1
|
Robinson E, Rodriguez I, Argueta V, Xie Y, Lou H, Milano R, Lee HJ, Burdett L, Mishra SK, Yeager M, Mirabello L, Dean M, Orozco R. Analysis of the progression of cervical cancer in a low-and-middle-income country: From pre-malignancy to invasive disease. Tumour Virus Res 2024; 19:200299. [PMID: 39672307 DOI: 10.1016/j.tvr.2024.200299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024] Open
Abstract
To better understand cervical cancer progression, we analyzed RNA from 262 biopsies from women referred for colposcopy. We determined the HPV type and analyzed the expression of 51 genes. HPV31 was significantly more prevalent in precancer than stage 1 cancer and invasive cancer (p < 0.0001), and HPV16 increased in invasive disease (p < 0.0001). CCNE1, MELTF, and ULBP2 were significantly increased in HPV16-positive compared to HPV31 precancers, while NECTIN2 and HLA-E expression decreased. Markers of the innate immune system, DNA repair genes, and cell cycle genes are significantly increased during cancer progression (p = 0.0001). In contrast, the TP53 and RB1 tumor suppressor gene expression is significantly decreased in cancer cells. The T cell markers CD28 and FLT3LG expression decreased in cancer while FOXP3, IDO1, and ULBP2 expression increased. There is a significantly higher survival rate in individuals with increased expression of CD28 (p = 0.0005), FOXP3 (p = 0.0002), IDO1 (p = 0.038), FLT3LG (p = 0.026), APOBEC3B (p = 0.0011), and RUNX3 (p = 0.019), and a significantly lower survival rate in individuals with increased expression of ULBP2 (p = 0.035). These results will help us elucidate the molecular factors influencing the progression of cervical precancer to cancer. Understanding the risk of progression of specific HPV types and sublineages may aid in the triage of positive patients, and better knowledge of the immune response may aid in developing and applying immunotherapies.
Collapse
Affiliation(s)
- Emma Robinson
- HLA Immunogenetics, Basic Science Program, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Isabel Rodriguez
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MD, USA
| | - Victor Argueta
- Hospital General San Juan de Dios, Guatemala City, Guatemala
| | - Yi Xie
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MD, USA
| | - Hong Lou
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Rose Milano
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MD, USA
| | - Hyo Jung Lee
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Laurie Burdett
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Sambit K Mishra
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Meredith Yeager
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Lisa Mirabello
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MD, USA
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MD, USA.
| | - Roberto Orozco
- Hospital General San Juan de Dios, Guatemala City, Guatemala
| |
Collapse
|
2
|
Ferré VM, Coppée R, Gbeasor-Komlanvi FA, Vacher S, Bridier-Nahmias A, Bucau M, Salou M, Lameiras S, Couvelard A, Dagnra AC, Bieche I, Descamps D, Ekouevi DK, Ghosn J, Charpentier C. Viral whole genome sequencing reveals high variations in APOBEC3 editing between HPV risk categories. J Med Virol 2024; 96:e70002. [PMID: 39400339 DOI: 10.1002/jmv.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
High-risk human papillomavirus (HPV) infections are responsible for cervical cancer. However, little is known about the differences between HPV types and risk categories regarding their genetic diversity and particularly APOBEC3-induced mutations - which contribute to the innate immune response to HPV. Using a capture-based next-generation sequencing, 156 HPV whole genome sequences covering 43 HPV types were generated from paired cervical and anal swabs of 30 Togolese female sex workers (FSWs) sampled in 2017. Genetic diversity and APOBEC3-induced mutations were assessed at the viral whole genome and gene levels. Thirty-four pairwise sequence comparisons covering 24 HPV types in cervical and anal swabs revealed identical infections in the two anatomical sites. Differences in genetic diversity among HPV types was observed between patients. The E6 gene was significantly less conserved in low-risk HPVs (lrHPVs) compared to high-risk HPVs (hrHPVs) (p = 0.009). APOBEC3-induced mutations were found to be more common in lrHPVs than in hrHPVs (p = 0.005), supported by our data and by using large HPV sequence collections from the GenBank database. Focusing on the most common lrHPVs 6 and 11 and hrHPVs 16 and 18, APOBEC3-induced mutations were predominantly found in the E4 and E6 genes in lrHPVs, but were almost absent in these genes in hrHPVs. The variable APOBEC3 mutational signatures could contribute to the different oncogenic potentials between HPVs. Further studies are needed to conclusively determine whether APOBEC3 editing levels are associated to the carcinogenic potential of HPVs at the type and sublineage scales.
Collapse
Affiliation(s)
- Valentine Marie Ferré
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
- Service de Virologie, AP-HP, Hôpital Bichat - Claude Bernard, Paris, F-75018, France
| | - Romain Coppée
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
| | - Fifonsi A Gbeasor-Komlanvi
- Département de Santé Publique, Université de Lomé, Faculté des Sciences de la Santé, Lomé, Togo
- Centre Africain de Recherche en Epidémiologie et en Santé Publique (CARESP), Lomé, Togo
| | - Sophie Vacher
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | | | - Margot Bucau
- Département de Pathologie, AP-HP, Hôpital Bichat-Claude Bernard, Paris, F-75018, France
| | - Mounerou Salou
- Université de Lomé, Centre de Biologie Moléculaire et d'Immunologie, Lomé, Togo
| | - Sonia Lameiras
- Institut Curie, Genomics of Excellence (ICGex) Platform, PSL Research University, Paris, France
| | - Anne Couvelard
- Département de Pathologie, AP-HP, Hôpital Bichat-Claude Bernard, Paris, F-75018, France
- Université de Paris, Centre of Research on Inflammation, Paris, INSERM U1149, France
| | - Anoumou Claver Dagnra
- Université de Lomé, Centre de Biologie Moléculaire et d'Immunologie, Lomé, Togo
- Programme national de lutte contre le sida et les infections sexuellement transmissibles, Lomé, Togo
| | - Ivan Bieche
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
- INSERM U1016, Faculty of Pharmaceutical and Biological Sciences, Paris Cité University, Paris, France
| | - Diane Descamps
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
- Service de Virologie, AP-HP, Hôpital Bichat - Claude Bernard, Paris, F-75018, France
| | - Didier K Ekouevi
- Département de Santé Publique, Université de Lomé, Faculté des Sciences de la Santé, Lomé, Togo
- ISPED, Université de Bordeaux & Centre INSERM U1219 - Bordeaux Population Health, Bordeaux, France
| | - Jade Ghosn
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
- Service de Maladies Infectieuses et Tropicales, AP-HP, Hôpital Bichat-Claude Bernard, Paris, F-75018, France
| | - Charlotte Charpentier
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
- Service de Virologie, AP-HP, Hôpital Bichat - Claude Bernard, Paris, F-75018, France
| |
Collapse
|
3
|
Pinheiro M, Wentzensen N, Dean M, Yeager M, Chen Z, Shastry A, Boland JF, Bass S, Burdett L, Lorey T, Mishra S, Castle PE, Schiffman M, Burk RD, Zhu B, Mirabello L. Somatic mutations in 3929 HPV positive cervical cells associated with infection outcome and HPV type. Nat Commun 2024; 15:7895. [PMID: 39266536 PMCID: PMC11393421 DOI: 10.1038/s41467-024-51713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/13/2024] [Indexed: 09/14/2024] Open
Abstract
Invasive cervical cancers (ICC), caused by HPV infections, have a heterogeneous molecular landscape. We investigate the detection, timing, and HPV type specificity of somatic mutations in 3929 HPV-positive exfoliated cervical cell samples from individuals undergoing cervical screening in the U.S. using deep targeted sequencing in ICC cases, precancers, and HPV-positive controls. We discover a subset of hotspot mutations rare in controls (2.6%) but significantly more prevalent in precancers, particularly glandular precancer lesions (10.2%), and cancers (25.7%), supporting their involvement in ICC carcinogenesis. Hotspot mutations differ by HPV type, and HPV18/45-positive ICC are more likely to have multiple hotspot mutations compared to HPV16-positive ICC. The proportion of cells containing hotspot mutations is higher (i.e., higher variant allele fraction) in ICC and mutations are detectable up to 6 years prior to cancer diagnosis. Our findings demonstrate the feasibility of using exfoliated cervical cells for detection of somatic mutations as potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Maisa Pinheiro
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
- Department of Biology, Hood College, Frederick, MD, USA
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Amulya Shastry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Joseph F Boland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Sara Bass
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Thomas Lorey
- Regional Laboratory and Women's Health Research Institute, Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Sambit Mishra
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Philip E Castle
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mark Schiffman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
4
|
McCool MA, Bryant CJ, Abriola L, Surovtseva YV, Baserga SJ. The cytidine deaminase APOBEC3A regulates nucleolar function to promote cell growth and ribosome biogenesis. PLoS Biol 2024; 22:e3002718. [PMID: 38976757 PMCID: PMC11257408 DOI: 10.1371/journal.pbio.3002718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Cancer initiates as a consequence of genomic mutations and its subsequent progression relies in part on increased production of ribosomes to maintain high levels of protein synthesis for unchecked cell growth. Recently, cytidine deaminases have been uncovered as sources of mutagenesis in cancer. In an attempt to form a connection between these 2 cancer driving processes, we interrogated the cytidine deaminase family of proteins for potential roles in human ribosome biogenesis. We identified and validated APOBEC3A and APOBEC4 as novel ribosome biogenesis factors through our laboratory's established screening platform for the discovery of regulators of nucleolar function in MCF10A cells. Through siRNA depletion experiments, we highlight APOBEC3A's requirement in making ribosomes and specific role within the processing and maturation steps that form the large subunit 5.8S and 28S ribosomal (r)RNAs. We demonstrate that a subset of APOBEC3A resides within the nucleolus and associates with critical ribosome biogenesis factors. Mechanistic insight was revealed by transient overexpression of both wild-type and a catalytically dead mutated APOBEC3A, which both increase cell growth and protein synthesis. Through an innovative nuclear RNA sequencing methodology, we identify only modest predicted APOBEC3A C-to-U target sites on the pre-rRNA and pre-mRNAs. Our work reveals a potential direct role for APOBEC3A in ribosome biogenesis likely independent of its editing function. More broadly, we found an additional function of APOBEC3A in cancer pathology through its function in ribosome biogenesis, expanding its relevance as a target for cancer therapeutics.
Collapse
Affiliation(s)
- Mason A. McCool
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Carson J. Bryant
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, United States of America
| | - Yulia V. Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, United States of America
| | - Susan J. Baserga
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
5
|
Galati L, Di Bonito P, Marinaro M, Chiantore MV, Gheit T. HPV16 Phylogenetic Variants in Anogenital and Head and Neck Cancers: State of the Art and Perspectives. Viruses 2024; 16:904. [PMID: 38932197 PMCID: PMC11209046 DOI: 10.3390/v16060904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
HPV16 is responsible for approximately 60% and 90% of global HPV-induced cervical and oropharyngeal cancers, respectively. HPV16 intratype variants have been identified by HPV genome sequencing and classified into four phylogenetic lineages (A-D). Our understanding of HPV16 variants mostly derives from epidemiological studies on cervical cancer (CC) in which HPV16 B, C, and D lineages (previously named "non-European" variants) were mainly associated with high-grade cervical lesions and cancer. Although a predominance of HPV16 lineage A (previously named "European variants") has been observed in head and neck squamous cell carcinoma (HNSCC), epidemiological and in vitro biological studies are still limited for this tumor site. Next Generation Sequencing (NGS) of the entire HPV genome has deepened our knowledge of the prevalence and distribution of HPV variants in CC and HNSCC. Research on cervical cancer has shown that certain HPV16 sublineages, such as D2, D3, A3, and A4, are associated with an increased risk of cervical cancer, and sublineages A4, D2, and D3 are linked to a higher risk of developing adenocarcinomas. Additionally, lineage C and sublineages D2 or D3 of HPV16 show an elevated risk of developing premalignant cervical lesions. However, it is still crucial to conduct large-scale studies on HPV16 variants in different HPV-related tumor sites to deeply evaluate their association with disease development and outcomes. This review discusses the current knowledge and updates on HPV16 phylogenetic variants distribution in HPV-driven anogenital and head and neck cancers.
Collapse
Affiliation(s)
- Luisa Galati
- International Agency for Research on Cancer, 69007 Lyon, France
| | - Paola Di Bonito
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (P.D.B.); (M.M.); (M.V.C.)
| | - Mariarosaria Marinaro
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (P.D.B.); (M.M.); (M.V.C.)
| | - Maria Vincenza Chiantore
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (P.D.B.); (M.M.); (M.V.C.)
| | - Tarik Gheit
- International Agency for Research on Cancer, 69007 Lyon, France
| |
Collapse
|
6
|
Costanzi JM, Stosic MS, Løvestad AH, Ambur OH, Rounge TB, Christiansen IK. Changes in intrahost genetic diversity according to lesion severity in longitudinal HPV16 samples. J Med Virol 2024; 96:e29641. [PMID: 38708811 DOI: 10.1002/jmv.29641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024]
Abstract
Human papillomavirus type 16 (HPV16) is the most common cause of cervical cancer, but most infections are transient with lesions not progressing to cancer. There is a lack of specific biomarkers for early cancer risk stratification. This study aimed to explore the intrahost HPV16 genomic variation in longitudinal samples from HPV16-infected women with different cervical lesion severity (normal, low-grade, and high-grade). The TaME-seq deep sequencing protocol was used to generate whole genome HPV16 sequences of 102 samples collected over time from 40 individuals. Single nucleotide variants (SNVs) and intrahost SNVs (iSNVs) were identified in the viral genomes. A majority of individuals had a unique set of SNVs and these SNVs were stable over time. Overall, the number of iSNVs and APOBEC3-induced iSNVs were significantly lower in high-grade relative to normal and low-grade samples. A significant increase in the number of APOBEC3-induced iSNVs over time was observed for normal samples when compared to high-grade. Our results indicates that the lower incidence of iSNVs and APOBEC3-induced iSNVs in high-grade lesions may have implications for novel biomarkers discoveries, potentially aiding early stratification of HPV-induced cervical precancerous lesions.
Collapse
Affiliation(s)
- Jean-Marc Costanzi
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
- Centre of Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Milan S Stosic
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Alexander H Løvestad
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
- Clinical Molecular Biology (EpiGen), Akershus University Hospital Lørenskog, Norway and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole H Ambur
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Trine B Rounge
- Centre of Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Irene K Christiansen
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
7
|
Su N, Zhou E, Cui M, Li H, Wu S, Zhang Q, Cao Z. Role and molecular mechanism of APOBEC3B in the development and progression of gastric cancer. Heliyon 2024; 10:e24458. [PMID: 38312680 PMCID: PMC10835258 DOI: 10.1016/j.heliyon.2024.e24458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Gastric cancer is a common malignant tumor with a high mortality rate. Abnormal APOBEC3B (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3B) expression increases tumor susceptibility. However, the exact molecular mechanism of APOBEC3B expression in the development of gastric cancer is still unknown. We investigated the effect of APOBEC3B on the malignant biological behavior of gastric cancer cells and discussed the role of APOBEC3B in the development and progression of gastric cancer. APOBEC3B protein levels were measured in 161 gastric cancer samples using western blotting and immunohistochemistry. Both in vitro and in vivo assays were performed, and molecules were analyzed using bioinformatics analysis and western blotting. APOBEC3B was overexpressed in gastric cancer. Moreover, APOBEC3B significantly enhanced cell proliferation in vitro and tumorigenicity in vivo. Regarding the underlying mechanism, APOBEC3B promoted the proliferation of gastric cancer cells by upregulating P53, MCM2 (minichromosome maintenance protein 2), and cyclin D1. Our results suggest that APOBEC3B is involved in cancer progression, providing a new theoretical basis for the prevention and treatment of gastric cancer.
Collapse
Affiliation(s)
- Nana Su
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Erle Zhou
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Min Cui
- Department of Pediatrics, Binzhou City People's Hospital, Binzhou, 256600, China
| | - Hong Li
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Shuhua Wu
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Zhang Cao
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, 256603, China
| |
Collapse
|
8
|
Carpenter MA, Temiz NA, Ibrahim MA, Jarvis MC, Brown MR, Argyris PP, Brown WL, Starrett GJ, Yee D, Harris RS. Mutational impact of APOBEC3A and APOBEC3B in a human cell line and comparisons to breast cancer. PLoS Genet 2023; 19:e1011043. [PMID: 38033156 PMCID: PMC10715669 DOI: 10.1371/journal.pgen.1011043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/12/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
A prominent source of mutation in cancer is single-stranded DNA cytosine deamination by cellular APOBEC3 enzymes, which results in signature C-to-T and C-to-G mutations in TCA and TCT motifs. Although multiple enzymes have been implicated, reports conflict and it is unclear which protein(s) are responsible. Here we report the development of a selectable system to quantify genome mutation and demonstrate its utility by comparing the mutagenic activities of three leading candidates-APOBEC3A, APOBEC3B, and APOBEC3H. The human cell line, HAP1, is engineered to express the thymidine kinase (TK) gene of HSV-1, which confers sensitivity to ganciclovir. Expression of APOBEC3A and APOBEC3B, but not catalytic mutant controls or APOBEC3H, triggers increased frequencies of TK mutation and similar TC-biased cytosine mutation profiles in the selectable TK reporter gene. Whole genome sequences from independent clones enabled an analysis of thousands of single base substitution mutations and extraction of local sequence preferences with APOBEC3A preferring YTCW motifs 70% of the time and APOBEC3B 50% of the time (Y = C/T; W = A/T). Signature comparisons with breast tumor whole genome sequences indicate that most malignancies manifest intermediate percentages of APOBEC3 signature mutations in YTCW motifs, mostly between 50 and 70%, suggesting that both enzymes contribute in a combinatorial manner to the overall mutation landscape. Although the vast majority of APOBEC3A- and APOBEC3B-induced single base substitution mutations occur outside of predicted chromosomal DNA hairpin structures, whole genome sequence analyses and supporting biochemical studies also indicate that both enzymes are capable of deaminating the single-stranded loop regions of DNA hairpins at elevated rates. These studies combine to help resolve a long-standing etiologic debate on the source of APOBEC3 signature mutations in cancer and indicate that future diagnostic and therapeutic efforts should focus on both APOBEC3A and APOBEC3B.
Collapse
Affiliation(s)
- Michael A. Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Nuri A. Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mahmoud A. Ibrahim
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Matthew C. Jarvis
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Margaret R. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prokopios P. Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gabriel J. Starrett
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
9
|
Wick C, Moghadasi SA, Becker JT, Fanunza E, Oh S, Bournique E, Buisson R, Harris RS. Mitochondrial double-stranded RNA triggers induction of the antiviral DNA deaminase APOBEC3A and nuclear DNA damage. J Biol Chem 2023; 299:105073. [PMID: 37474103 PMCID: PMC10457583 DOI: 10.1016/j.jbc.2023.105073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023] Open
Abstract
APOBEC3A is an antiviral DNA deaminase often induced by virus infection. APOBEC3A is also a source of cancer mutation in viral and nonviral tumor types. It is therefore critical to identify factors responsible for APOBEC3A upregulation. Here, we test the hypothesis that leaked mitochondrial (mt) double-stranded (ds)RNA is recognized as foreign nucleic acid, which triggers innate immune signaling, APOBEC3A upregulation, and DNA damage. Knockdown of an enzyme responsible for degrading mtdsRNA, the exoribonuclease polynucleotide phosphorylase, results in mtdsRNA leakage into the cytosol and induction of APOBEC3A expression. APOBEC3A upregulation by cytoplasmic mtdsRNA requires RIG-I, MAVS, and STAT2 and is likely part of a broader type I interferon response. Importantly, although mtdsRNA-induced APOBEC3A appears cytoplasmic by subcellular fractionation experiments, its induction triggers an overt DNA damage response characterized by elevated nuclear γ-H2AX staining. Thus, mtdsRNA dysregulation may induce APOBEC3A and contribute to observed genomic instability and mutation signatures in cancer.
Collapse
Affiliation(s)
- Chloe Wick
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jordan T Becker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elisa Fanunza
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA; Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA; Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA; Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA; Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA; Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
10
|
Amin FAS, Un Naher Z, Ali PSS. Molecular markers predicting the progression and prognosis of human papillomavirus-induced cervical lesions to cervical cancer. J Cancer Res Clin Oncol 2023; 149:8077-8086. [PMID: 37000261 DOI: 10.1007/s00432-023-04710-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Persistent Human Papillomavirus (HPV) infection is linked to 99% of cervical cancer (CC) cases. HPV types 16 and 18 alone result in 75% of CC cases and thus are considered to be high-risk types (HR-HPV). CC is the third most common cancer among women globally. Approximately, 7000 patients die from it yearly. It is worthy to note that not every patient with HPV precancerous lesions will progress to CC. OBJECTIVES The objectives of this review is to explore the utilization of molecular and viral biomarkers as a tool for early detection and prediction of HPV-induced cervical lesions that might progress to CC. METHODS The data bases PubMed, Google Scholar, EBSCO were searched using keywords CC screening, HPV, and recent molecular biomarkers. The search time frame was within the last 7 years. Studies on HPV-induced cancers other than CC were excluded; a total of 200 eligible articles were retrieved. RESULTS In this review we explored the current literature about HPV virology, virulence genes and early diagnostic/prognostic molecular biomarkers in CC. The oncogenic property of HPV is attributed to viral expression of various early proteins (E5, E6, E7). The interaction between viral oncoproteins and the cellular genetic apparatus alters the expression of many genes at different phases of the disease. There was an association between cervical lesions induced by HR-HPV and the overexpression of markers of oxidative DNA damage and other proteins. The markers p16INK4a, programmed cell death-1 (PD-1)/programmed cell death ligand 1, mismatch repair enzymes (MMR), miRNA-377, claudin family (CLDN) are dysregulated and are associated with high risk lesions. Furthermore, advanced older cervical lesions were associated with high methylation levels and higher risk to progress to CC. CONCLUSION Adding different the above markers to the CC screening program scheme might offer a triage for prioritizing patient management.
Collapse
Affiliation(s)
| | - Zeba Un Naher
- School of Medicine, Maldives National University, Male', Maldives
| | - P Shaik Syed Ali
- School of Medicine, Maldives National University, Male', Maldives
| |
Collapse
|
11
|
Burk RD, Mirabello L, DeSalle R. Distinguishing Genetic Drift from Selection in Papillomavirus Evolution. Viruses 2023; 15:1631. [PMID: 37631973 PMCID: PMC10458755 DOI: 10.3390/v15081631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Pervasive purifying selection on non-synonymous substitutions is a hallmark of papillomavirus genome history, but the role of selection on and the drift of non-coding DNA motifs on HPV diversification is poorly understood. In this study, more than a thousand complete genomes representing Alphapapillomavirus types, lineages, and SNP variants were examined phylogenetically and interrogated for the number and position of non-coding DNA sequence motifs using Principal Components Analyses, Ancestral State Reconstructions, and Phylogenetic Independent Contrasts. For anciently diverged Alphapapillomavirus types, composition of the four nucleotides (A, C, G, T), codon usage, trimer usage, and 13 established non-coding DNA sequence motifs revealed phylogenetic clusters consistent with genetic drift. Ancestral state reconstruction and Phylogenetic Independent Contrasts revealed ancient genome alterations, particularly for the CpG and APOBEC3 motifs. Each evolutionary analytical method we performed supports the unanticipated conclusion that genetic drift and different evolutionary drivers have structured Alphapapillomavirus genomes in distinct ways during successive epochs, even extending to differences in more recently formed variant lineages.
Collapse
Affiliation(s)
- Robert D. Burk
- Departments of Pediatrics, Microbiology & Immunology, Epidemiology & Population Health, Obstetrics, Gynecology and Woman’s Health, and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Robert DeSalle
- Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| |
Collapse
|
12
|
Roman C, Andrade D, Hernández Y, Salazar ZK, Espinosa L, Campoverde E, Guallaizaca L, Merchán M, Sarmiento M, Brenner J. Biological, demographic, and health factors associated with HPV infection in Ecuadorian women. Front Public Health 2023; 11:1158270. [PMID: 37397749 PMCID: PMC10311495 DOI: 10.3389/fpubh.2023.1158270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/11/2023] [Indexed: 07/04/2023] Open
Abstract
Objectives The study aims to identify the correlation between human papillomavirus (HPV) infection and sociodemographic and sexual reproductive health factors in Ecuadorian women from March to August 2019. Methods 120 women were randomly selected from two gynecological clinics to complete a questionnaire and provide a biospecimen. PCR-Hybridization was used to genotype 37 HPV serotypes in samples obtained by endo-cervical brushing for liquid-based cytology. Sociodemographic and sexual health data were collected through a validated questionnaire during a medical consultation. Mathematical modeling of HPV infection was done using bivariate logistic regression. Results 65.0% of the women sampled had an HPV infection; 74.3% of these women had co-infections with other HPV genotypes. Out of the women who were HPV positive, 75.6% were diagnosed with high-risk genotypes from HPV strains 18, 35, 52, and 66. Parity, immunosuppression, and use of oral contraception/intrauterine devices (IUDs) were identified as associated variables. The explanatory model had a sensitivity of 89.5% and a specificity of 73.8%. Conclusion The predominant strains of HPV among Ecuadorian women are diverse. The risk of HPV infection is a complex phenomenon where biological and psychosocial variables are integrated into a model. In populations with limited access to health services, low socioeconomic status, and negative sociocultural beliefs about sexually transmitted infections (STIs), surveys can be used as a pre-screening step for HPV infections. The diagnostic value of the model should be tested in multicenter studies that include women from all over the country.
Collapse
Affiliation(s)
- Carlos Roman
- Diagnostic Department, MEDsan, Inc., Saint Petersburg, FL, United States
| | - Diego Andrade
- Investigation Center for Health, Academic Unit of Health and Wellness, Catholic University of Cuenca (UCACUE), Cuenca, Ecuador
| | - Yenima Hernández
- Department of Mental Health, The Angels Mental Health Community, Tampa, FL, United States
| | - Zoila K. Salazar
- Investigation Center for Health, Academic Unit of Health and Wellness, Catholic University of Cuenca (UCACUE), Cuenca, Ecuador
- Medical Center Association for the Well-being of the Ecuadorian Family (APROFE), Cuenca, Ecuador
| | - Lizette Espinosa
- Investigation Center for Health, Academic Unit of Health and Wellness, Catholic University of Cuenca (UCACUE), Cuenca, Ecuador
| | - Erika Campoverde
- Investigation Center for Health, Academic Unit of Health and Wellness, Catholic University of Cuenca (UCACUE), Cuenca, Ecuador
| | - Lourdes Guallaizaca
- Investigation Center for Health, Academic Unit of Health and Wellness, Catholic University of Cuenca (UCACUE), Cuenca, Ecuador
| | - María Merchán
- Investigation Center for Health, Academic Unit of Health and Wellness, Catholic University of Cuenca (UCACUE), Cuenca, Ecuador
| | - Miriam Sarmiento
- Obstetrics Department, San Juan de Dios Hospital, Cuenca, Ecuador
| | - Jonathan Brenner
- Diagnostic Department, MEDsan, Inc., Saint Petersburg, FL, United States
| |
Collapse
|
13
|
Sharma AE, Hodgson AJ, Howitt BE, Olkhov-Mitsel E, Djordjevic B, Park KJ, Nucci MR, Parra-Herran C. Molecular correlates of invasion pattern in HPV-associated endocervical adenocarcinoma: emergence of two distinct risk-stratified tiers. Histopathology 2023; 82:1067-1078. [PMID: 36849702 PMCID: PMC10263975 DOI: 10.1111/his.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND The pattern-based (Silva) classification of invasive human papilloma virus (HPV)-associated endocervical adenocarcinomas (HPVA) is an established and reproducible method to predict outcomes for this otherwise stage-dependent group of tumours. Previous studies utilising targeted sequencing have shown a correlation between mutational profiles and an invasive pattern. However, such correlation has not been explored using comprehensive molecular testing. DESIGN Clinicopathologic data including invasive pattern (Silva groups A, B, and C) was collected for a cohort of invasive HPVA, which previously underwent massive parallel sequencing using a panel covering 447 genes. Pathogenic alterations, molecular signatures, tumour mutational burden (TMB), and copy number alterations (CNA) were correlated with pattern of invasion. RESULTS Forty five HPVA (11 pattern A, 17 pattern B, and 17 pattern C tumours) were included. Patients with pattern A presented at stage I with no involved lymph nodes or evidence of recurrence (in those with >2 months of follow-up). Patterns B and C patients also mostly presented at stage I with negative lymph nodes, but had a greater frequency of recurrence; 3/17 pattern B and 1/17 pattern C HPVAs harboured lymphovascular space invasion (LVI). An APOBEC mutational signature was detected only in Silva pattern C tumours (5/17), and pathogenic PIK3CA changes were detected only in destructively invasive HPVA (patterns B and C). When cases were grouped as low-risk (pattern A and pattern B without LVI) and high-risk (pattern B with LVI and pattern C), high-risk tumours were enriched in mutations in PIK3CA, ATRX, and ERBB2. There was a statistically significant difference in TMB between low-risk and high-risk pattern tumours (P = 0.006), as well as between Pattern C tumours with and without an APOBEC signature (P = 0.002). CNA burden increased from pattern A to C. CONCLUSION Our findings further indicate that key molecular events in HPVA correlate with the morphologic invasive properties of the tumour and their aggressiveness. Pattern B tumours with LVI clustered with pattern C tumours, whereas pattern B tumours without LVI approached pattern A genotypically. Our study provides a biologic foundation for consolidating the Silva system into low-risk (pattern A + B without LVI) and high-risk (pattern B with LVI and pattern C) categories.
Collapse
Affiliation(s)
- Aarti E Sharma
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Anjelica J Hodgson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Brooke E Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Ekaterina Olkhov-Mitsel
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences, Centre, Toronto, ON, Canada
| | - Bojana Djordjevic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences, Centre, Toronto, ON, Canada
| | - Kay J Park
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marisa R Nucci
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | | |
Collapse
|
14
|
Castilha EP, Curti RRDJ, de Oliveira JN, Vitiello GAF, Guembarovski RL, Couto-Filho JD, Oliveira KBD. APOBEC3A/B Polymorphism Is Not Associated with Human Papillomavirus Infection and Cervical Carcinogenesis. Pathogens 2023; 12:pathogens12050636. [PMID: 37242306 DOI: 10.3390/pathogens12050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The persistence of a high-risk Human papillomavirus (HPV-HR) infection of the cervix results in different manifestations of lesions depending on the immunologic capacity of the host. Variations in apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC)-like genes, such as the APOBEC3A/B deletion hybrid polymorphism (A3A/B), may contribute to cervical malignancy in the presence of HPV. The aim of this study was to investigate the association between the A3A/B polymorphism and HPV infection and the development of cervical intraepithelial lesions and cervical cancer in Brazilian women. The study enrolled 369 women, who were categorized according to the presence of infection and subdivided according to the degree of intraepithelial lesion and cervical cancer. APOBEC3A/B was genotyped by allele-specific polymerase chain reaction (PCR). As for the A3A/B polymorphism, the distribution of genotypes was similar between groups and among the analyzed subgroups. There were no significant differences in the presence of infection or development of lesions, even after exclusion of confounding factors. This is the first study to show that the A3A/B polymorphism is not associated with HPV infection and the development of intraepithelial lesions and cervical cancer in Brazilian women.
Collapse
Affiliation(s)
- Eliza Pizarro Castilha
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Rafaela Roberta de Jaime Curti
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Janaina Nicolau de Oliveira
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina 86057-970, PR, Brazil
| | | | - Roberta Losi Guembarovski
- Department of Biological Sciences, Biological Sciences Center, State University of Londrina, Londrina 86057-970, PR, Brazil
| | | | - Karen Brajão de Oliveira
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina 86057-970, PR, Brazil
| |
Collapse
|
15
|
Starrett GJ, Yu K, Golubeva Y, Lenz P, Piaskowski ML, Petersen D, Dean M, Israni A, Hernandez BY, Tucker TC, Cheng I, Gonsalves L, Morris CR, Hussain SK, Lynch CF, Harris RS, Prokunina-Olsson L, Meltzer PS, Buck CB, Engels EA. Evidence for virus-mediated oncogenesis in bladder cancers arising in solid organ transplant recipients. eLife 2023; 12:e82690. [PMID: 36961501 PMCID: PMC10446826 DOI: 10.7554/elife.82690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/22/2023] [Indexed: 03/25/2023] Open
Abstract
A small percentage of bladder cancers in the general population have been found to harbor DNA viruses. In contrast, up to 25% of tumors of solid organ transplant recipients, who are at an increased risk of developing bladder cancer and have an overall poorer outcomes, harbor BK polyomavirus (BKPyV). To better understand the biology of the tumors and the mechanisms of carcinogenesis from potential oncoviruses, we performed whole genome and transcriptome sequencing on bladder cancer specimens from 43 transplant patients. Nearly half of the tumors from this patient population contained viral sequences. The most common were from BKPyV (N=9, 21%), JC polyomavirus (N=7, 16%), carcinogenic human papillomaviruses (N=3, 7%), and torque teno viruses (N=5, 12%). Immunohistochemistry revealed variable Large T antigen expression in BKPyV-positive tumors ranging from 100% positive staining of tumor tissue to less than 1%. In most cases of BKPyV-positive tumors, the viral genome appeared to be clonally integrated into the host chromosome consistent with microhomology-mediated end joining and coincided with focal amplifications of the tumor genome similar to other virus-mediated cancers. Significant changes in host gene expression consistent with the functions of BKPyV Large T antigen were also observed in these tumors. Lastly, we identified four mutation signatures in our cases, with those attributable to APOBEC3 and SBS5 being the most abundant. Mutation signatures associated with an antiviral drug, ganciclovir, and aristolochic acid, a nephrotoxic compound found in some herbal medicines, were also observed. The results suggest multiple pathways to carcinogenesis in solid organ transplant recipients with a large fraction being virus-associated.
Collapse
Affiliation(s)
| | - Kelly Yu
- DCEG, NCI, NIHRockvilleUnited States
| | | | - Petra Lenz
- Leidos Biomedical Research IncFrederickUnited States
| | | | | | | | - Ajay Israni
- Department of Medicine, Nephrology Division, Hennepin Healthcare System, University of MinnesotaMinneapolisUnited States
| | | | - Thomas C Tucker
- The Kentucky Cancer Registry, University of KentuckyLexingtonUnited States
| | - Iona Cheng
- Department of Epidemiology and Biostatistics,and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoFremontUnited States
| | - Lou Gonsalves
- Connecticut Tumor Registry, Connecticut Department of Public HealthHartfordUnited States
| | - Cyllene R Morris
- California Cancer Reporting and Epidemiologic Surveillance Program, University of California, DavisDavisUnited States
| | - Shehnaz K Hussain
- Cedars-Sinai Cancer and Department of Medicine, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Charles F Lynch
- The Iowa Cancer Registry, University of IowaIowa CityUnited States
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of MinnesotaMinneapolisUnited States
| | | | | | | | | |
Collapse
|
16
|
Jones KM, Shehata M, Carpenter MA, Amaro RE, Harki DA. APOBEC3A Catalytic Inactivity Mutation Induces Tertiary Structure Destabilization. ACS Med Chem Lett 2023; 14:338-343. [PMID: 36923917 PMCID: PMC10009786 DOI: 10.1021/acsmedchemlett.2c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
APOBEC3A (A3A)-catalyzed DNA cytosine deamination is implicated in virus and cancer mutagenesis, and A3A is a target for small molecule drug discovery. The catalytic glutamic acid (E72) is frequently mutated in biochemical studies to characterize deamination-dependent versus deamination-independent A3A functions. Additionally, catalytically active A3A is toxic in bacterial expression systems, which adversely affects yield during recombinant A3A expression. Here, we demonstrate that mutating the catalytic glutamic acid to an isosteric glutamine (E72Q) significantly decreases the thermal stability of the protein, compared to the alanine-inactivating mutation (E72A). Differential scanning fluorimetry and mass spectrometry reveal that A3A E72Q is less thermally stable than A3A E72A or wild-type A3A. Strikingly, A3A E72Q is partially denatured at 37 °C and binds single-stranded DNA with significantly poorer affinity compared to A3A E72A. This study constitutes an important cautionary note on A3A protein design and informs that A3A E72A is the preferred catalytic inactivation mutation for most applications.
Collapse
Affiliation(s)
- Katherine
F. M. Jones
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mohamed Shehata
- Department
of Chemistry and Biochemistry, University
of California − San Diego, La Jolla, California 92093, United States
| | - Michael A. Carpenter
- Department
of Biochemistry & Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, Texas 78229, United States
| | - Rommie E. Amaro
- Department
of Chemistry and Biochemistry, University
of California − San Diego, La Jolla, California 92093, United States
| | - Daniel A. Harki
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Stewart JA, Damania B. Human DNA tumor viruses evade uracil-mediated antiviral immunity. PLoS Pathog 2023; 19:e1011252. [PMID: 36996040 PMCID: PMC10062561 DOI: 10.1371/journal.ppat.1011252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Affiliation(s)
- Jessica A. Stewart
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
18
|
Argyris PP, Naumann J, Jarvis MC, Wilkinson PE, Ho DP, Islam MN, Bhattacharyya I, Gopalakrishnan R, Li F, Koutlas IG, Giubellino A, Harris RS. Primary mucosal melanomas of the head and neck are characterised by overexpression of the DNA mutating enzyme APOBEC3B. Histopathology 2023; 82:608-621. [PMID: 36416305 PMCID: PMC10107945 DOI: 10.1111/his.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022]
Abstract
AIMS Primary head/neck mucosal melanomas (MMs) are rare and exhibit aggressive biologic behaviour and elevated mutational loads. The molecular mechanisms responsible for high genomic instability observed in head/neck MMs remain elusive. The DNA cytosine deaminase APOBEC3B (A3B) constitutes a major endogenous source of mutation in human cancer. A3B-related mutations are identified through C-to-T/-G base substitutions in 5'-TCA/T motifs. Herein, we present immunohistochemical and genomic data supportive of a role for A3B in head/neck MMs. METHODS AND RESULTS A3B protein levels were assessed in oral (n = 13) and sinonasal (n = 13) melanomas, and oral melanocytic nevi (n = 13) by immunohistochemistry using a custom rabbit α-A3B mAb (5210-87-13). Heterogeneous, selective-to-diffuse, nuclear only, A3B immunopositivity was observed in 12 of 13 (92.3%) oral melanomas (H-score range = 9-72, median = 40) and 8 of 13 (62%) sinonasal melanomas (H-score range = 1-110, median = 24). Two cases negative for A3B showed prominent cytoplasmic staining consistent with A3G. A3B protein levels were significantly higher in oral and sinonasal MMs than intraoral melanocytic nevi (P < 0.0001 and P = 0.0022, respectively), which were A3B-negative (H-score range = 1-8, median = 4). A3B levels, however, did not differ significantly between oral and sinonasal tumours (P > 0.99). NGS performed in 10 sinonasal MMs revealed missense NRAS mutations in 50% of the studied cases and one each KIT and HRAS mutations. Publicly available whole-genome sequencing (WGS) data disclosed that the number of C-to-T mutations and APOBEC3 enrichment score were markedly elevated in head/neck MMs (n = 2). CONCLUSION The above data strongly indicate a possible role for the mutagenic enzyme A3B in head/neck melanomagenesis, but not benign melanocytic neoplasms.
Collapse
Affiliation(s)
- Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
- Howard Hughes Medical InstituteUniversity of MinnesotaMinneapolisMNUSA
- Division of Oral and Maxillofacial PathologySchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Jordan Naumann
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Matthew C Jarvis
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Peter E Wilkinson
- Department of Diagnostic and Biological SciencesSchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Dan P Ho
- Department of Diagnostic and Biological SciencesSchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Mohammed N Islam
- Department of Oral and Maxillofacial Diagnostic SciencesUniversity of Florida College of DentistryGainesvilleFLUSA
| | - Indraneel Bhattacharyya
- Department of Oral and Maxillofacial Diagnostic SciencesUniversity of Florida College of DentistryGainesvilleFLUSA
| | - Rajaram Gopalakrishnan
- Division of Oral and Maxillofacial PathologySchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Faqian Li
- Department of Laboratory Medicine and PathologyMedical School, University of MinnesotaMinneapolisMNUSA
| | - Ioannis G Koutlas
- Division of Oral and Maxillofacial PathologySchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Alessio Giubellino
- Department of Laboratory Medicine and PathologyMedical School, University of MinnesotaMinneapolisMNUSA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
- Howard Hughes Medical InstituteUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
19
|
Guo C, Qu X, Tang X, Song Y, Wang J, Hua K, Qiu J. Spatiotemporally deciphering the mysterious mechanism of persistent HPV-induced malignant transition and immune remodelling from HPV-infected normal cervix, precancer to cervical cancer: Integrating single-cell RNA-sequencing and spatial transcriptome. Clin Transl Med 2023; 13:e1219. [PMID: 36967539 PMCID: PMC10040725 DOI: 10.1002/ctm2.1219] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND The mechanism underlying cervical carcinogenesis that is mediated by persistent human papillomavirus (HPV) infection remains elusive. AIMS Here, for the first time, we deciphered both the temporal transition and spatial distribution of cellular subsets during disease progression from normal cervix tissues to precursor lesions to cervical cancer. MATERIALS & METHODS We generated scRNA-seq profiles and spatial transcriptomics data from nine patient samples, including two HPV-negative normal, two HPV-positive normal, two HPV-positive HSIL and three HPV-positive cancer samples. RESULTS We not only identified three 'HPV-related epithelial clusters' that are unique to normal, high-grade squamous intraepithelial lesions (HSIL) and cervical cancer tissues but also discovered node genes that potentially regulate disease progression. Moreover, we observed the gradual transition of multiple immune cells that exhibited positive immune responses, followed by dysregulation and exhaustion, and ultimately established an immune-suppressive microenvironment during the malignant program. In addition, analysis of cellular interactions further verified that a 'homeostasis-balance-malignancy' change occurred within the cervical microenvironment during disease progression. DISCUSSION We for the first time presented a spatiotemporal atlas that systematically described the cellular heterogeneity and spatial map along the four developmental steps of HPV-related cervical oncogenesis, including normal, HPV-positive normal, HSIL and cancer. We identified three unique HPV-related clusters, discovered critical node genes that determined the cell fate and uncovered the immune remodeling during disease escalation. CONCLUSION Together, these findings provided novel possibilities for accurate diagnosis, precise treatment and prognosis evaluation of patients with precancer and cervical cancer.
Collapse
Affiliation(s)
- Chenyan Guo
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xinyu Qu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xiaoyan Tang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Yu Song
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Jue Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| |
Collapse
|
20
|
Gomez K, Schiavoni G, Nam Y, Reynier JB, Khamnei C, Aitken M, Palmieri G, Cossu A, Levine A, van Noesel C, Falini B, Pasqualucci L, Tiacci E, Rabadan R. Genomic landscape of virus-associated cancers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.14.23285775. [PMID: 36824731 PMCID: PMC9949223 DOI: 10.1101/2023.02.14.23285775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It has been estimated that 15%-20% of human cancers are attributable to infections, mostly by carcinogenic viruses. The incidence varies worldwide, with a majority affecting developing countries. Here, we present a comparative analysis of virus-positive and virus-negative tumors in nine cancers linked to five viruses. We find that virus-positive tumors occur more frequently in males and show geographical disparities in incidence. Genomic analysis of 1,658 tumors reveals virus-positive tumors exhibit distinct mutation signatures and driver gene mutations and possess a lower somatic mutation burden compared to virus-negative tumors of the same cancer type. For example, compared to the respective virus-negative counterparts, virus-positive cases across different cancer histologies had less often mutations of TP53 and deletions of 9p21.3/ CDKN2 A- CDKN1A ; Epstein-Barr virus-positive (EBV+) gastric cancer had more frequent mutations of EIF4A1 and ARID1A and less marked mismatch repair deficiency signatures; and EBV-positive cHL had fewer somatic genetic lesions of JAK-STAT, NF-κB, PI3K-AKT and HLA-I genes and a less pronounced activity of the aberrant somatic hypermutation signature. In cHL, we also identify germline homozygosity in HLA class I as a potential risk factor for the development of EBV-positive Hodgkin lymphoma. Finally, an analysis of clinical trials of PD-(L)1 inhibitors in four virus-associated cancers suggested an association of viral infection with higher response rate in patients receiving such treatments, which was particularly evident in gastric cancer and head and neck squamous cell carcinoma. These results illustrate the epidemiological, genetic, prognostic, and therapeutic trends across virus-associated malignancies.
Collapse
|
21
|
King KM, Rajadhyaksha EV, Tobey IG, Van Doorslaer K. Synonymous nucleotide changes drive papillomavirus evolution. Tumour Virus Res 2022; 14:200248. [PMID: 36265836 PMCID: PMC9589209 DOI: 10.1016/j.tvr.2022.200248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Papillomaviruses have been evolving alongside their hosts for at least 450 million years. This review will discuss some of the insights gained into the evolution of this diverse family of viruses. Papillomavirus evolution is constrained by pervasive purifying selection to maximize viral fitness. Yet these viruses need to adapt to changes in their environment, e.g., the host immune system. It has long been known that these viruses evolved a codon usage that doesn't match the infected host. Here we discuss how papillomavirus genomes evolve by acquiring synonymous changes that allow the virus to avoid detection by the host innate immune system without changing the encoded proteins and associated fitness loss. We discuss the implications of studying viral evolution, lifecycle, and cancer progression.
Collapse
Affiliation(s)
- Kelly M King
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Esha Vikram Rajadhyaksha
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA; Department of Physiology and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Isabelle G Tobey
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA; Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA; The BIO5 Institute, The Department of Immunobiology, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, Arizona, USA.
| |
Collapse
|
22
|
Løvestad AH, Repesa A, Costanzi JM, Lagström S, Christiansen IK, Rounge TB, Ambur OH. Differences in integration frequencies and APOBEC3 profiles of five high-risk HPV types adheres to phylogeny. Tumour Virus Res 2022; 14:200247. [PMID: 36100161 PMCID: PMC9485212 DOI: 10.1016/j.tvr.2022.200247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023] Open
Abstract
Persistent infection with Human Papillomavirus (HPV) is responsible for almost all cases of cervical cancers, and HPV16 and HPV18 associated with the majority of these. These types differ in the proportion of viral minor nucleotide variants (MNVs) caused by APOBEC3 mutagenesis as well as integration frequencies. Whether these traits extend to other types remains uncertain. This study aimed to investigate and compare genomic variability and chromosomal integration in the two phylogenetically distinct Alpha-7 and Alpha-9 clades of carcinogenic HPV types. The TaME-seq protocol was employed to sequence cervical cell samples positive for HPV31, HPV33 or HPV45 and combine these with data from a previous study on HPV16 and HPV18. APOBEC3 mutation signatures were found in Alpha-9 (HPV16/31/33) but not in Alpha-7 (HPV18/45). HPV45 had significantly more MNVs compared to the other types. Alpha-7 had higher integration frequency compared to Alpha-9. An increase in integration frequency with increased diagnostic severity was found for Alpha-7. The results highlight important differences and broaden our understanding of the molecular mechanisms behind cervical cancer induced by high-risk HPV types from the Alpha-7 and Alpha-9 clades.
Collapse
Affiliation(s)
- Alexander Hesselberg Løvestad
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Adina Repesa
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Jean-Marc Costanzi
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
| | - Sonja Lagström
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Research, Cancer Registry of Norway, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Irene Kraus Christiansen
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, Lørenskog, Norway
| | - Trine B Rounge
- Department of Research, Cancer Registry of Norway, Oslo, Norway; Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Ole Herman Ambur
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
23
|
Wong L, Sami A, Chelico L. Competition for DNA binding between the genome protector replication protein A and the genome modifying APOBEC3 single-stranded DNA deaminases. Nucleic Acids Res 2022; 50:12039-12057. [PMID: 36444883 PMCID: PMC9757055 DOI: 10.1093/nar/gkac1121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
The human APOBEC family of eleven cytosine deaminases use RNA and single-stranded DNA (ssDNA) as substrates to deaminate cytosine to uracil. This deamination event has roles in lipid metabolism by altering mRNA coding, adaptive immunity by causing evolution of antibody genes, and innate immunity through inactivation of viral genomes. These benefits come at a cost where some family members, primarily from the APOBEC3 subfamily (APOBEC3A-H, excluding E), can cause off-target deaminations of cytosine to form uracil on transiently single-stranded genomic DNA, which induces mutations that are associated with cancer evolution. Since uracil is only promutagenic, the mutations observed in cancer genomes originate only when uracil is not removed by uracil DNA glycosylase (UNG) or when the UNG-induced abasic site is erroneously repaired. However, when ssDNA is present, replication protein A (RPA) binds and protects the DNA from nucleases or recruits DNA repair proteins, such as UNG. Thus, APOBEC enzymes must compete with RPA to access their substrate. Certain APOBEC enzymes can displace RPA, bind and scan ssDNA efficiently to search for cytosines, and can become highly overexpressed in tumor cells. Depending on the DNA replication conditions and DNA structure, RPA can either be in excess or deficient. Here we discuss the interplay between these factors and how despite RPA, multiple cancer genomes have a mutation bias at cytosines indicative of APOBEC activity.
Collapse
Affiliation(s)
- Lai Wong
- University of Saskatchewan, College of Medicine, Department of Biochemistry, Microbiology, and Immunology, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Alina Sami
- University of Saskatchewan, College of Medicine, Department of Biochemistry, Microbiology, and Immunology, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Linda Chelico
- To whom correspondence should be addressed. Tel: +1 306 966 4318; Fax: +1 306 966 4298;
| |
Collapse
|
24
|
High APOBEC3B mRNA Expression Is Associated with Human Papillomavirus Type 18 Infection in Cervical Cancer. Viruses 2022; 14:v14122653. [PMID: 36560657 PMCID: PMC9784603 DOI: 10.3390/v14122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The APOBEC3 (A3) proteins are cytidine deaminases that exhibit the ability to insert mutations in DNA and/or RNA sequences. APOBEC3B (A3B) has been evidenced as a DNA mutagen with consistent high expression in several cancer types. Data concerning the A3B influence on HPV infection and cervical cancer are limited and controversial. We investigated the role of A3B expression levels in cervical cancer in affected women positive for infection by different HPV types. Tumor biopsies from cancerous uterine cervix were collected from 216 women registered at Hospital do Câncer II of Instituto Nacional de Câncer, and infecting HPV was typed. A3B expression levels were quantified from RNA samples extracted from cervical biopsies using real-time quantitative PCR. Median A3B expression levels were higher among HPV18+ samples when compared to HPV16+ counterparts and were also increased compared to samples positive for other HPV types. In squamous cell carcinoma, HPV18+ samples also showed increased median A3B expression when compared to HPV Alpha-9 species or only to HPV16+ samples. Our findings suggest that A3B expression is differentially upregulated in cervical cancer samples infected with HPV18. A3B could be potentially used as a biomarker for HPV infection and as a prognostic tool for clinical outcomes in the context of cervical cancer.
Collapse
|
25
|
Petljak M, Green AM, Maciejowski J, Weitzman MD. Addressing the benefits of inhibiting APOBEC3-dependent mutagenesis in cancer. Nat Genet 2022; 54:1599-1608. [PMID: 36280735 PMCID: PMC9700387 DOI: 10.1038/s41588-022-01196-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/29/2022] [Indexed: 01/21/2023]
Abstract
Mutational signatures associated with apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC)3 cytosine deaminase activity have been found in over half of cancer types, including some therapy-resistant and metastatic tumors. Driver mutations can occur in APOBEC3-favored sequence contexts, suggesting that mutagenesis by APOBEC3 enzymes may drive cancer evolution. The APOBEC3-mediated signatures are often detected in subclonal branches of tumor phylogenies and are acquired in cancer cell lines over long periods of time, indicating that APOBEC3 mutagenesis can be ongoing in cancer. Collectively, these and other observations have led to the proposal that APOBEC3 mutagenesis represents a disease-modifying process that could be inhibited to limit tumor heterogeneity, metastasis and drug resistance. However, critical aspects of APOBEC3 biology in cancer and in healthy tissues have not been clearly defined, limiting well-grounded predictions regarding the benefits of inhibiting APOBEC3 mutagenesis in different settings in cancer. We discuss the relevant mechanistic gaps and strategies to address them to investigate whether inhibiting APOBEC3 mutagenesis may confer clinical benefits in cancer.
Collapse
Affiliation(s)
- Mia Petljak
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Abby M Green
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
26
|
King CR, Mehle A. Retasking of canonical antiviral factors into proviral effectors. Curr Opin Virol 2022; 56:101271. [PMID: 36242894 PMCID: PMC10090225 DOI: 10.1016/j.coviro.2022.101271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
Abstract
Under constant barrage by viruses, hosts have evolved a plethora of antiviral effectors and defense mechanisms. To survive, viruses must adapt to evade or subvert these defenses while still capturing cellular resources to fuel their replication cycles. Large-scale studies of the antiviral activities of cellular proteins and processes have shown that different viruses are controlled by distinct subsets of antiviral genes. The remaining antiviral genes are either ineffective in controlling infection, or in some cases, actually promote infection. In these cases, classically defined antiviral factors are retasked by viruses to enhance viral replication. This creates a more nuanced picture revealing the contextual nature of antiviral activity. The same protein can exert different effects on replication, depending on multiple factors, including the host, the target cells, and the specific virus infecting it. Here, we review numerous examples of viruses hijacking canonically antiviral proteins and retasking them for proviral purposes.
Collapse
Affiliation(s)
- Cason R King
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
27
|
Abstract
Human papillomavirus (HPV) infection is a causative agent of multiple human cancers, including cervical and head and neck cancers. In these HPV-positive tumors, somatic mutations are caused by aberrant activation of DNA mutators such as members of the apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of cytidine deaminases. APOBEC3 proteins are most notable for their restriction of various viruses, including anti-HPV activity. However, the potential role of APOBEC3 proteins in HPV-induced cancer progression has recently garnered significant attention. Ongoing research stems from the observations that elevated APOBEC3 expression is driven by HPV oncogene expression and that APOBEC3 activity is likely a significant contributor to somatic mutagenesis in HPV-positive cancers. This review focuses on recent advances in the study of APOBEC3 proteins and their roles in HPV infection and HPV-driven oncogenesis. Further, we discuss critical gaps and unanswered questions in our understanding of APOBEC3 in virus-associated cancers.
Collapse
Affiliation(s)
- Cody J Warren
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
28
|
Isaguliants MG, Trotsenko I, Buonaguro FM. An overview of "Chronic viral infection and cancer, openings for vaccines" virtual symposium of the TechVac Network - December 16-17, 2021. Infect Agent Cancer 2022; 17:28. [PMID: 35804391 PMCID: PMC9263434 DOI: 10.1186/s13027-022-00436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
This is a report on the research activities currently ongoing in virology, oncology and virus-associated cancers and possibilities of their treatment and prevention by vaccines and immunotherapies as outlined at the symposium “Chronic viral infection and cancer, openings for vaccines” virtually held on December 16–17, 2021. Experts from the various disciplines involved in the study of the complex relationships between solid tumors and viruses met to discuss recent developments in the field and to report their personal contributions to the specified topics. Secondary end point was to sustain the TECHVAC Network established in 2016 as a multidisciplinary work group specifically devoted to development of vaccines and immunotherapies against chronic viral infections and associated cancers, with the aim to identify areas of common interest, promote research cooperation, establish collaborative cross-border programs and projects, and to coordinate clinical and research activities.
Collapse
Affiliation(s)
- Maria G Isaguliants
- Riga Stradins University, Riga, Latvia. .,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Ivan Trotsenko
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Naples, Italy.
| |
Collapse
|
29
|
Yu L, Majerciak V, Zheng ZM. HPV16 and HPV18 Genome Structure, Expression, and Post-Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms23094943. [PMID: 35563334 PMCID: PMC9105396 DOI: 10.3390/ijms23094943] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/18/2022] Open
Abstract
Human papillomaviruses (HPV) are a group of small non-enveloped DNA viruses whose infection causes benign tumors or cancers. HPV16 and HPV18, the two most common high-risk HPVs, are responsible for ~70% of all HPV-related cervical cancers and head and neck cancers. The expression of the HPV genome is highly dependent on cell differentiation and is strictly regulated at the transcriptional and post-transcriptional levels. Both HPV early and late transcripts differentially expressed in the infected cells are intron-containing bicistronic or polycistronic RNAs bearing more than one open reading frame (ORF), because of usage of alternative viral promoters and two alternative viral RNA polyadenylation signals. Papillomaviruses proficiently engage alternative RNA splicing to express individual ORFs from the bicistronic or polycistronic RNA transcripts. In this review, we discuss the genome structures and the updated transcription maps of HPV16 and HPV18, and the latest research advances in understanding RNA cis-elements, intron branch point sequences, and RNA-binding proteins in the regulation of viral RNA processing. Moreover, we briefly discuss the epigenetic modifications, including DNA methylation and possible APOBEC-mediated genome editing in HPV infections and carcinogenesis.
Collapse
|
30
|
Bhattacharjee R, Das SS, Biswal SS, Nath A, Das D, Basu A, Malik S, Kumar L, Kar S, Singh SK, Upadhye VJ, Iqbal D, Almojam S, Roychoudhury S, Ojha S, Ruokolainen J, Jha NK, Kesari KK. Mechanistic Role of HPV-Associated Early Proteins in Cervical Cancer: Molecular Pathways and Targeted Therapeutic Strategies. Crit Rev Oncol Hematol 2022; 174:103675. [DOI: 10.1016/j.critrevonc.2022.103675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
|
31
|
Chen Y, Luo L, Deng L, Tian X, Chen S, Xu A, Yuan S. New Insights Into the Lineage-Specific Expansion and Functional Diversification of Lamprey AID/APOBEC Family. Front Immunol 2022; 13:822616. [PMID: 35359986 PMCID: PMC8962628 DOI: 10.3389/fimmu.2022.822616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
The AID/APOBEC family which converts cytidine to uridine on RNA or DNA experienced dynamic expansion in primates in order to resist exogenous viruses and endogenous retrotransposons. Recently, expansion of AID/APOBEC-like homologs has also been observed in the extant jawless vertebrate lamprey. To reveal what causes such expansion and leads to the functional diversification of lamprey cytosine deaminases (CDAs), we reassessed the CDA genes in Lethenteron japonicum (Lj). We first confirmed the expansion of LjCDA1L1 (CDA1-like 1) genes and found the expression correlation of LjCDA2 and LjCDA1L2 with LjVLRs (variable lymphocyte receptors). Among up to 14 LjCDA1L1 proteins, LjCDA1L1_4a has an extremely high deamination activity on ssDNA and buDNA and, unexpectedly, on dsDNA. LjCDA1L1s can also restrict the infection of HSV-1 particles. Thus, the arms race between the host and pathogens along with the recruitment by VLR assembly may participate together to form a driving force in the expansion and diversification of the lamprey AID/APOBEC family.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingjie Luo
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lisi Deng
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxue Tian
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shangwu Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anlong Xu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Shaochun Yuan, ; Anlong Xu,
| | - Shaochun Yuan
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Shaochun Yuan, ; Anlong Xu,
| |
Collapse
|
32
|
The current toolbox for APOBEC drug discovery. Trends Pharmacol Sci 2022; 43:362-377. [PMID: 35272863 PMCID: PMC9018551 DOI: 10.1016/j.tips.2022.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022]
Abstract
Mutational processes driving genome evolution and heterogeneity contribute to immune evasion and therapy resistance in viral infections and cancer. APOBEC3 (A3) enzymes promote such mutations by catalyzing the deamination of cytosines to uracils in single-stranded DNA. Chemical inhibition of A3 enzymes may yield an antimutation therapeutic strategy to improve the durability of current drug therapies that are prone to resistance mutations. A3 small-molecule drug discovery efforts to date have been restricted to a single high-throughput biochemical activity assay; however, the arsenal of discovery assays has significantly expanded in recent years. The assays used to study A3 enzymes are reviewed here with an eye towards their potential for small-molecule discovery efforts.
Collapse
|
33
|
Moens U, Prezioso C, Pietropaolo V. Functional Domains of the Early Proteins and Experimental and Epidemiological Studies Suggest a Role for the Novel Human Polyomaviruses in Cancer. Front Microbiol 2022; 13:834368. [PMID: 35250950 PMCID: PMC8894888 DOI: 10.3389/fmicb.2022.834368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
As their name indicates, polyomaviruses (PyVs) can induce tumors. Mouse PyV, hamster PyV and raccoon PyV have been shown to cause tumors in their natural host. During the last 30 years, 15 PyVs have been isolated from humans. From these, Merkel cell PyV is classified as a Group 2A carcinogenic pathogen (probably carcinogenic to humans), whereas BKPyV and JCPyV are class 2B (possibly carcinogenic to humans) by the International Agency for Research on Cancer. Although the other PyVs recently detected in humans (referred to here as novel HPyV; nHPyV) share many common features with PyVs, including the viral oncoproteins large tumor antigen and small tumor antigen, as their role in cancer is questioned. This review discusses whether the nHPyVs may play a role in cancer based on predicted and experimentally proven functions of their early proteins in oncogenic processes. The functional domains that mediate the oncogenic properties of early proteins of known PyVs, that can cause cancer in their natural host or animal models, have been well characterized and we examined whether these functional domains are conserved in the early proteins of the nHPyVs and presented experimental evidence that these conserved domains are functional. Furthermore, we reviewed the literature describing the detection of nHPyV in human tumors.
Collapse
Affiliation(s)
- Ugo Moens
- Faculty of Health Sciences, Department of Medical Biology, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Ugo Moens,
| | - Carla Prezioso
- Microbiology of Chronic Neuro-Degenerative Pathologies, IRCSS San Raffaele Roma, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Valeria Pietropaolo,
| |
Collapse
|
34
|
Shilova ON, Tsyba DL, Shilov ES. Mutagenic Activity of AID/APOBEC Deaminases in Antiviral Defense and Carcinogenesis. Mol Biol 2022; 56:46-58. [PMID: 35194245 PMCID: PMC8852905 DOI: 10.1134/s002689332201006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
Proteins of the AID/APOBEC family are capable of cytidine deamination in nucleic acids forming uracil. These enzymes are involved in mRNA editing, protection against viruses, the introduction of point mutations into DNA during somatic hypermutation, and antibody isotype switching. Since these deaminases, especially AID, are potent mutagens, their expression, activity, and specificity are regulated by several intracellular mechanisms. In this review, we discuss the mechanisms of impaired expression and activation of AID/APOBEC proteins in human tumors and their role in carcinogenesis and tumor progression. Also, the diagnostic and potential therapeutic value of increased expression of AID/APOBEC in different types of tumors is analyzed. We assume that in the case of solid tumors, increased expression of endogenous deaminases can serve as a marker of response to immunotherapy since multiple point mutations in host DNA could lead to amino acid substitutions in tumor proteins and thereby increase the frequency of neoepitopes.
Collapse
Affiliation(s)
- O. N. Shilova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - D. L. Tsyba
- Pavlov First State Medical University, 197022 St. Petersburg, Russia
- Sirius University of Science and Technology, 354340 Sochi, Russia
| | - E. S. Shilov
- Faculty of Biology, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
35
|
HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management. Nat Rev Clin Oncol 2022; 19:306-327. [PMID: 35105976 PMCID: PMC8805140 DOI: 10.1038/s41571-022-00603-7] [Citation(s) in RCA: 371] [Impact Index Per Article: 123.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
Human papillomavirus (HPV)-positive (HPV+) oropharyngeal squamous cell carcinoma (OPSCC) has one of the most rapidly increasing incidences of any cancer in high-income countries. The most recent (8th) edition of the UICC/AJCC staging system separates HPV+ OPSCC from its HPV-negative (HPV−) counterpart to account for the improved prognosis seen in the former. Indeed, owing to its improved prognosis and greater prevalence in younger individuals, numerous ongoing trials are examining the potential for treatment de-intensification as a means to improve quality of life while maintaining acceptable survival outcomes. In addition, owing to the distinct biology of HPV+ OPSCCs, targeted therapies and immunotherapies have become an area of particular interest. Importantly, OPSCC is often detected at an advanced stage owing to a lack of symptoms in the early stages; therefore, a need exists to identify and validate possible diagnostic biomarkers to aid in earlier detection. In this Review, we provide a summary of the epidemiology, molecular biology and clinical management of HPV+ OPSCC in an effort to highlight important advances in the field. Ultimately, a need exists for improved understanding of the molecular basis and clinical course of this disease to guide efforts towards early detection and precision care, and to improve patient outcomes. The incidence of human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma (OPSCC) is increasing rapidly in most developed countries. In this Review, the authors provide an overview of the epidemiology, molecular biology and treatment of HPV-positive OPSCC, including discussions of the role of treatment de-escalation and emerging novel therapies. The incidence of human papillomavirus-associated oropharyngeal cancer (HPV+ OPSCC) is expected to continue to rise over the coming decades until the benefits of gender-neutral prophylactic HPV vaccination begin to become manifest. The incidence of HPV+ OPSCC appears to be highest in high-income countries, although more epidemiological data are needed from low- and middle-income countries, in which HPV vaccination coverage remains low. The substantially better prognosis of patients with HPV+ OPSCC compared to those with HPV– OPSCC has been recognized in the American Joint Committee on Cancer TNM8 staging guidelines, which recommend stratification by HPV status to improve staging. The molecular biology and genomic features of HPV+ OPSCC are similar to those of other HPV-associated malignancies, with HPV oncogenes (E6 and E7) acting as key drivers of pathogenesis. Treatment de-intensification is being pursued in clinical trials, although identifying the ~15% of patients with HPV+ OPSCC who have recurrent disease, and who therefore require more intensive treatment, remains a key challenge.
Collapse
|
36
|
Gameiro SF, Evans AM, Mymryk JS. The tumor immune microenvironments of HPV + and HPV - head and neck cancers. WIREs Mech Dis 2022; 14:e1539. [PMID: 35030304 DOI: 10.1002/wsbm.1539] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Human papillomaviruses (HPVs) are the etiological agent of a significant, and increasing, fraction of head and neck squamous cell carcinomas (HNSCC)-a heterogenous group of malignancies in the head and neck region. HPV infection accounts for approximately 25% of all cases, with the remainder typically caused by smoking and excessive alcohol consumption. These distinct etiologies lead to profound clinical and immunological differences between HPV-positive (HPV+ ) and HPV-negative (HPV- ) HNSCC, likely related to the expression of exogenous viral antigens in the HPV+ subtype. Specifically, HPV+ HNSCC patients generally exhibit better treatment response compared to those with HPV- disease, leading to a more favorable prognosis, with lower recurrence rate, and longer overall survival time. Importantly, a plethora of studies have illustrated that the tumor immune microenvironment (TIME) of HPV+ HNSCC has a strikingly distinct immune composition to that of its HPV- counterpart. The HPV+ TIME is characterized as being immunologically "hot," with more immune infiltration, higher levels of T-cell activation, and higher levels of immunoregulation compared to the more immunologically "cold" HPV- TIME. In general, cancers with an immune "hot" TIME exhibit better treatment response and superior clinical outcomes in comparison to their immune "cold" counterparts. Indeed, this phenomenon has also been observed in HPV+ HNSCC patients, highlighting the critical role of the TIME in influencing prognosis, and further validating the use of cancer therapies that capitalize on the mobilization and/or modulation of the TIME. This article is categorized under: Cancer > Molecular and Cellular Physiology Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Steven F Gameiro
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada.,Department of Otolaryngology, The University of Western Ontario, London, Ontario, Canada.,Department of Oncology, The University of Western Ontario, London, Ontario, Canada.,London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
37
|
Sakhtemani R, Perera MLW, Hübschmann D, Siebert R, Lawrence M, Bhagwat A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:5145-5157. [PMID: 35524550 PMCID: PMC9122604 DOI: 10.1093/nar/gkac296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 12/04/2022] Open
Abstract
Activation-induced deaminase (AID) is a DNA-cytosine deaminase that mediates maturation of antibodies through somatic hypermutation and class-switch recombination. While it causes mutations in immunoglobulin heavy and light chain genes and strand breaks in the switch regions of the immunoglobulin heavy chain gene, it largely avoids causing such damage in the rest of the genome. To help understand targeting by human AID, we expressed it in repair-deficient Escherichia coli and mapped the created uracils in the genomic DNA using uracil pull-down and sequencing, UPD-seq. We found that both AID and the human APOBEC3A preferentially target tRNA genes and transcription start sites, but do not show preference for highly transcribed genes. Unlike A3A, AID did not show a strong replicative strand bias or a preference for hairpin loops. Overlapping uracilation peaks between these enzymes contained binding sites for a protein, FIS, that helps create topological domains in the E. coli genome. To confirm whether these findings were relevant to B cells, we examined mutations from lymphoma and leukemia genomes within AID-preferred sequences. These mutations also lacked replicative strand bias or a hairpin loop preference. We propose here a model for how AID avoids causing mutations in the single-stranded DNA found within replication forks.
Collapse
Affiliation(s)
- Ramin Sakhtemani
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | | | - Daniel Hübschmann
- Molecular Precision Oncology Program, National Center for Tumor Diseases, Heidelberg and German Cancer Research Center, Heidelberg, Germany
- Heidelberg Institute for Stem cell Technology and Experimental Medicine, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Michael S Lawrence
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Ashok S Bhagwat
- To whom correspondence should be addressed. Tel: +1 734 425 1749; Fax: +1 313 577 8822, 443;
| |
Collapse
|
38
|
Faure-Dupuy S, Riedl T, Rolland M, Hizir Z, Reisinger F, Neuhaus K, Schuehle S, Remouchamps C, Gillet N, Schönung M, Stadler M, Wettengel J, Barnault R, Parent R, Schuster LC, Farhat R, Prokosch S, Leuchtenberger C, Öllinger R, Engleitner T, Rippe K, Rad R, Unger K, Tscharahganeh D, Lipka DB, Protzer U, Durantel D, Lucifora J, Dejardin E, Heikenwälder M. Control of APOBEC3B induction and cccDNA decay by NF-κB and miR-138-5p. JHEP Rep 2021; 3:100354. [PMID: 34704004 PMCID: PMC8523871 DOI: 10.1016/j.jhepr.2021.100354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background & Aims Immune-mediated induction of cytidine deaminase APOBEC3B (A3B) expression leads to HBV covalently closed circular DNA (cccDNA) decay. Here, we aimed to decipher the signalling pathway(s) and regulatory mechanism(s) involved in A3B induction and related HBV control. Methods Differentiated HepaRG cells (dHepaRG) knocked-down for NF-κB signalling components, transfected with siRNA or micro RNAs (miRNA), and primary human hepatocytes ± HBV or HBVΔX or HBV-RFP, were treated with lymphotoxin beta receptor (LTβR)-agonist (BS1). The biological outcomes were analysed by reverse transcriptase-qPCR, immunoblotting, luciferase activity, chromatin immune precipitation, electrophoretic mobility-shift assay, targeted-bisulfite-, miRNA-, RNA-, genome-sequencing, and mass-spectrometry. Results We found that canonical and non-canonical NF-κB signalling pathways are mandatory for A3B induction and anti-HBV effects. The degree of immune-mediated A3B production is independent of A3B promoter demethylation but is controlled post-transcriptionally by the miRNA 138-5p expression (hsa-miR-138-5p), promoting A3B mRNA decay. Hsa-miR-138-5p over-expression reduced A3B levels and its antiviral effects. Of note, established infection inhibited BS1-induced A3B expression through epigenetic modulation of A3B promoter. Twelve days of treatment with a LTβR-specific agonist BS1 is sufficient to reduce the cccDNA pool by 80% without inducing significant damages to a subset of cancer-related host genes. Interestingly, the A3B-mediated effect on HBV is independent of the transcriptional activity of cccDNA as well as on rcDNA synthesis. Conclusions Altogether, A3B represents the only described enzyme to target both transcriptionally active and inactive cccDNA. Thus, inhibiting hsa-miR-138-5p expression should be considered in the combinatorial design of new therapies against HBV, especially in the context of immune-mediated A3B induction. Lay summary Immune-mediated induction of cytidine deaminase APOBEC3B is transcriptionally regulated by NF-κB signalling and post-transcriptionally downregulated by hsa-miR-138-5p expression, leading to cccDNA decay. Timely controlled APOBEC3B-mediated cccDNA decay occurs independently of cccDNA transcriptional activity and without damage to a subset of cancer-related genes. Thus, APOBEC3B-mediated cccDNA decay could offer an efficient therapeutic alternative to target hepatitis B virus chronic infection. Impairment of NF-κB signalling prevents APOBEC3B induction and cccDNA decay. APOBEC3B is post-transcriptionally regulated by the hsa-miR-138-5p. Over-expression of the hsa-miR-138-5p inhibits APOBEC3B expression and cccDNA decay. A3B timely induces cccDNA decay without damage to cancer-related genes. APOBEC3B-mediated cccDNA decay is independent of cccDNA transcriptional activity.
Collapse
Key Words
- A20, tumour necrosis factor alpha-induced protein 3
- APOBEC3A/A3A, apolipoprotein B mRNA editing catalytic polypeptide-like A
- APOBEC3B
- APOBEC3B/A3B, apolipoprotein B mRNA editing catalytic polypeptide-like B
- APOBEC3G/A3G, apolipoprotein B mRNA editing catalytic polypeptide-like G
- BCA, bicinchoninic acid assay
- CHB, chronic hepatitis B
- CXCL10, C-X-C motif chemokine ligand 10
- ChIP, chromatin immune precipitation
- EMSA, electrophoretic mobility-shift assay
- H3K4Me3, histone 3 lysine 4 trimethylation
- HBx
- Hepatitis B virus
- IFNα/γ, interferon alpha/gamma
- IKKα/β, IκB kinase alpha/beta
- JMJD8, jumonji domain containing 8
- LPS, lipopolysaccharide
- LTβR, lymphotoxin beta receptor
- MAPK, mitogen-activated protein kinase
- NEMO, NF-κB essential modulator
- NF-κB
- NF-κB, nuclear factor kappa B
- NIK, NF-κB inducing kinase
- NT, non-treated
- RT-qPCR, reverse transcription-quantitative PCR
- RelA, NF-κB p65 subunit
- TNF, tumour necrosis factor
- UBE2V1, ubiquitin conjugating enzyme E2 V1
- UTR, untranslated region
- cccDNA
- cccDNA, covalently closed circular DNA
- d.p.i., days post infection
- miRNA
- miRNA, micro RNA
- siCTRL, siRNA control
Collapse
Affiliation(s)
- Suzanne Faure-Dupuy
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Tobias Riedl
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Maude Rolland
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Zoheir Hizir
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Florian Reisinger
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Katharina Neuhaus
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Svenja Schuehle
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Caroline Remouchamps
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Nicolas Gillet
- Integrated Veterinary Research Unit, Namur Research Institute for Life Sciences, Namur, Belgium
| | - Maximilian Schönung
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Mira Stadler
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jochen Wettengel
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Romain Barnault
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | - Romain Parent
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | - Linda Christina Schuster
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Rayan Farhat
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | - Sandra Prokosch
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Corinna Leuchtenberger
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Rechts der Isar University Hospital, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, Rechts der Isar University Hospital, Munich, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Rechts der Isar University Hospital, Munich, Germany
| | - Kristian Unger
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Darjus Tscharahganeh
- Helmholtz-University Group 'Cell Plasticity and Epigenetic Remodeling', German Cancer Research Center (DKFZ) and Institute of Pathology University Hospital, Heidelberg, Germany
| | - Daniel B. Lipka
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Ulrike Protzer
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - David Durantel
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | - Julie Lucifora
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
- Corresponding authors. Addresses: Laboratory of Molecular Immunology and Signal Transduction, University of Liège, GIGA-Institute, Avenue de l'Hôpital, 1, CHU, B34, 4000 Liege, Belgium. Tel.: +32 4 366 4472; fax: +32 4 366 4534
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- Division Chronic Inflammation and Cancer (F180), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany. Tel.: +49 6221 42 3891; Fax: +49 6221 42 3899
| |
Collapse
|
39
|
Guerra GR, Kong JC, Millen RM, Read M, Liu DS, Roth S, Sampurno S, Sia J, Bernardi MP, Chittleborough TJ, Behrenbruch CC, Teh J, Xu H, Haynes NM, Yu J, Lupat R, Hawkes D, Di Costanzo N, Tothill RW, Mitchell C, Ngan SY, Heriot AG, Ramsay RG, Phillips WA. Molecular and genomic characterisation of a panel of human anal cancer cell lines. Cell Death Dis 2021; 12:959. [PMID: 34663790 PMCID: PMC8523722 DOI: 10.1038/s41419-021-04141-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022]
Abstract
Anal cancer is a rare disease that has doubled in incidence over the last four decades. Current treatment and survival of patients with this disease has not changed substantially over this period of time, due, in part, to a paucity of preclinical models to assess new therapeutic options. To address this hiatus, we set-out to establish, validate and characterise a panel of human anal squamous cell carcinoma (ASCC) cell lines by employing an explant technique using fresh human ASCC tumour tissue. The panel of five human ASCC cell lines were validated to confirm their origin, squamous features and tumourigenicity, followed by molecular and genomic (whole-exome sequencing) characterisation. This panel recapitulates the genetic and molecular characteristics previously described in ASCC including phosphoinositide-3-kinase (PI3K) mutations in three of the human papillomavirus (HPV) positive lines and TP53 mutations in the HPV negative line. The cell lines demonstrate the ability to form tumouroids and retain their tumourigenic potential upon xenotransplantation, with varied inducible expression of major histocompatibility complex class I (MHC class I) and Programmed cell death ligand 1 (PD-L1). We observed differential responses to standard chemotherapy, radiotherapy and a PI3K specific molecular targeted agent in vitro, which correlated with the clinical response of the patient tumours from which they were derived. We anticipate this novel panel of human ASCC cell lines will form a valuable resource for future studies into the biology and therapeutics of this rare disease.
Collapse
Affiliation(s)
- Glen R Guerra
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Joseph C Kong
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rosemary M Millen
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Matthew Read
- Department of Surgery, St Vincent's Hospital, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - David S Liu
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- UGI Surgery Unit, Austin Hospital, 145 Studley Road, Heidelberg, Victoria, 3084, Australia
| | - Sara Roth
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Shienny Sampurno
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Joseph Sia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Maria-Pia Bernardi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Timothy J Chittleborough
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Corina C Behrenbruch
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jiasian Teh
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Huiling Xu
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Nicole M Haynes
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jiaan Yu
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Richard Lupat
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - David Hawkes
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
- VCS Foundation, Carlton, VIC, 3053, Australia
- Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia
| | - Natasha Di Costanzo
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Richard W Tothill
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Catherine Mitchell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Samuel Y Ngan
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Alexander G Heriot
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Surgery, St Vincent's Hospital, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robert G Ramsay
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wayne A Phillips
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Surgery, St Vincent's Hospital, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
40
|
Sadeghpour S, Khodaee S, Rahnama M, Rahimi H, Ebrahimi D. Human APOBEC3 Variations and Viral Infection. Viruses 2021; 13:1366. [PMID: 34372572 PMCID: PMC8310219 DOI: 10.3390/v13071366] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Human APOBEC3 (apolipoprotein B mRNA-editing catalytic polypeptide-like 3) enzymes are capable of inhibiting a wide range of endogenous and exogenous viruses using deaminase and deaminase-independent mechanisms. These enzymes are essential components of our innate immune system, as evidenced by (a) their strong positive selection and expansion in primates, (b) the evolution of viral counter-defense mechanisms, such as proteasomal degradation mediated by HIV Vif, and (c) hypermutation and inactivation of a large number of integrated HIV-1 proviruses. Numerous APOBEC3 single nucleotide polymorphisms, haplotypes, and splice variants have been identified in humans. Several of these variants have been reported to be associated with differential antiviral immunity. This review focuses on the current knowledge in the field about these natural variations and their roles in infectious diseases.
Collapse
Affiliation(s)
- Shiva Sadeghpour
- Department of Biological Science, University of California Irvine, Irvine, CA 92697, USA;
| | - Saeideh Khodaee
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Mostafa Rahnama
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA;
| | - Hamzeh Rahimi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
41
|
Abstract
Abstract We have considered viruses and their contribution to breast cancer. Mouse mammary tumour virus The prevalence of mouse mammary tumour virus (MMTV) is 15-fold higher in human breast cancer than in normal and benign human breast tissue controls. Saliva is the most plausible means of transmission. MMTV has been identified in dogs, cats, monkeys, mice and rats. The causal mechanisms include insertional oncogenesis and mutations in the protective enzyme ABOBEC3B. Human papilloma virus The prevalence of high risk human papilloma viruses (HPV) is frequently six fold higher in breast cancer than in normal and benign breast tissue controls. Women who develop HPV associated cervical cancer are at higher than normal risk of developing HPV associated breast cancer. Koilocytes have been identified in breast cancers which is an indication of HPV oncogenicity. The causal mechanisms of HPVs in breast cancer appear to differ from cervical cancer. Sexual activity is the most common form of HPV transmission. HPVs are probably transmitted from the cervix to the breast by circulating extra cellular vesicles. Epstein Barr virus The prevalence of Epstein Barr virus (EBV) is five fold higher in breast cancer than in normal and benign breast tissue controls. EBV is mostly transmitted from person to person via saliva. EBV infection predisposes breast epithelial cells to malignant transformation through activation of HER2/HER3 signalling cascades. EBV EBNA genes contribute to tumour growth and metastasis and have the ability to affect the mesenchymal transition of cells. Bovine leukemia virus Bovine leukemia virus (BLV) infects beef and dairy cattle and leads to various cancers. The prevalence of BLV is double in human breast cancers compared to controls. Breast cancer is more prevalent in red meat eating and cow’s milk consuming populations. BLV may be transmitted to humans from cattle by the consumption of red meat and cow’s milk. Conclusion The evidence that MMTV, high risk HPVs and EBVs have causal roles in human breast cancer is compelling. The evidence with respect to BLV is more limited but it is likely to also have a causal role in human breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13027-021-00366-3.
Collapse
Affiliation(s)
- James S Lawson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Wendy K Glenn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
42
|
Degradation-Independent Inhibition of APOBEC3G by the HIV-1 Vif Protein. Viruses 2021; 13:v13040617. [PMID: 33916704 PMCID: PMC8066197 DOI: 10.3390/v13040617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin–proteasome system plays an important role in the cell under normal physiological conditions but also during viral infections. Indeed, many auxiliary proteins from the (HIV-1) divert this system to its own advantage, notably to induce the degradation of cellular restriction factors. For instance, the HIV-1 viral infectivity factor (Vif) has been shown to specifically counteract several cellular deaminases belonging to the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC3 or A3) family (A3A to A3H) by recruiting an E3-ubiquitin ligase complex and inducing their polyubiquitination and degradation through the proteasome. Although this pathway has been extensively characterized so far, Vif has also been shown to impede A3s through degradation-independent processes, but research on this matter remains limited. In this review, we describe our current knowledge regarding the degradation-independent inhibition of A3s, and A3G in particular, by the HIV-1 Vif protein, the molecular mechanisms involved, and highlight important properties of this small viral protein.
Collapse
|
43
|
Fan Q, Huang T, Sun X, Wang YW, Wang J, Liu Y, Ni T, Gu SL, Li YH, Wang YD. HPV-16/18 E6-induced APOBEC3B expression associates with proliferation of cervical cancer cells and hypomethylation of Cyclin D1. Mol Carcinog 2021; 60:313-330. [PMID: 33631046 DOI: 10.1002/mc.23292] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Oncogenic high-risk human papillomavirus (HR-HPV) infection causes a majority of cases of cervical cancer and pre-cancerous cervical lesions. However, the mechanisms underlying the direct evolution from HPV-16/18-infected epithelium to cervical intraepithelial neoplasia (CIN) III, which can progress to cervical cancer, remain poorly identified. Here, we performed RNA-seq after laser capture microdissection, and found that APOBEC3B was highly expressed in cervical cancer specimens compared with CIN III with HPV-16/18 infection. Furthermore, immunohistochemical analysis confirmed that high levels of APOBEC3B were correlated with lymph node metastasis in cervical cancer. Subsequent experiments revealed that HPV-16 E6 could upregulate APOBEC3B through direct binding to the promoter of APOBEC3B in cervical cancer cells. Silencing of APOBEC3B by stable short hairpin RNA-mediated knockdown reduced the proliferative capacity of Caski and HeLa cells in vitro and in vivo, but had only a small effect on the migration and invasion of two cervical cancer cell lines. Finally, we identified the changes in gene expression following APOBEC3B silencing in Caski cells by microarray, demonstrating a biological link between APOBEC3B and CCND1 in cervical cancer cells. Importantly, through methyl-capture sequencing and pyrosequencing, APOBEC3B was found to affect the levels of the downstream protein Cyclin D1 (which is encoded by the CCND1 gene) through hypomethylation of the CCND1 promoter. In conclusion, our study supports HPV-16 E6-induced APOBEC3B expression associates with proliferation of cervical cancer cells and hypomethylation of Cyclin D1. Thus, APOBEC3B may be a potential therapeutic target in human cervical cancer.
Collapse
Affiliation(s)
- Qiong Fan
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Ting Huang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xiao Sun
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yi-Wei Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Liu
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Ni
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng-Lan Gu
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Hong Li
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Dong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
44
|
Endogenous APOBEC3B overexpression characterizes HPV-positive and HPV-negative oral epithelial dysplasias and head and neck cancers. Mod Pathol 2021; 34:280-290. [PMID: 32632179 PMCID: PMC8261524 DOI: 10.1038/s41379-020-0617-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
The DNA cytosine deaminase APOBEC3B (A3B) is a newly recognized endogenous source of mutations in a range of human tumors, including head/neck cancer. A3B inflicts C-to-T and C-to-G base substitutions in 5'-TCA/T trinucleotide motifs, contributes to accelerated rates of tumor development, and affects clinical outcomes in a variety of cancer types. High-risk human papillomavirus (HPV) infection causes A3B overexpression, and HPV-positive cervical and head/neck cancers are among tumor types with the highest degree of APOBEC signature mutations. A3B overexpression in HPV-positive tumor types is caused by the viral E6/E7 oncoproteins and may be an early off-to-on switch in tumorigenesis. In comparison, less is known about the molecular mechanisms responsible for A3B overexpression in HPV-negative head/neck cancers. Here, we utilize an immunohistochemical approach to determine whether A3B is turned from off-to-on or if it undergoes a more gradual transition to overexpression in HPV-negative head/neck cancers. As positive controls, almost all HPV-positive oral epithelial dysplasias and oropharyngeal cancers showed high levels of nuclear A3B staining regardless of diagnosis. As negative controls, A3B levels were low in phenotypically normal epithelium adjacent to cancer and oral epithelial hyperplasias. Interestingly, HPV-negative and low-grade oral epithelial dysplasias showed intermediate A3B levels, while high-grade oral dysplasias showed high A3B levels similar to oral squamous cell carcinomas. A3B levels were highest in grade 2 and grade 3 oral squamous cell carcinomas. In addition, a strong positive association was found between nuclear A3B and Ki67 scores suggesting a linkage to the cell cycle. Overall, these results support a model in which gradual activation of A3B expression occurs during HPV-negative tumor development and suggest that A3B overexpression may provide a marker for advanced grade oral dysplasia and cancer.
Collapse
|
45
|
Riva G, Albano C, Gugliesi F, Pasquero S, Pacheco SFC, Pecorari G, Landolfo S, Biolatti M, Dell’Oste V. HPV Meets APOBEC: New Players in Head and Neck Cancer. Int J Mol Sci 2021; 22:1402. [PMID: 33573337 PMCID: PMC7866819 DOI: 10.3390/ijms22031402] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Besides smoking and alcohol, human papillomavirus (HPV) is a factor promoting head and neck squamous cell carcinoma (HNSCC). In some human tumors, including HNSCC, a number of mutations are caused by aberrantly activated DNA-modifying enzymes, such as the apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC) family of cytidine deaminases. As the enzymatic activity of APOBEC proteins contributes to the innate immune response to viruses, including HPV, the role of APOBEC proteins in HPV-driven head and neck carcinogenesis has recently gained increasing attention. Ongoing research efforts take the cue from two key observations: (1) APOBEC expression depends on HPV infection status in HNSCC; and (2) APOBEC activity plays a major role in HPV-positive HNSCC mutagenesis. This review focuses on recent advances on the role of APOBEC proteins in HPV-positive vs. HPV-negative HNSCC.
Collapse
Affiliation(s)
- Giuseppe Riva
- Otorhinolaryngology Division, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (G.P.)
| | - Camilla Albano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Sergio Fernando Castillo Pacheco
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Giancarlo Pecorari
- Otorhinolaryngology Division, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (G.P.)
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| |
Collapse
|
46
|
Uriu K, Kosugi Y, Ito J, Sato K. The Battle between Retroviruses and APOBEC3 Genes: Its Past and Present. Viruses 2021; 13:124. [PMID: 33477360 PMCID: PMC7830460 DOI: 10.3390/v13010124] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
The APOBEC3 family of proteins in mammals consists of cellular cytosine deaminases and well-known restriction factors against retroviruses, including lentiviruses. APOBEC3 genes are highly amplified and diversified in mammals, suggesting that their evolution and diversification have been driven by conflicts with ancient viruses. At present, lentiviruses, including HIV, the causative agent of AIDS, are known to encode a viral protein called Vif to overcome the antiviral effects of the APOBEC3 proteins of their hosts. Recent studies have revealed that the acquisition of an anti-APOBEC3 ability by lentiviruses is a key step in achieving successful cross-species transmission. Here, we summarize the current knowledge of the interplay between mammalian APOBEC3 proteins and viral infections and introduce a scenario of the coevolution of mammalian APOBEC3 genes and viruses.
Collapse
Affiliation(s)
- Keiya Uriu
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; (K.U.); (J.I.)
- Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan
| | - Yusuke Kosugi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan;
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 6068501, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; (K.U.); (J.I.)
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; (K.U.); (J.I.)
- Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan
| |
Collapse
|
47
|
Granadillo Rodríguez M, Flath B, Chelico L. The interesting relationship between APOBEC3 deoxycytidine deaminases and cancer: a long road ahead. Open Biol 2020; 10:200188. [PMID: 33292100 PMCID: PMC7776566 DOI: 10.1098/rsob.200188] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is considered a group of diseases characterized by uncontrolled growth and spread of abnormal cells and is propelled by somatic mutations. Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of enzymes are endogenous sources of somatic mutations found in multiple human cancers. While these enzymes normally act as an intrinsic immune defence against viruses, they can also catalyse 'off-target' cytidine deamination in genomic single-stranded DNA intermediates. The deamination of cytosine forms uracil, which is promutagenic in DNA. Key factors to trigger the APOBEC 'off-target' activity are overexpression in a non-normal cell type, nuclear localization and replication stress. The resulting uracil-induced mutations contribute to genomic variation, which may result in neutral, beneficial or harmful consequences for the cancer. This review summarizes the functional and biochemical basis of the APOBEC3 enzyme activity and highlights their relationship with the most well-studied cancers in this particular context such as breast, lung, bladder, and human papillomavirus-associated cancers. We focus on APOBEC3A, APOBEC3B and APOBEC3H haplotype I because they are the leading candidates as sources of somatic mutations in these and other cancers. Also, we discuss the prognostic value of the APOBEC3 expression in drug resistance and response to therapies.
Collapse
Affiliation(s)
| | | | - Linda Chelico
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
48
|
Pinheiro M, Gage JC, Clifford GM, Demarco M, Cheung LC, Chen Z, Yeager M, Cullen M, Boland JF, Chen X, Raine-Bennett T, Steinberg M, Bass S, Befano B, Xiao Y, Tenet V, Walker J, Zuna R, Poitras NE, Gold MA, Dunn T, Yu K, Zhu B, Burdett L, Turan S, Lorey T, Castle PE, Wentzensen N, Burk RD, Schiffman M, Mirabello L. Association of HPV35 with cervical carcinogenesis among women of African ancestry: Evidence of viral-host interaction with implications for disease intervention. Int J Cancer 2020; 147:2677-2686. [PMID: 32363580 PMCID: PMC11090644 DOI: 10.1002/ijc.33033] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/20/2020] [Accepted: 04/02/2020] [Indexed: 12/20/2022]
Abstract
HPV35 has been found in only ∼2% of invasive cervical cancers (ICC) worldwide but up to 10% in Sub-Saharan Africa, warranting further investigation and consideration of impact on preventive strategies. We studied HPV35 and ethnicity, in relation to the known steps in cervical carcinogenesis, using multiple large epidemiologic studies in the U.S. and internationally. Combining five U.S. studies, we measured HPV35 positivity and, in Northern California, observed HPV35 type-specific population prevalence and estimated 5-year risk of developing precancer when HPV35-positive. HPV35 genetic variation was examined for differences in carcinogenicity in 1053 HPV35+ cervical specimens from a U.S. cohort and an international collection. African-American women had more HPV35 (12.1% vs 5.1%, P < .001) and more HPV35-associated precancers (7.4% vs 2.1%, P < .001) compared to other ethnicities. Precancer risks after HPV35 infection did not vary by ethnicity (global P = .52). The HPV35 A2 sublineage showed an increased association with precancer/cancer in African-Americans (OR = 5.6 vs A1, 95% CI = 1.3-24.8) and A2 was more prevalent among ICC in Africa than other world regions (41.9% vs 10.4%, P < .01). Our analyses support a strong link between HPV35 and cervical carcinogenesis in women of African ancestry. Current HPV vaccines cover the majority of cervical precancer/cancer across all ethnic groups; additional analyses are required to determine whether the addition of HPV35 to the already highly effective nine-valent HPV vaccine would provide better protection for women in Africa or of African ancestry.
Collapse
Affiliation(s)
- Maisa Pinheiro
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Julia C. Gage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | | | - Maria Demarco
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Li C. Cheung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Michael Cullen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Joseph F. Boland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Xiaojian Chen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Tina Raine-Bennett
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Mia Steinberg
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Sara Bass
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Brian Befano
- Information Management Services, Calverton, Maryland
| | - Yanzi Xiao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Vanessa Tenet
- International Agency for Research on Cancer, Lyon, France
| | - Joan Walker
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rosemary Zuna
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Nancy E. Poitras
- Regional Laboratory, Kaiser Permanente Northern California, Berkeley, California
| | - Michael A. Gold
- Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, Tennessee
| | - Terence Dunn
- Department of Pathology, The University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Sevilay Turan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Thomas Lorey
- Division of Research, Regional Laboratory and Women’s Health Research Institute, Kaiser Permanente Northern California, Oakland, California
| | - Philip E. Castle
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Robert D. Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
- Departments of Pediatrics, Microbiology and Immunology, and Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, New York
| | - Mark Schiffman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
49
|
Revathidevi S, Murugan AK, Nakaoka H, Inoue I, Munirajan AK. APOBEC: A molecular driver in cervical cancer pathogenesis. Cancer Lett 2020; 496:104-116. [PMID: 33038491 PMCID: PMC7539941 DOI: 10.1016/j.canlet.2020.10.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/16/2020] [Accepted: 10/04/2020] [Indexed: 02/09/2023]
Abstract
Cervical cancer is one of the foremost common cancers in women. Human papillomavirus (HPV) infection remains a major risk factor of cervical cancer. In addition, numerous other genetic and epigenetic factors also are involved in the underlying pathogenesis of cervical cancer. Recently, it has been reported that apolipoprotein B mRNA editing enzyme catalytic polypeptide like (APOBEC), DNA-editing protein plays an important role in the molecular pathogenesis of cancer. Particularly, the APOBEC3 family was shown to induce tumor mutations by aberrant DNA editing mechanism. In general, APOBEC3 enzymes play a pivotal role in the deamination of cytidine to uridine in DNA and RNA to control diverse biological processes such as regulation of protein expression, innate immunity, and embryonic development. Innate antiviral activity of the APOBEC3 family members restrict retroviruses, endogenous retro-element, and DNA viruses including the HPV that is the leading risk factor for cervical cancer. This review briefly describes the pathogenesis of cervical cancer and discusses in detail the recent findings on the role of APOBEC in the molecular pathogenesis of cervical cancer. APOBEC enzymes deaminate cytidine to uridine and control diverse biological processes including viral restriction. APOBEC3, DNA/RNA-editing enzyme plays an important role in the molecular pathogenesis of cervical cancer. APOBEC3-mediated DNA editing leads to the accumulation of somatic mutations in tumors and HPV genome. Deregulation of APOBEC3 family genes cause genomic instability and result in drug resistance, and immune-evasion in tumors.
Collapse
Affiliation(s)
- Sundaramoorthy Revathidevi
- Department of Genetics, Dr ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, 600113, India; Division of Human Genetics, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Hirofumi Nakaoka
- Division of Human Genetics, National Institute of Genetics, Mishima, 411-8540, Japan; Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Chiyoda-ku, 101-0062, Japan
| | - Ituro Inoue
- Division of Human Genetics, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Arasambattu Kannan Munirajan
- Department of Genetics, Dr ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, 600113, India.
| |
Collapse
|
50
|
Wakae K, Kondo S, Pham HT, Wakisaka N, Que L, Li Y, Zheng X, Fukano K, Kitamura K, Watashi K, Aizaki H, Ueno T, Moriyama‐Kita M, Ishikawa K, Nakanishi Y, Endo K, Muramatsu M, Yoshizaki T. EBV-LMP1 induces APOBEC3s and mitochondrial DNA hypermutation in nasopharyngeal cancer. Cancer Med 2020; 9:7663-7671. [PMID: 32815637 PMCID: PMC7571841 DOI: 10.1002/cam4.3357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
An Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is a principal oncogene that plays a pivotal role in EBV-associated malignant tumors including nasopharyngeal cancer (NPC). Recent genomic landscape studies revealed that NPC also contained many genomic mutations, suggesting the role of LMP1 as a driver gene for the induction of these genomic mutations. Nonetheless, its exact mechanism has not been investigated. In this study, we report that LMP1 alters the expression profile of APOBEC3s(A3s), host deaminases that introduce consecutive C-to-U mutations (hypermutation). In vitro, LMP1 induces APOBEC3B (A3B) and 3F(A3F), in a nasopharyngeal cell line, AdAH. Overexpression of LMP1, A3B, or A3F induces mtDNA hypermutation, which is also detectable from NPC specimens. Expression of LMP1 and A3B in NPC was correlated with neck metastasis. These results provide evidence as to which LMP1 induces A3s and mtDNA hypermutation, and how LMP1 facilitates metastasis is also discussed.
Collapse
Affiliation(s)
- Kousho Wakae
- Department of Molecular GeneticsGraduate School of Medical ScienceKanazawa UniversityKanazawaJapan
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Satoru Kondo
- Division of Otorhinolaryngology and Head and Neck SurgeryKanazawa UniversityKanazawaJapan
| | - Hai Thanh Pham
- Division of Otorhinolaryngology and Head and Neck SurgeryKanazawa UniversityKanazawaJapan
| | - Naohiro Wakisaka
- Division of Otorhinolaryngology and Head and Neck SurgeryKanazawa UniversityKanazawaJapan
| | - Lusheng Que
- Department of Molecular GeneticsGraduate School of Medical ScienceKanazawa UniversityKanazawaJapan
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Yingfang Li
- Department of Molecular GeneticsGraduate School of Medical ScienceKanazawa UniversityKanazawaJapan
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Xin Zheng
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Kento Fukano
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Kouichi Kitamura
- Department of Molecular GeneticsGraduate School of Medical ScienceKanazawa UniversityKanazawaJapan
- Department of Virology IINational Institute of Infectious DiseasesMusashi‐MurayamaTokyoJapan
| | - Koichi Watashi
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Hideki Aizaki
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Takayoshi Ueno
- Division of Otorhinolaryngology and Head and Neck SurgeryKanazawa UniversityKanazawaJapan
| | - Makiko Moriyama‐Kita
- Division of Otorhinolaryngology and Head and Neck SurgeryKanazawa UniversityKanazawaJapan
| | - Kazuya Ishikawa
- Division of Otorhinolaryngology and Head and Neck SurgeryKanazawa UniversityKanazawaJapan
| | - Yosuke Nakanishi
- Division of Otorhinolaryngology and Head and Neck SurgeryKanazawa UniversityKanazawaJapan
| | - Kazuhira Endo
- Division of Otorhinolaryngology and Head and Neck SurgeryKanazawa UniversityKanazawaJapan
| | - Masamichi Muramatsu
- Department of Molecular GeneticsGraduate School of Medical ScienceKanazawa UniversityKanazawaJapan
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Tomokazu Yoshizaki
- Division of Otorhinolaryngology and Head and Neck SurgeryKanazawa UniversityKanazawaJapan
| |
Collapse
|