1
|
Chang TY, Li CJ, Chao TL, Chang SY, Chang SC. Design of the conserved epitope peptide of SARS-CoV-2 spike protein as the broad-spectrum COVID-19 vaccine. Appl Microbiol Biotechnol 2024; 108:486. [PMID: 39412657 PMCID: PMC11485143 DOI: 10.1007/s00253-024-13331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Our previous study has found that monoclonal antibodies targeting a conserved epitope peptide spanning from residues 1144 to 1156 of SARS-CoV-2 spike (S) protein, namely S(1144-1156), can broadly neutralize all of the prevalent SARS-CoV-2 strains, including the wild type, Alpha, Epsilon, Delta, and Gamma variants. In the study, S(1144-1156) was conjugated with bovine serum albumin (BSA) and formulated with Montanide ISA 51 adjuvant for inoculation in BALB/c mice to study its potential as a vaccine candidate. Results showed that the titers of S protein-specific IgGs and the neutralizing antibodies in mouse sera against various SARS-CoV-2 variants, including the Omicron sublineages, were largely induced along with three doses of immunization. The significant release of IFN-γ and IL-2 was also observed by ELISpot assays through stimulating vaccinated mouse splenocytes with the S(1144-1156) peptide. Furthermore, the vaccination of the S(1143-1157)- and S(1142-1158)-EGFP fusion proteins can elicit more SARS-CoV-2 neutralizing antibodies in mouse sera than the S(1144-1156)-EGFP fusion protein. Interestingly, the antisera collected from mice inoculated with the S(1144-1156) peptide vaccine exhibited better efficacy for neutralizing Omicron BA.2.86 and JN.1 subvariants than Omicron BA.1, BA.2, and XBB subvariants. Since the amino acid sequences of the S(1144-1156) are highly conserved among various SARS-CoV-2 variants, the immunogen containing the S(1144-1156) core epitope can be designed as a broadly effective COVID-19 vaccine. KEY POINTS: • Inoculation of mice with the S(1144-1156) peptide vaccine can induce bnAbs against various SARS-CoV-2 variants. • The S(1144-1156) peptide stimulated significant release of IFN-γ and IL-2 in vaccinated mouse splenocytes. • The S(1143-1157) and S(1142-1158) peptide vaccines can elicit more SARS-CoV-2 nAbs in mice.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Jung Li
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
- Department of Laboratory Medicine, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, 100, Taiwan.
| | - Shih-Chung Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
- Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
2
|
Smith CL, Didion E, Aung H, Tamilselvan B, Bej T, Oyebanji OA, Shive CL, Wilson BM, Cameron M, Cameron C, Gravenstein S, Canaday DH. Longitudinal Analysis of Nursing Home Residents' T-Cell Responses After SARS-CoV-2 mRNA Vaccinations Shows Influence of Biological Sex and Infection History. J Infect Dis 2024; 230:635-644. [PMID: 38743816 PMCID: PMC11420774 DOI: 10.1093/infdis/jiae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Vaccines and vaccine boosting have blunted excess morbidity and mortality from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in older nursing home residents (NHR). However, the impact of repeated vaccination on the T-cell response based on biological sex and prior infection of NHR remain understudied. METHODS We examined T-cell responses to SARS-CoV-2 mRNA vaccines in a cohort of NHR and healthcare workers (HCW) over 2 years. We used interferon-γ ELIspot and flow cytometry to assess T-cell response before, 2 weeks, and 6 months after the initial series and each of 2 booster vaccines. We analyzed these data longitudinally with mixed-effect modeling and also examined subsets of our cohorts for additional changes in T-cell effector function. RESULTS Prior SARS-CoV-2 infection and female sex contributed to higher T-cell response in NHR but not HCW. When looking across time points, NHR but not HCW with prior infection had significantly higher T-cell responses than infection-naive subjects. These patterns of response were maintained across multiple booster vaccinations. CONCLUSIONS These results suggest that the age, multimorbidity, and/or frailty of the NHR cohort may accentuate sex and infection status differences in T-cell response to mRNA vaccination.
Collapse
Affiliation(s)
- Carson L Smith
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Elise Didion
- Division of Infectious Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Htin Aung
- Division of Infectious Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Taissa Bej
- Geriatric Research, Education, and Clinical Center, Louis Stokes Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Oladayo A Oyebanji
- Division of Infectious Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Carey L Shive
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Geriatric Research, Education, and Clinical Center, Louis Stokes Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Brigid M Wilson
- Geriatric Research, Education, and Clinical Center, Louis Stokes Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - Mark Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Cheryl Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
| | - Stefan Gravenstein
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Center on Innovation in Long-Term Services and Supports, Providence Veterans Administration Medical Center, Providence, Rhode Island, USA
| | - David H Canaday
- Division of Infectious Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Geriatric Research, Education, and Clinical Center, Louis Stokes Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Pasupuleti D, Bagwe P, Ferguson A, Uddin MN, D'Souza MJ, Zughaier SM. Evaluating Nanoparticulate Vaccine Formulations for Effective Antigen Presentation and T-Cell Proliferation Using an In Vitro Overlay Assay. Vaccines (Basel) 2024; 12:1049. [PMID: 39340079 PMCID: PMC11435973 DOI: 10.3390/vaccines12091049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Inducing T lymphocyte (T-cell) activation and proliferation with specificity against a pathogen is crucial in vaccine formulation. Assessing vaccine candidates' ability to induce T-cell proliferation helps optimize formulation for its safety, immunogenicity, and efficacy. Our in-house vaccine candidates use microparticles (MPs) and nanoparticles (NPs) to enhance antigen stability and target delivery to antigen-presenting cells (APCs), providing improved immunogenicity. Typically, vaccine formulations are screened for safety and immunostimulatory effects using in vitro methods, but extensive animal testing is often required to assess immunogenic responses. We identified the need for a rapid, intermediate screening process to select promising candidates before advancing to expensive and time-consuming in vivo evaluations. In this study, an in vitro overlay assay system was demonstrated as an effective high-throughput preclinical testing method to evaluate the immunogenic properties of early-stage vaccine formulations. The overlay assay's effectiveness in testing particulate vaccine candidates for immunogenic responses has been evaluated by optimizing the carboxyfluorescein succinimidyl ester (CFSE) T-cell proliferation assay. DCs were overlaid with T-cells, allowing vaccine-stimulated DCs to present antigens to CFSE-stained T-cells. T-cell proliferation was quantified using flow cytometry on days 0, 1, 2, 4, and 6 upon successful antigen presentation. The assay was tested with nanoparticulate vaccine formulations targeting Neisseria gonorrhoeae (CDC F62, FA19, FA1090), measles, H1N1 flu prototype, canine coronavirus, and Zika, with adjuvants including Alhydrogel® (Alum) and AddaVax™. The assay revealed robust T-cell proliferation in the vaccine treatment groups, with variations between bacterial and viral vaccine candidates. A dose-dependent study indicated immune stimulation varied with antigen dose. These findings highlight the assay's potential to differentiate and quantify effective antigen presentation, providing valuable insights for developing and optimizing vaccine formulations.
Collapse
Affiliation(s)
- Dedeepya Pasupuleti
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Priyal Bagwe
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Amarae Ferguson
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Mohammad N Uddin
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Martin J D'Souza
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Susu M Zughaier
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2731, Qatar
| |
Collapse
|
4
|
Guo ZY, Tang YQ, Zhang ZB, Liu J, Zhuang YX, Li T. COVID-19: from immune response to clinical intervention. PRECISION CLINICAL MEDICINE 2024; 7:pbae015. [PMID: 39139990 PMCID: PMC11319938 DOI: 10.1093/pcmedi/pbae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the pivotal role of the immune response in determining the progression and severity of viral infections. In this paper, we review the most recent studies on the complicated dynamics between SARS-CoV-2 and the host immune system, highlight the importance of understanding these dynamics in developing effective treatments and formulate potent management strategies for COVID-19. We describe the activation of the host's innate immunity and the subsequent adaptive immune response following infection with SARS-CoV-2. In addition, the review emphasizes the immune evasion strategies of the SARS-CoV-2, including inhibition of interferon production and induction of cytokine storms, along with the resulting clinical outcomes. Finally, we assess the efficacy of current treatment strategies, including antiviral drugs, monoclonal antibodies, and anti-inflammatory treatments, and discuss their role in providing immunity and preventing severe disease.
Collapse
Affiliation(s)
- Zheng-yang Guo
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Yan-qing Tang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Zi-bo Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Yu-xin Zhuang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
5
|
Fazeli P, Kalani M, Mahdavi M, Hosseini M. The significance of stem cell-like memory T cells in viral and bacterial vaccines: A mini review. Int Immunopharmacol 2024; 137:112441. [PMID: 38852525 DOI: 10.1016/j.intimp.2024.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Vaccination has become a widely used method to induce immune protection against microbial pathogens, including viral and bacterial microorganisms. Both humoral and cellular immunity serve a critical role in neutralizing and eliminating these pathogens. An effective vaccine should be able to induce a long-lasting immune memory response. Recent investigations on different subsets of T cells have identified a new subset of T cells using multi-parameter flow cytometry, which possess stem cell-like properties and the ability to mount a rapid immune response upon re-exposure to antigens known as stem cell-like memory T cells (TSCM). One of the major challenges with current vaccines is their limited ability to maintain long-term memory in the adaptive immune system. Recent evidence suggests that a specific subgroup of memory T cells has the unique ability to retain their longevity for up to 25 years, as observed in the case of the yellow fever vaccine. Therefore, in this study, we tried to explore and discuss the potential role of this new T cell memory subset in the development of viral and bacterial vaccines.
Collapse
Affiliation(s)
- Pooria Fazeli
- Truama Research Center, Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Kalani
- Department of Immunology, Prof. Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Hosseini
- Truama Research Center, Emtiaz Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Salazar VA, Comenge J, Suárez-López R, Burger JA, Sanders RW, Bastús NG, Jaime C, Joseph-Munne J, Puntes V. Gold Nanoparticle Virus-like Particles Presenting SARS-CoV-2 Spike Protein: Synthesis, Biophysical Properties and Immunogenicity in BALB/c Mice. Vaccines (Basel) 2024; 12:829. [PMID: 39203954 PMCID: PMC11359663 DOI: 10.3390/vaccines12080829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
Gold nanoparticles (AuNPs) decorated with antigens have recently emerged as promising tools for vaccine development due to their innate ability to provide stability to antigens and modulate immune responses. In this study, we have engineered deactivated virus-like particles (VLPs) by precisely functionalizing gold cores with coronas comprising the full SARS-CoV-2 spike protein (S). Using BALB/c mice as a model, we investigated the immunogenicity of these S-AuNPs-VLPs. Our results demonstrate that S-AuNPs-VLPs consistently enhanced antigen-specific antibody responses compared to the S protein free in solution. This enhancement included higher binding antibody titers, higher neutralizing capacity of antibodies, and stronger T-cell responses. Compared to the mRNA COVID-19 vaccine, where the S protein is synthesized in situ, S-AuNPs-VLPs induced comparable binding and neutralizing antibody responses, but substantially superior T-cell responses. In conclusion, our study highlights the potential of conjugated AuNPs as an effective antigen-delivery system for protein-based vaccines targeting a broad spectrum of infectious diseases and other emergent viruses.
Collapse
Affiliation(s)
- Vivian A. Salazar
- Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain; (V.A.S.); (J.C.)
| | - Joan Comenge
- Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain; (V.A.S.); (J.C.)
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Rosa Suárez-López
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (R.S.-L.); (C.J.)
| | - Judith A. Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands; (J.A.B.); (R.W.S.)
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands; (J.A.B.); (R.W.S.)
| | - Neus G. Bastús
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Carlos Jaime
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (R.S.-L.); (C.J.)
| | - Joan Joseph-Munne
- Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain; (V.A.S.); (J.C.)
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
| | - Victor Puntes
- Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain; (V.A.S.); (J.C.)
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
7
|
Ross KA, Kelly S, Phadke KS, Peroutka-Bigus N, Fasina O, Siddoway A, Mallapragada SK, Wannemuehler MJ, Bellaire BH, Narasimhan B. Next-generation nanovaccine induces durable immunity and protects against SARS-CoV-2. Acta Biomater 2024; 183:318-329. [PMID: 38844193 DOI: 10.1016/j.actbio.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
While first generation SARS-CoV-2 vaccines were effective in slowing the spread and severity of disease during the COVID-19 pandemic, there is a need for vaccines capable of inducing durable and broad immunity against emerging variants of concern. Nanoparticle-based vaccines (i.e., "nanovaccines") composed of polyanhydride nanoparticles and pentablock copolymer micelles have previously been shown to protect against respiratory pathogens, including influenza A virus, respiratory syncytial virus, and Yersinia pestis. In this work, a nanovaccine containing SARS-CoV-2 spike and nucleocapsid antigens was designed and optimized. The optimized nanovaccine induced long-lived systemic IgG antibody responses against wild-type SARS-CoV-2 virus. In addition, the nanovaccine induced antibody responses capable of neutralization and cross-reactivity to multiple SARS-CoV-2 variants (including B.1.1.529) and antigen-specific CD4+ and CD8+ T cell responses. Finally, the nanovaccine protected mice against a lethal SARS-CoV-2 challenge, setting the stage for advancing particle-based SARS-CoV-2 nanovaccines. STATEMENT OF SIGNIFICANCE: First-generation SARS-CoV-2 vaccines were effective in slowing the spread and limiting the severity of COVID-19. However, current vaccines target only one antigen of the virus (i.e., spike protein) and focus on the generation of neutralizing antibodies, which may be less effective against new, circulating strains. In this work, we demonstrated the ability of a novel nanovaccine platform, based on polyanhydride nanoparticles and pentablock copolymer micelles, to generate durable and broad immunity against SARS-CoV-2. These nanovaccines induced long-lasting (> 62 weeks) serum antibody responses which neutralized binding to ACE2 receptors and were cross-reactive to multiple SARS-CoV-2 variants. Additionally, mice immunized with the SARS-CoV-2 nanovaccine showed a significant increase of antigen-specific T cell responses in the draining lymph nodes and spleens. Together, these nanovaccine-induced immune responses contributed to the protection of mice against a lethal challenge of live SARS-CoV-2 virus, indicating that this nanovaccine platform is a promising next-generation SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Kathleen A Ross
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA
| | - Sean Kelly
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kruttika S Phadke
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Nathan Peroutka-Bigus
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Olufemi Fasina
- Veterinary Pathology, Iowa State University, Ames, IA 50011, USA
| | - Alaric Siddoway
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Surya K Mallapragada
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Michael J Wannemuehler
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Bryan H Bellaire
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Balaji Narasimhan
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
8
|
Patil R, Mukhida S, Ajagunde J, Khan U, Khan S, Gandham N, Vyawhare C, Das NK, Mirza S. Development of a machine learning model to predict risk of development of COVID-19-associated mucormycosis. Future Microbiol 2024; 19:297-305. [PMID: 38294306 DOI: 10.2217/fmb-2023-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/02/2023] [Indexed: 02/01/2024] Open
Abstract
Aim: The study aimed to identify quantitative parameters that increase the risk of rhino-orbito-cerebral mucormycosis, and subsequently developed a machine learning model that can anticipate susceptibility to developing this condition. Methods: Clinicopathological data from 124 patients were used to quantify their association with COVID-19-associated mucormycosis (CAM) and subsequently develop a machine learning model to predict its likelihood. Results: Diabetes mellitus, noninvasive ventilation and hypertension were found to have statistically significant associations with radiologically confirmed CAM cases. Conclusion: Machine learning models can be used to accurately predict the likelihood of development of CAM, and this methodology can be used in creating prediction algorithms of a wide variety of infections and complications.
Collapse
Affiliation(s)
- Rajashri Patil
- Department of Microbiology, Dr DY Patil Medical College Hospital & Research Centre, Dr DY Patil Vidyapeeth, Pimpri, Pune 18, India
| | - Sahjid Mukhida
- Department of Microbiology, Dr DY Patil Medical College Hospital & Research Centre, Dr DY Patil Vidyapeeth, Pimpri, Pune 18, India
| | - Jyoti Ajagunde
- Department of Microbiology, Dr DY Patil Medical College Hospital & Research Centre, Dr DY Patil Vidyapeeth, Pimpri, Pune 18, India
| | - Uzair Khan
- Department of Microbiology, Dr DY Patil Medical College Hospital & Research Centre, Dr DY Patil Vidyapeeth, Pimpri, Pune 18, India
| | - Sameena Khan
- Department of Microbiology, Dr DY Patil Medical College Hospital & Research Centre, Dr DY Patil Vidyapeeth, Pimpri, Pune 18, India
| | - Nageswari Gandham
- Department of Microbiology, Dr DY Patil Medical College Hospital & Research Centre, Dr DY Patil Vidyapeeth, Pimpri, Pune 18, India
| | - Chanda Vyawhare
- Department of Microbiology, Dr DY Patil Medical College Hospital & Research Centre, Dr DY Patil Vidyapeeth, Pimpri, Pune 18, India
| | - Nikunja K Das
- Department of Microbiology, Dr DY Patil Medical College Hospital & Research Centre, Dr DY Patil Vidyapeeth, Pimpri, Pune 18, India
| | - Shahzad Mirza
- Department of Microbiology, Dr DY Patil Medical College Hospital & Research Centre, Dr DY Patil Vidyapeeth, Pimpri, Pune 18, India
| |
Collapse
|
9
|
Jin J, Wang X, Li Y, Yang X, Wang H, Han X, Sun J, Ma Z, Duan J, Zhang G, Huang T, Zhang T, Wu H, Zhang X, Su B. Weak SARS-CoV-2-specific responses of TIGIT-expressing CD8 + T cells in people living with HIV after a third dose of a SARS-CoV-2 inactivated vaccine. Chin Med J (Engl) 2023; 136:2938-2947. [PMID: 37963586 PMCID: PMC10752475 DOI: 10.1097/cm9.0000000000002926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domains (TIGIT), an inhibitory receptor expressed on T cells, plays a dysfunctional role in antiviral infection and antitumor activity. However, it is unknown whether TIGIT expression on T cells influences the immunological effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivated vaccines. METHODS Forty-five people living with HIV (PLWH) on antiretroviral therapy (ART) for more than two years and 31 healthy controls (HCs), all received a third dose of a SARS-CoV-2 inactivated vaccine, were enrolled in this study. The amounts, activation, proportion of cell subsets, and magnitude of the SARS-CoV-2-specific immune response of TIGIT + CD4 + and TIGIT + CD8 + T cells were investigated before the third dose but 6 months after the second vaccine dose (0W), 4 weeks (4W) and 12 weeks (12W) after the third dose. RESULTS Compared to that in HCs, the frequency of TIGIT + CD8 + T cells in the peripheral blood of PLWH increased at 12W after the third dose of the inactivated vaccine, and the immune activation of TIGIT + CD8 + T cells also increased. A decrease in the ratio of both T naïve (T N ) and central memory (T CM ) cells among TIGIT + CD8 + T cells and an increase in the ratio of the effector memory (T EM ) subpopulation were observed at 12W in PLWH. Interestingly, particularly at 12W, a higher proportion of TIGIT + CD8 + T cells expressing CD137 and CD69 simultaneously was observed in HCs than in PLWH based on the activation-induced marker assay. Compared with 0W, SARS-CoV-2-specific TIGIT + CD8 + T-cell responses in PLWH were not enhanced at 12W but were enhanced in HCs. Additionally, at all time points, the SARS-CoV-2-specific responses of TIGIT + CD8 + T cells in PLWH were significantly weaker than those of TIGIT - CD8 + T cells. However, in HCs, the difference in the SARS-CoV-2-specific responses induced between TIGIT + CD8 + T cells and TIGIT - CD8 + T cells was insignificant at 4W and 12W, except at 0W. CONCLUSIONS TIGIT expression on CD8 + T cells may hinder the T-cell immune response to a booster dose of an inactivated SARS-CoV-2 vaccine, suggesting weakened resistance to SARS-CoV-2 infection, especially in PLWH. Furthermore, TIGIT may be used as a potential target to increase the production of SARS-CoV-2-specific CD8 + T cells, thereby enhancing the effectiveness of vaccination.
Collapse
Affiliation(s)
- Junyan Jin
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiuwen Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yongzheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Xiaodong Yang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaoxu Han
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jin Sun
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhenglai Ma
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Junyi Duan
- Tian Yuan Studio, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Guanghui Zhang
- Tian Yuan Studio, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tao Huang
- Tian Yuan Studio, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
10
|
Priyanka, Abusalah MAH, Chopra H, Sharma A, Mustafa SA, Choudhary OP, Sharma M, Dhawan M, Khosla R, Loshali A, Sundriyal A, Saini J. Nanovaccines: A game changing approach in the fight against infectious diseases. Biomed Pharmacother 2023; 167:115597. [PMID: 37783148 DOI: 10.1016/j.biopha.2023.115597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
The field of nanotechnology has revolutionised global attempts to prevent, treat, and eradicate infectious diseases in the foreseen future. Nanovaccines have proven to be a valuable pawn in this novel technology. Nanovaccines are made up of nanoparticles that are associated with or prepared with components that can stimulate the host's immune system. In addition to their delivery capabilities, the nanocarriers have been demonstrated to possess intrinsic adjuvant properties, working as immune cell stimulators. Thus, nanovaccines have the potential to promote rapid as well as long-lasting humoral and cellular immunity. The nanovaccines have several possible benefits, including site-specific antigen delivery, increased antigen bioavailability, and a diminished adverse effect profile. To avail these benefits, several nanoparticle-based vaccines are being developed, including virus-like particles, liposomes, polymeric nanoparticles, nanogels, lipid nanoparticles, emulsion vaccines, exomes, and inorganic nanoparticles. Inspired by their distinctive properties, researchers are working on the development of nanovaccines for a variety of applications, such as cancer immunotherapy and infectious diseases. Although a few challenges still need to be overcome, such as modulation of the nanoparticle pharmacokinetics to avoid rapid elimination from the bloodstream by the reticuloendothelial system, The future prospects of this technology are also assuring, with multiple options such as personalised vaccines, needle-free formulations, and combination nanovaccines with several promising candidates.
Collapse
Affiliation(s)
- Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India
| | - Mai Abdel Haleem Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Abhilasha Sharma
- Department of Life Science, Gujarat University, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Suhad Asad Mustafa
- Scientific Research Center/ Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India.
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| | - Rajiv Khosla
- Department of Biotechnology, Doaba College, Jalandhar 144004, Punjab, India
| | - Aanchal Loshali
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ankush Sundriyal
- School of Pharmaceutical Sciences and Research, Sardar Bhagwan Singh University, Balawala, Dehradun 248001, India
| | - Jyoti Saini
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India
| |
Collapse
|
11
|
Esparcia-Pinedo L, Lancho-Sánchez Á, Tsukalov I, Pacheco MI, Martínez-Fleta P, Pérez-Miés B, Palacios-Calvo J, Sánchez-Madrid F, Martín-Gayo E, Alfranca A. T regulatory lymphocytes specific for SARS-CoV-2 display increased functional plasticity. Clin Immunol 2023; 256:109806. [PMID: 37827267 DOI: 10.1016/j.clim.2023.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/22/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
The study of phenotypic and functional characteristics of immune cells involved in host response to SARS-CoV-2 is relevant for understanding COVID-19 pathogenesis and individual differences in disease progression. We have analyzed chemokine receptor expression in SARS-CoV-2-specific CD4+ T lymphocytes from vaccinated donors, and have found an increase of CCR9+ and CCR6+ cells. CCR9+ specific CD4+ cells are enriched in T regulatory (Treg) lymphocytes. These cells specifically show heterogeneous regulatory activity, associated with different profiles of CCR9/CCR6 expression, individual differences in IL-10 and IL-17 production, and variable FoxP3 and Notch4 expression. A higher heterogeneity in FoxP3 is selectively observed in convalescent individuals within vaccinated population. Accordingly, SARS-CoV-2-specific CD4+ lymphocytes from COVID-19 patients are also enriched in CCR9+ and CCR6+ cells. CCR6+ specific Treg lymphocytes are mainly increased in critically ill individuals, indicating a preferential role for these cells in lung injury pathogenesis. We provide experimental evidence for a SARS-CoV-2-specific Treg population with increased plasticity, which may contribute to the differential pathogenic response against SARS-CoV-2 among individuals, and underlie the development of autoimmune conditions following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Laura Esparcia-Pinedo
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Ángel Lancho-Sánchez
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | | | - María I Pacheco
- Medical Oncology Department Hospital Universitario de La Princesa, and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Pedro Martínez-Fleta
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Belén Pérez-Miés
- Pathology Department, Ramón y Cajal University Hospital, CIBERONC, IRYCIS and University of Alcalá, Madrid, Spain
| | - José Palacios-Calvo
- Pathology Department, Ramón y Cajal University Hospital, CIBERONC, IRYCIS and University of Alcalá, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | - Enrique Martín-Gayo
- Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Enfermedades Infecciosas, CIBERINFEC, 28029 Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain.
| |
Collapse
|
12
|
Pereira RDD, Rabelo RAN, Oliveira NFDM, Porto SLT, Andrade ACDSP, Queiroz-Junior CM, Barbosa CLN, de Souza-Costa LP, Santos FRDS, Oliveira FBR, da Silva BLV, Umezu HL, Ferreira R, da Silva GSF, Cruz JS, Teixeira MM, Costa VV, Machado FS. A 5-Lipoxygenase Inhibitor, Zileuton, Modulates Host Immune Responses and Improves Lung Function in a Model of Severe Acute Respiratory Syndrome (SARS) Induced by Betacoronavirus. Viruses 2023; 15:2049. [PMID: 37896826 PMCID: PMC10611395 DOI: 10.3390/v15102049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Exacerbated inflammatory responses are a hallmark of severe coronavirus disease 2019 (COVID-19). Zileuton (Zi) is a selective inhibitor of 5-lipoxygenase, an enzyme involved in the production of several inflammatory/pro-resolving lipid mediators. Herein, we investigated the effect of Zi treatment in a severe acute respiratory syndrome (SARS) model. Mouse hepatitis virus (MHV)3-infected mice treated with Zi significantly improved the clinical score, weight loss, cardiopulmonary function, and survival rates compared with infected untreated animals. The protection observed in Zi-treated mice was associated with a lower inflammatory score, reduced dendritic cell-producing tumor necrosis factor (TNF), and increased neutrophil-producing interleukin (IL)-10 in the lungs three days after infection (dpi). At 5 dpi, the lungs of treated mice showed an increase in Th2-, Treg CD4+-, and Treg CD8+-producing IL-10 and reduced Th1 infiltrating cells. Furthermore, similar results were found upon Zi treatment after SARS-CoV-2 infection in transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2), significantly improving the clinical score, weight loss, and lung inflammatory score compared with untreated animals. Our data suggest that Zi protects against developing severe lung disease during SARS induced by betacoronavirus without affecting the host's capacity to deal with infection.
Collapse
Affiliation(s)
- Rafaela das Dores Pereira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Rayane Aparecida Nonato Rabelo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Natália Fernanda de Melo Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Samuel Luiz Teixeira Porto
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Ana Claudia dos Santos Pereira Andrade
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.C.d.S.P.A.); (C.M.Q.-J.); (B.L.V.d.S.)
| | - Celso M. Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.C.d.S.P.A.); (C.M.Q.-J.); (B.L.V.d.S.)
| | - César Luís Nascimento Barbosa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Luiz Pedro de Souza-Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Felipe Rocha da Silva Santos
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Fernando Bento Rodrigues Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Bárbara Luísa Vieira da Silva
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.C.d.S.P.A.); (C.M.Q.-J.); (B.L.V.d.S.)
| | - Hanna L. Umezu
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (H.L.U.); (G.S.F.d.S.)
| | - Raquel Ferreira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Glauber S. F. da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (H.L.U.); (G.S.F.d.S.)
| | - Jader Santos Cruz
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
| | - Vivian Vasconcelos Costa
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.C.d.S.P.A.); (C.M.Q.-J.); (B.L.V.d.S.)
| | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.d.D.P.); (R.A.N.R.); (N.F.d.M.O.); (S.L.T.P.); (L.P.d.S.-C.); (F.R.d.S.S.); (F.B.R.O.); (R.F.); (J.S.C.); (M.M.T.)
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
13
|
Li B, Jiang AY, Raji I, Atyeo C, Raimondo TM, Gordon AGR, Rhym LH, Samad T, MacIsaac C, Witten J, Mughal H, Chicz TM, Xu Y, McNamara RP, Bhatia S, Alter G, Langer R, Anderson DG. Enhancing the immunogenicity of lipid-nanoparticle mRNA vaccines by adjuvanting the ionizable lipid and the mRNA. Nat Biomed Eng 2023:10.1038/s41551-023-01082-6. [PMID: 37679571 DOI: 10.1038/s41551-023-01082-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/27/2023] [Indexed: 09/09/2023]
Abstract
To elicit optimal immune responses, messenger RNA vaccines require intracellular delivery of the mRNA and the careful use of adjuvants. Here we report a multiply adjuvanted mRNA vaccine consisting of lipid nanoparticles encapsulating an mRNA-encoded antigen, optimized for efficient mRNA delivery and for the enhanced activation of innate and adaptive responses. We optimized the vaccine by screening a library of 480 biodegradable ionizable lipids with headgroups adjuvanted with cyclic amines and by adjuvanting the mRNA-encoded antigen by fusing it with a natural adjuvant derived from the C3 complement protein. In mice, intramuscular or intranasal administration of nanoparticles with the lead ionizable lipid and with mRNA encoding for the fusion protein (either the spike protein or the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) increased the titres of antibodies against SARS-CoV-2 tenfold with respect to the vaccine encoding for the unadjuvanted antigen. Multiply adjuvanted mRNA vaccines may improve the efficacy, safety and ease of administration of mRNA-based immunization.
Collapse
Affiliation(s)
- Bowen Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Allen Yujie Jiang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Idris Raji
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Theresa M Raimondo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Akiva G R Gordon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke H Rhym
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tahoura Samad
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Corina MacIsaac
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob Witten
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haseeb Mughal
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taras M Chicz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Yue Xu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Ryan P McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Sangeeta Bhatia
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Wyss Institute at Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
14
|
Verma G, Dhawan M, Saied AA, Kaur G, Kumar R, Emran TB. Immunomodulatory approaches in managing lung inflammation in COVID-19: A double-edge sword. Immun Inflamm Dis 2023; 11:e1020. [PMID: 37773723 PMCID: PMC10521379 DOI: 10.1002/iid3.1020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/19/2023] [Accepted: 09/09/2023] [Indexed: 10/01/2023] Open
Abstract
INTRODUCTION The novel coronavirus infectious disease 2019 (COVID-19) which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a gigantic problem. The lung is the major target organ of SARS-CoV-2 and some of its variants like Delta and Omicron variant adapted in such a way that these variants can significantly damage this vital organ of the body. These variants raised a few eyebrows as the outbreaks have been seen in the vaccinated population. Patients develop severe respiratory illnesses which eventually prove fatal unless treated early. MAIN BODY Studies have shown that SARS-CoV-2 causes the release of pro-inflammatory cytokines such as interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α which are mediators of lung inflammation, lung damage, fever, and fibrosis. Additionally, various chemokines have been found to play an important role in the disease progression. A plethora of pro-inflammatory cytokines "cytokine storm" has been observed in severe cases of SARS-CoV-2 infection leading to acute respiratory distress syndrome (ARDS) and pneumonia that may prove fatal. To counteract cytokine storm-inducing lung inflammation, several promising immunomodulatory approaches are being investigated in numerous clinical trials. However, the benefits of using these strategies should outweigh the risks involved as the use of certain immunosuppressive approaches might lead the host susceptible to secondary bacterial infections. CONCLUSION The present review discusses promising immunomodulatory approaches to manage lung inflammation in COVID-19 cases which may serve as potential therapeutic options in the future and may prove lifesaving.
Collapse
Affiliation(s)
- Geetika Verma
- Department of Experimental Medicine and BiotechnologyPost Graduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Manish Dhawan
- Department of MicrobiologyPunjab Agricultural UniversityLudhianaIndia
- Trafford CollegeAltrinchamUK
| | | | - Geetika Kaur
- Department of Opthalmology, Visual and Anatomical SciencesWayne State University School of MedicineDetroitMichiganUSA
| | - Reetesh Kumar
- Department of Agricultural Sciences, Institute of Applied Sciences and HumanitiesGLA UniversityMathuraIndia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health SciencesDaffodil International UniversityDhakaBangladesh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer CenterBrown UniversityProvidenceRhode IslandUnited States
| |
Collapse
|
15
|
Kanis FM, Meier JP, Guldan H, Niller HH, Dahm M, Dansard A, Zander T, Struck F, Soutschek E, Deml L, Möbus S, Barabas S. Performance of T-Track ® SARS-CoV-2, an Innovative Dual Marker RT-qPCR-Based Whole-Blood Assay for the Detection of SARS-CoV-2-Reactive T Cells. Diagnostics (Basel) 2023; 13:2722. [PMID: 37685260 PMCID: PMC10486492 DOI: 10.3390/diagnostics13172722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
T-cell immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a central role in the control of the virus. In this study, we evaluated the performance of T-Track® SARS-CoV-2, a novel CE-marked quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay, which relies on the combined evaluation of IFNG and CXCL10 mRNA levels in response to the S1 and NP SARS-CoV-2 antigens, in 335 participants with or without a history of SARS-CoV-2 infection and vaccination, respectively. Of the 62 convalescent donors, 100% responded to S1 and 88.7% to NP antigens. In comparison, of the 68 naïve donors, 4.4% were reactive to S1 and 19.1% to NP. Convalescent donors <50 and ≥50 years of age demonstrated a 100% S1 reactivity and an 89.1% and 87.5% NP reactivity, respectively. T-cell responses by T-Track® SARS-CoV-2 and IgG serology by recomLine SARS-CoV-2 IgG according to the time from the last immunisation (by vaccination or viral infection) were comparable. Both assays showed a persistent cellular and humoral response for at least 36 weeks post immunisation in vaccinated and convalescent donors. Our results demonstrate the very good performance of the T-Track® SARS-CoV-2 molecular assay and suggest that it might be suitable to monitor the SARS-CoV-2-specific T-cell response in COVID-19 vaccinations trials and cross-reactivity studies.
Collapse
Affiliation(s)
| | | | | | - Hans-Helmut Niller
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alba C, Mozota M, Arroyo R, Gómez-Torres N, Castro I, Rodríguez JM. Influence of SARS-CoV-2 Status and Aging on the Nasal and Fecal Immunological Profiles of Elderly Individuals Living in Nursing Homes. Viruses 2023; 15:1404. [PMID: 37376702 DOI: 10.3390/v15061404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
In the frame of SARS-CoV-2 infection, studies regarding cytokine profiling of mucosal-related samples are scarce despite being the primary infection sites. The objective of this study was to compare the nasal and fecal inflammatory profiles of elderly individuals living in a nursing home highly affected by COVID-19 (ELD1) with those of elderly individuals living in a nursing home with no cases of SARS-CoV-2 infection (ELD2) and, also, with those of healthy SARS-CoV-2-negative younger adults (YHA). BAFF/TNFSF13B, IL6, IL10 and TNF-α (immunological hallmarks of SARS-CoV-2 infection) were the only immune factors whose concentrations were different in the three groups. Their highest concentrations were achieved in the ELD1 group. Nasal and fecal concentrations of a wide number of pro-inflammatory cytokines were similar in the ELD1 and ELD2 groups but higher than those found in the YHA samples. These results reinforce the hypothesis that immunosenescence and inflammaging rendered the elderly as a highly vulnerable population to a neo-infection, such as COVID-19, which was evidenced during the first pandemic waves.
Collapse
Affiliation(s)
- Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain
| | - Marta Mozota
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain
| | - Natalia Gómez-Torres
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain
| | - Irma Castro
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
17
|
Tang Z, Yu P, Guo Q, Chen M, Lei Y, Zhou L, Mai W, Chen L, Deng M, Kong W, Niu C, Xiong X, Li W, Chen C, Lai C, Wang Q, Li B, Ji T. Clinical characteristics and host immunity responses of SARS-CoV-2 Omicron variant BA.2 with deletion of ORF7a, ORF7b and ORF8. Virol J 2023; 20:106. [PMID: 37248496 DOI: 10.1186/s12985-023-02066-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND The pathogenicity and virulence of the Omicron strain have weakened significantly pathogenesis of Omicron variants. Accumulating data indicated accessory proteins play crucial roles in host immune evasion and virus pathogenesis of SARS-CoV-2. Therefore, the impact of simultaneous deletion of accessory protein ORF7a, ORF7b and ORF8 on the clinical characteristics and specific immunity in Omicron breakthrough infected patients (BIPs) need to be verified. METHODS Herein, plasma cytokines were identified using a commercial Multi-cytokine detection kit. Enzyme-linked immunosorbent assay and pseudovirus neutralization assays were utilized to determine the titers of SARS-CoV-2 specific binding antibodies and neutralizing antibodies, respectively. In addition, an enzyme-linked immunospot assay was used to quantify SARS-CoV-2 specific T cells and memory B cells. RESULTS A local COVID-19 outbreak was caused by the Omicron BA.2 variant, which featured a deletion of 871 base pairs (∆871 BA.2), resulting in the removal of ORF7a, ORF7b, and ORF8. We found that hospitalized patients with ∆871 BA.2 had significantly shorter hospital stays than those with wild-type (WT) BA.2. Plasma cytokine levels in both ∆871 BA.2 and WT BA.2 patients were within the normal range of reference, and there was no notable difference in the titers of SARS-CoV-2 ancestor or Omicron-specific binding IgG antibodies, neutralizing antibody titers, effector T cells, and memory B cells frequencies between ∆871 BA.2 and WT BA.2 infected adult patients. However, antibody titers in ∆871 BA.2 infected adolescents were higher than in adults. CONCLUSIONS The simultaneous deletion of ORF7a, ORF7b, and ORF8 facilitates the rapid clearance of the BA.2 variant, without impacting cytokine levels or affecting SARS-CoV-2 specific humoral and cellular immunity in Omicron-infected individuals.
Collapse
Affiliation(s)
- Zhizhong Tang
- Urology Surgery Department, Maoming People's Hospital, Maoming, 525000, People's Republic of China
| | - Pei Yu
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Qianfang Guo
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Institute of Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangdong, 511430, People's Republic of China
| | - Mingxiao Chen
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yu Lei
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Lei Zhou
- Department Of Pathology Laboratory, Maoming People's Hospital, Maoming, 525000, People's Republic of China
| | - Weikang Mai
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Lu Chen
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Min Deng
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Weiya Kong
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Chuanying Niu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510535, People's Republic of China
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510535, People's Republic of China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, 510005, People's Republic of China
| | - Wenrui Li
- Clinical Laboratory Medicine Department, Dongguan Ninth People's Hospital, Dongguan, 523016, People's Republic of China
| | - Chunbo Chen
- Intensive Care Unit Department, Maoming People's Hospital, Maoming, 525000, People's Republic of China
| | - Changchun Lai
- Clinical Laboratory Medicine Department, Maoming People's Hospital, Maoming, 525000, People's Republic of China.
| | - Qian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
| | - Baisheng Li
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Institute of Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangdong, 511430, People's Republic of China.
| | - Tianxing Ji
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511495, People's Republic of China.
| |
Collapse
|
18
|
Ruggieri S, Aiello A, Tortorella C, Navarra A, Vanini V, Meschi S, Lapa D, Haggiag S, Prosperini L, Cuzzi G, Salmi A, Quartuccio ME, Altera AMG, Garbuglia AR, Ascoli Bartoli T, Galgani S, Notari S, Agrati C, Puro V, Nicastri E, Gasperini C, Goletti D. Dynamic Evolution of Humoral and T-Cell Specific Immune Response to COVID-19 mRNA Vaccine in Patients with Multiple Sclerosis Followed until the Booster Dose. Int J Mol Sci 2023; 24:ijms24108525. [PMID: 37239872 DOI: 10.3390/ijms24108525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
This study characterizes antibody and T-cell immune responses over time until the booster dose of COronaVIrus Disease 2019 (COVID-19) vaccines in patients with multiple sclerosis (PwMS) undergoing different disease-modifying treatments (DMTs). We prospectively enrolled 134 PwMS and 99 health care workers (HCWs) having completed the two-dose schedule of a COVID-19 mRNA vaccine within the last 2-4 weeks (T0) and followed them 24 weeks after the first dose (T1) and 4-6 weeks after the booster (T2). PwMS presented a significant reduction in the seroconversion rate and anti-receptor-binding domain (RBD)-Immunoglobulin (IgG) titers from T0 to T1 (p < 0.0001) and a significant increase from T1 to T2 (p < 0.0001). The booster dose in PwMS showed a good improvement in the serologic response, even greater than HCWs, as it promoted a significant five-fold increase of anti-RBD-IgG titers compared with T0 (p < 0.0001). Similarly, the T-cell response showed a significant 1.5- and 3.8-fold increase in PwMS at T2 compared with T0 (p = 0.013) and T1 (p < 0.0001), respectively, without significant modulation in the number of responders. Regardless of the time elapsed since vaccination, most ocrelizumab- (77.3%) and fingolimod-treated patients (93.3%) showed only a T-cell-specific or humoral-specific response, respectively. The booster dose reinforces humoral- and cell-mediated-specific immune responses and highlights specific DMT-induced immune frailties, suggesting the need for specifically tailored strategies for immune-compromised patients to provide primary prophylaxis, early SARS-CoV-2 detection and the timely management of COVID-19 antiviral treatments.
Collapse
Affiliation(s)
- Serena Ruggieri
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Carla Tortorella
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Assunta Navarra
- Clinical Epidemiology Unit, National Institute for Infectious Disease Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
- UOS Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Shalom Haggiag
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Luca Prosperini
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | | | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Tommaso Ascoli Bartoli
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Simonetta Galgani
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Stefania Notari
- Cellular Immunology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Chiara Agrati
- Cellular Immunology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, 00146 Rome, Italy
| | - Vincenzo Puro
- UOC Emerging Infections and Centro di Riferimento AIDS (CRAIDS), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| |
Collapse
|
19
|
Savchenko AA, Kudryavtsev IV, Isakov DV, Sadowski IS, Belenyuk VD, Borisov AG. Recombinant Human Interleukin-2 Corrects NK Cell Phenotype and Functional Activity in Patients with Post-COVID Syndrome. Pharmaceuticals (Basel) 2023; 16:ph16040537. [PMID: 37111294 PMCID: PMC10144656 DOI: 10.3390/ph16040537] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Post-COVID syndrome develops in 10–20% of people who have recovered from COVID-19 and it is characterized by impaired function of the nervous, cardiovascular, and immune systems. Previously, it was found that patients who recovered from infection with the SARS-CoV-2 virus had a decrease in the number and functional activity of NK cells. The aim of the study was to assess the effectiveness of recombinant human IL-2 (rhIL-2) administered to correct NK cell phenotype and functional activity in patients with post-COVID syndrome. Patients were examined after 3 months for acute COVID-19 of varying severity. The phenotype of the peripheral blood NK cells was studied by flow cytometry. It was found that disturbances in the cell subset composition in patients with post-COVID syndrome were characterized by low levels of mature (p = 0.001) and cytotoxic NK cells (p = 0.013), with increased release of immature NK cells (p = 0.023). Functional deficiency of NK cells in post-COVID syndrome was characterized by lowered cytotoxic activity due to the decreased count of CD57+ (p = 0.001) and CD8+ (p < 0.001) NK cells. In the treatment of patients with post-COVID syndrome with recombinant IL-2, peripheral blood NK cell count and functional potential were restored. In general, the effectiveness of using rhIL-2 in treatment of post-COVID syndrome has been proven in patients with low levels of NK cells.
Collapse
Affiliation(s)
- Andrei A. Savchenko
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Igor V. Kudryavtsev
- Institute of Experimental Medicine, 197376 St. Petersburg, Russia
- School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Dmitry V. Isakov
- Institute of Experimental Medicine, Pavlov First St. Petersburg State Medical University of the Russian Federation Ministry of Healthcare, 197022 St. Petersburg, Russia
| | - Ivan S. Sadowski
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Vasily D. Belenyuk
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Alexandr G. Borisov
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| |
Collapse
|
20
|
Dhawan M, Rabaan AA, Alwarthan S, Alhajri M, Halwani MA, Alshengeti A, Najim MA, Alwashmi ASS, Alshehri AA, Alshamrani SA, AlShehail BM, Garout M, Al-Abdulhadi S, Al-Ahmed SH, Thakur N, Verma G. Regulatory T Cells (Tregs) and COVID-19: Unveiling the Mechanisms, and Therapeutic Potentialities with a Special Focus on Long COVID. Vaccines (Basel) 2023; 11:vaccines11030699. [PMID: 36992283 DOI: 10.3390/vaccines11030699] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
The COVID-19 pandemic has caused havoc all around the world. The causative agent of COVID-19 is the novel form of the coronavirus (CoV) named SARS-CoV-2, which results in immune system disruption, increased inflammation, and acute respiratory distress syndrome (ARDS). T cells have been important components of the immune system, which decide the fate of the COVID-19 disease. Recent studies have reported an important subset of T cells known as regulatory T cells (Tregs), which possess immunosuppressive and immunoregulatory properties and play a crucial role in the prognosis of COVID-19 disease. Recent studies have shown that COVID-19 patients have considerably fewer Tregs than the general population. Such a decrement may have an impact on COVID-19 patients in a number of ways, including diminishing the effect of inflammatory inhibition, creating an inequality in the Treg/Th17 percentage, and raising the chance of respiratory failure. Having fewer Tregs may enhance the likelihood of long COVID development in addition to contributing to the disease's poor prognosis. Additionally, tissue-resident Tregs provide tissue repair in addition to immunosuppressive and immunoregulatory activities, which may aid in the recovery of COVID-19 patients. The severity of the illness is also linked to abnormalities in the Tregs' phenotype, such as reduced expression of FoxP3 and other immunosuppressive cytokines, including IL-10 and TGF-beta. Hence, in this review, we summarize the immunosuppressive mechanisms and their possible roles in the prognosis of COVID-19 disease. Furthermore, the perturbations in Tregs have been associated with disease severity. The roles of Tregs are also explained in the long COVID. This review also discusses the potential therapeutic roles of Tregs in the management of patients with COVID-19.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Al Baha 4781, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Mustafa A Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Al-Madinah 41411, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Saleh A Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh Al-Abdulhadi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Riyadh 11942, Saudi Arabia
- Dr. Saleh Office for Medical Genetic and Genetic Counseling Services, The House of Expertise, Prince Sattam Bin Abdulaziz University, Dammam 32411, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Geetika Verma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
21
|
Rabaan AA, Al-Ahmed SH, Albayat H, Alwarthan S, Alhajri M, Najim MA, AlShehail BM, Al-Adsani W, Alghadeer A, Abduljabbar WA, Alotaibi N, Alsalman J, Gorab AH, Almaghrabi RS, Zaidan AA, Aldossary S, Alissa M, Alburaiky LM, Alsalim FM, Thakur N, Verma G, Dhawan M. Variants of SARS-CoV-2: Influences on the Vaccines' Effectiveness and Possible Strategies to Overcome Their Consequences. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:507. [PMID: 36984508 PMCID: PMC10051174 DOI: 10.3390/medicina59030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
The immune response elicited by the current COVID-19 vaccinations declines with time, especially among the immunocompromised population. Furthermore, the emergence of novel SARS-CoV-2 variants, particularly the Omicron variant, has raised serious concerns about the efficacy of currently available vaccines in protecting the most vulnerable people. Several studies have reported that vaccinated people get breakthrough infections amid COVID-19 cases. So far, five variants of concern (VOCs) have been reported, resulting in successive waves of infection. These variants have shown a variable amount of resistance towards the neutralising antibodies (nAbs) elicited either through natural infection or the vaccination. The spike (S) protein, membrane (M) protein, and envelope (E) protein on the viral surface envelope and the N-nucleocapsid protein in the core of the ribonucleoprotein are the major structural vaccine target proteins against COVID-19. Among these targets, S Protein has been extensively exploited to generate effective vaccines against COVID-19. Hence, amid the emergence of novel variants of SARS-CoV-2, we have discussed their impact on currently available vaccines. We have also discussed the potential roles of S Protein in the development of novel vaccination approaches to contain the negative consequences of the variants' emergence and acquisition of mutations in the S Protein of SARS-CoV-2. Moreover, the implications of SARS-CoV-2's structural proteins were also discussed in terms of their variable potential to elicit an effective amount of immune response.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Shamsah H. Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mustafa A. Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia
| | - Bashayer M. AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Wasl Al-Adsani
- Department of Medicine, Infectious Diseases Hospital, Kuwait City 63537, Kuwait
- Department of Infectious Diseases, Hampton Veterans Administration Medical Center, Hampton, VA 23667, USA
| | - Ali Alghadeer
- Department of Anesthesia, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Nouf Alotaibi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 435, Bahrain
| | - Ali H. Gorab
- Al Kuzama Primary Health Care Center, Al Khobar Health Network, Eastern Health Cluster, Al Khobar 34446, Saudi Arabia
| | - Reem S. Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Ali A. Zaidan
- Gastroenterology Department, King Fahad Armed Forces Hospital, Jeddah 23831, Saudi Arabia
| | - Sahar Aldossary
- Pediatric Infectious Diseases, Women and Children’s Health Institute, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Lamees M. Alburaiky
- Pediatric Department, Safwa General Hospital, Eastern Health Cluster, Safwa 31921, Saudi Arabia
| | - Fatimah Mustafa Alsalim
- Department of Family Medicine, Primary Health Care, Qatif Health Cluster, Qatif 32434, Saudi Arabia
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Geetika Verma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| |
Collapse
|
22
|
Comparison of Two Commercially Available Interferon-γ Release Assays for T-Cell-Mediated Immunity and Evaluation of Humoral Immunity against SARS-CoV-2 in Healthcare Workers. Diagnostics (Basel) 2023; 13:diagnostics13040637. [PMID: 36832126 PMCID: PMC9955378 DOI: 10.3390/diagnostics13040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Cellular immunity against SARS-CoV-2 is an important component of the immune response to the virus. At present, two such tests based on interferon-gamma release (interferon-γ release assays, IGRAs) are available-Quan-T-Cell SARS-CoV-2 by EUROIMMUN and T-SPOT.COVID by Oxford Immunotec. In this paper, we compared the results of these two tests in 90 subjects employed at the Public Health Institute Ostrava who had previously undergone COVID-19 infection or were vaccinated against that disease. To the best of our knowledge, this is the first head-to-head comparison of these two tests evaluating T-cell-mediated immunity against SARS-CoV-2. In addition, we also evaluated humoral immunity in the same individuals using the in-house virus neutralization test and IgG ELISA assay. The evaluation yielded similar results for both IGRAs, with Quan-T-Cell appearing to be insignificantly (p = 0.08) more sensitive (all 90 individuals were at least borderline positive) than T-SPOT.COVID (negative results found in five patients). The overall qualitative (presence/absence of immune response) agreement of both tests with virus neutralization test and anti-S IgG was also excellent (close or equal to 100% in all subgroups, with the exception of unvaccinated Omicron convalescents, a large proportion of whom, i.e., four out of six subjects, were IgG negative while at least borderline positive for T-cell-mediated immunity measured by Quan-T). This implies that the evaluation of T-cell-mediated immunity is a more sensitive indicator of immune response than the evaluation of IgG seropositivity. This is true at least for unvaccinated patients with a history of being infected only by the Omicron variant, but also likely for other groups of patients.
Collapse
|