagic disease virus 2 in the northwestern United States. J Vet Diagn Invest 2021; 33:732-735. [PMID: 34092143 DOI: 10.1177/10406387211022466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Rabbit hemorrhagic disease virus 2 (RHDV2) causes an often-fatal disease of rabbits that has resulted in outbreaks in rabbitries in Europe, Africa, Australia, and Asia. RHD has historically been characterized as a foreign animal disease in the United States. In July 2019, RHDV2 was detected in rabbits on Orcas Island along the northwestern coast of Washington (WA) State following reports of deaths in multiple feral and domestic rabbits. We document and highlight here the unique clinical presentation and gross and histologic lesions observed in this recent WA outbreak. Affected rabbits died without premonitory signs or displayed hyporexia and/or lethargy for ≤1 d prior to death. The most consistent pathologic finding was random, multifocal hepatocellular necrosis, often with concurrent multifocal-to-diffuse splenic necrosis. The lack of significant clinical signs in conjunction with the random distribution of hepatic necrosis in the WA outbreak contrasts with previous reports of RHDV2 disease progression.
Collapse
Affiliation(s)
- Laura B A Williams
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA, USA.,Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Steven E Edmonds
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Susan R Kerr
- Washington State Department of Agriculture, Animal Health Program Education and Outreach, Olympia, WA, USA
| | | | - Kevin R Snekvik
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA, USA.,Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| |
Collapse
|
21
|
Calvete C, Sarto MP, Iguacel L, Calvo JH. Infectivity of rabbit haemorrhagic disease virus excreted in rabbit faecal pellets. Vet Microbiol 2021; 257:109079. [PMID: 33930699 DOI: 10.1016/j.vetmic.2021.109079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/18/2021] [Indexed: 11/25/2022]
Abstract
Rabbit haemorrhagic disease (RHD) is caused by a lagovirus affecting European rabbits (Oryctolagus cuniculus). Viral RNA is detected in tissues or faeces of convalescent rabbits, suggesting persistent infections; however, this RNA has not been shown to be related to infective viruses to date. In the present work, seven laboratory rabbits were challenged with the RHDV2/b virus variant. Viral RNA was individually detected by duplex qPCR in faeces collected for four weeks after infection, and the infective capacity of viral RNA excreted in the faeces of surviving rabbits was tested by challenging new rabbits with faecal inocula. As results, viral RNA was detected in faeces until the end of the assay. Viral RNA detected in the fourth week was infective only in the case of one rabbit that did not exhibit clear seroconversion, suggesting persistent infection as a result of an impaired immune response. Since the surviving rabbits were apparently healthy individuals, the importance of detecting carriers and the correct management of faeces to control RHD outbreaks in rabbitries are highlighted.
Collapse
Affiliation(s)
- Carlos Calvete
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain; Instituto Agroalimentario de Aragón, IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain.
| | - María P Sarto
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain
| | - Laura Iguacel
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain
| | - Jorge H Calvo
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain; Instituto Agroalimentario de Aragón, IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain; ARAID, 50004, Zaragoza, Spain
| |
Collapse
|
22
|
Szillat KP, Höper D, Beer M, König P. Full-genome sequencing of German rabbit haemorrhagic disease virus uncovers recombination between RHDV (GI.2) and EBHSV (GII.1). Virus Evol 2020; 6:veaa080. [PMID: 33324492 PMCID: PMC7724246 DOI: 10.1093/ve/veaa080] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rabbit haemorrhagic disease virus (RHDV; genotypes GI.1 and GI.2) and European brown hare syndrome virus (EBHSV; genotype GII.1) are caliciviruses belonging to the genus Lagovirus. These viruses pose a serious threat to wild and domestic rabbit and hare populations around the world. In recent years, an expanding genetic diversity has been described within the genus, with recombination events occurring between the different genotypes. Here, we generated and analysed 56 full-genome sequences of RHDV and EBHSV from rabbit and hare livers, collected in Germany between the years 2013 and 2020. We could show that genotype Gl.2 (RHDV-2) almost entirely replaced Gl.1 (classical RHDV) in the German rabbit population. However, GI.1 is still present in Germany and has to be included into disease control and vaccination strategies. Three recombinant strains were identified from rabbit samples that contain the structural genes of genotype Gl.2 and the non-structural genes of genotype Gl.1b. Of special interest is the finding that sequences from two hare samples showed recombination events between structural genes of RHDV Gl.2 and non-structural genes of EBHSV GII.1, a recombination between different genogroups that has not been described before. These findings lead to the assumption that also a recombination of the non-structural genes of RHDV Gl.2 with the structural genes of EBHSV Gll.1 might be possible and therefore increase the potential genetic variability of lagoviruses immensely. Our findings underline the importance of whole genome analysis with next-generation sequencing technology as one of new tools now available for in-depth studies that allow in depth molecular epidemiology with continuous monitoring of the genetic variability of viruses that would otherwise likely stay undetected if only routine diagnostic assays are used.
Collapse
Affiliation(s)
- Kevin P Szillat
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald-Insel Riems 17493, Germany
| |
Collapse
|
23
|
Recombination at the emergence of the pathogenic rabbit haemorrhagic disease virus Lagovirus europaeus/GI.2. Sci Rep 2020; 10:14502. [PMID: 32879332 PMCID: PMC7468141 DOI: 10.1038/s41598-020-71303-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Rabbit haemorrhagic disease is a viral disease that emerged in the 1980s and causes high mortality and morbidity in the European rabbit (Oryctolagus cuniculus). In 2010, a new genotype of the rabbit haemorrhagic disease virus emerged and replaced the former circulating Lagovirus europaeus/GI.1 strains. Several recombination events have been reported for the new genotype Lagovirus europaeus/GI.2, with pathogenic (variants GI.1a and GI.1b) and benign (genotype GI.4) strains that served as donors for the non-structural part while GI.2 composed the structural part; another recombination event has also been described at the p16/p23 junction involving GI.4 strains. In this study, we analysed new complete coding sequences of four benign GI.3 strains and four GI.2 strains. Phylogenetic and recombination detection analyses revealed that the first GI.2 strains, considered as non-recombinant, resulted from a recombination event between GI.3 and GI.2, with GI.3 as the major donor for the non-structural part and GI.2 for the structural part. Our results indicate that recombination contributed to the emergence, persistence and dissemination of GI.2 as a pathogenic form and that all described GI.2 strains so far are the product of recombination. This highlights the need to study full-genomic sequences of lagoviruses to understand their emergence and evolution.
Collapse
|
24
|
Hu B, Wei H, Fan Z, Song Y, Chen M, Qiu R, Zhu W, Xu W, Xue J, Wang F. Emergence of rabbit haemorrhagic disease virus 2 in China in 2020. Vet Med Sci 2020; 7:236-239. [PMID: 32743985 PMCID: PMC7840210 DOI: 10.1002/vms3.332] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rabbit haemorrhagic disease (RHD) is an acute fatal disease caused by the Lagovirus rabbit haemorrhagic disease virus (RHDV), which was first reported in 1984 in China. Strains of two different genotypes (GI.1a and GI.1c) have been detected in China to date. In 2010, a new RHDV variant with a unique genetic and antigenic profile was identified in France, designated RHDV2, which rapidly spread throughout continental Europe and nearby islands. Here, we report the first outbreak of RHD induced by RHDV2 (GI.2) in rabbit farms in the Sichuan province of China. We conducted haemagglutination tests and phylogenetic analysis of the new RHDV isolate SC2020/04, which was identified as a non‐haemagglutinating strain belonging to the RHDV2 (GI.2) genogroup. Considering the serious risk of RHDV2 to the Chinese rabbit industry, the circulation of RHDV2 in the population should be carefully monitored in China.
Collapse
Affiliation(s)
- Bo Hu
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Institute of Veterinary Medicine, Nanjing, China
| | - Houjun Wei
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Institute of Veterinary Medicine, Nanjing, China
| | - Zhiyu Fan
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Institute of Veterinary Medicine, Nanjing, China
| | - Yanhua Song
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Institute of Veterinary Medicine, Nanjing, China
| | - Mengmeng Chen
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Institute of Veterinary Medicine, Nanjing, China
| | - Rulong Qiu
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Institute of Veterinary Medicine, Nanjing, China
| | - Weifeng Zhu
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Institute of Veterinary Medicine, Nanjing, China
| | - Weizhong Xu
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Institute of Veterinary Medicine, Nanjing, China
| | - Jiabin Xue
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Institute of Veterinary Medicine, Nanjing, China
| | - Fang Wang
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Institute of Veterinary Medicine, Nanjing, China
| |
Collapse
|
25
|
Carvalho CL, Abade dos Santos FA, Fagulha T, Carvalho P, Mendonça P, Monteiro M, Dias Duarte M. Myxoma virus and rabbit haemorrhagic disease virus 2 coinfection in a European wild rabbit (
Oryctolagus cuniculus algirus
), Portugal. VETERINARY RECORD CASE REPORTS 2020. [DOI: 10.1136/vetreccr-2019-001002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Carina Luisa Carvalho
- Instituto Nacional de Investigação Agrária e veterinária (INIAV)Av. da República, Quinta do Marquês (edíficio sede)OeirasPortugal
| | - Fábio Alexandre Abade dos Santos
- Instituto Nacional de Investigação Agrária e veterinária (INIAV)Av. da República, Quinta do Marquês (edíficio sede)OeirasPortugal
- CIISAFaculdade de Medicina VeterináriaUniversidade de LisboaAvenida da Universidade TécnicaLisboaPortugal
| | - Teresa Fagulha
- Instituto Nacional de Investigação Agrária e veterinária (INIAV)Av. da República, Quinta do Marquês (edíficio sede)OeirasPortugal
| | - Paulo Carvalho
- Instituto Nacional de Investigação Agrária e veterinária (INIAV)Av. da República, Quinta do Marquês (edíficio sede)OeirasPortugal
| | - Paula Mendonça
- Instituto Nacional de Investigação Agrária e veterinária (INIAV)Av. da República, Quinta do Marquês (edíficio sede)OeirasPortugal
| | - Madalena Monteiro
- Instituto Nacional de Investigação Agrária e veterinária (INIAV)Av. da República, Quinta do Marquês (edíficio sede)OeirasPortugal
| | - Margarida Dias Duarte
- Instituto Nacional de Investigação Agrária e veterinária (INIAV)Av. da República, Quinta do Marquês (edíficio sede)OeirasPortugal
- CIISAFaculdade de Medicina VeterináriaUniversidade de LisboaAvenida da Universidade TécnicaLisboaPortugal
| |
Collapse
|
26
|
Qi R, Miao Q, Zhu J, Tang J, Tang A, Wang X, Dong D, Guo H, Liu G. Construction and immunogenicity of novel bivalent virus-like particles bearing VP60 genes of classic RHDV(GI.1) and RHDV2(GI.2). Vet Microbiol 2019; 240:108529. [PMID: 31902498 DOI: 10.1016/j.vetmic.2019.108529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Rabbit hemorrhagic disease (RHD) is an acute, inflammatory, septic, and devastating infectious disease caused by Rabbit hemorrhagic disease virus (RHDV), which poses a serious threat to the rabbit industry. RHDV2 (GI.2/RHDVb), a recently reported new variant could cause RHD in wild populations, but also RHDV-vaccinated rabbits. For now, both RHDV and RHDV2 are the main causes of RHD. To develop a new subunit vaccine that could protect rabbits against both classic RHDV and RHDV2 infections, we constructed a recombinant baculovirus (Bac-classic RHDV VP60-RHDV2 VP60) containing the VP60 genes of classic RHDV and RHDV2. Both VP60 genes were well expressed simultaneously in Spodoptera frugiperda cells (Sf9) after infection with the recombinant baculovirus. Transmission electron microscopy showed that the recombinant VP60 self-assembled into virus-like particles (VLPs). The antigenicity and immunogenicity of the bivalent VLPs vaccine were examined with animal experiments. Our results demonstrated that both the humoral and cellular immune responses were efficiently induced in rabbits by a subunit vaccine based on the recombinant baculovirus. In addition, all rabbits immunized with the bivalent VLPs vaccine survived after challenged with classic RHDV, and showed no clinical signs of RHD, whereas all the rabbits in the negative control group died from classic RHDV infection and showed typical clinical signs of RHD. In summary, our results indicated that the recombinant baculovirus carrying two VP60 genes is a candidate construct from which to develop a bivalent VLPs vaccine against both classic RHDV and RHDV2 infections.
Collapse
Affiliation(s)
- Ruibin Qi
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Qiuhong Miao
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; Laboratory of Virology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Jie Zhu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Jingyu Tang
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Aoxing Tang
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Xiaoxue Wang
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Dandan Dong
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Hongyuan Guo
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Guangqing Liu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| |
Collapse
|
27
|
Qi R, Zhu J, Miao Q, Tang A, Dong D, Wang X, Liu G. Bioinformatics analysis of capsid protein of different subtypes rabbit hemorrhagic disease virus. BMC Vet Res 2019; 15:423. [PMID: 31775738 PMCID: PMC6882040 DOI: 10.1186/s12917-019-2161-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/29/2019] [Indexed: 11/10/2022] Open
Abstract
Background Rabbit Hemorrhagic Disease Virus (RHDV) belongs to the Caliciviridae family, is a highly lethal pathogen to rabbits. Increasing numbers of studies have demonstrated the existence of antigenic variation in RHDV, leading to the emergence of a new RHDV isolate (RHDVb). However, the underlying factors determining the emergence of the new RHDV and its unpredictable epidemiology remain unclear. To investigate these issues, we selected more than 184 partial and/or complete genome sequences of RHDV from GenBank and analyzed their phylogenetic relationships, divergence, and predicted protein modification sites. Results Phylogenetic analysis showed that classic RHDV isolates, RHDVa, and RHDVb formed different clades. It’s interesting to note that RHDVa being more closely related to classic RHDV than RHDVb, while RHDVb had a closer genetic relationship to Rabbit Calicivirus (RCV) than to classic RHDV isolates. Moreover, divergence analysis suggested that the accumulation of amino acid (aa) changes might be a consequence of adaptive diversification of capsid protein (VP60) during the division between classical RHDV, RHDVa, RHDVb, and RCV. Notably, the prediction of N-glycosylation sites suggested that RHDVb subtypes had two unique N-glycosylation sites (aa 301, 362) but lacked three other N-glycosylation sites (aa 45, 308, 474) displayed in classic RHDV and RHDVa VP60 implying this divergence of N-glycosylation sites in RHDV might affect viral virulence. Analysis of phosphorylation sites also indicated that some phosphorylation sites in RHDVa and RHDVb differed from those in classic RHDV, potentially related to antigenic variation in RHDV. Conclusion The genetic relationship between RHDVb and RCV was closer than classic RHDV isolates. Moreover, compared to RHDV and RHDVa, RHDVb had two unique N-glycosylation sites but lacked three sites, which might affect the virulence of RHDV. These results may provide new clues for further investigations of the origin of new types of RHDV and the mechanisms of genetic variation in RHDV.
Collapse
Affiliation(s)
- Ruibin Qi
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China
| | - Jie Zhu
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China
| | - Qiuhong Miao
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China
| | - Aoxing Tang
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China
| | - Dandan Dong
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China
| | - Xiaoxue Wang
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China
| | - Guangqing Liu
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China.
| |
Collapse
|
28
|
Wang L, Xia T, Guo T, Ru Y, Jiang Y, Cui W, Zhou H, Qiao X, Tang L, Xu Y, Li Y. Recombinant Lactobacillus casei Expressing Capsid Protein VP60 can Serve as Vaccine Against Rabbit Hemorrhagic Disease Virus in Rabbits. Vaccines (Basel) 2019; 7:vaccines7040172. [PMID: 31684059 PMCID: PMC6963290 DOI: 10.3390/vaccines7040172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023] Open
Abstract
Rabbit hemorrhagic disease virus (RHDV) is the causative agent of rabbit hemorrhagic disease (RHD). RHD, characterized by hemorrhaging, liver necrosis, and high morbidity and mortality in rabbits and hares, causes severe economic losses in the rabbit industry worldwide. Due to the lack of an efficient in-vitro propagation system for RHDV, the current vaccine is produced via chemical inactivation of crude RHDV preparation derived from the livers of infected rabbits. Inactivated vaccines are effective for controlling RHD, but the potential problems of biosafety and animal welfare have negative effects on the application of inactivated vaccines. In this study, an oral Lactobacillus casei (L. casei) vaccine was used as an antigen delivery system to express RHDV capsid protein VP60(VP1)-eGFP fusion protein. The expression of the recombinant protein was confirmed via western blotting and immunofluorescence (IFA). Our results indicate that oral administration of this probiotic vaccine can stimulate secretory immunoglobulin A (SIgA)-based mucosal and IgG-based humoral immune responses in rabbits. The immunized rabbits were completely protected against challenge with RHDV. Our findings indicate that the L. casei expression system is a new strategy for the development of a safe and efficient vaccine against RHDV.
Collapse
Affiliation(s)
- Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Tian Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Tiantian Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin 150030, China.
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin 150030, China.
| |
Collapse
|
29
|
Le Minor O, Boucher S, Joudou L, Mellet R, Sourice M, Le Moullec T, Nicolier A, Beilvert F, Sigognault-Flochlay A. Rabbit haemorrhagic disease: experimental study of a recent highly pathogenic GI.2/RHDV2/b strain and evaluation of vaccine efficacy. WORLD RABBIT SCIENCE 2019. [DOI: 10.4995/wrs.2019.11082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In 2010, a variant of the rabbit haemorrhagic disease virus (RHDV) belonging to a new GI.2 genotype was identified in France and rapidly spread worldwide. Due to antigenic difference, new vaccines including G1.2 strains have been developed to confer adequate protection. An increase in the pathogenicity of the circulating strains was recently reported. The objective of this experimental study was to characterise the infection with a highly pathogenic GI.2/RHDV2/b isolate (2017) and assess the efficacy of Filavac VHD K C+V vaccine (Filavie) against this strain. Four and 10-wk-old specific pathogen-free rabbits were inoculated with a recommended dose of vaccine. After 7 d, controls and vaccinated rabbits were challenged and clinically monitored for 14 d. All animals were necropsied and blood, organs and urine were sampled for quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis. In adult groups, regular nasal and rectal swabbing were performed, and faeces were collected after death to monitor RNA shedding. In control groups, the challenge strain induced acute RHD between 31 and 72 h post-inoculation, with a mortality rate of 100% for kits and 89% for adult rabbits. Except for a shorter mean time to death in kits, similar clinical signs and lesions were observed between age groups. The vaccination significantly prevented all mortality, clinical signs, detection of viral RNA in serum and gross lesions in kits and adult rabbits. In adult groups, we also demonstrated that vaccine significantly protected from detectable RNA shedding via naso-conjunctival and rectal routes. Two weeks after challenge, RNA copies were not detected by PCR in the liver, spleen, lungs, kidneys, faeces and urine of vaccinated adult rabbits. The findings for kits were similar, except that very low levels of RNA were present in the liver and spleen of a few rabbits. These data show that immunisation prevented any significant viral multiplication and/or allowed a rapid clearance. We concluded that, despite the quick evolution of GI.2/RHDV2/b strains, the protection conferred by the vaccine remains adequate. In the context of coexistence of both GI.1 and GI.2 genotypes in some countries, with the circulation of multiples recombinant viruses, the vaccination should be based on the association of strains from both genotypes.
Collapse
|
30
|
Camacho-Sillero L, Caballero-Gómez J, Gómez-Guillamón F, Martínez-Padilla A, Agüero M, Miguel ES, Zorrilla I, Rayas E, Talavera V, García-Bocanegra I. Monitoring of the novel rabbit haemorrhagic disease virus type 2 (GI.2) epidemic in European wild rabbits (Oryctolagus cuniculus) in southern Spain, 2013-2017. Vet Microbiol 2019; 237:108361. [PMID: 31521392 DOI: 10.1016/j.vetmic.2019.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
Abstract
Rabbit hemorrhagic disease (RHD) is a highly infectious disease in European rabbits (Oryctolagus cuniculus), caused by a virus belonging to the genus Lagovirus (RHDV; family Caliciviridae). In 2010, a new genotype of RHDV (RHDV2 or RHDVb, currently designated GI.2) emerged in France, affecting both domestic rabbits, even those vaccinated for the classical RHDV genotypes (currently designated GI.1) and wild rabbits. GI.2 was subsequently identified in other European countries. The aim of the present study was to monitor the GI.2 epidemic in wild rabbits in Andalusia (southern Spain) during the period 2013-2017. At the beginning of summer 2013, high mortalities were detected in wild rabbit populations in southern Spain. A total of 96 affected hunting or protected areas were surveyed. The first outbreak was observed on June 2013. The number of outbreaks sharply increased in 2013 and 2014, with a decreasing trend being observed during the following years. The spatial distribution of GI.2 was not homogeneous, since most of the detected outbreaks were concentrated in the western part of Andalusia. The outbreaks peaked in winter and spring and have been detected in the last five consecutive years, which suggests endemic circulation of GI.2 in wild rabbit populations in Spain. A total of 190 dead rabbits from 87 of the 96 areas surveyed were collected during the study period. Mortality affected rabbits of different age classes, including kittens. RT-PCR confirmed the presence of GI.2 RNA in the livers of 185 of the 190 (97.4%) rabbits. Phylogenetic analysis performed on eleven samples collected in different provinces of Andalusia between 2013 and 2017, showed high nucleotide identity with GI.2 strains Spain, France and Portugal. The results constitute an important step in understanding of the emergence and spread of GI.2 in this country and will provide valuable information for the development of surveillance programs in Europe.
Collapse
Affiliation(s)
- L Camacho-Sillero
- Agencia de Medio Ambiente y Agua (AMAYA), Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía, Málaga, Spain; Departamento de Sanidad Animal, Universidad de Córdoba (UCO), Córdoba, Spain
| | - J Caballero-Gómez
- Departamento de Sanidad Animal, Universidad de Córdoba (UCO), Córdoba, Spain; Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain
| | - F Gómez-Guillamón
- Departamento de Sanidad Animal, Universidad de Córdoba (UCO), Córdoba, Spain; Consejería de Medio Ambiente, Junta de Andalucía, Málaga, Spain
| | - A Martínez-Padilla
- Departamento de Sanidad Animal, Universidad de Córdoba (UCO), Córdoba, Spain
| | - M Agüero
- Laboratorio Central de Veterinaria (LCV), Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, Algete, Madrid, Spain
| | - E San Miguel
- Laboratorio Central de Veterinaria (LCV), Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, Algete, Madrid, Spain
| | - I Zorrilla
- Agencia de Medio Ambiente y Agua (AMAYA), Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía, Málaga, Spain
| | - E Rayas
- Agencia de Medio Ambiente y Agua (AMAYA), Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía, Málaga, Spain
| | - V Talavera
- Agencia de Medio Ambiente y Agua (AMAYA), Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía, Málaga, Spain
| | - I García-Bocanegra
- Departamento de Sanidad Animal, Universidad de Córdoba (UCO), Córdoba, Spain.
| |
Collapse
|
31
|
Immunogenicity in Rabbits of Virus-Like Particles from a Contemporary Rabbit Haemorrhagic Disease Virus Type 2 (GI.2/RHDV2/b) Isolated in The Netherlands. Viruses 2019; 11:v11060553. [PMID: 31207978 PMCID: PMC6631637 DOI: 10.3390/v11060553] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 11/24/2022] Open
Abstract
Rabbit haemorrhagic disease virus (RHDV) type 2 (GI.2/RHDV2/b) is an emerging pathogen in wild rabbits and in domestic rabbits vaccinated against RHDV (GI.1). Here we report the genome sequence of a contemporary RHDV2 isolate from the Netherlands and investigate the immunogenicity of virus-like particles (VLPs) produced in insect cells. RHDV2 RNA was isolated from the liver of a naturally infected wild rabbit and the complete viral genome sequence was assembled from sequenced RT-PCR products. Phylogenetic analysis based on the VP60 capsid gene demonstrated that the RHDV2 NL2016 isolate clustered with other contemporary RHDV2 strains. The VP60 gene was cloned in a baculovirus expression vector to produce VLPs in Sf9 insect cells. Density-gradient purified RHDV2 VLPs were visualized by transmission electron microscopy as spherical particles of around 30 nm in diameter with a morphology resembling authentic RHDV. Immunization of rabbits with RHDV2 VLPs resulted in high production of serum antibodies against VP60, and the production of cytokines (IFN-γ and IL-4) was significantly elevated in the immunized rabbits compared to the control group. The results demonstrate that the recombinant RHDV2 VLPs are highly immunogenic and may find applications in serological detection assays and might be further developed as a vaccine candidate to protect domestic rabbits against RHDV2 infection.
Collapse
|
32
|
Rahali N, Sghaier S, Kbaier H, Zanati A, Bahloul C. Genetic characterization and phylogenetic analysis of rabbit hemorrhagic disease virus isolated in Tunisia from 2015 to 2018. Arch Virol 2019; 164:2327-2332. [PMID: 31177352 DOI: 10.1007/s00705-019-04311-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/14/2019] [Indexed: 12/01/2022]
Abstract
Two distinct genotypes responsible for rabbit hemorrhagic disease (RHD) are reported, GI.1 (RHDV) and GI.2 (RHDV2). Vaccines based on these two genotypes are only partially cross-protective. Hence, knowing which genotype is circulating is important for appropriate control measures. We have investigated 25 field samples isolated between 2015 and 2018 from rabbits with clinical signs of RHD. Only GI.2 (RHDV2) is currently circulating in Tunisia. All Tunisian samples were grouped together with typical genotypic and phenotypic mutations. Therefore, we recommend initiating an extensive preventive vaccination program based on GI.2 vaccines in addition to a regular monitoring of the circulating lagoviruses.
Collapse
Affiliation(s)
- Nadia Rahali
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT01 Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, 13, Place Pasteur BP-74, 1002, Tunis-Belvedere, Tunisia
| | - Soufien Sghaier
- Institut de la Recherche Vétérinaire de Tunisie, Service Virologie, 20 Rue Djebel Lakhdar La Rabta, 1006, Tunis, Tunisia
| | - Houaida Kbaier
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT01 Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, 13, Place Pasteur BP-74, 1002, Tunis-Belvedere, Tunisia
| | - Amira Zanati
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT01 Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, 13, Place Pasteur BP-74, 1002, Tunis-Belvedere, Tunisia
| | - Chokri Bahloul
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT01 Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, 13, Place Pasteur BP-74, 1002, Tunis-Belvedere, Tunisia.
| |
Collapse
|
33
|
Kwit E, Rzeżutka A. Molecular methods in detection and epidemiologic studies of rabbit and hare viruses: a review. J Vet Diagn Invest 2019; 31:497-508. [PMID: 31131728 DOI: 10.1177/1040638719852374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Various PCR-based assays for rabbit viruses have gradually replaced traditional virologic assays, such as virus isolation, because they offer high-throughput analysis, better test sensitivity and specificity, and allow vaccine and wild-type virus strains to be fully typed and differentiated. In addition, PCR is irreplaceable in the detection of uncultivable or fastidious rabbit pathogens or those occurring in low quantity in a tested sample. We provide herein an overview of the current state of the art in the molecular detection of lagomorph viral pathogens along with details of their targeted gene or nucleic acid sequence and recommendations for their application. Apart from the nucleic acids-based methods used for identification and comprehensive typing of rabbit viruses, novel methods such as microarray, next-generation sequencing, and mass spectrometry (MALDI-TOF MS) could also be employed given that they offer greater throughput in sample screening for viral pathogens. Molecular methods should be provided with an appropriate set of controls, including an internal amplification control, to confirm the validity of the results obtained.
Collapse
Affiliation(s)
- Ewa Kwit
- Department of Food and Environmental Virology, National Veterinary Research Institute, Puławy, Poland
| | - Artur Rzeżutka
- Department of Food and Environmental Virology, National Veterinary Research Institute, Puławy, Poland
| |
Collapse
|
34
|
|
35
|
Lopes AM, Rouco C, Esteves PJ, Abrantes J. GI.1b/GI.1b/GI.2 recombinant rabbit hemorrhagic disease virus 2 (Lagovirus europaeus/GI.2) in Morocco, Africa. Arch Virol 2018; 164:279-283. [PMID: 30284631 DOI: 10.1007/s00705-018-4052-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/17/2018] [Indexed: 12/01/2022]
Abstract
Rabbit hemorrhagic disease virus (RHDV) is highly lethal to the European rabbit (Oryctolagus cuniculus). It was first reported in 1984 in China, but in 2010, a new variant of the virus was detected (GI.2) in France. Several recombination events with pathogenic and non-pathogenic strains have been described. Here, we report the first sequences of RHDV in Africa, isolated from Moroccan rabbits, and these resemble GI.1b/GI.1b/GI.2 recombinants found in the Iberian Peninsula. Monitoring and characterization of strains from future outbreaks are advised to guarantee the success of current programs on small-rabbit production for poverty alleviation in African countries.
Collapse
Affiliation(s)
- Ana M Lopes
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS)/Unidade Multidisciplinar de Investigação Biomédica (UMIB), Universidade do Porto, Porto, Portugal
| | - Carlos Rouco
- Departamento de Zoología, Facultad de Ciencias de la Universidad de Córdoba, Córdoba, Spain
| | - Pedro J Esteves
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Joana Abrantes
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.
| |
Collapse
|
36
|
Neave MJ, Hall RN, Huang N, McColl KA, Kerr P, Hoehn M, Taylor J, Strive T. Robust Innate Immunity of Young Rabbits Mediates Resistance to Rabbit Hemorrhagic Disease Caused by Lagovirus Europaeus GI.1 But Not GI.2. Viruses 2018; 10:E512. [PMID: 30235853 PMCID: PMC6163550 DOI: 10.3390/v10090512] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 01/07/2023] Open
Abstract
The rabbit caliciviruses Lagovirus europaeus GI.1 and GI.2 both cause acute necrotizing hepatitis in European rabbits (Oryctolagus cuniculus). Whilst GI.2 is highly virulent in both young and adult rabbits, rabbits younger than eight weeks of age are highly resistant to disease caused by GI.1, although they are still permissive to infection and viral replication. To investigate the underlying mechanism(s) of this age related resistance to GI.1, we compared liver transcriptomes of young rabbits infected with GI.1 to those of adult rabbits infected with GI.1 and young rabbits infected with GI.2. Our data suggest that kittens have constitutively heightened innate immune responses compared to adult rabbits, particularly associated with increased expression of major histocompatibility class II molecules and activity of natural killer cells, macrophages, and cholangiocytes. This enables them to respond more rapidly to GI.1 infection than adult rabbits and thus limit virus-induced pathology. In contrast, these responses were not fully developed during GI.2 infection. We speculate that the observed downregulation of multiple genes associated with innate immunity in kittens during GI.2 infection may be due to virally-mediated immunomodulation, permitting fatal disease to develop. Our study provides insight into the fundamental host⁻pathogen interactions responsible for the differences in age-related susceptibility, which likely plays a critical role in defining the success of GI.2 in outcompeting GI.1 in the field.
Collapse
Affiliation(s)
- Matthew J Neave
- CSIRO Australian Animal Health Laboratory, Geelong, VIC 3220, Australia.
| | - Robyn N Hall
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| | - Nina Huang
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| | - Kenneth A McColl
- CSIRO Australian Animal Health Laboratory, Geelong, VIC 3220, Australia.
| | - Peter Kerr
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| | - Marion Hoehn
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| | | | - Tanja Strive
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| |
Collapse
|
37
|
Mahar JE, Read AJ, Gu X, Urakova N, Mourant R, Piper M, Haboury S, Holmes EC, Strive T, Hall RN. Detection and Circulation of a Novel Rabbit Hemorrhagic Disease Virus in Australia. Emerg Infect Dis 2018; 24:22-31. [PMID: 29260677 PMCID: PMC5749467 DOI: 10.3201/eid2401.170412] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The highly virulent rabbit hemorrhagic disease virus (RHDV) has been widely used in Australia and New Zealand since the mid-1990s to control wild rabbits, an invasive vertebrate pest in these countries. In January 2014, an exotic RHDV was detected in Australia, and 8 additional outbreaks were reported in both domestic and wild rabbits in the 15 months following its detection. Full-length genomic analysis revealed that this virus is a recombinant containing an RHDVa capsid gene and nonstructural genes most closely related to nonpathogenic rabbit caliciviruses. Nationwide monitoring efforts need to be expanded to assess if the increasing number of different RHDV variants circulating in the Australian environment will affect biological control of rabbits. At the same time, updated vaccines and vaccination protocols are urgently needed to protect pet and farmed rabbits from these novel rabbit caliciviruses.
Collapse
|
38
|
Neimanis A, Larsson Pettersson U, Huang N, Gavier-Widén D, Strive T. Elucidation of the pathology and tissue distribution of Lagovirus europaeus GI.2/RHDV2 (rabbit haemorrhagic disease virus 2) in young and adult rabbits (Oryctolagus cuniculus). Vet Res 2018; 49:46. [PMID: 29866169 PMCID: PMC5987473 DOI: 10.1186/s13567-018-0540-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/03/2018] [Indexed: 01/28/2023] Open
Abstract
Lagovirus europaeus GI.2, also known as RHDV2 or RHDVb, is an emerging virus that causes rabbit haemorrhagic disease (RHD) in European rabbits (Oryctolagus cuniculus). In contrast to L. europaeus GI.1 (or RHDV/RHDVa) viruses that are only pathogenic for adults, GI.2 causes clinical disease in both adults and kittens. However, detailed descriptions of the pathology of this virus that may provide insight into its pathogenicity and emergence are lacking. Using an Australian GI.2 field strain isolated in 2015, we provide the first detailed description of pathology, viral antigen distribution and tissue load of GI.2 in adult and 5-week old New Zealand white rabbits using histology, immunohistochemistry and RT-qPCR. Liver was the target organ, but in contrast to GI.1 viruses, lesions and inflammatory responses did not differ between adults and kittens. Lymphocytic inflammation, proposed to be protective in kittens infected with GI.1, was notably absent. We also present the first descriptions of bone marrow changes in RHD, including decreased myeloid-to-erythroid ratio. Consistent with other pathogenic lagoviruses, intracellular viral antigen was demonstrated in hepatocytes and cells of the mononuclear phagocytic system. In terminal stages of disease, viral loads were highest in liver, serum and spleen. Despite the small sample size, our data suggest that unlike early European GI.2 strains, the pathogenicity of the Australian GI.2 virus is similar to GI.1 viruses. Additionally, GI.2 was fatal for all (n = 5) inoculated kittens in this study. This may significantly alter RHD epidemiology in the field, and may impact biocontrol programs for invasive rabbits in Australia where GI.1 viruses are intentionally released.
Collapse
Affiliation(s)
- Aleksija Neimanis
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden. .,Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), 750 07, Uppsala, Sweden.
| | - Ulrika Larsson Pettersson
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden
| | - Nina Huang
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Health & Biosecurity, Black Mountain Laboratories, Canberra, Australia
| | - Dolores Gavier-Widén
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden.,Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), 750 07, Uppsala, Sweden
| | - Tanja Strive
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Health & Biosecurity, Black Mountain Laboratories, Canberra, Australia
| |
Collapse
|
39
|
Cooke B. Long-term monitoring of disease impact: rabbit haemorrhagic disease as a biological control case study. Vet Rec 2018; 182:571-572. [DOI: 10.1136/vr.k2105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Brian Cooke
- Institute for Applied Ecology, University of Canberra; Australian Capital Territory 2611 Australia
| |
Collapse
|
40
|
Mutze G, De Preu N, Mooney T, Koerner D, McKenzie D, Sinclair R, Kovaliskli J, Peacock D. Substantial numerical decline in South Australian rabbit populations following the detection of rabbit haemorrhagic disease virus 2. Vet Rec 2018. [PMID: 29519856 DOI: 10.1136/vr.104734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Lagovirus europaeus GI.2, also commonly known as rabbit haemorrhagic disease virus 2, was first detected at two long-term monitoring sites for European rabbits, Oryctolagus cuniculus, in South Australia, in mid-2016. Numbers of rabbits in the following 12-18 months were reduced to approximately 20 per cent of average numbers in the preceding 10 years. The impact recorded at the two South Australian sites, if widespread in Australia and persistent for several years, is likely to be of enormous economic and environmental benefit.
Collapse
Affiliation(s)
- Greg Mutze
- Biosecurity SA, Department of Primary Industries and Regions South Australia, Adelaide, South Australia, Australia
| | - Nicki De Preu
- Ardeotis Biological Consultants, Watervale, South Australia, Australia
| | - Trish Mooney
- Department of Environment, Water and Natural Resources, Port Augusta, South Australia, Australia
| | - Dylan Koerner
- Department of Environment, Water and Natural Resources, Port Augusta, South Australia, Australia
| | - Darren McKenzie
- Department of Environment, Water and Natural Resources, Port Augusta, South Australia, Australia
| | - Ron Sinclair
- Biosecurity SA, Department of Primary Industries and Regions South Australia, Adelaide, South Australia, Australia
| | - John Kovaliskli
- Biosecurity SA, Department of Primary Industries and Regions South Australia, Adelaide, South Australia, Australia
| | - David Peacock
- Biosecurity SA, Department of Primary Industries and Regions South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
41
|
Silvério D, Lopes AM, Melo-Ferreira J, Magalhães MJ, Monterroso P, Serronha A, Maio E, Alves PC, Esteves PJ, Abrantes J. Insights into the evolution of the new variant rabbit haemorrhagic disease virus (GI.2) and the identification of novel recombinant strains. Transbound Emerg Dis 2018; 65:983-992. [DOI: 10.1111/tbed.12830] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 12/29/2022]
Affiliation(s)
- D. Silvério
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
- Faculdade de Ciências; Departamento de Biologia; Universidade do Porto; Porto Portugal
| | - A. M. Lopes
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB); Institute of Biomedical Sciences Abel Salazar (ICBAS); University of Porto; Porto Portugal
| | - J. Melo-Ferreira
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
| | - M. J. Magalhães
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
| | - P. Monterroso
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
| | - A. Serronha
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
| | - E. Maio
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
| | - P. C. Alves
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
- Faculdade de Ciências; Departamento de Biologia; Universidade do Porto; Porto Portugal
- Wildlife Biology Program; University of Montana; Missoula MT USA
| | - P. J. Esteves
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
- Faculdade de Ciências; Departamento de Biologia; Universidade do Porto; Porto Portugal
| | - J. Abrantes
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
| |
Collapse
|
42
|
Rabbit Hemorrhagic Disease Virus 2 (RHDV2; GI.2) Is Replacing Endemic Strains of RHDV in the Australian Landscape within 18 Months of Its Arrival. J Virol 2018; 92:JVI.01374-17. [PMID: 29093089 DOI: 10.1128/jvi.01374-17] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Rabbit hemorrhagic disease virus 2 (RHDV2; Lagovirus GI.2) is a pathogenic calicivirus that affects European rabbits (Oryctolagus cuniculus) and various hare (Lepus) species. GI.2 was first detected in France in 2010 and subsequently caused epidemics in wild and domestic lagomorph populations throughout Europe. In May 2015, GI.2 was detected in Australia. Within 18 months of its initial detection, GI.2 had spread to all Australian states and territories and rapidly became the dominant circulating strain, replacing Rabbit hemorrhagic disease virus (RHDV/GI.1) in mainland Australia. Reconstruction of the evolutionary history of 127 Australian GI.2 isolates revealed that the virus arrived in Australia at least several months before its initial description and likely circulated unnoticed in wild rabbit populations in the east of the continent prior to its detection. GI.2 sequences isolated from five hares clustered with sequences from sympatric rabbit populations sampled contemporaneously, indicating multiple spillover events into hares rather than an adaptation of the Australian GI.2 to a new host. Since the presence of GI.2 in Australia may have wide-ranging consequences for rabbit biocontrol, particularly with the release of the novel biocontrol agent GI.1a/RHDVa-K5 in March 2017, ongoing surveillance is critical to understanding the interactions of the various lagoviruses in Australia and their impact on host populations.IMPORTANCE This study describes the spread and distribution of Rabbit hemorrhagic disease virus 2 (GI.2) in Australia since its first detection in May 2015. Within the first 18 months following its detection, RHDV2 spread from east to west across the continent and became the dominant strain in all mainland states of Australia. This has important implications for pest animal management and for owners of pet and farmed rabbits, as there currently is no effective vaccine available in Australia for GI.2. The closely related RHDV (GI.1) is used to control overabundant wild rabbits, a serious environmental and agricultural pest in this country, and it is currently unclear how the widespread circulation of GI.2 will impact ongoing targeted wild rabbit management operations.
Collapse
|
43
|
Lopes AM, Blanco-Aguiar J, Martín-Alonso A, Leitão M, Foronda P, Mendes M, Gonçalves D, Abrantes J, Esteves PJ. Full genome sequences are key to disclose RHDV2 emergence in the Macaronesian islands. Virus Genes 2017; 54:1-4. [PMID: 29151222 DOI: 10.1007/s11262-017-1523-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/15/2017] [Indexed: 11/27/2022]
Abstract
A recent publication by Carvalho et al. in "Virus Genes" (June 2017) reported the presence of the new variant of rabbit hemorrhagic disease virus (RHDV2) in the two larger islands of the archipelago of Madeira. Based on the capsid protein sequence, the authors suggested that the high sequence identity, along with the short time spanning between outbreaks, points to dissemination from Porto Santo to Madeira. By including information of the full RHDV2 genome of strains from Azores, Madeira, and the Canary Islands, we confirm the results obtained by Carvalho et al., but further show that several subtypes of RHDV2 circulate in these islands: non-recombinant RHDV2 in the Canary Islands, G1/RHDV2 in Azores, Porto Santo and Madeira, and NP/RHDV2 also in Madeira. Here we conclude that RHDV2 has been independently introduced in these archipelagos, and that in Madeira at least two independent introductions must have occurred. We provide additional information on the dynamics of RHDV2 in the Macaronesian archipelagos of Azores, Madeira, and the Canary Islands and highlight the importance of analyzing RHDV2 complete genome.
Collapse
Affiliation(s)
- Ana M Lopes
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Jose Blanco-Aguiar
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
- Instituto de Investigación en Recursos Cinegéticos (IREC) (CSIC-UCLM-JCCM), Ronda de Toledo, s/n, 13071, Ciudad Real, Spain
| | - Aaron Martín-Alonso
- Institute of Tropical Diseases and Public Health of the Canary Islands, Universidad de La Laguna, Avda. Fco. Sanchez s/n, 38203, Tenerife, Canary Islands, Spain
| | - Manuel Leitão
- Direção Regional dos Recursos Florestais, Rua do Contador 23, 9500-050, Ponta Delgada, Açores, Portugal
| | - Pilar Foronda
- Institute of Tropical Diseases and Public Health of the Canary Islands, Universidad de La Laguna, Avda. Fco. Sanchez s/n, 38203, Tenerife, Canary Islands, Spain
| | - Marco Mendes
- Quinta Vila Passos, Instituto das Florestas e Conservação da Natureza, Rua Alferes Veiga Pestana, 15, 9054-505, Funchal, Madeira, Portugal
| | - David Gonçalves
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Joana Abrantes
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Pedro J Esteves
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal.
| |
Collapse
|
44
|
Rouco C, Abrantes J, Serronha A, Lopes AM, Maio E, Magalhães MJ, Blanco E, Bárcena J, Esteves PJ, Santos N, Alves PC, Monterroso P. Epidemiology of RHDV2 (Lagovirus europaeus/GI.2) in free-living wild European rabbits in Portugal. Transbound Emerg Dis 2017; 65:e373-e382. [DOI: 10.1111/tbed.12767] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 01/29/2023]
Affiliation(s)
- C. Rouco
- Departamento de Zoología; Facultad de Ciencias de la Universidad de Córdoba; Córdoba Spain
| | - J. Abrantes
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
| | - A. Serronha
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
| | - A. M. Lopes
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS)/Unidade Multidisciplinar de Investigação Biomédica (UMIB); Universidade do Porto; Porto Portugal
| | - E. Maio
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
| | - M. J. Magalhães
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
| | - E. Blanco
- Centro de Investigación en Sanidad Animal (INIA-CISA); Valdeolmos Madrid Spain
| | - J. Bárcena
- Centro de Investigación en Sanidad Animal (INIA-CISA); Valdeolmos Madrid Spain
| | - P. J. Esteves
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto; Porto Portugal
| | - N. Santos
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
| | - P. C. Alves
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto; Porto Portugal
- Wildlife Biology Program; University of Montana; Missoula MT USA
| | - P. Monterroso
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
| |
Collapse
|
45
|
Abade Dos Santos FA, Carvalho C, Nuno O, Correia JJ, Henriques M, Peleteiro MC, Fevereiro M, Duarte MD. Detection of rabbit Haemorrhagic disease virus 2 during the wild rabbit (Oryctolagus cuniculus) eradication from the Berlengas archipelago, Portugal. BMC Vet Res 2017; 13:336. [PMID: 29141631 PMCID: PMC5688637 DOI: 10.1186/s12917-017-1257-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In the regular wildlife monitoring action carried out in the summer of the past few years at the Berlenga Island, wild rabbits (Oryctolagus cuniculus) have been repeatedly found dead. However, the origin of those deaths was never investigated. Our aim was to investigate the cause of death of 11 rabbits collected between April and May 2016. RESULTS While screening samples from rabbit carcasses for the major viral rabbit pathogens, five tested positive to RHDV2 but all were negative for RHDV and myxoma virus (MYXV). For six RHDV2-negative specimens, emaciation and parasitism were considered the most probable cause of death. Lesions identified in the RHDV2-positive rabbits included non-suppurative diffuse hepatic necrosis and pulmonary lesions varying from congestion and oedema of the lungs to interstitial pneumonia. Sequencing analysis of the vp60 gene obtained from two specimens showed identical vp60 sequences. Comparison with other known RHDV2 strains from public databases through BLAST analysis revealed a closer similarity with strains from Alentejo collected during 2013. Maximum Likelihood and Bayesian phylogenetic analysis showed that the 2016 strains from the archipelago have a higher resemblance with a group of strains mostly collected in the South of Portugal between 2013 and 2014. CONCLUSION The results suggest that RHDV2 may have been introduced on the Berlenga Island a few years ago, having evolved separately from mainland strains due to insularity.
Collapse
Affiliation(s)
- F A Abade Dos Santos
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa. Av. da Universidade Técnica, 1300-477, Lisbon, Portugal. .,Rua Quinta do Pinto N°5 3°D, 2660-067, Loures, Frielas, Portugal.
| | - C Carvalho
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM); Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora. Núcleo da Mitra, 7000, Évora, Portugal
| | - Oliveira Nuno
- Sociedade Portuguesa para o Estudo das Aves (SPEA), Av. Columbano Bordalo Pinheiro, 87, 3º Andar, 1070-062, Lisboa, Portugal
| | - J J Correia
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa. Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - M Henriques
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Laboratório de Virologia. Av. da República, Quinta do Marquês, 2780-157, Oeiras, Portugal
| | - M C Peleteiro
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa. Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - M Fevereiro
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Laboratório de Virologia. Av. da República, Quinta do Marquês, 2780-157, Oeiras, Portugal
| | - M D Duarte
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Laboratório de Virologia. Av. da República, Quinta do Marquês, 2780-157, Oeiras, Portugal
| |
Collapse
|
46
|
Le Gall-Reculé G, Lemaitre E, Bertagnoli S, Hubert C, Top S, Decors A, Marchandeau S, Guitton JS. Large-scale lagovirus disease outbreaks in European brown hares (Lepus europaeus) in France caused by RHDV2 strains spatially shared with rabbits (Oryctolagus cuniculus). Vet Res 2017; 48:70. [PMID: 29080562 PMCID: PMC5660455 DOI: 10.1186/s13567-017-0473-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/11/2017] [Indexed: 01/20/2023] Open
Abstract
Rabbit haemorrhagic disease virus (RHDV) is a lagovirus that causes rabbit haemorrhagic disease (RHD) in European rabbits (Oryctolagus cuniculus). In 2010, a new genotype called RHDV2 emerged in France. It exhibits a larger host range than classical RHDV strains by sporadically infecting different hare species, including the European hare (Lepus europaeus). Phylogenetic analyses revealed that closely related RHDV2 strains circulate locally in both hares and rabbits, and therefore that RHDV2 strains infecting hares do not belong to a lineage that has evolved only in this species. We showed that RHDV2 is widely distributed in France and that it was responsible for more than a third of cases of lagovirus disease in European hare populations in 2015. The oldest RHDV2 positive hare was sampled in November 2013 and we reported two hares co-infected by EBHSV and RHDV2. All together, our results raise important epidemiological and evolutionary issues. In particular, along with the potential emergence of recombinant EBHSV/RHDV2 strains in hares, the enlargement of the host range changes the host population structure of RHDV2 and may alter the impact of the virus on rabbit and hare populations.
Collapse
Affiliation(s)
- Ghislaine Le Gall-Reculé
- Avian and Rabbit Virology, Immunology and Parasitology Unit, Anses, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, BP 53, 22440, Ploufragan, France. .,University Bretagne Loire, CS 54417, 35044, Rennes Cedex, France.
| | - Evelyne Lemaitre
- Avian and Rabbit Virology, Immunology and Parasitology Unit, Anses, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, BP 53, 22440, Ploufragan, France.,University Bretagne Loire, CS 54417, 35044, Rennes Cedex, France
| | | | - Céline Hubert
- Avian and Rabbit Virology, Immunology and Parasitology Unit, Anses, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, BP 53, 22440, Ploufragan, France.,University Bretagne Loire, CS 54417, 35044, Rennes Cedex, France
| | - Sokunthea Top
- IHAP, University of Toulouse, INRA, ENVT, 31076, Toulouse, France
| | - Anouk Decors
- Research Department, ONCFS, National Hunting and Wildlife Agency, USF, BP 20, 78610, Le Perray-en-Yvelines, France
| | - Stéphane Marchandeau
- Research Department, ONCFS, National Hunting and Wildlife Agency, UFP, CS 42355, 44323, Nantes Cedex 3, France
| | - Jean-Sébastien Guitton
- Research Department, ONCFS, National Hunting and Wildlife Agency, UFP, CS 42355, 44323, Nantes Cedex 3, France
| |
Collapse
|
47
|
Lopes AM, Silvério D, Magalhães MJ, Areal H, Alves PC, Esteves PJ, Abrantes J. Characterization of old RHDV strains by complete genome sequencing identifies a novel genetic group. Sci Rep 2017; 7:13599. [PMID: 29051566 PMCID: PMC5648873 DOI: 10.1038/s41598-017-13902-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/04/2017] [Indexed: 11/11/2022] Open
Abstract
Rabbit hemorrhagic disease (RHD) is a veterinary disease that affects the European rabbit and has a significant economic and ecological negative impact. In Portugal, rabbit hemorrhagic disease virus (RHDV) was reported in 1989 and still causes enzootic outbreaks. Several recombination events have been detected in RHDV strains, including in the first reported outbreak. Here we describe the occurrence of recombination in RHDV strains recovered from rabbit and Iberian hare samples collected in the mid-1990s in Portugal. Characterization of full genomic sequences revealed the existence of a single recombination breakpoint at the boundary of the non-structural and the structural encoding regions, further supporting the importance of this region as a recombination hotspot in lagoviruses. Phylogenetic analysis showed that in the structural region, the recombinant strains were similar to pathogenic G1 strains, but in the non-structural region they formed a new group that diverged ~13% from known strains. No further reports of such group exist, but this recombination event was also detected in an Iberian hare that was associated with the earliest species jump in RHDV. Our results highlight the importance of the characterization of full genomes to disclose RHDV evolution and show that lagoviruses’ diversity has been significantly undersampled.
Collapse
Affiliation(s)
- Ana M Lopes
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Diogo Silvério
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Maria J Magalhães
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Helena Areal
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Paulo C Alves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.,Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, 59812, Montana, USA
| | - Pedro J Esteves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal
| | - Joana Abrantes
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.
| |
Collapse
|
48
|
Le Pendu J, Abrantes J, Bertagnoli S, Guitton JS, Le Gall-Reculé G, Lopes AM, Marchandeau S, Alda F, Almeida T, Célio AP, Bárcena J, Burmakina G, Blanco E, Calvete C, Cavadini P, Cooke B, Dalton K, Delibes Mateos M, Deptula W, Eden JS, Wang F, Ferreira CC, Ferreira P, Foronda P, Gonçalves D, Gavier-Widén D, Hall R, Hukowska-Szematowicz B, Kerr P, Kovaliski J, Lavazza A, Mahar J, Malogolovkin A, Marques RM, Marques S, Martin-Alonso A, Monterroso P, Moreno S, Mutze G, Neimanis A, Niedzwiedzka-Rystwej P, Peacock D, Parra F, Rocchi M, Rouco C, Ruvoën-Clouet N, Silva E, Silvério D, Strive T, Thompson G, Tokarz-Deptula B, Esteves P. Proposal for a unified classification system and nomenclature of lagoviruses. J Gen Virol 2017; 98:1658-1666. [PMID: 28714849 DOI: 10.1099/jgv.0.000840] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lagoviruses belong to the Caliciviridae family. They were first recognized as highly pathogenic viruses of the European rabbit (Oryctolagus cuniculus) and European brown hare (Lepus europaeus) that emerged in the 1970-1980s, namely, rabbit haemorrhagic disease virus (RHDV) and European brown hare syndrome virus (EBHSV), according to the host species from which they had been first detected. However, the diversity of lagoviruses has recently expanded to include new related viruses with varying pathogenicity, geographic distribution and host ranges. Together with the frequent recombination observed amongst circulating viruses, there is a clear need to establish precise guidelines for classifying and naming lagovirus strains. Therefore, here we propose a new nomenclature based on phylogenetic relationships. In this new nomenclature, a single species of lagovirus would be recognized and called Lagovirus europaeus. The species would be divided into two genogroups that correspond to RHDV- and EBHSV-related viruses, respectively. Genogroups could be subdivided into genotypes, which could themselves be subdivided into phylogenetically well-supported variants. Based on available sequences, pairwise distance cutoffs have been defined, but with the accumulation of new sequences these cutoffs may need to be revised. We propose that an international working group could coordinate the nomenclature of lagoviruses and any proposals for revision.
Collapse
Affiliation(s)
- Jacques Le Pendu
- CRCINA, Inserm, Université d'Angers, Université de Nantes, Nantes, France
| | - Joana Abrantes
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | | | - Jean-Sébastien Guitton
- Department of Studies and Research, National Hunting and Wildlife Agency (ONCFS), Nantes, France
| | - Ghislaine Le Gall-Reculé
- French Agency for Food, Environmental and Occupational Health & Safety (Anses), Ploufragan- Plouzané Laboratory, Avian and Rabbit Virology Immunology Parasitology Unit, Ploufragan, France
| | - Ana Margarida Lopes
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Stéphane Marchandeau
- Department of Studies and Research, National Hunting and Wildlife Agency (ONCFS), Nantes, France
| | - Fernando Alda
- Louisiana State University, Museum of Natural Science, 119 Foster Hall, Baton Rouge, USA
| | - Tereza Almeida
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Department of Studies and Research, National Hunting and Wildlife Agency (ONCFS), Nantes, France
| | - Alves Paulo Célio
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,Wildlife Biology Program, University of Montana, 32 Campus Drive, Missoula, USA
| | - Juan Bárcena
- Centro de Investigación en Sanidad Animal (INIA-CISA), Valdeolmos, 28130 Madrid, Spain
| | - Galina Burmakina
- National Research Institute of Veterinary Virology and Microbiology (VNIIVViM), Pokrov, Russia
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (INIA-CISA), Valdeolmos, 28130 Madrid, Spain
| | - Carlos Calvete
- Animal Production and Health Department, Agrifood Research and Technology Centre of Aragon (CITA). Agrifood Institute of Aragon-IA2 (CITA-Zaragoza University), 50059 Zaragoza, Spain
| | - Patrizia Cavadini
- Proteomic and Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini" (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy
| | - Brian Cooke
- Invasive Animals Cooperative Research Centre and Institute of Applied Ecology, University of Canberra, Canberra, Australia
| | - Kevin Dalton
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Asturias, Spain
| | - Miguel Delibes Mateos
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain
| | - Wieslaw Deptula
- Department of Microbiology, University of Szczecin, Faculty of Biology, Felczaka 3c,50 71-412 Szczecin, Poland
| | - John Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, the University of Sydney, Sydney, Australia
| | - Fang Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, PR China
| | - Catarina C Ferreira
- Department of Biology, Trent University, Peterborough, Ontario, Canada.,Department of Conservation Biology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Paula Ferreira
- Department of Anatomy, ICBAS (Abel Salazar Institute for Biomedical Science) and UMIB (Unit for Multidisciplinary Biomedical Research), University of Porto, Portugal
| | - Pilar Foronda
- Department Obstetrics & Gynecology, Pediatrics, Preventive Medicine & Public Health, Toxicology, Forensic Medicine and Parasitology, University Institute of Tropical Diseases and Public Health of the Canary Islands. Universidad de La Laguna, Canary Islands, Spain
| | - David Gonçalves
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Dolores Gavier-Widén
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, Sweden.,Department of BiomedicalSciences and Veterinary Public Health, Swedish University of AgriculturalSciences, Uppsala, Sweden
| | - Robin Hall
- CSIRO Health & Biosecurity, Canberra, Australia
| | - Beata Hukowska-Szematowicz
- Department of Immunology, University of Szczecin, Faculty of Biology, Z. Felczaka 3c, 71- 412 Szczecin, Poland
| | - Peter Kerr
- Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, Australia
| | - John Kovaliski
- Primary Industries and Regions SA, Adelaide, SA, Australia
| | - Antonio Lavazza
- Proteomic and Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini" (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy
| | - Jackie Mahar
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, the University of Sydney, Sydney, Australia.,Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, Australia
| | - Alexander Malogolovkin
- National Research Institute of Veterinary Virology and Microbiology (VNIIVViM), Pokrov, Russia
| | - Raquel M Marques
- Department of Anatomy, ICBAS (Abel Salazar Institute for Biomedical Science) and UMIB (Unit for Multidisciplinary Biomedical Research), University of Porto, Portugal
| | - Sara Marques
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento Clínicas Veterinárias - ICBAS, Instituto de Ciências Biomédicas de Abe Salazar, Universidade do Porto, Porto, Portugal
| | - Aaron Martin-Alonso
- Department Obstetrics & Gynecology, Pediatrics, Preventive Medicine & Public Health, Toxicology, Forensic Medicine and Parasitology, University Institute of Tropical Diseases and Public Health of the Canary Islands. Universidad de La Laguna, Canary Islands, Spain
| | - Pedro Monterroso
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Sacramento Moreno
- Ethology and Biodiversity Conservation Department, Doñana, Biological Station-CSIC, Américo Vespucio S/N, 41092 Seville, Spain
| | - Greg Mutze
- Primary Industries and Regions SA, Adelaide, SA, Australia
| | - Aleksija Neimanis
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, Sweden.,Department of BiomedicalSciences and Veterinary Public Health, Swedish University of AgriculturalSciences, Uppsala, Sweden
| | | | - David Peacock
- Primary Industries and Regions SA, Adelaide, SA, Australia
| | - Francisco Parra
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Asturias, Spain
| | - Mara Rocchi
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Carlos Rouco
- Departamento de Zoología, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | - Eliane Silva
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento Clínicas Veterinárias - ICBAS, Instituto de Ciências Biomédicas de Abe Salazar, Universidade do Porto, Porto, Portugal
| | - Diogo Silvério
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | | | - Gertrudes Thompson
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento Clínicas Veterinárias - ICBAS, Instituto de Ciências Biomédicas de Abe Salazar, Universidade do Porto, Porto, Portugal
| | - Beata Tokarz-Deptula
- Department of Microbiology, University of Szczecin, Faculty of Biology, Felczaka 3c,50 71-412 Szczecin, Poland
| | - Pedro Esteves
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal
| |
Collapse
|
49
|
Carvalho C, Duarte E, Monteiro J, Afonso C, Pacheco J, Carvalho P, Mendonça P, Botelho A, Albuquerque T, Themudo P, Fevereiro M, Henriques A, Santos Barros S, Dias Duarte M. Progression of rabbit haemorrhagic disease virus 2 upon vaccination in an industrial rabbitry: a laboratorial approach. WORLD RABBIT SCIENCE 2017. [DOI: 10.4995/wrs.2017.5708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
<p>Rabbit haemorrhagic disease virus 2 (RHDV2) emerged recently in several European countries, leading to extensive economic losses in the industry. In response to this new infection, specific inactivated vaccines were developed in Europe and full and rapid setup of protective immunity induced by vaccination was reported. However, data on the efficacy of these vaccines in an ongoing-infection scenario is unavailable. In this study we investigated an infected RHDV2 indoor industrial meat rabbitry, where fatalities continued to occur after the implementation of the RHDV2 vaccination, introduced to control the disease. The aim of this study was to understand if these mortalities were RHDV2-related, to discover if the dead animals showed any common features such as age or time distance from vaccination, and to identify the source of the outbreak. Anatomo-pathological analysis of vaccinated animals with the virus showed lesions compatible with systemic haemorrhagic disease and RHDV2-RNA was detected in 85.7% of the animals tested. Sequencing of the <em>vp60</em> gene amplified from liver samples led to the recognition of RHDV2 field strains demonstrating that after the implementation of vaccination, RHDV2 continued to circulate in the premises and to cause sporadic deaths. A nearby, semi-intensive, RHDV2 infected farm belonging to the same owner was identified as the most probable source of the virus. The main risk factors for virus introduction in these two industries were identified. Despite the virus being able to infect a few of the vaccinated rabbits, the significant decrease in mortality rate observed in vaccinated adult rabbits clearly reflects the efficacy of the vaccination. Nonetheless, the time taken to control the infection also highlights the importance of RHDV2 vaccination prior to the first contact with the virus, highly recommendable in endemic areas, to mitigate the infection’s impact on the industry.</p>
Collapse
|
50
|
Lopes AM, Magalhães MJ, Alves PC, Esteves PJ, Abrantes J. An update on the rabbit hemorrhagic disease virus (RHDV) strains circulating in Portugal in the 1990s: earliest detection of G3-G5 and G6. Arch Virol 2017; 162:2061-2065. [PMID: 28299483 DOI: 10.1007/s00705-017-3318-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/22/2017] [Indexed: 01/23/2023]
Abstract
Rabbit hemorrhagic disease virus (RHDV) causes devastating effects on European rabbit (Oryctolagus cuniculus) populations in the Iberian Peninsula. According to the information available, only genogroup 1 strains were circulating in Iberian wild rabbits until 2011; the antigenic variant G6 has been sporadically detected in rabbitries since 2007. Here, we show for the first time that G3-G5 strains were already present in mainland Portugal in 1998 and that G6 has been circulating since at least 1999. Moreover, we report a G3-G5 strain from the Azores collected in 1998, which is the likely ancestor of Azorean G3-G5like strains. These observations improve the current knowledge on RHDV epidemiology in the Iberian Peninsula and the Azores.
Collapse
Affiliation(s)
- Ana M Lopes
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.
| | - Maria J Magalhães
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Paulo C Alves
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.,Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Pedro J Esteves
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal
| | - Joana Abrantes
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| |
Collapse
|