1
|
Musatat AB, Durmuş T, Atahan A. Harnessing high potential benzothiazole chalcones against dengue virus NS5 protein: A multi-faceted theoretical study through molecular docking, ADME, and DFT. Arch Biochem Biophys 2024; 761:110171. [PMID: 39366630 DOI: 10.1016/j.abb.2024.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Chalcones bearing tetralone, indanone and benzothiazole cores were synthesized successfully using a general Claisen-Schmidt condensation protocol. The prepared compounds were purified and structurally analyzed by 1H, 13C NMR, and FT-IR techniques. A multi-faceted theoretical approach, combining Density Functional Theory (DFT), molecular docking, and ADME predictions, was employed to evaluate their therapeutic potential. DFT calculations at the B3LYP/def2-TZVP level revealed key electronic properties, with TD3 compound demonstrating the highest chemical reactivity. Molecular Electrostatic Potential (MEP) and Reduced Density Gradient (RDG) analyses provided insights into the compounds' non-covalent interactions and charge distributions. Molecular docking studies against the NS5 protein (PDB: 6KR2) showed superior binding affinities for all three compounds compared to the control ligand SAH, with TD3 exhibiting the lowest binding energy (-8.41 kcal/mol) and theoretical inhibition constant (689.31 nM). ADME predictions indicated favorable drug-like properties with concerns regarding aqueous solubility and potential P-glycoprotein interactions. Toxicity evaluations highlighted challenges, particularly in hepatotoxicity and carcinogenicity. The study identified TD3 as a promising lead compound for Dengue Virus NS5 inhibition, while also emphasizing the need for targeted modifications to address toxicity concerns. This research not only contributes to anti-dengue drug discovery efforts but also provides a robust methodological framework for the theoretical evaluation of similar small compounds in future investigations.
Collapse
Affiliation(s)
| | - Tülay Durmuş
- Department of Chemistry, Faculty of Art and Sciences, Düzce University, 81100, Düzce, Turkiye
| | - Alparslan Atahan
- Department of Chemistry, Faculty of Art and Sciences, Düzce University, 81100, Düzce, Turkiye
| |
Collapse
|
2
|
Mufti IU, Ain QU, Malik A, Shahid I, Alzahrani AR, Ijaz B, Rehman S. Exploring antiviral activity of Betanin and Glycine Betaine against dengue virus type-2 in transfected Hela cells. Microb Pathog 2024; 195:106894. [PMID: 39214424 DOI: 10.1016/j.micpath.2024.106894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Dengue virus (DENV) infection is a worldwide public health concern infecting approximately 400 million individuals and about 40,000 mortalities yearly. Despite this, no licensed or readily available antiviral medication is currently available specifically for DENV infection, and therapy is typically symptomatic. Therefore, the objective of the study was to investigate the antiviral activity of Beta vulgaris L. phytoconstituents against DENV-2 targeting NS3 protein. The antiviral activity of phytochemicals was examined through virtual ligand-based screening, antiviral inhibition and dosage response assays, western blotting analysis and MD simulations. We conducted toxicological, and pharmacokinetic analysis to assess plant-based natural compound's efficacy, safety, and non-toxic doses. Molecular docking and MD simulation results revealed that the nonstructural protein-3 (NS3) might prove as a funamental target for Betanin and Glycine Betaine against Dengue virus. Betanin and Glycine betaine were initially studied for their non-toxic doses in HeLa, CHO, and Vero cells via MTT assay. HeLa cells were transiently transfected with cloned vector pcDNA3.1/Zeo(+)/DENV-2 NS3 along with non-toxic doses (80 μM-10 μM) of selected phytochemicals. The dose-response assay illustrated downregulated expression of DENV-2 NS3 gene after administration of Betanin (IC50 = 4.35 μM) and Glycine Betaine (IC50 = 4.49 μM). Dose response analysis of Betanin (80 μM-10 μM) depicted the significant inhibition of NS3 protein expression as well. These results suggested downregulated expression of DENV-2 NS3 at mRNA and protein level portraying the DENV replication inhibition. Based on our study findings, NS3 protease is depicted as distinctive DENV-2 inhibitor target. We will channel our study further into in vitro characterization employing the mechanistic study to understand the role of host factors in anti-flavi therapeutic.
Collapse
Affiliation(s)
- Isra Umbreen Mufti
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Qurrat Ul Ain
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan; Department of Medical Laboratory Technology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ayesha Malik
- Center of Excellence in Molecular Biology, University of the Punjab, 87 West Canal Rd, Thoker Niaz Baig, Lahore, Punjab, 53700, Pakistan
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, P.O. Box 13578, Makkah, 21955, Saudi Arabia
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, P.O. Box 13578, Makkah, 21955, Saudi Arabia
| | - Bushra Ijaz
- Center of Excellence in Molecular Biology, University of the Punjab, 87 West Canal Rd, Thoker Niaz Baig, Lahore, Punjab, 53700, Pakistan.
| | - Sidra Rehman
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan.
| |
Collapse
|
3
|
Imam MA, Alandijany TA, Felemban HR, Attar RM, Faizo AA, Gattan HS, Dwivedi VD, Azhar EI. Machine learning, network pharmacology, and molecular dynamics reveal potent cyclopeptide inhibitors against dengue virus proteins. Mol Divers 2024:10.1007/s11030-024-10975-w. [PMID: 39227512 DOI: 10.1007/s11030-024-10975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
The dengue virus is a major global health hazard responsible for an estimated 390 million diseases yearly. This study focused on identifying cyclopeptide inhibitors for envelope structural proteins E, NS1, NS3, and NS5. Additionally, 5579 cyclopeptides were individually screened against the four target proteins using a machine learning-based quantitative structure-activity relationship model. Subsequently, the best 10 cyclopeptides from each protein were selected for molecular docking with their corresponding proteins. Moreover, the protein-peptide complexes with the highest affinity were subjected to a 100-ns molecular dynamics simulation. The protein-protein complexes exhibited superior structural stability and binding interactions. Based on the results of the MD simulation analyses, which included checking values for Root Mean Square Deviation, Root Mean Square Fluctuation, Principal Component Analysis (PCA), free energy landscapes, and energetic components, it was found that NS5-CP03714 complex is more stable and has stronger binding interactions than NS3-CP02054. PCA and free energy landscape plots have confirmed the higher conformational stability of NS5-CP03714. Analysis of the energetic components revealed that NS5-CP03714 (total binding energy = - 47.19 kcal/mol) exhibits more favorable interaction energies and overall binding energy compared to NS3-CP02054 (total binding energy = - 27.36 kcal/mol), suggesting a stronger and more stable formation of the complex. In addition, the drug-target network of two specific peptides (CP02950 and CP05582) and their associated target proteins were analyzed. This analysis revealed valuable information about their ability to target several proteins and their potential for broad-spectrum activity. Additional experimental investigations are necessary to validate these computational results and assess the efficacy of identified peptide inhibitors in biological systems.
Collapse
Affiliation(s)
- Mohammed A Imam
- Department of Medical Microbiology and Parasitology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah, 21961, Saudi Arabia
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Thamir A Alandijany
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Hashim R Felemban
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Roba M Attar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Biological Sciences/Microbiology, Faculty of Science, University of Jeddah, , 21959, Jeddah, Saudi Arabia
| | - Arwa A Faizo
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Hattan S Gattan
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India.
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, India.
| | - Esam I Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia.
| |
Collapse
|
4
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2024. [PMID: 39185567 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | | |
Collapse
|
5
|
程 瑶, 王 远, 姚 飞, 胡 盼, 陈 铭, 吴 宁. [Baicalin suppresses type 2 dengue virus-induced autophagy of human umbilical vein endothelial cells by inhibiting the PI3K/AKT pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1272-1283. [PMID: 39051073 PMCID: PMC11270663 DOI: 10.12122/j.issn.1673-4254.2024.07.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To investigate the effect of type 2 dengue virus (DENV-2) infection on autophagy in human umbilical vein endothelial cells (HUVECs) and the mechanism mediating the inhibitory effect of baicalin against DENV-2 infection. METHODS Cultured HUVECs with DENV-2 infection were treated with different concentrations of baicalin, and the changes in autophagy of the cells were detected using transmission electron microscopy. Lyso Tracker Red staining was used to examine pH changes in the lysosomes of the cells, and the expressions of ATG5, beclin-1, LC3, P62, STX17, SNAP29, VAMP8, and PI3K/AKT signaling pathway-related proteins were detected by Western blotting. DENV-2 replication in the cells were evaluated using RT-qPCR. The differentially expressed proteins in DENV-2-infected HUVECs were identified by proteomics screening. RESULTS Treatment with baicalin did not significantly affect the viability of cultured HUVECs. Proteomic studies suggested that the PI3K-AKT pathway played an important role in mediating cell injury induced by DENV-2 infection. The results of RT-qPCR demonstrated that baicalin dose-dependently inhibited DENV-2 replication in HUVECs and produced the strongest inhibitory effect at the concentration of 50 μg/mL. Transmission electron microscopy, Lyso Tracker Red staining, RT-qPCR, and Western blotting all showed significant inhibitory effect of baicalin on DENV-2-induced autophagy in HUVECs. DENV-2 infection of HUVECs caused increased cellular expressions of LC3 and P62 proteins, which were significantly lowered by treatment with LY294002 (a PI3K inhibitor). CONCLUSION Baicalin inhibits DENV-2 replication in HUVECs and suppresses DENV-2-induced cell autophagy by inhibiting the PI3K/AKT signaling pathway.
Collapse
|
6
|
Kiemel D, Kroell ASH, Denolly S, Haselmann U, Bonfanti JF, Andres JI, Ghosh B, Geluykens P, Kaptein SJF, Wilken L, Scaturro P, Neyts J, Van Loock M, Goethals O, Bartenschlager R. Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation. Nat Commun 2024; 15:6080. [PMID: 39030239 PMCID: PMC11271582 DOI: 10.1038/s41467-024-50437-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
Dengue fever represents a significant medical and socio-economic burden in (sub)tropical regions, yet antivirals for treatment or prophylaxis are lacking. JNJ-A07 was described as highly active against the different genotypes within each serotype of the disease-causing dengue virus (DENV). Based on clustering of resistance mutations it has been assumed to target DENV non-structural protein 4B (NS4B). Using a photoaffinity labeling compound with high structural similarity to JNJ-A07, here we demonstrate binding to NS4B and its precursor NS4A-2K-NS4B. Consistently, we report recruitment of the compound to intracellular sites enriched for these proteins. We further specify the mechanism-of-action of JNJ-A07, which has virtually no effect on viral polyprotein cleavage, but targets the interaction between the NS2B/NS3 protease/helicase complex and the NS4A-2K-NS4B cleavage intermediate. This interaction is functionally linked to de novo formation of vesicle packets (VPs), the sites of DENV RNA replication. JNJ-A07 blocks VPs biogenesis with little effect on established ones. A similar mechanism-of-action was found for another NS4B inhibitor, NITD-688. In summary, we unravel the antiviral mechanism of these NS4B-targeting molecules and show how DENV employs a short-lived cleavage intermediate to carry out an early step of the viral life cycle.
Collapse
Affiliation(s)
- Dominik Kiemel
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Ann-Sophie Helene Kroell
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Solène Denolly
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Uta Haselmann
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Jean-François Bonfanti
- Janssen Infectious Diseases Discovery, Janssen-Cilag, Val de Reuil, France
- Evotec, Toulouse, France
| | - Jose Ignacio Andres
- Discovery Chemistry, Janssen R&D, a Johnson & Johnson company, Toledo, Spain
| | - Brahma Ghosh
- Discovery Chemistry, Janssen R&D, a Johnson & Johnson company, Spring House, PA, USA
| | | | - Suzanne J F Kaptein
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | | | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Marnix Van Loock
- Janssen Global Public Health, Janssen Pharmaceutica NV, a Johnson & Johnson company, Beerse, Belgium
| | - Olivia Goethals
- Janssen Global Public Health, Janssen Pharmaceutica NV, a Johnson & Johnson company, Beerse, Belgium
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany.
- German Centre for Infection Research, Heidelberg partner site, Heidelberg, Germany.
| |
Collapse
|
7
|
Brillet K, Janczuk-Richter M, Poon A, Laukart-Bradley J, Ennifar E, Lebars I. Characterization of SLA RNA promoter from dengue virus and its interaction with the viral non-structural NS5 protein. Biochimie 2024; 222:87-100. [PMID: 38408720 DOI: 10.1016/j.biochi.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/28/2024]
Abstract
The Dengue virus (DENV) is the most significant arthropod-borne viral pathogen in humans with 400 million infections annually. DENV comprises four distinct serotypes (DENV-1 to -4) which complicates vaccine development. Any of the four serotypes can cause clinical illness but with distinctive infection dynamics. Variations in sequences identified within the four genomes induce structural differences in crucial RNA motifs that were suggested to be correlated to the degree of pathogenicity among DENV-1 to -4. In particular, the RNA Stem-loop A (SLA) at the 5'-end of the genome, acts as a key regulator of the viral replication cycle by interacting with the viral NS5 polymerase to initiate the minus-strand viral RNA synthesis and later to methylate and cap the synthesized RNA. The molecular details of this interaction remain not fully described. Here, we report the solution secondary structures of SLA from DENV-1 to -4. Our results highlight that the four SLA exhibit structural and dynamic differences. Secondly, to determine whether SLA RNA contains serotype-specific determinants for the recognition by the viral NS5 protein, we investigated interactions between SLA from DENV -1 to -4 and DENV2 NS5 using combined biophysical approaches. Our results show that NS5 from DENV2 is able to bind SLA from other serotypes, but that other viral or host factors may be necessary to stabilize the complex and promote the catalytically active state of the NS5. By contrast, we show that a serotype-specific binding is driven by specific interactions involving conformational changes within the SLA RNA.
Collapse
Affiliation(s)
- Karl Brillet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000, Strasbourg, France
| | | | - Amanda Poon
- Creoptix AG (a Malvern Panalytical Brand), CH-8820, Wädenswil, Switzerland
| | | | - Eric Ennifar
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000, Strasbourg, France
| | - Isabelle Lebars
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000, Strasbourg, France.
| |
Collapse
|
8
|
Cheng C, Tan MJA, Chan KWK, Choy MMJ, Roman N, Arnold DDR, Bifani AM, Kong SYZ, Bist P, Nath BK, Swarbrick CMD, Forwood JK, Vasudevan SG. Serotype-Specific Regulation of Dengue Virus NS5 Protein Subcellular Localization. ACS Infect Dis 2024; 10:2047-2062. [PMID: 38811007 PMCID: PMC11184549 DOI: 10.1021/acsinfecdis.4c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Dengue virus (DENV) nonstructural protein 5 (NS5), consisting of methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, is critical for viral RNA synthesis within endoplasmic reticulum-derived replication complexes in the cytoplasm. However, a significant proportion of NS5 is localized to the nucleus of infected cells for DENV2, 3, and 4, whereas DENV1 NS5 is localized diffusely in the cytoplasm. We still have an incomplete understanding of how the DENV NS5 subcellular localization is regulated. Within NS5, two putative nuclear localization signal (NLS) sequences have been identified: NLSCentral residing in the palm of the RdRp domain as well as the recently discovered NLSC-term residing in the flexible region at the C-terminal of the RdRp domain. We have previously shown that DENV2 NS5 nuclear localization can be significantly reduced by single-point mutations to the NLSC-term. Here, we present biochemical, virological, and structural data demonstrating that the relative importance of either NLS in NS5 nuclear localization is unique to each of the four DENV serotypes. DENV1 NS5's cytoplasmic localization appears to be due to a functionally weak interaction between its NLSCentral and importin-α (IMPα), while DENV2 NS5 is almost exclusively nuclear through its NLSC-term's strong interaction with IMPα. Both NLSs of DENV3 NS5 appear to contribute to directing its nuclear localization. Lastly, in the case of DENV4, the regulation of its NS5 nuclear localization remains an enigma but appears to be associated with its NLSC-term.
Collapse
Affiliation(s)
- Colin
Xinru Cheng
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Min Jie Alvin Tan
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Kitti Wing Ki Chan
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Milly Ming Ju Choy
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Noelia Roman
- School
of Dentistry and Medical Sciences, Charles
Sturt University, Wagga
Wagga, NSW 2678, Australia
| | - Daniel D. R. Arnold
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
- School
of Dentistry and Medical Sciences, Charles
Sturt University, Wagga
Wagga, NSW 2678, Australia
| | - Amanda Makha Bifani
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Sean Yao Zu Kong
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Pradeep Bist
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Babu K. Nath
- School
of Dentistry and Medical Sciences, Charles
Sturt University, Wagga
Wagga, NSW 2678, Australia
| | - Crystall M. D. Swarbrick
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
- Biosecurity
Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Institute
for Glycomics, Griffith University, Southport 4222, Australia
| | - Jade K. Forwood
- School
of Dentistry and Medical Sciences, Charles
Sturt University, Wagga
Wagga, NSW 2678, Australia
- Biosecurity
Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Subhash G. Vasudevan
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
- Department
of Microbiology and Immunology, National
University of Singapore, Singapore 117545, Singapore
- Institute
for Glycomics, Griffith University, Southport 4222, Australia
| |
Collapse
|
9
|
Halder SK, Ahmad I, Shathi JF, Mim MM, Hassan MR, Jewel MJI, Dey P, Islam MS, Patel H, Morshed MR, Shakil MS, Hossen MS. A Comprehensive Study to Unleash the Putative Inhibitors of Serotype2 of Dengue Virus: Insights from an In Silico Structure-Based Drug Discovery. Mol Biotechnol 2024; 66:612-625. [PMID: 36307631 PMCID: PMC9616416 DOI: 10.1007/s12033-022-00582-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022]
Abstract
Dengue fever is a mosquito-borne disease that claims the lives of millions of people around the world. A number of factors like disease's non-specific symptoms, increased viral mutation, growing antiviral drug resistance due to reduced susceptibility, unavailability of an effective vaccine for dengue, weak immunity against the virus, and many more are involved. Dengue belongs to the Flaviviridae family of viruses. The two species of the vector transmitting dengue are Aedes aegypti and Aedes albopictus, with the former one being dominant. Serotypes 2 of dengue fever are spread to the human body and cause severe illness. Recently, dengue has imposed an aggressive effect synergistically with the COVID-19 pandemic. As a result, we concentrated our efforts on finding a potential therapeutic. For this, we chose natural compounds to fight dengue fever, which is currently regarded as successful among many drug therapies. Following this, we started the in silico experiment with 922 plant extracts as lead compounds to fight serotype 2. In this study, we used SwissADME for analyzing ligand drug-likeness, pkCSM for designing an ADMET profile, Autodock vina 4.2 and Swissdock tools for molecular docking, and finally Desmond for molecular dynamics simulation. Ultimately 45 were found effective against the 2'O methyltransferase protein of serotype 2. CHEMBL376820 was found as possible therapeutic candidates for inhibiting methyltransferase protein in this thorough analysis. Nevertheless, more in vitro and in vivo research are required to substantiate their potential therapeutic efficacy.
Collapse
Affiliation(s)
- Sajal Kumar Halder
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405 India
| | - Jannatul Fardous Shathi
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Maria Mulla Mim
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Md Rakibul Hassan
- Department of Biochemistry, Gono Bishwabidyalay, Savar, Dhaka 1344 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Md Johurul Islam Jewel
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Piyali Dey
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Md Sirajul Islam
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405 India
| | - Md Reaz Morshed
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, 3814 Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, Brac University, Dhaka, 1212 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Md Sakib Hossen
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| |
Collapse
|
10
|
Ahmed-Belkacem R, Sutto-Ortiz P, Delpal A, Troussier J, Canard B, Vasseur JJ, Decroly E, Debart F. 5'-cap RNA/SAM mimetic conjugates as bisubstrate inhibitors of viral RNA cap 2'-O-methyltransferases. Bioorg Chem 2024; 143:107035. [PMID: 38199140 DOI: 10.1016/j.bioorg.2023.107035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Viral RNA cap 2'-O-methyltransferases are considered promising therapeutic targets for antiviral treatments, as they play a key role in the formation of viral RNA cap-1 structures to escape the host immune system. A better understanding of how they interact with their natural substrates (RNA and the methyl donor SAM) would enable the rational development of potent inhibitors. However, as few structures of 2'-O-MTases in complex with RNA have been described, little is known about substrate recognition by these MTases. For this, chemical tools mimicking the state in which the cap RNA substrate and SAM cofactor are bound in the enzyme's catalytic pocket may prove useful. In this work, we designed and synthesized over 30 RNA conjugates that contain a short oligoribonucleotide (ORN with 4 or 6 nucleotides) with the first nucleotide 2'-O-attached to an adenosine by linkers of different lengths and containing S or N-heteroatoms, or a 1,2,3-triazole ring. These ORN conjugates bearing or not a cap structure at 5'-extremity mimic the methylation transition state with RNA substrate/SAM complex as bisubstrates of 2'-O-MTases. The ORN conjugates were synthesized either by the incorporation of a dinucleoside phosphoramidite during RNA elongation or by click chemistry performed on solid-phase post-RNA elongation. Their ability to inhibit the activity of the nsp16/nsp10 complex of SARS-CoV-2 and the NS5 protein of dengue and Zika viruses was assessed. Significant submicromolar IC50 values and Kd values in the µM range were found, suggesting a possible interaction of some ORN conjugates with these viral 2'-O-MTases.
Collapse
Affiliation(s)
| | | | - Adrien Delpal
- AFMB, University of Aix-Marseille, CNRS, Marseille, France
| | - Joris Troussier
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Bruno Canard
- AFMB, University of Aix-Marseille, CNRS, Marseille, France
| | | | | | - Françoise Debart
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
11
|
Alotaibi F, Aba Alkhayl FF, Foudah AI, Azhar Kamal M, Moglad EH, Khan S, Rehman ZU, Warsi MK, Jawaid T, Alam A. Investigating the effects of four medicinal plants against dengue virus through QSAR modeling and molecular dynamics studies. J Biomol Struct Dyn 2024:1-18. [PMID: 38197579 DOI: 10.1080/07391102.2024.2301744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
The Dengue virus (DENV) has been increasingly recognized as a prevalent viral pathogen responsible for global transmission of infection. It has been established that DENV's NS5 methyltransferase (MTase) controls viral replication. As a result, NS5 MTase is considered a potentially useful drug target for DENV. In this study, the two phases of virtual screening were conducted using the ML-based QSAR model and molecular docking to identify potential compounds against NS5 of DENV. Four medicinal plants [Aloe vera, Cannabis sativa (Hemp), Ocimum sanctum (Holy Basil; Tulsi), and Zingiber officinale (Ginger)] that showed anti-viral properties were selected for sourcing the phytochemicals and screening them against NS5. Additionally, re-docking at higher exhaustiveness and interaction analysis were performed which resulted in the identification of the top four hits (135398658, 5281675, 119394, and 969516) which showed comparable results with the control Sinefungin (SFG). Post molecular dynamics simulation, 135398658 showed the lowest RMSD (0.4-0.5 nm) and the maximum number of hydrogen bonds (eight hydrogen bonds) after the control while 5281675 and 969516 showed comparable hydrogen bonds to the control. These compounds showed direct interactions with the catalytic site residues GLU111 and ASP131, in addition to this these compounds showed stable complex formation as depicted by principal component analysis and free energy landscape. 135398658 showed lower total binding free energy (ΔGTotal = -36.56 kcal/mol) than the control, while 5281675 had comparable values to the control (ΔGTotal = -34.1 kcal/mol). Overall, the purpose of this study was to identify phytochemicals that inhibit NS5 function, that could be further tested experimentally to treat dengue virus (DENV).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faisal Alotaibi
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi, Saudi Arabia
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ehssan H Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Microbiology and Parasitology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum, Sudan
| | - Shamshir Khan
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Zia Ur Rehman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohiuddin Khan Warsi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
12
|
Nath S, Malakar P, Biswas B, Das S, Sabnam N, Nandi S, Samadder A. Exploring the Targets of Dengue Virus and Designs of Potential Inhibitors. Comb Chem High Throughput Screen 2024; 27:2485-2524. [PMID: 37962048 DOI: 10.2174/0113862073247689231030153054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 08/26/2023] [Accepted: 09/14/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Dengue, a mosquito-borne viral disease spread by the dengue virus (DENV), has become one of the most alarming health issues in the global scenario in recent days. The risk of infection by DENV is mostly high in tropical and subtropical areas of the world. The mortality rate of patients affected with DENV is ever-increasing, mainly due to a lack of anti-dengue viral-specific synthetic drug components. INTRODUCTION Repurposing synthetic drugs has been an effective tool in combating several pathogens, including DENV. However, only the Dengvaxia vaccine has been developed so far to fight against the deadly disease despite the grave situation, mainly because of the limitations of understanding the actual pathogenicity of the disease. METHODS To address this particular issue and explore the actual disease pathobiology, several potential targets, like three structural proteins and seven non-structural (NS) proteins, along with their inhibitors of synthetic and natural origin, have been screened using docking simulation. RESULTS Exploration of these targets, along with their inhibitors, has been extensively studied in culmination with molecular docking-based screening to potentiate the treatment. CONCLUSION These screened inhibitors could possibly be helpful for the designing of new congeneric potential compounds to combat dengue fever and its complications.
Collapse
Affiliation(s)
- Sayan Nath
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Piyali Malakar
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Baisakhi Biswas
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Suryatapa Das
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Nahid Sabnam
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research, Veer Madho Singh Bhandari Uttarakhand Technical University, Kashipur-244713, India
| | - Asmita Samadder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
13
|
Akram M, Hameed S, Hassan A, Khan KM. Development in the Inhibition of Dengue Proteases as Drug Targets. Curr Med Chem 2024; 31:2195-2233. [PMID: 37723635 DOI: 10.2174/0929867331666230918110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/24/2023] [Accepted: 08/04/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Viral infections continue to increase morbidity and mortality severely. The flavivirus genus has fifty different species, including the dengue, Zika, and West Nile viruses that can infect 40% of individuals globally, who reside in at least a hundred different countries. Dengue, one of the oldest and most dangerous human infections, was initially documented by the Chinese Medical Encyclopedia in the Jin period. It was referred to as "water poison," connected to flying insects, i.e., Aedes aegypti and Aedes albopictus. DENV causes some medical expressions like dengue hemorrhagic fever, acute febrile illness, and dengue shock syndrome. OBJECTIVE According to the World Health Organization report of 2012, 2500 million people are in danger of contracting dengue fever worldwide. According to a recent study, 96 million of the 390 million dengue infections yearly show some clinical or subclinical severity. There is no antiviral drug or vaccine to treat this severe infection. It can be controlled by getting enough rest, drinking plenty of water, and using painkillers. The first dengue vaccine created by Sanofi, called Dengvaxia, was previously approved by the USFDA in 2019. All four serotypes of the DENV1-4 have shown re-infection in vaccine recipients. However, the usage of Dengvaxia has been constrained by its adverse effects. CONCLUSION Different classes of compounds have been reported against DENV, such as nitrogen-containing heterocycles (i.e., imidazole, pyridine, triazoles quinazolines, quinoline, and indole), oxygen-containing heterocycles (i.e., coumarins), and some are mixed heterocyclic compounds of S, N (thiazole, benzothiazine, and thiazolidinediones), and N, O (i.e., oxadiazole). There have been reports of computationally designed compounds to impede the molecular functions of specific structural and non-structural proteins as potential therapeutic targets. This review summarized the current progress in developing dengue protease inhibitors.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shehryar Hameed
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan
| |
Collapse
|
14
|
Ci Y, Han K, Kong J, Huang S, Yang Y, Qin C, Shi L. Flavivirus Concentrates Host ER in Main Replication Compartments to Facilitate Replication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305093. [PMID: 37888856 PMCID: PMC10754076 DOI: 10.1002/advs.202305093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 10/28/2023]
Abstract
Flavivirus remodels the host endoplasmic reticulum (ER) to generate replication compartments (RCs) as the fundamental structures to accommodate viral replication. Here, a centralized replication mode of flavivirus is reported, i.e., flavivirus concentrates host ER in perinuclear main replication compartments (MRCs) for efficient replication. Superresolution live-cell imaging demonstrated that flavivirus MRCs formed via a series of events, including multisite ER clustering, growth and merging of ER clusters, directional movement, and convergence in the perinuclear region. The dynamic activities of viral RCs are driven by nonstructural (NS) proteins and are independent of microtubules and actin. Moreover, disrupting MRCs formation by small molecule compounds inhibited flavivirus replication. Overall, the findings reveal unprecedented insight into dynamic ER reorganization by flavivirus and identify a new inhibition strategy.
Collapse
Affiliation(s)
- Yali Ci
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and School of Basic MedicinePeking Union Medical CollegeBeijing100005China
- Department of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and School of Basic MedicinePeking Union Medical CollegeBeijing100005China
| | - Kai Han
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and School of Basic MedicinePeking Union Medical CollegeBeijing100005China
- Department of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and School of Basic MedicinePeking Union Medical CollegeBeijing100005China
| | - Jie Kong
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and School of Basic MedicinePeking Union Medical CollegeBeijing100005China
| | - Shuhan Huang
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and School of Basic MedicinePeking Union Medical CollegeBeijing100005China
- Department of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and School of Basic MedicinePeking Union Medical CollegeBeijing100005China
| | - Yang Yang
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and School of Basic MedicinePeking Union Medical CollegeBeijing100005China
- Department of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and School of Basic MedicinePeking Union Medical CollegeBeijing100005China
| | - Cheng‐Feng Qin
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijing100071China
| | - Lei Shi
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and School of Basic MedicinePeking Union Medical CollegeBeijing100005China
- Department of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and School of Basic MedicinePeking Union Medical CollegeBeijing100005China
| |
Collapse
|
15
|
Singh S, Verma AK, Chowdhary N, Sharma S, Awasthi A. Dengue havoc: overview and eco-friendly strategies to forestall the current epidemic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124806-124828. [PMID: 37989950 DOI: 10.1007/s11356-023-30745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Dengue fever is a mosquito-borne viral illness that affects over 100 nations around the world, including Africa, America, the Eastern Mediterranean, Southeast Asia, and the Western Pacific. Those who get infected by virus for the second time are at greater risk of having persistent dengue symptoms. Dengue fever has yet to be treated with a long-lasting vaccination or medication. Because of their ease of use, mosquito repellents have become popular as a dengue prevention technique. However, this has resulted in environmental degradation and harm, as well as bioaccumulation and biomagnification of hazardous residues in the ecosystem. Synthetic pesticides have caused a plethora of serious problems that were not foreseen when they were originally introduced. The harm caused by the allopathic medications/synthetic pesticides/chemical mosquito repellents has paved the door to employment of eco-friendly/green approaches in order to reduce dengue cases while protecting the integrity of the nearby environment too. Since the cases of dengue have become rampant these days, hence, starting the medication obtained from green approaches as soon as the disease is detected is advisable. In the present paper, we recommend environmentally friendly dengue management strategies, which, when combined with a reasonable number of vector control approaches, may help to avoid the dengue havoc as well as help in maintaining the integrity of the ecosystem.
Collapse
Affiliation(s)
- Satpal Singh
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India, 174103
| | - Arunima Kumar Verma
- Department of Zoology, Autonomous Government P.G. College, Satna, Madhya Pradesh, India, 485001
| | - Nupoor Chowdhary
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India, 174103
| | - Shikha Sharma
- Department of Botany, Post Graduate Government College for Girls, Sector-11, Chandigarh, India, 160011
| | - Abhishek Awasthi
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India, 174103.
| |
Collapse
|
16
|
Burkart SS, Schweinoch D, Frankish J, Sparn C, Wüst S, Urban C, Merlo M, Magalhães VG, Piras A, Pichlmair A, Willemsen J, Kaderali L, Binder M. High-resolution kinetic characterization of the RIG-I-signaling pathway and the antiviral response. Life Sci Alliance 2023; 6:e202302059. [PMID: 37558422 PMCID: PMC10412806 DOI: 10.26508/lsa.202302059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
RIG-I recognizes viral dsRNA and activates a cell-autonomous antiviral response. Upon stimulation, it triggers a signaling cascade leading to the production of type I and III IFNs. IFNs are secreted and signal to elicit the expression of IFN-stimulated genes, establishing an antiviral state of the cell. The topology of this pathway has been studied intensively, however, its exact dynamics are less understood. Here, we employed electroporation to synchronously activate RIG-I, enabling us to characterize cell-intrinsic innate immune signaling at a high temporal resolution. Employing IFNAR1/IFNLR-deficient cells, we could differentiate primary RIG-I signaling from secondary signaling downstream of the IFN receptors. Based on these data, we developed a comprehensive mathematical model capable of simulating signaling downstream of dsRNA recognition by RIG-I and the feedback and signal amplification by IFN. We further investigated the impact of viral antagonists on signaling dynamics. Our work provides a comprehensive insight into the signaling events that occur early upon virus infection and opens new avenues to study and disentangle the complexity of the host-virus interface.
Collapse
Affiliation(s)
- Sandy S Burkart
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Darius Schweinoch
- Institute of Bioinformatics & Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
| | - Jamie Frankish
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Carola Sparn
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sandra Wüst
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
| | - Christian Urban
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
| | - Marta Merlo
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Vladimir G Magalhães
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
| | - Antonio Piras
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
| | - Andreas Pichlmair
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Joschka Willemsen
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
| | - Lars Kaderali
- Institute of Bioinformatics & Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
17
|
Zaib S, Akram F, Waris W, Liaqat ST, Zaib Z, Khan I, Dera AA, Pashameah RA, Alzahrani E, Farouk AE. Computational approaches for innovative anti-viral drug discovery using Orthosiphon aristatus blume miq against dengue virus. J Biomol Struct Dyn 2023; 41:8738-8750. [PMID: 36300501 DOI: 10.1080/07391102.2022.2137238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022]
Abstract
Dengue virus has emerged as infectious mosquito borne disease involved in lowering platelets and white blood cells (WBC) count particularly. The genome structure is based on several structural and non-structural proteins essential for viral replication and progeny. One of the major proteins of replication is non-structural protein 3 (NS3) that transforms polyproteins into functional proteins with a cofactor non-structural protein (NS2B). Heat Shock Protein 70 (HSP70), is a human protein that assists in replication, viral entry and virion synthesis. Therefore, to inhibit the spread of dengue infection, there is a need of antivirals targeting replication proteins and other human proteins that help in dengue virus multiplication. By systemic approach based on molecular docking, ADMET (absorption, distribution, metabolism, excretion and toxicity) properties and molecular dynamic simulation (MD), potent inhibitors can be predicted. Inhibition of NS2B/NS3 dengue and HSP70 proteins involved in multiple steps in dengue virus progression can be prevented by using different phytochemicals. Molecular docking was performed using AutoDock Vina, PatchDock, and SwissDock. Interactions of obtained complex were observed in PyMOL and PLIP. Validation was checked by PROCHEK, simulation was performed using iMODS followed by preclinical testing by admetSAR. Ladanein, a flavonoid of Orthosiphon aristatus, was obtained as the lead compound to inhibit major replication protein of dengue virus with inhibitory potential against HSP70 protein. In summary, various in silico approaches were used to obtain the best phytochemical having anti-dengue potential.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Fatima Akram
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Wania Waris
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Syed Talha Liaqat
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Zainab Zaib
- Combined Military Hospital Abbottabad, Abbottabad, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman Alzahrani
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Abd-ElAziem Farouk
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
18
|
Thongsripong P, Edgerton SV, Bos S, Saborío S, Kuan G, Balmaseda A, Harris E, Bennett SN. Phylodynamics of dengue virus 2 in Nicaragua leading up to the 2019 epidemic reveals a role for lineage turnover. BMC Ecol Evol 2023; 23:58. [PMID: 37770825 PMCID: PMC10537812 DOI: 10.1186/s12862-023-02156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Dengue is a mosquito-borne viral disease posing a significant threat to public health. Dengue virus (DENV) evolution is often characterized by lineage turnover, which, along with ecological and immunological factors, has been linked to changes in dengue phenotype affecting epidemic dynamics. Utilizing epidemiologic and virologic data from long-term population-based studies (the Nicaraguan Pediatric Dengue Cohort Study and Nicaraguan Dengue Hospital-based Study), we describe a lineage turnover of DENV serotype 2 (DENV-2) prior to a large dengue epidemic in 2019. Prior to this epidemic, Nicaragua had experienced relatively low levels of DENV transmission from 2014 to 2019, a period dominated by chikungunya in 2014/15 and Zika in 2016. RESULTS Our phylogenetic analyses confirmed that all Nicaraguan DENV-2 isolates from 2018 to 2019 formed their own clade within the Nicaraguan lineage of the Asian/American genotype. The emergence of the new DENV-2 lineage reflects a replacement of the formerly dominant clade presiding from 2005 to 2009, a lineage turnover marked by several shared derived amino acid substitutions throughout the genome. To elucidate evolutionary drivers of lineage turnover, we performed selection pressure analysis and reconstructed the demographic history of DENV-2. We found evidence of adaptive evolution by natural selection at the codon level as well as in branch formation. CONCLUSIONS The timing of its emergence, along with a statistical signal of adaptive evolution and distinctive amino acid substitutions, the latest in the NS5 gene, suggest that this lineage may have increased fitness relative to the prior dominant DENV-2 strains. This may have contributed to the intensity of the 2019 DENV-2 epidemic, in addition to previously identified immunological factors associated with pre-existing Zika virus immunity.
Collapse
Affiliation(s)
- Panpim Thongsripong
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, USA
| | - Sean V Edgerton
- Interdisciplinary Studies Graduate Program, The University of British Columbia, Vancouver, BC, Canada
| | - Sandra Bos
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Saira Saborío
- Centro Nacional de Diagnóstico y Referencia, Laboraorio Nacional de Virología, Ministry of Health, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Angel Balmaseda
- Centro Nacional de Diagnóstico y Referencia, Laboraorio Nacional de Virología, Ministry of Health, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Shannon N Bennett
- Department of Microbiology, California Academy of Sciences, San Francisco, CA, USA.
| |
Collapse
|
19
|
Bhat EA, Ali T, Sajjad N, Kumar R, Bron P. Insights into the structure, functional perspective, and pathogenesis of ZIKV: an updated review. Biomed Pharmacother 2023; 165:115175. [PMID: 37473686 DOI: 10.1016/j.biopha.2023.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Zika virus (ZIKV) poses a serious threat to the entire world. The rapid spread of ZIKV and recent outbreaks since 2007 have caused worldwide concern about the virus. Diagnosis is complicated because of the cross-reactivity of the virus with other viral antibodies. Currently, the virus is diagnosed by molecular techniques such as RT-PCR and IgM-linked enzyme immunoassays (MAC-ELISA). Recently, outbreaks and epidemics have been caused by ZIKV, and severe clinical symptoms and congenital malformations have also been associated with the virus. Although most ZIKV infections present with a subclinical or moderate flu-like course of illness, severe symptoms such as Guillain-Barre syndrome in adults and microcephaly in children of infected mothers have also been reported. Because there is no reliable cure for ZIKV and no vaccine is available, the public health response has focused primarily on preventing infection, particularly in pregnant women. A comprehensive approach is urgently needed to combat this infection and stop its spread and imminent threat. In view of this, this review aims to present the current structural and functional viewpoints, structure, etiology, clinical prognosis, and measures to prevent this transmission based on the literature and current knowledge. Moreover, we provide thorough description of the current understanding about ZIKV interaction with receptors, and a comparative examination of its similarities and differences with other viruses.
Collapse
Affiliation(s)
- Eijaz Ahmed Bhat
- CBS (Centre de Biologie Structurale), Univ. Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.
| | - Tufail Ali
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Nasreena Sajjad
- Department of Biochemistry, University of Kashmir, Hazratbal, Jammu and Kashmir 190006, India
| | - Rohit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Patrick Bron
- CBS (Centre de Biologie Structurale), Univ. Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
20
|
Rashmi SH, Disha KS, Sudheesh N, Karunakaran J, Joseph A, Jagadesh A, Mudgal PP. Repurposing of approved antivirals against dengue virus serotypes: an in silico and in vitro mechanistic study. Mol Divers 2023:10.1007/s11030-023-10716-5. [PMID: 37632595 DOI: 10.1007/s11030-023-10716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023]
Abstract
Dengue is an emerging, mosquito-borne viral disease of international public health concern. Dengue is endemic in more than 100 countries across the world. However, there are no clinically approved antivirals for its cure. Drug repurposing proves to be an efficient alternative to conventional drug discovery approaches in this regard, as approved drugs with an established safety profile are tested for new indications, which circumvents several time-consuming experiments. In the present study, eight approved RNA-dependent RNA polymerase inhibitors of Hepatitis C virus were virtually screened against the Dengue virus polymerase protein, and their antiviral activity was assessed in vitro. Schrödinger software was used for in silico screening, where the compounds were passed through several hierarchical filters. Among the eight compounds, dasabuvir was finally selected for in vitro cytotoxicity and antiviral screening. Cytotoxicity profiling of dasabuvir in Vero cells revealed changes in cellular morphology, cell aggregation, and detachment at 50 μM. Based on these results, four noncytotoxic concentrations of dasabuvir (0.1, 0.25, 0.5, and 1 µM) were selected for antiviral screening against DENV-2 under three experimental conditions: pre-infection, co-infection, and post-infection treatment, by plaque reduction assay. Viral plaques were reduced significantly (p < 0.05) in the co-infection and post-infection treatment regimens; however, no reduction was observed in the pretreatment group. This indicated a possible interference of dasabuvir with NS5 RdRp, as seen from in silico interaction studies, translating into a reduction in virus plaques. Such studies reiterate the usefulness of drug repurposing as a viable strategy in antiviral drug discovery. In this drug repurposing study, dasabuvir, a known anti-hepatitis C drug, was selected through virtual screening and assessed for its anti-dengue activity.
Collapse
Affiliation(s)
- S H Rashmi
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - K Sai Disha
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - N Sudheesh
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Joseph Karunakaran
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Anitha Jagadesh
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - P P Mudgal
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
21
|
Islam A, Deeba F, Tarai B, Gupta E, Naqvi IH, Abdullah M, Dohare R, Ahmed A, Almajhdi FN, Hussain T, Parveen S. Global and local evolutionary dynamics of Dengue virus serotypes 1, 3, and 4. Epidemiol Infect 2023; 151:e127. [PMID: 37293986 PMCID: PMC10540175 DOI: 10.1017/s0950268823000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/01/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Evolutionary studies on Dengue virus (DENV) in endemic regions are necessary since naturally occurring mutations may lead to genotypic variations or shifts in serotypes, which may lead to future outbreaks. Our study comprehends the evolutionary dynamics of DENV, using phylogenetic, molecular clock, skyline plots, network, selection pressure, and entropy analyses based on partial CprM gene sequences. We have collected 250 samples, 161 in 2017 and 89 in 2018. Details for the 2017 samples were published in our previous article and that of 2018 are presented in this study. Further evolutionary analysis was carried out using 800 sequences, which incorporate the study and global sequences from GenBank: DENV-1 (n = 240), DENV-3 (n = 374), and DENV-4 (n = 186), identified during 1944-2020, 1956-2020, and 1956-2021, respectively. Genotypes V, III, and I were identified as the predominant genotypes of the DENV-1, DENV-3, and DENV-4 serotypes, respectively. The rate of nucleotide substitution was found highest in DENV-3 (7.90 × 10-4 s/s/y), followed by DENV-4 (6.23 × 10-4 s/s/y) and DENV-1 (5.99 × 10-4 s/s/y). The Bayesian skyline plots of the Indian strains revealed dissimilar patterns amongst the population size of the three serotypes. Network analyses showed the presence of different clusters within the prevalent genotypes. The data presented in this study will assist in supplementing the measures for vaccine development against DENV.
Collapse
Affiliation(s)
- Arshi Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Farah Deeba
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Bansidhar Tarai
- Department of Microbiology and Infection Control, Max Superspeciality Hospital, New Delhi, India
| | - Ekta Gupta
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Irshad H. Naqvi
- Dr. M.A. Ansari Health Centre, Jamia Millia Islamia, New Delhi, India
| | - Mohd. Abdullah
- Dr. M.A. Ansari Health Centre, Jamia Millia Islamia, New Delhi, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anwar Ahmed
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fahad N. Almajhdi
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tajamul Hussain
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
22
|
Bhatnagar P, Bajpai P, Shrinet J, Kaja MK, Chandele A, Sitaraman R. Prediction of human protein interactome of dengue virus non-structural protein 5 (NS5) and its downstream immunological implications. 3 Biotech 2023; 13:180. [PMID: 37193327 PMCID: PMC10182223 DOI: 10.1007/s13205-023-03569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/19/2023] [Indexed: 05/18/2023] Open
Abstract
The non-structural protein 5 (NS5) is the most conserved protein among flaviviruses, a family that includes the dengue virus. It functions both as an RNA-dependent RNA polymerase and an RNA-methyltransferase and is therefore essential for the replication of viral RNA. The discovery that dengue virus NS5 protein (DENV-NS5) can also localize to the nucleus has resulted in renewed interest in its potential roles at the host-virus interface. In this study, we have used two complementary computational approaches in parallel - one based on linear motifs (ELM) and another based on tertiary structure of the protein (DALI) - to predict the host proteins that DENV-NS5 might interact with. Of the 42 human proteins predicted by both these methods, 34 are novel. Pathway analysis of these 42 human proteins shows that they are involved in key host cellular processes related to cell cycle regulation, proliferation, protein degradation, apoptosis, and immune responses. A focused analysis of transcription factors that directly interact with the predicted DENV-NS5 interacting proteins was performed, followed by the identification of downstream genes that are differentially expressed after dengue infection using previously published RNA-seq data. Our study provides unique insights into the DENV-NS5 interaction network and delineates mechanisms whereby DENV-NS5 could impact the host-virus interface. The novel interactors identified in this study could be potentially targeted by NS5 to modulate the host cellular environment in general, and the immune response in particular, thereby extending the role of DENV-NS5 beyond its known enzymatic functions. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03569-0.
Collapse
Affiliation(s)
- Priya Bhatnagar
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, India
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Jatin Shrinet
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Murali Krishna Kaja
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- Department of Pediatrics and Emory Vaccine Centre, Emory University School of Medicine, Atlanta, GA USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | |
Collapse
|
23
|
Frank JC, Song BH, Lee YM. Mice as an Animal Model for Japanese Encephalitis Virus Research: Mouse Susceptibility, Infection Route, and Viral Pathogenesis. Pathogens 2023; 12:pathogens12050715. [PMID: 37242385 DOI: 10.3390/pathogens12050715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Japanese encephalitis virus (JEV), a zoonotic flavivirus, is principally transmitted by hematophagous mosquitoes, continually between susceptible animals and incidentally from those animals to humans. For almost a century since its discovery, JEV was geographically confined to the Asia-Pacific region with recurrent sizable outbreaks involving wildlife, livestock, and people. However, over the past decade, it has been detected for the first time in Europe (Italy) and Africa (Angola) but has yet to cause any recognizable outbreaks in humans. JEV infection leads to a broad spectrum of clinical outcomes, ranging from asymptomatic conditions to self-limiting febrile illnesses to life-threatening neurological complications, particularly Japanese encephalitis (JE). No clinically proven antiviral drugs are available to treat the development and progression of JE. There are, however, several live and killed vaccines that have been commercialized to prevent the infection and transmission of JEV, yet this virus remains the main cause of acute encephalitis syndrome with high morbidity and mortality among children in the endemic regions. Therefore, significant research efforts have been directed toward understanding the neuropathogenesis of JE to facilitate the development of effective treatments for the disease. Thus far, multiple laboratory animal models have been established for the study of JEV infection. In this review, we focus on mice, the most extensively used animal model for JEV research, and summarize the major findings on mouse susceptibility, infection route, and viral pathogenesis reported in the past and present, and discuss some unanswered key questions for future studies.
Collapse
Affiliation(s)
- Jordan C Frank
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
24
|
Nonyong P, Ekalaksananan T, Phanthanawiboon S, Overgaard HJ, Alexander N, Thaewnongiew K, Sawaswong V, Nimsamer P, Payungporn S, Phadungsombat J, Nakayama EE, Shioda T, Pientong C. Intrahost Genetic Diversity of Dengue Virus in Human Hosts and Mosquito Vectors under Natural Conditions Which Impact Replicative Fitness In Vitro. Viruses 2023; 15:982. [PMID: 37112962 PMCID: PMC10143933 DOI: 10.3390/v15040982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/08/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Dengue virus (DENV) is an arbovirus whose transmission cycle involves disparate hosts: humans and mosquitoes. The error-prone nature of viral RNA replication drives the high mutation rates, and the consequently high genetic diversity affects viral fitness over this transmission cycle. A few studies have been performed to investigate the intrahost genetic diversity between hosts, although their mosquito infections were performed artificially in the laboratory setting. Here, we performed whole-genome deep sequencing of DENV-1 (n = 11) and DENV-4 (n = 13) derived from clinical samples and field-caught mosquitoes from the houses of naturally infected patients, in order to analyze the intrahost genetic diversity of DENV between host types. Prominent differences in DENV intrahost diversity were observed in the viral population structure between DENV-1 and DENV-4, which appear to be associated with differing selection pressures. Interestingly, three single amino acid substitutions in the NS2A (K81R), NS3 (K107R), and NS5 (I563V) proteins in DENV-4 appear to be specifically acquired during infection in Ae. aegypti mosquitoes. Our in vitro study shows that the NS2A (K81R) mutant replicates similarly to the wild-type infectious clone-derived virus, while the NS3 (K107R), and NS5 (I563V) mutants have prolonged replication kinetics in the early phase in both Vero and C6/36 cells. These findings suggest that DENV is subjected to selection pressure in both mosquito and human hosts. The NS3 and NS5 genes may be specific targets of diversifying selection that play essential roles in early processing, RNA replication, and infectious particle production, and they are potentially adaptive at the population level during host switching.
Collapse
Affiliation(s)
- Patcharaporn Nonyong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.N.); (T.E.); (S.P.)
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.N.); (T.E.); (S.P.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supranee Phanthanawiboon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.N.); (T.E.); (S.P.)
| | - Hans J. Overgaard
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway;
| | - Neal Alexander
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK;
| | - Kesorn Thaewnongiew
- Department of Disease Control, Office of Disease Prevention and Control, Region 7 Khon Kaen, Ministry of Public Health, Khon Kaen 40000, Thailand;
| | - Vorthon Sawaswong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.N.); (S.P.)
| | - Pattaraporn Nimsamer
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.N.); (S.P.)
| | - Sunchai Payungporn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.N.); (S.P.)
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Juthamas Phadungsombat
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.)
| | - Emi E. Nakayama
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.)
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Tatsuo Shioda
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.)
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.N.); (T.E.); (S.P.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
25
|
Boerneke MA, Gokhale NS, Horner SM, Weeks KM. Structure-first identification of RNA elements that regulate dengue virus genome architecture and replication. Proc Natl Acad Sci U S A 2023; 120:e2217053120. [PMID: 37011200 PMCID: PMC10104495 DOI: 10.1073/pnas.2217053120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023] Open
Abstract
The genomes of RNA viruses encode the information required for replication in host cells both in their linear sequence and in complex higher-order structures. A subset of these RNA genome structures show clear sequence conservation, and have been extensively described for well-characterized viruses. However, the extent to which viral RNA genomes contain functional structural elements-unable to be detected by sequence alone-that nonetheless are critical to viral fitness is largely unknown. Here, we devise a structure-first experimental strategy and use it to identify 22 structure-similar motifs across the coding sequences of the RNA genomes for the four dengue virus serotypes. At least 10 of these motifs modulate viral fitness, revealing a significant unnoticed extent of RNA structure-mediated regulation within viral coding sequences. These viral RNA structures promote a compact global genome architecture, interact with proteins, and regulate the viral replication cycle. These motifs are also thus constrained at the levels of both RNA structure and protein sequence and are potential resistance-refractory targets for antivirals and live-attenuated vaccines. Structure-first identification of conserved RNA structure enables efficient discovery of pervasive RNA-mediated regulation in viral genomes and, likely, other cellular RNAs.
Collapse
Affiliation(s)
- Mark A. Boerneke
- Department of Chemistry, University of North Carolina, Chapel Hill, NC27599-3290
| | - Nandan S. Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Stacy M. Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC27599-3290
| |
Collapse
|
26
|
Feracci M, Eydoux C, Fattorini V, Lo Bello L, Gauffre P, Selisko B, Sutto-Ortiz P, Shannon A, Xia H, Shi PY, Noel M, Debart F, Vasseur JJ, Good S, Lin K, Moussa A, Sommadossi JP, Chazot A, Alvarez K, Guillemot JC, Decroly E, Ferron F, Canard B. AT-752 targets multiple sites and activities on the Dengue virus replication enzyme NS5. Antiviral Res 2023; 212:105574. [PMID: 36905944 DOI: 10.1016/j.antiviral.2023.105574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023]
Abstract
AT-752 is a guanosine analogue prodrug active against dengue virus (DENV). In infected cells, it is metabolized into 2'-methyl-2'-fluoro guanosine 5'-triphosphate (AT-9010) which inhibits RNA synthesis in acting as a RNA chain terminator. Here we show that AT-9010 has several modes of action on DENV full-length NS5. AT-9010 does not inhibit the primer pppApG synthesis step significantly. However, AT-9010 targets two NS5-associated enzyme activities, the RNA 2'-O-MTase and the RNA-dependent RNA polymerase (RdRp) at its RNA elongation step. Crystal structure and RNA methyltransferase (MTase) activities of the DENV 2 MTase domain in complex with AT-9010 at 1.97 Å resolution shows the latter bound to the GTP/RNA-cap binding site, accounting for the observed inhibition of 2'-O but not N7-methylation activity. AT-9010 is discriminated ∼10 to 14-fold against GTP at the NS5 active site of all four DENV1-4 NS5 RdRps, arguing for significant inhibition through viral RNA synthesis termination. In Huh-7 cells, DENV1-4 are equally sensitive to AT-281, the free base of AT-752 (EC50 ≈ 0.50 μM), suggesting broad spectrum antiviral properties of AT-752 against flaviviruses.
Collapse
Affiliation(s)
- Mikael Feracci
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Cécilia Eydoux
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Véronique Fattorini
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Lea Lo Bello
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Pierre Gauffre
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Barbara Selisko
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Priscila Sutto-Ortiz
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Ashleigh Shannon
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, Sealy Institute for Drug Discovery, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, Sealy Institute for Drug Discovery, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Mathieu Noel
- IBMM, UMR 5247 CNRS-UM1-UM2, Department of Nucleic Acids, Montpellier University, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Françoise Debart
- IBMM, UMR 5247 CNRS-UM1-UM2, Department of Nucleic Acids, Montpellier University, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Jean-Jacques Vasseur
- IBMM, UMR 5247 CNRS-UM1-UM2, Department of Nucleic Acids, Montpellier University, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Steve Good
- Atea Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA, 02110, USA
| | - Kai Lin
- Atea Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA, 02110, USA
| | - Adel Moussa
- Atea Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA, 02110, USA
| | | | - Aurélie Chazot
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Karine Alvarez
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Jean-Claude Guillemot
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Etienne Decroly
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - François Ferron
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Bruno Canard
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France.
| |
Collapse
|
27
|
Lee MF, Wu YS, Poh CL. Molecular Mechanisms of Antiviral Agents against Dengue Virus. Viruses 2023; 15:v15030705. [PMID: 36992414 PMCID: PMC10056858 DOI: 10.3390/v15030705] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Dengue is a major global health threat causing 390 million dengue infections and 25,000 deaths annually. The lack of efficacy of the licensed Dengvaxia vaccine and the absence of a clinically approved antiviral against dengue virus (DENV) drive the urgent demand for the development of novel anti-DENV therapeutics. Various antiviral agents have been developed and investigated for their anti-DENV activities. This review discusses the mechanisms of action employed by various antiviral agents against DENV. The development of host-directed antivirals targeting host receptors and direct-acting antivirals targeting DENV structural and non-structural proteins are reviewed. In addition, the development of antivirals that target different stages during post-infection such as viral replication, viral maturation, and viral assembly are reviewed. Antiviral agents designed based on these molecular mechanisms of action could lead to the discovery and development of novel anti-DENV therapeutics for the treatment of dengue infections. Evaluations of combinations of antiviral drugs with different mechanisms of action could also lead to the development of synergistic drug combinations for the treatment of dengue at any stage of the infection.
Collapse
|
28
|
Celegato M, Sturlese M, Vasconcelos Costa V, Trevisan M, Lallo Dias AS, Souza Passos IB, Queiroz-Junior CM, Messa L, Favaro A, Moro S, Teixeira MM, Loregian A, Mercorelli B. Small-Molecule Inhibitor of Flaviviral NS3-NS5 Interaction with Broad-Spectrum Activity and Efficacy In Vivo. mBio 2023; 14:e0309722. [PMID: 36622141 PMCID: PMC9973282 DOI: 10.1128/mbio.03097-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 01/10/2023] Open
Abstract
Every year, dengue virus (DENV) causes one hundred million infections worldwide that can result in dengue disease and severe dengue. Two other mosquito-borne flaviviruses, i.e., Zika virus (ZIKV) and West Nile virus (WNV), are responsible of prolonged outbreaks and are associated with severe neurological diseases, congenital defects, and eventually death. These three viruses, despite their importance for global public health, still lack specific drug treatments. Here, we describe the structure-guided discovery of small molecules with pan-flavivirus antiviral potential by a virtual screening of ~1 million structures targeting the NS3-NS5 interaction surface of different flaviviruses. Two molecules inhibited the interaction between DENV NS3 and NS5 in vitro and the replication of all DENV serotypes as well as ZIKV and WNV and exhibited low propensity to select resistant viruses. Remarkably, one molecule demonstrated efficacy in a mouse model of dengue by reducing peak viremia, viral load in target organs, and associated tissue pathology. This study provides the proof of concept that targeting the flaviviral NS3-NS5 interaction is an effective therapeutic strategy able to reduce virus replication in vivo and discloses new chemical scaffolds that could be further developed, thus providing a significant milestone in the development of much awaited broad-spectrum antiflaviviral drugs. IMPORTANCE More than one-third of the human population is at risk of infection by different mosquito-borne flaviviruses. Despite this, no specific antiviral drug is currently available. In this work, using a computational approach based on molecular dynamics simulation and virtual screening of ~1 million small-molecule structures, we identified a compound that targets the interaction between the two sole flaviviral enzymes, i.e., NS3 and NS5. This compound demonstrated pan-serotype anti-DENV activity and pan-flavivirus potential in infected cells, low propensity to select viral resistant mutant viruses, and efficacy in a mouse model of dengue. Broad-spectrum antivirals are much awaited, and this work represents a significant advance toward the development of therapeutic molecules with extended antiflavivirus potential that act by an innovative mechanism and could be used alone or in combination with other antivirals.
Collapse
Affiliation(s)
- Marta Celegato
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | - Marta Trevisan
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Angélica Samer Lallo Dias
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Lorenzo Messa
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Annagiulia Favaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | |
Collapse
|
29
|
Salgado Á, de Melo-Minardi RC, Giovanetti M, Veloso A, Morais-Rodrigues F, Adelino T, de Jesus R, Tosta S, Azevedo V, Lourenco J, Alcantara LCJ. Machine learning models exploring characteristic single-nucleotide signatures in yellow fever virus. PLoS One 2022; 17:e0278982. [PMID: 36508435 PMCID: PMC9744328 DOI: 10.1371/journal.pone.0278982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Yellow fever virus (YFV) is the agent of the most severe mosquito-borne disease in the tropics. Recently, Brazil suffered major YFV outbreaks with a high fatality rate affecting areas where the virus has not been reported for decades, consisting of urban areas where a large number of unvaccinated people live. We developed a machine learning framework combining three different algorithms (XGBoost, random forest and regularized logistic regression) to analyze YFV genomic sequences. This method was applied to 56 YFV sequences from human infections and 27 from non-human primate (NHPs) infections to investigate the presence of genetic signatures possibly related to disease severity (in human related sequences) and differences in PCR cycle threshold (Ct) values (in NHP related sequences). Our analyses reveal four non-synonymous single nucleotide variations (SNVs) on sequences from human infections, in proteins NS3 (E614D), NS4a (I69V), NS5 (R727G, V643A) and six non-synonymous SNVs on NHP sequences, in proteins E (L385F), NS1 (A171V), NS3 (I184V) and NS5 (N11S, I374V, E641D). We performed comparative protein structural analysis on these SNVs, describing possible impacts on protein function. Despite the fact that the dataset is limited in size and that this study does not consider virus-host interactions, our work highlights the use of machine learning as a versatile and fast initial approach to genomic data exploration.
Collapse
Affiliation(s)
- Álvaro Salgado
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (AS); (LCJA); (JL)
| | - Raquel C. de Melo-Minardi
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marta Giovanetti
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Adriano Veloso
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Francielly Morais-Rodrigues
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Talita Adelino
- Laboratório Central de Saúde Pública, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Ronaldo de Jesus
- Coordenação Geral dos Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil
| | - Stephane Tosta
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Lourenco
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (AS); (LCJA); (JL)
| | - Luiz Carlos J. Alcantara
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- * E-mail: (AS); (LCJA); (JL)
| |
Collapse
|
30
|
Madushanka A, Verma N, Freindorf M, Kraka E. Papaya Leaf Extracts as Potential Dengue Treatment: An In-Silico Study. Int J Mol Sci 2022; 23:12310. [PMID: 36293162 PMCID: PMC9610845 DOI: 10.3390/ijms232012310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) cause serious public health problems, with nearly 390 million people affected and 20,000 deaths per year in tropical and subtropical countries. Despite numerous attempts, no antiviral drug or vaccine is currently available to combat the manifestation. The challenge of discovering an efficient vaccine is enhanced by the surplus presence of efficient vectors and drug resistance from the virus. For centuries, papaya (Carica papaya) extracts have been traditionally used to treat DF, DHF, and DSS. In the present study, we systematically investigated seven compounds isolated from papaya leaf extract with regard to their potential as inhibitors for non-structural (NS) proteins, NS3 and NS5, which play a crucial role in viral RNA replication. The computational tools applied stretched across classical molecular docking, molecular dynamics (MD) simulations and SwissADME used to calculate binding affinities; binding free energies; Absorption, Distribution, Metabolism, and Excretion (ADME); and drug-likeness properties, thus, identifying Kaempferol, Chlorogenic acid, and Quercetin as potential candidates, with Kaempferol and Quercetin scoring best. Therefore, for the Kaempferol and Quercetin complexes, hybrid quantum mechanical/molecular mechanical (QM/MM) geometry and frequency calculations were performed, followed by the local mode analysis developed in our group to quantify Kaempferol-NS and Quercetin-NS hydrogen bonding. Given the non-toxic nature and the wide availability of the Kaempferol and Quercetin papaya extract in almost all of the susceptible regions, and our results showing high NS3 and NS5 binding affinities and energies, strong hydrogen bonding with both NS3 and NS5, and excellent ADME properties, we suggest Kaempferol and Quercetin as a strong NS3 and NS5 inhibitor to be further investigated in vitro.
Collapse
Affiliation(s)
| | | | | | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, P.O. Box 750314, Dallas, TX 75275, USA
| |
Collapse
|
31
|
In Silico Elucidation of Potent Inhibitors from Natural Products for Nonstructural Proteins of Dengue Virus. J CHEM-NY 2022. [DOI: 10.1155/2022/5398239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Medicinal plants have been used from the beginning of human civilization against various health complications. Dengue virus (DENV) has emerged as one of the most widespread viruses in tropical and subtropical countries. Yet no clinically approved antiviral drug is available to combat DENV infection. Consequently, the search for novel antidengue agents from medicinal plants has assumed more insistence than in previous days. This study has focused on 31 potential antidengue molecules from secondary metabolites to examine their inhibitory activity against DENV nonstructural proteins through molecular docking and pharmacokinetics studies. In this research, the wet lab experiments were tested on a computational platform. Agathisflavone and pectolinarin are the top-scored inhibitors of DENV NS2B/NS3 protease and NS5 polymerase, respectively. Epigallocatechin gallate, Pinostrobin, Panduratin A, and Pectolinarin could be potential lead compounds against NS2B/NS3 protease, while acacetin-7-O-rutinoside against NS5 polymerase. Moreover, agathisflavone (LD50= 1430 mg/kg) and pectolinarin (LD50= 5000 mg/kg) exhibited less toxicity than nelfinavir (LD50= 600 mg/kg) and balapiravir (LD50 = 824 mg/kg), and the reference drugs. Further research on clinical trials is required to analyze the therapeutic efficacy of these metabolites to develop new potential drug candidates against different serotypes of DENV.
Collapse
|
32
|
Cheng D, Huang SW, Chin WX, Hung SJ, Tsai HP, Chu JJH, Chao CH, Wang JR. Impact of Intrahost NS5 Nucleotide Variations on Dengue Virus Replication. Front Microbiol 2022; 13:894200. [PMID: 35865937 PMCID: PMC9294511 DOI: 10.3389/fmicb.2022.894200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the nature of RNA viruses, their high mutation rates produce a population of closely related but genetically diverse viruses, termed quasispecies. To determine the role of quasispecies in DENV disease severity, 22 isolates (10 from mild cases, 12 from fatal cases) were obtained, amplified, and sequenced with Next Generation Sequencing using the Illumina MiSeq platform. Using variation calling, unique wildtype nucleotide positions were selected and analyzed for variant nucleotides between mild and fatal cases. The analysis of variant nucleotides between mild and fatal cases showed 6 positions with a significant difference of p < 0.05 with 1 position in the structural region, and 5 positions in the non-structural (NS) regions. All variations were found to have a higher percentage in fatal cases. To further investigate the genetic changes that affect the virus’s properties, reverse genetics (rg) viruses containing substitutions with the variations were generated and viral growth properties were examined. We found that the virus variant rgNS5-T7812G (G81G) had higher replication rates in both Baby hamster kidney cells (BHK-21) and Vero cells while rgNS5-C9420A (A617A) had a higher replication rate only in BHK-21 cells compared to wildtype virus. Both variants were considered temperature sensitive whereby the viral titers of the variants were relatively lower at 39°C, but was higher at 35 and 37°C. Additionally, the variants were thermally stable compared to wildtype at temperatures of 29, 37, and 39°C. In conclusion, viral quasispecies found in isolates from the 2015 DENV epidemic, resulted in variations with significant difference between mild and fatal cases. These variations, NS5-T7812G (G81G) and NS5-C9420A (A617A), affect viral properties which may play a role in the virulence of DENV.
Collapse
Affiliation(s)
- Dayna Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Wei-Xin Chin
- Department of Microbiology and Immunology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Su-Jhen Hung
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chiao-Hsuan Chao
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- *Correspondence: Jen-Ren Wang,
| |
Collapse
|
33
|
The Dengue Virus Nonstructural Protein 1 (NS1) Interacts with the Putative Epigenetic Regulator DIDO1 to Promote Flavivirus Replication in Mosquito Cells. J Virol 2022; 96:e0070422. [PMID: 35652656 DOI: 10.1128/jvi.00704-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV) NS1 is a multifunctional protein essential for viral replication. To gain insights into NS1 functions in mosquito cells, the protein interactome of DENV NS1 in C6/36 cells was investigated using a proximity biotinylation system and mass spectrometry. A total of 817 mosquito targets were identified as protein-protein interacting with DENV NS1. Approximately 14% of them coincide with interactomes previously obtained in vertebrate cells, including the oligosaccharide transferase complex, the chaperonin containing TCP-1, vesicle localization, and ribosomal proteins. Notably, other protein pathways not previously reported in vertebrate cells, such as epigenetic regulation and RNA silencing, were also found in the NS1 interactome in mosquito cells. Due to the novel and strong interactions observed for NS1 and the epigenetic regulator DIDO1 (Death-Inducer Obliterator 1), the role of DIDO1 in viral replication was further explored. Interactions between NS1 and DIDO1 were corroborated in infected mosquito cells, by colocalization and proximity ligation assays. Silencing DIDO1 expression results in a significant reduction in DENV and ZIKV replication and progeny production. Comparison of transcription analysis of mock or DENV infected cells silenced for DIDO1 revealed variations in multiple gene expression pathways, including pathways associated with DENV infection such as RNA surveillance, IMD, and Toll. These results suggest that DIDO1 is a host factor involved in the negative modulation of the antiviral response necessary for flavivirus replication in mosquito cells. Our findings uncover novel mechanisms of NS1 to promote DENV and ZIKV replication, and add to the understanding of NS1 as a multifunctional protein. IMPORTANCE Dengue is the most important mosquito-borne viral disease to humans. Dengue virus NS1 is a multifunctional protein essential for replication and modulation of innate immunity. To gain insights into NS1 functions, the protein interactome of dengue virus NS1 in Aedes albopictus cells was investigated using a proximity biotinylation system and mass spectrometry. Several protein pathways, not previously observed in vertebrate cells, such as transcription and epigenetic regulation, were found as part of the NS1 interactome in mosquito cells. Among those, DIDO1 was found to be a necessary host factor for dengue and Zika virus replication in mosquito cells. Transcription analysis of infected mosquito cells silenced for DIDO1 revealed alterations of the IMD and Toll pathways, part of the antiviral response in mosquitoes. The results suggest that DIDO1 is a host factor involved in modulation of the antiviral response and necessary for flavivirus replication.
Collapse
|
34
|
Alamri MA, Mirza MU, Adeel MM, Ashfaq UA, Tahir ul Qamar M, Shahid F, Ahmad S, Alatawi EA, Albalawi GM, Allemailem KS, Almatroudi A. Structural Elucidation of Rift Valley Fever Virus L Protein towards the Discovery of Its Potential Inhibitors. Pharmaceuticals (Basel) 2022; 15:659. [PMID: 35745579 PMCID: PMC9228520 DOI: 10.3390/ph15060659] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/17/2022] Open
Abstract
Rift valley fever virus (RVFV) is the causative agent of a viral zoonosis that causes a significant clinical burden in domestic and wild ruminants. Major outbreaks of the virus occur in livestock, and contaminated animal products or arthropod vectors can transmit the virus to humans. The viral RNA-dependent RNA polymerase (RdRp; L protein) of the RVFV is responsible for viral replication and is thus an appealing drug target because no effective and specific vaccine against this virus is available. The current study reported the structural elucidation of the RVFV-L protein by in-depth homology modeling since no crystal structure is available yet. The inhibitory binding modes of known potent L protein inhibitors were analyzed. Based on the results, further molecular docking-based virtual screening of Selleckchem Nucleoside Analogue Library (156 compounds) was performed to find potential new inhibitors against the RVFV L protein. ADME (Absorption, Distribution, Metabolism, and Excretion) and toxicity analysis of these compounds was also performed. Besides, the binding mechanism and stability of identified compounds were confirmed by a 50 ns molecular dynamic (MD) simulation followed by MM/PBSA binding free energy calculations. Homology modeling determined a stable multi-domain structure of L protein. An analysis of known L protein inhibitors, including Monensin, Mycophenolic acid, and Ribavirin, provide insights into the binding mechanism and reveals key residues of the L protein binding pocket. The screening results revealed that the top three compounds, A-317491, Khasianine, and VER155008, exhibited a high affinity at the L protein binding pocket. ADME analysis revealed good pharmacodynamics and pharmacokinetic profiles of these compounds. Furthermore, MD simulation and binding free energy analysis endorsed the binding stability of potential compounds with L protein. In a nutshell, the present study determined potential compounds that may aid in the rational design of novel inhibitors of the RVFV L protein as anti-RVFV drugs.
Collapse
Affiliation(s)
- Mubarak A. Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia;
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada;
| | - Muhammad Muzammal Adeel
- 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.A.A.); (F.S.)
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.A.A.); (F.S.)
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.A.A.); (F.S.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Eid A. Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ghadah M. Albalawi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (G.M.A.); (A.A.)
- Department of Laboratory and Blood Bank, King Fahd Specialist Hospital, Tabuk 47717, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (G.M.A.); (A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (G.M.A.); (A.A.)
| |
Collapse
|
35
|
Fischer TR, Meidner L, Schwickert M, Weber M, Zimmermann RA, Kersten C, Schirmeister T, Helm M. Chemical biology and medicinal chemistry of RNA methyltransferases. Nucleic Acids Res 2022; 50:4216-4245. [PMID: 35412633 PMCID: PMC9071492 DOI: 10.1093/nar/gkac224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
RNA methyltransferases (MTases) are ubiquitous enzymes whose hitherto low profile in medicinal chemistry, contrasts with the surging interest in RNA methylation, the arguably most important aspect of the new field of epitranscriptomics. As MTases become validated as drug targets in all major fields of biomedicine, the development of small molecule compounds as tools and inhibitors is picking up considerable momentum, in academia as well as in biotech. Here we discuss the development of small molecules for two related aspects of chemical biology. Firstly, derivates of the ubiquitous cofactor S-adenosyl-l-methionine (SAM) are being developed as bioconjugation tools for targeted transfer of functional groups and labels to increasingly visible targets. Secondly, SAM-derived compounds are being investigated for their ability to act as inhibitors of RNA MTases. Drug development is moving from derivatives of cosubstrates towards higher generation compounds that may address allosteric sites in addition to the catalytic centre. Progress in assay development and screening techniques from medicinal chemistry have led to recent breakthroughs, e.g. in addressing human enzymes targeted for their role in cancer. Spurred by the current pandemic, new inhibitors against coronaviral MTases have emerged at a spectacular rate, including a repurposed drug which is now in clinical trial.
Collapse
Affiliation(s)
- Tim R Fischer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Laurenz Meidner
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Marvin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Marlies Weber
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| |
Collapse
|
36
|
García-Ariza LL, Rocha-Roa C, Padilla-Sanabria L, Castaño-Osorio JC. Virtual Screening of Drug-Like Compounds as Potential Inhibitors of the Dengue Virus NS5 Protein. Front Chem 2022; 10:637266. [PMID: 35223766 PMCID: PMC8867075 DOI: 10.3389/fchem.2022.637266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Dengue virus (DENV) is the causative agent of dengue fever. Annually, there are about 400 million new cases of dengue worldwide, and so far there is no specific treatment against this disease. The NS5 protein is the largest and most conserved viral protein among flaviviruses and is considered a therapeutic target of great interest. This study aims to search drug-like compounds for possible inhibitors of the NS5 protein in the four serotypes of DENV. Using a virtual screening from a ∼642,759-compound database, we suggest 18 compounds with NS5 binding and highlight the best compound per region, in the methyltransferase and RNA-dependent RNA polymerase domains. These compounds interact mainly with the amino acids of the catalytic sites and/or are involved in processes of protein activity. The identified compounds presented physicochemical and pharmacological properties of interest for their use as possible drugs; furthermore, we found that some of these compounds do not affect cell viability in Huh-7; therefore, we suggest evaluating these compounds in vitro as candidates in future research.
Collapse
Affiliation(s)
- Leidy L. García-Ariza
- Grupo de Inmunología Molecular, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
- *Correspondence: Leidy L. García-Ariza,
| | - Cristian Rocha-Roa
- Grupo de Parasitología Molecular, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
- Biophysics of Tropical Diseases, Max Planck Tandem Group, Universidad de Antioquia, Medellín, Colombia
| | - Leonardo Padilla-Sanabria
- Grupo de Inmunología Molecular, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Jhon C. Castaño-Osorio
- Grupo de Inmunología Molecular, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| |
Collapse
|
37
|
Molecular dynamics simulations and Gaussian network model for designing antibody mimicking protein towards dengue envelope protein. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Cheng CX, Alvin Tan MJ, Chan KWK, Watanabe S, Wang S, Choy MM, Manuel M, Victorio CBL, Ong J, Reolo M, Chacko AM, Vasudevan SG. In Vitro and In Vivo Stability of P884T, a Mutation that Relocalizes Dengue Virus 2 Non-structural Protein 5. ACS Infect Dis 2021; 7:3277-3291. [PMID: 34735113 DOI: 10.1021/acsinfecdis.1c00441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dengue virus (DENV) non-structural protein 5 (NS5) is critical for viral RNA synthesis within endoplasmic reticulum (ER)-derived replication complexes in the cytoplasm; however a proportion of NS5 is known to be localized to the nucleus of infected cells. The importance of nuclear DENV NS5 on viral replication and pathogenesis is still unclear. We recently discovered a nuclear localization signal (NLS) residing in the C-terminal 18 amino acid (Cter18) region of DENV NS5 and that a single NS5 P884T amino acid substitution adjacent to the NLS is sufficient to relocalize a significant proportion of DENV2 NS5 from the nucleus to the cytoplasm of infected cells. Here, in vitro studies show that the DENV2 NS5 P884T mutant replicates similarly to the parental wild-type infectious clone-derived virus while inducing a greater type I interferon and inflammatory cytokine response, in a manner independent of NS5's ability to degrade STAT2 or regulate SAT1 splicing. In both AG129 mouse and Aedes aegypti mosquito infection models, the P884T virus exhibits lower levels of viral replication only at early timepoints. Intriguingly, there appears to be a tendency for selection pressure to revert to the wild-type proline in P884T-infected Ae. aegypti, in agreement with the high conservation of the proline at this position of NS5 in DENV2, 3, and 4. These results suggest that the predominant nuclear localization of DENV NS5, while not required for viral RNA replication, may play a role in pathogenesis and modulation of the host immune response and contribute to viral fitness in the mosquito host.
Collapse
Affiliation(s)
- Colin X. Cheng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Min Jie Alvin Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kitti W. K. Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Satoru Watanabe
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sai Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Milly M. Choy
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Menchie Manuel
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Carla B. L. Victorio
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Joanne Ong
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Marie Reolo
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Ann-Marie Chacko
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Subhash G. Vasudevan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, NUS, 5 Science Drive 2, Singapore 117545, Singapore
- Institute for Glycomics, Griffith University, Southport 4222, Australia
| |
Collapse
|
39
|
In Silico Analysis of Dengue Virus Serotype 2 Mutations Detected at the Intrahost Level in Patients with Different Clinical Outcomes. Microbiol Spectr 2021; 9:e0025621. [PMID: 34468189 PMCID: PMC8557815 DOI: 10.1128/spectrum.00256-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intrahost genetic diversity is thought to facilitate arbovirus adaptation to changing environments and hosts, and it may also be linked to viral pathogenesis. Intending to shed light on the viral determinants for severe dengue pathogenesis, we previously analyzed the DENV-2 intrahost genetic diversity in 68 patients clinically classified as dengue fever (n = 31), dengue with warning signs (n = 19), and severe dengue (n = 18), performing viral whole-genome deep sequencing from clinical samples with an amplicon-free approach. From it, we identified a set of 141 relevant mutations distributed throughout the viral genome that deserved further attention. Therefore, we employed molecular modeling to recreate three-dimensional models of the viral proteins and secondary RNA structures to map the mutations and assess their potential effects. Results showed that, in general lines, disruptive variants were identified primarily among dengue fever cases. In contrast, potential immune-escape variants were associated mainly with warning signs and severe cases, in line with the latter's longer intrahost evolution times. Furthermore, several mutations were located on protein-surface regions, with no associated function. They could represent sites of further investigation, as the interaction of viral and host proteins is critical for both host immunomodulation and virus hijacking of the cellular machinery. The present analysis provides new information about the implications of the intrahost genetic diversity of DENV-2, contributing to the knowledge about the viral factors possibly involved in its pathogenesis within the human host. Strengthening our results with functional studies could allow many of these variants to be considered in the design of therapeutic or prophylactic compounds and the improvement of diagnostic assays. IMPORTANCE Previous evidence showed that intrahost genetic diversity in arboviruses may be linked to viral pathogenesis and that one or a few amino acid replacements within a single protein are enough to modify a biological feature of an RNA virus. To assess dengue virus serotype 2 determinants potentially involved in pathogenesis, we previously analyzed the intrahost genetic diversity of the virus in patients with different clinical outcomes and identified a set of 141 mutations that deserved further study. Thus, through a molecular modeling approach, we showed that disruptive variants were identified primarily among cases with mild dengue fever, while potential immune-escape variants were mainly associated with cases of greater severity. We believe that some of the variants pointed out in this study were attractive enough to be potentially considered in future intelligent designs of therapeutic or prophylactic compounds or the improvement of diagnostic tools. The present analysis provides new information about DENV-2 viral factors possibly involved in its pathogenesis within the human host.
Collapse
|
40
|
Panwar A, Wangchuk J, Kar M, Lodha R, Medigeshi GR. Dengue virus replication enhances labile zinc pools by modulation of ZIP8. Cell Microbiol 2021; 23:e13395. [PMID: 34619004 PMCID: PMC7612096 DOI: 10.1111/cmi.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
Zinc‐dependent viral proteins rely on intracellular zinc homeostasis for successful completion of infectious life‐cycle. Here, we report that the intracellular labile zinc levels were elevated at early stages of dengue virus (DENV) infection in hepatic cells and this increase in free zinc was abolished in cells infected with UV‐inactivated virus or with a DENV replication inhibitor implicating a role for zinc homeostasis in viral RNA replication. This change in free zinc was mediated by zinc transporter, ZIP8, as siRNA‐mediated knockdown of ZIP8 resulted in abrogation of increase in free zinc levels leading to significant reduction in DENV titers suggesting a crucial role for ZIP8 in early stages of DENV replication. Furthermore, elevated free zinc levels correlated with high copy numbers of dengue genome in peripheral blood leukocytes obtained from dengue patients compared to healthy controls suggesting a critical role for zinc homeostasis in dengue infection.
Collapse
Affiliation(s)
- Aleksha Panwar
- Clinical and Cellular Virology lab, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Jigme Wangchuk
- Clinical and Cellular Virology lab, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Meenakshi Kar
- Clinical and Cellular Virology lab, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Guruprasad R Medigeshi
- Clinical and Cellular Virology lab, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
41
|
Anti-dengue activity of super critical extract and isolated oleanolic acid of Leucas cephalotes using in vitro and in silico approach. BMC Complement Med Ther 2021; 21:227. [PMID: 34496833 PMCID: PMC8425015 DOI: 10.1186/s12906-021-03402-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Backgrounds Leucas cephalotes is a common ethnomedicinal plant widely used by traditional healers for the treatment of Malaria and other types of fever. Oleanolic acid and its derivatives have been reported for various types of pharmacological activities, such as anti-inflammatory, antioxidant, anticancer, hepatoprotective, anti-HIV and anti-HCV activity. Methods L.cephalotes plant extracts were prepared by supercritical fluid extraction (SFE) method and oleanolic acid was isolated by preparatory thin-layer chromatography. The compound was identified and characterize by using ultraviolet-visible spectroscopy (UV-VIS), Fourier transform infra-Red spectroscopy (FT-IR) and high-performance thin-layer chromatography (HPTLC). The structure of the compound was elucidated by proton nuclear magnetic resonance (1HNMR) and carbon nuclear magnetic resonance (1CNMR) and the purity checked by differential scanning calorimetry (DSC). The MTT assay was used to determine the toxicity of plant extract and oleanolic acid using a microplate reader at 595 nm. The anti-dengue activity of plant extract and oleanolic acid was tested in vitro and in silico using real-time RT-PCR. Results The optimum yield of the extract was obtained at 40 °C temperature and 15Mpa pressure. The maximum non-toxic dose (MNTD) of plant extract and oleanolic acid were found as 46.87 μg/ml and 93.75 μg/ml, respectively in C6/36 cell lines. UV spectrophotometer curve of the isolated compound was overlapped with standard oleanolic acid at 232 nm. Superimposed FT-IR structure of the isolated compound was indicated the same spectra at 3433, 2939, 2871, 1690, 1500,1463, 1387, 1250, 1209, 1137 and 656 position as per marker compound. HPTLC analysis showed the retention factor of L. cephalotes extract was 0.19 + 0.06 as similar to the standard oleanolic acid chromatogram. The NMR structure of the isolated compound was identified as similar to the marker oleanolic acid structure. DSC analysis revealed the purity of isolated oleanolic acid was 98.27% with a melting point of 311.16 °C. Real-time RT PCR results revealed that L. cephalotes supercritical extract and isolated oleanolic acid showed 100 and 99.17% inhibition against the dengue − 2 virus when treated with MNTD value of plant extract (46.87 μg/ml) and the test compound (93.75 μg/ml), respectively. The molecular study demonstrated the binding energy of oleanolic acid with NS1and NS5 (non-structural protein) were − 9.42 & -8.32Kcal/mol, respectively. Conclusions The SFE extract L. cephalotes and its active compound, oleanolic acid inhibiting the activity of dengue-2 serotype in the in vitro and in silico assays. Thus, the L.cephalotes plant could be an excellent source for drug design for the treatment of dengue infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03402-2.
Collapse
|
42
|
Abstract
Dengue is a vector-borne viral disease caused by the flavivirus dengue virus (DENV). Approximately 400 million cases and 22 000 deaths occur due to dengue worldwide each year. It has been reported in more than 100 countries in tropical and subtropical regions. A positive-stranded enveloped RNA virus (DENV) is principally transmitted by Aedes mosquitoes. It has four antigenically distinct serotypes, DENV-1 to DENV-4, with different genotypes and three structural proteins and seven non-structural proteins. Clinical symptoms of dengue range from mild fever to severe dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS), with thrombocytopenia, leucopenia, and increased vascular permeability. Although primary infection causes activation of immune responses against DENV serotypes, the severity of the disease is enhanced via heterotypic infection by various serotypes as well as antibody-dependent enhancement (ADE). The first licensed DENV vaccine was tetravalent CYD Denvaxia, but it has not been approved in all countries. The lack of a suitable animal model, a proper mechanistic study in pathogenesis, and ADE are the main hindrances in vaccine development. This review summarizes the current knowledge on DENV epidemiology, biology, and disease aetiology in the context of prevention and protection from dengue virus disease.
Collapse
Affiliation(s)
- Sudipta Kumar Roy
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India.,Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India
| | - Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India.,Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India
| |
Collapse
|
43
|
Carica papaya Leaf Extract Silver Synthesized Nanoparticles Inhibit Dengue Type 2 Viral Replication In Vitro. Pharmaceuticals (Basel) 2021; 14:ph14080718. [PMID: 34451815 PMCID: PMC8400503 DOI: 10.3390/ph14080718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 01/09/2023] Open
Abstract
The current global occurrence of dengue infection annually is approximately 400 million, with a case fatality rate of 2.5%. However, there are no antiviral agents. Carica papaya leaf extract is known for its medicinal value, due to the presence of organic compounds that possess antimicrobial, anti-inflammatory, and antioxidant activities. This study determined the anti-dengue effect of C. papaya leaf extract silver synthesized nanoparticles. In this study, aqueous and non-aqueous extractions were carried out, followed by the synthesis of silver nanoparticles as well as characterization through Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy. The in vitro anti-dengue effect was evaluated using a focus reduction neutralization test on kidney Vero E2 cell lines. In silico studies involved molecular docking to determine the potential interactions between the bioactive compounds in C. papaya leaf extract and the viral NS5 protein. C. papaya leaf methanol extract silver synthesized nanoparticle was the most promising with an IC50 of 9.20 µg/mL. Molecular docking showed 5,7 dimethoxycoumarin as the best ligand, with binding energy of −7.75 kcal/mol, indicating high affinity for the NS5 protein. These results highlight that C. papaya leaf methanol extract silver synthesized nanoparticles could be used to inhibit dengue virus type 2 viral replication. However, we recommend further studies to determine their toxicity and the safety profiles.
Collapse
|
44
|
Dechtawewat T, Roytrakul S, Yingchutrakul Y, Charoenlappanit S, Siridechadilok B, Limjindaporn T, Mangkang A, Prommool T, Puttikhunt C, Songprakhon P, Kongmanas K, Kaewjew N, Avirutnan P, Yenchitsomanus PT, Malasit P, Noisakran S. Potential Phosphorylation of Viral Nonstructural Protein 1 in Dengue Virus Infection. Viruses 2021; 13:v13071393. [PMID: 34372598 PMCID: PMC8310366 DOI: 10.3390/v13071393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
Dengue virus (DENV) infection causes a spectrum of dengue diseases that have unclear underlying mechanisms. Nonstructural protein 1 (NS1) is a multifunctional protein of DENV that is involved in DENV infection and dengue pathogenesis. This study investigated the potential post-translational modification of DENV NS1 by phosphorylation following DENV infection. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), 24 potential phosphorylation sites were identified in both cell-associated and extracellular NS1 proteins from three different cell lines infected with DENV. Cell-free kinase assays also demonstrated kinase activity in purified preparations of DENV NS1 proteins. Further studies were conducted to determine the roles of specific phosphorylation sites on NS1 proteins by site-directed mutagenesis with alanine substitution. The T27A and Y32A mutations had a deleterious effect on DENV infectivity. The T29A, T230A, and S233A mutations significantly decreased the production of infectious DENV but did not affect relative levels of intracellular DENV NS1 expression or NS1 secretion. Only the T230A mutation led to a significant reduction of detectable DENV NS1 dimers in virus-infected cells; however, none of the mutations interfered with DENV NS1 oligomeric formation. These findings highlight the importance of DENV NS1 phosphorylation that may pave the way for future target-specific antiviral drug design.
Collapse
Affiliation(s)
- Thanyaporn Dechtawewat
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.D.); (P.S.); (P.-t.Y.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (S.R.); (Y.Y.); (S.C.)
| | - Yodying Yingchutrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (S.R.); (Y.Y.); (S.C.)
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (S.R.); (Y.Y.); (S.C.)
| | - Bunpote Siridechadilok
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Arunothai Mangkang
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
| | - Tanapan Prommool
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chunya Puttikhunt
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pucharee Songprakhon
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.D.); (P.S.); (P.-t.Y.)
| | - Kessiri Kongmanas
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nuttapong Kaewjew
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.D.); (P.S.); (P.-t.Y.)
| | - Prida Malasit
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sansanee Noisakran
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: or ; Tel.: +66-2-419-6666
| |
Collapse
|
45
|
Gallardo-Flores CE, Colpitts CC. Cyclophilins and Their Roles in Hepatitis C Virus and Flavivirus Infections: Perspectives for Novel Antiviral Approaches. Pathogens 2021; 10:902. [PMID: 34358052 PMCID: PMC8308494 DOI: 10.3390/pathogens10070902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022] Open
Abstract
Cyclophilins are cellular peptidyl-prolyl isomerases that play an important role in viral infections, with demonstrated roles in the replication of hepatitis C virus (HCV) and other viruses in the Flaviviridae family, such as dengue virus (DENV) and yellow fever virus (YFV). Here, we discuss the roles of cyclophilins in HCV infection and provide a comprehensive overview of the mechanisms underlying the requirement for cyclophilins during HCV replication. Notably, cyclophilin inhibitor therapy has been demonstrated to be effective in reducing HCV replication in chronically infected patients. While the roles of cyclophilins are relatively well-understood for HCV infection, cyclophilins are more recently emerging as host factors for flavivirus infection as well, providing potential new therapeutic avenues for these viral infections which currently lack antiviral therapies. However, further studies are required to elucidate the roles of cyclophilins in flavivirus replication. Here, we review the current knowledge of the role of cyclophilins in HCV infection to provide a conceptual framework to understand how cyclophilins may contribute to other viral infections, such as DENV and YFV. Improved understanding of the roles of cyclophilins in viral infection may open perspectives for the development of cyclophilin inhibitors as effective antiviral therapeutics for HCV and related viruses.
Collapse
Affiliation(s)
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| |
Collapse
|
46
|
Natali EN, Babrak LM, Miho E. Prospective Artificial Intelligence to Dissect the Dengue Immune Response and Discover Therapeutics. Front Immunol 2021; 12:574411. [PMID: 34211454 PMCID: PMC8239437 DOI: 10.3389/fimmu.2021.574411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
Dengue virus (DENV) poses a serious threat to global health as the causative agent of dengue fever. The virus is endemic in more than 128 countries resulting in approximately 390 million infection cases each year. Currently, there is no approved therapeutic for treatment nor a fully efficacious vaccine. The development of therapeutics is confounded and hampered by the complexity of the immune response to DENV, in particular to sequential infection with different DENV serotypes (DENV1-5). Researchers have shown that the DENV envelope (E) antigen is primarily responsible for the interaction and subsequent invasion of host cells for all serotypes and can elicit neutralizing antibodies in humans. The advent of high-throughput sequencing and the rapid advancements in computational analysis of complex data, has provided tools for the deconvolution of the DENV immune response. Several types of complex statistical analyses, machine learning models and complex visualizations can be applied to begin answering questions about the B- and T-cell immune responses to multiple infections, antibody-dependent enhancement, identification of novel therapeutics and advance vaccine research.
Collapse
Affiliation(s)
- Eriberto N. Natali
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Lmar M. Babrak
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Enkelejda Miho
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- aiNET GmbH, Basel, Switzerland
| |
Collapse
|
47
|
Cordycepin Inhibits Virus Replication in Dengue Virus-Infected Vero Cells. Molecules 2021; 26:molecules26113118. [PMID: 34071102 PMCID: PMC8197141 DOI: 10.3390/molecules26113118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Dengue virus (DENV) infection causes mild to severe illness in humans that can lead to fatality in severe cases. Currently, no specific drug is available for the treatment of DENV infection. Thus, the development of an anti-DENV drug is urgently required. Cordycepin (3′-deoxyadenosine), which is a major bioactive compound in Cordyceps (ascomycete) fungus that has been used for centuries in Chinese traditional medicine, was reported to exhibit antiviral activity. However, the anti-DENV activity of cordycepin is unknown. We hypothesized that cordycepin exerts anti-DENV activity and that, as an adenosine derivative, it inhibits DENV replication. To test this hypothesis, we investigated the anti-DENV activity of cordycepin in DENV-infected Vero cells. Cordycepin treatment significantly decreased DENV protein at a half-maximal effective concentration (EC50) of 26.94 μM. Moreover, DENV RNA was dramatically decreased in cordycepin-treated Vero cells, indicating its effectiveness in inhibiting viral RNA replication. Via in silico molecular docking, the binding of cordycepin to DENV non-structural protein 5 (NS5), which is an important enzyme for RNA synthesis, at both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, was predicted. The results of this study demonstrate that cordycepin is able to inhibit DENV replication, which portends its potential as an anti-dengue therapy.
Collapse
|
48
|
Molecular Insights into the Flavivirus Replication Complex. Viruses 2021; 13:v13060956. [PMID: 34064113 PMCID: PMC8224304 DOI: 10.3390/v13060956] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Flaviviruses are vector-borne RNA viruses, many of which are clinically relevant human viral pathogens, such as dengue, Zika, Japanese encephalitis, West Nile and yellow fever viruses. Millions of people are infected with these viruses around the world each year. Vaccines are only available for some members of this large virus family, and there are no effective antiviral drugs to treat flavivirus infections. The unmet need for vaccines and therapies against these flaviviral infections drives research towards a better understanding of the epidemiology, biology and immunology of flaviviruses. In this review, we discuss the basic biology of the flavivirus replication process and focus on the molecular aspects of viral genome replication. Within the virus-induced intracellular membranous compartments, flaviviral RNA genome replication takes place, starting from viral poly protein expression and processing to the assembly of the virus RNA replication complex, followed by the delivery of the progeny viral RNA to the viral particle assembly sites. We attempt to update the latest understanding of the key molecular events during this process and highlight knowledge gaps for future studies.
Collapse
|
49
|
Alves AMB, Costa SM, Pinto PBA. Dengue Virus and Vaccines: How Can DNA Immunization Contribute to This Challenge? FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:640964. [PMID: 35047911 PMCID: PMC8757892 DOI: 10.3389/fmedt.2021.640964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
Dengue infections still have a tremendous impact on public health systems in most countries in tropical and subtropical regions. The disease is systemic and dynamic with broad range of manifestations, varying from mild symptoms to severe dengue (Dengue Hemorrhagic Fever and Dengue Shock Syndrome). The only licensed tetravalent dengue vaccine, Dengvaxia, is a chimeric yellow fever virus with prM and E genes from the different dengue serotypes. However, recent results indicated that seronegative individuals became more susceptible to develop severe dengue when infected after vaccination, and now WHO recommends vaccination only to dengue seropositive people. One possibility to explain these data is the lack of robust T-cell responses and antibody-dependent enhancement of virus replication in vaccinated people. On the other hand, DNA vaccines are excellent inducers of T-cell responses in experimental animals and it can also elicit antibody production. Clinical trials with DNA vaccines have improved and shown promising results regarding the use of this approach for human vaccination. Therefore, in this paper we review preclinical and clinical tests with DNA vaccines against the dengue virus. Most of the studies are based on the E protein since this antigen is the main target for neutralizing antibody production. Yet, there are other reports with DNA vaccines based on non-structural dengue proteins with protective results, as well. Combining structural and non-structural genes may be a solution for inducing immune responses aging in different infection moments. Furthermore, DNA immunizations are also a very good approach in combining strategies for vaccines against dengue, in heterologous prime/boost regimen or even administering different vaccines at the same time, in order to induce efficient humoral and cellular immune responses.
Collapse
Affiliation(s)
- Ada Maria Barcelos Alves
- Laboratory of Biotechnology and Physiology of Viral Infections, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | | |
Collapse
|
50
|
Bhatnagar P, Sreekanth GP, Murali-Krishna K, Chandele A, Sitaraman R. Dengue Virus Non-Structural Protein 5 as a Versatile, Multi-Functional Effector in Host-Pathogen Interactions. Front Cell Infect Microbiol 2021; 11:574067. [PMID: 33816326 PMCID: PMC8015806 DOI: 10.3389/fcimb.2021.574067] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/19/2021] [Indexed: 12/22/2022] Open
Abstract
Dengue is emerging as one of the most prevalent mosquito-borne viral diseases of humans. The 11kb RNA genome of the dengue virus encodes three structural proteins (envelope, pre-membrane, capsid) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5), all of which are translated as a single polyprotein that is subsequently cleaved by viral and host cellular proteases at specific sites. Non-structural protein 5 (NS5) is the largest of the non-structural proteins, functioning as both an RNA-dependent RNA polymerase (RdRp) that replicates the viral RNA and an RNA methyltransferase enzyme (MTase) that protects the viral genome by RNA capping, facilitating polyprotein translation. Within the human host, NS5 interacts with several proteins such as those in the JAK-STAT pathway, thereby interfering with anti-viral interferon signalling. This mini-review presents annotated, consolidated lists of known and potential NS5 interactors in the human host as determined by experimental and computational approaches respectively. The most significant protein interactors and the biological pathways they participate in are also highlighted and their implications discussed, along with the specific serotype of dengue virus as appropriate. This information can potentially stimulate and inform further research efforts towards providing an integrative understanding of the mechanisms by which NS5 manipulates the human-virus interface in general and the innate and adaptive immune responses in particular.
Collapse
Affiliation(s)
- Priya Bhatnagar
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, India.,ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Gopinathan Pillai Sreekanth
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.,Department of Paediatrics and Emory Vaccine Centre, Emory University School of Medicine, Atlanta, GA, United States
| | - Anmol Chandele
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | |
Collapse
|